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Abstract

In numerous multimedia and multi-modal tasks from image and video retrieval to zero-shot recog-

nition to multimedia question and answering, bridging image and text representations plays an

important and in some cases an indispensable role. To narrow the modality gap between vision

and language, prior approaches attempt to discover their correlated semantics in a common feature

space. However, these approaches omit the intra-modal semantic consistency when learning the

inter-modal correlations. To address this problem, we propose cycle-consistent embeddings in a

deep neural network for matching visual and textual representations. Our approach named as Cy-

cleMatch can maintain both inter-modal correlations and intra-modal consistency by cascading dual

mappings and reconstructed mappings in a cyclic fashion. Moreover, in order to achieve a robust

inference, we propose to employ two late-fusion approaches: average fusion and adaptive fusion.

Both of them can effectively integrate the matching scores of different embedding features, without

increasing the network complexity and training time. In the experiments on cross-modal retrieval,

we demonstrate comprehensive results to verify the effectiveness of the proposed approach. Our

approach achieves state-of-the-art performance on two well-known multi-modal datasets, Flickr30K

and MSCOCO.
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1. Introduction

Nowadays, the explosive growth of multimedia data in social networks (e.g. image, video, text

and audio) has triggered a massive amount of research activities in multi-modal understanding

and reasoning. For instance, we can recognize a picture of a panda after hearing the description

“black and white bears” without ever having seen one. This example demonstrates the cross-modal

interaction between vision and language. These heterogeneous data offers us the opportunity to un-

derstand the world from diverse perspectives, while giving rise to the challenges of bridging different

modalities. In this paper, we focus on the task of image-text matching, which aims to incorporate

heterogeneous representations from visual and textual modalities. In practice, this task plays an

essential role for a wide variety of tasks in the multimedia research, for examples, cross-modal

retrieval [1, 2], visual question answering [3], zero-shot recognition [4] and video captioning [5].

The core issue with image-text matching is searching for an appropriate embedding space where

related images and texts can be matched correctly. Driven by the great strides made by deep

learning [6, 7, 8], recent research has been dedicated to exploring deep neural networks for learning

powerful embedding features, in order to narrow the modality gap between visual and textual

domains. These networks are typically composed of two branches for generating visual and textual

embedding features in a common latent space, respectively [9, 10, 11, 12, 13]. Then, a similarity-

based ranking loss is used to measure the latent embedding features. Latent embeddings can distill

common semantic information about both the visual content and textual description. To directly

match the similarities between vision and language, researchers further exploit dual embeddings by

translating an input feature in the source space to be the feature in the target space [14, 15, 16, 17].

Both the latent and dual embeddings can capture inter-modal semantic correlations, however, they

are limited in preserving intra-modal semantic consistency. Our motivation for this work is that:

A robust embedding method should be able to learn representations of both the source and target

modalities.

Inspired by the idea of cycle-consistent learning [18, 19], we propose cycle-consistent embed-

dings in an image-text matching network, which can incorporate both inter-modal correlations and

intra-modal consistency for learning robust visual and textual embeddings. Figure 1 illustrates

our embedding method by integrating three feature embeddings, including dual, reconstructed and

latent embeddings. Specifically, it has two cycle branches, one starting from an image feature in

the visual space and the other from a text feature in the textual space. For each branch, it first
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accomplishes a dual mapping by translating an input feature in the source space to be a dual em-

bedding in the target space. Inverse to the dual mapping, we then exploit a reconstructed mapping,

with the aim of translating the dual embedding back to the source space. Moreover, we learn a

latent space during the dual and reconstructed mappings and correlate the latent embeddings. In

the three feature spaces, we compute their ranking losses to jointly optimize the whole embedding

learning. Consequently, our visual-textual embedding method can learn not only inter-modal map-

pings (i.e. image-to-text and text-to-image), but also intra-modal mappings (i.e. image-to-image

and text-to-text).

The contributions of this work are summarized as follows:

• We propose a novel deep cycle-consistent embedding network for image-text matching. Our

approach called CycleMatch can cascade dual and reconstructed mappings together to main-

tain inter-modal correlations and intra-modal consistency. To our best knowledge, this is the

first work to explore the usage of cycle consistency for solving the task of image-text matching.

• To improve the inference at the test stage, we present two late-fusion approaches to efficiently

integrate the matching scores of multiple embedding features without increasing the training

complexity.

• In the experiments, our cycle-consistency embedding outperforms traditional embeddings

with considerable improvements for cross-modal retrieval on two multi-modal datasets, i.e.

Flickr30K and MSCOCO. In addition, our results are competitive with the state-of-the-art

performance on both datasets.

The rest of this paper is structured as follows. Related works are introduced in Section 2.

Section 3 presents the details regarding the proposed CycleMatch. The late-fusion inference ap-

proaches are shown in Section 4. The experimental results are reported in Section 6. Finally,

Section 7 summarizes the conclusions and discusses the future work.
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Figure 1: Schematic pipeline of the proposed cycle-consistent embedding method. It is composed of two cycle
branches: (a) image-to-text-to-image cycle and (b) text-to-image-to-text cycle. We first perform a dual mapping
by transforming the input feature into the target feature space. Then, a reconstructed mapping is used to generate
a reconstructed embedding in the source feature space. Moreover, we construct a latent space to correlate latent
embeddings of the two mappings. The two branches share the mapping functions for transformations between three
feature spaces, and can be trained jointly by optimizing the matching losses in the three feature spaces.
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2. Related Work

Our work is related to image-text matching, deep visual-textual embedding and cycle-consistent

learning.

2.1. Image-Text Matching

The problem of image-text matching has been studied by the multimedia community for decades.

One typical solution is to unify heterogeneous representations into a latent embedding space, and

then measure their similarity to ensure related pairs are more similar than unrelated ones. To be

specific, Canonical Correlation Analysis (CCA) [20] is a classical and important embedding method,

which can learn linear transformations to project two modalities into a latent space where their

correlation is maximized. In addition, many variants [21, 22, 23, 24] are proposed to leverage the

effectiveness of CCA. For example, kernel CCA [21] extended the classical linear CCA by learning

non-linear transformations. Moreover, Gong et al. [25] integrated a third view with the two-view

CCA using high-level image semantics, in order to gain a better separation for multi-modal data.

Ranjan et al. [26] proposed a multi-label CCA approach by introducing multi-label information

while learning the cross-modal subspaces. In practice, the integration of images and texts is a core

issue for a variety of multi-modal applications [3, 4, 27, 28]. For example, Karaoglu et al. [29]

proposed to detect words from images and then to combine the textual cues with the visual ones.

Their method showed promising performance improvements for both place classification and logo

retrieval. Similarly, Bai et al. [30] developed a unified and end-to-end trainable network, where

the attention mechanism was further incorporated to better match the extracted textual and visual

cues, to address the difficulties in fine-grained image classification.

2.2. Deep Visual-Textual Embedding

With the increasing progress of deep learning, research efforts have been made to CCA into deep

neural networks [31, 32, 26, 33]. However, most deep CCA models rely on expensive decorrelation

computations, which limit their generalization abilities at large-scale data. Alternatively, a number

of recent approaches [34, 35, 12, 13, 36, 37] address the task by designing two-branch networks to

embed visual and textual features into a common latent space, and then learn latent embeddings

by optimizing a ranking loss between matched and unmatched image-text pairs. For instance,

Wang et al. [9] built a simple and efficient matching network to preserve the structure relations
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Figure 2: Conceptual illustration of variants of image-text matching models. (a) Latent embedding model. (b)
Dual embedding model with inter-modal reconstruction. (c) Dual embedding model with inter-modal and intra-
modal reconstruction. Note that each embedding network consists of two branches to output the image feature
and text feature, separately. (d) Our cycle-consistent embedding model. The models in (b)(c)(d) also impose latent
embeddings on hidden layers. Our model cascades the two embedding networks in a cyclic fashion, which can enhance
interactions between two embedding networks.

between images and texts in the latent space. To associate image regions with words, the attention

mechanism was integrated into visual-textual embedding models [10, 11]. In addition to the pairwise

ranking loss, recent approaches [38, 39] leveraged extra loss functions to enhance the discrimination

of the learned embedding features.

Another line of research [14, 15, 40, 41, 42] focuses on learning dual embeddings between two

modalities, e.g. projecting visual features into the textual feature space and vice versa. Essentially,

the dual embedding models are motivated by autoencoders. For instance, Feng et al. [14] proposed

a correspondence cross-modal autoencoder model. 2WayNet [16] built the projections between

two modalities and regularized them with Euclidean loss. Recently, the work of Gu et al. [17]

utilized two generative models to synthesize grounded visual and textual representations. Also,

Huang et al. [43] jointly modeled image-sentence matching and sentence generation. Note that,

latent embeddings can be additionally used in the dual embedding models to enhance cross-modal

relations.

In contrast to the above studies, our approach builds a reconstructed mapping upon the dual

mapping, and generates cycle-consistent embeddings that are beneficial to the process of matching

visual-textual representations. In Figure 2, we show the differences of our model from previous

works.
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2.3. Cycle-consistent Learning

There are a few papers exploring cycle consistency for diverse applications [18, 19, 44, 45, 46].

They are mainly motivated by the fact that, cycle-consistent learning is encouraged to produce

additional feedback signals to improve the bi-directional translations. Specifically, He et al. [18]

proposed a dual-learning mechanism based on deep reinforcement learning, where one agent was

used to learn the primal task, e.g. English-to-French translation, and the other agent for the dual

task, e.g. French-to-English translation. More recently, Zhu et al. [19] exploited cycle-consistent

adversarial networks (CycleGAN), which combined a cycle-consistency loss with an adversarial

loss [47] to perform unpaired image-to-image translations between two different visual domains.

A similar idea was also presented in [48, 49]. Inspired by CycleGAN, several recent works have

transferred the cycle-consistency loss to many supervised tasks [50, 51, 52].

Although prior works have shown the effectiveness of using cycle-consistent constraints for intra-

modal domain mappings, yet in the context of cross-modal representation learning, its effectiveness

has not been well investigated. In contrast to prior approaches that utilize cycle-consistent con-

straints within one modality (e.g. neural machine translation and image-to-image translation), our

work is the first to extend the usage of cycle consistency for learning visual-textual embeddings.

The work of Chen and Zitnick [53] is relevant to ours, as their model can both generate textual

captions and reconstruct visual features given an image representation. However, their model lacks

the inverse cycle mapping, i.e. text-to-image-to-text, which can be jointly learned in our model.

Last but not least, these existing works did not consider matching latent embeddings during the

cycle-consistent scheme.

3. Proposed Cycle-consistent Embeddings

In this section, we present the proposed CycleMatch model with cycle-consistent embeddings

for matching visual and textual representations.

3.1. System Architecture

Figure 3 depicts an overview of the CycleMatch architecture. The entire network consists of

three components: feature encoder, feature embedding and feature matching. First of all, given an

input image Ii and text Ti, we employ individual feature encoders to extract the visual feature vi =

Enimg(Ii) and textual feature ti = Entext(Ti). Then, we develop several fully-connected (FC) layers
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Figure 3: Overview of the proposed CycleMatch. It develops two cycle branches for visual-textual embeddings. For

each branch, it is divided into two sub-branches from the fourth FC layer (i.e. FC
(4)
IT and FC

(4)
TI ). One sub-branch

continues accomplishing the dual mapping to the target feature space, while the other sub-branch is used to perform
the reconstructed mapping back to the source feature space. In this way, the cycle branches allow to jointly learn
dual, reconstructed and latent embedding features. We can train the network end-to-end by optimizing several
ranking loss functions simultaneously.

(i.e. FC
(j)
I2T) to perform the Image-to-Text (I2T) mapping and several other FC layers (i.e. FC

(j)
T2I)

for the Text-to-Image (T2I) mapping. Let fI2T(·) and fT2I(·) represent the mapping functions for

I2T and T2I, respectively. In addition, connecting FCI2T and FCT2I can form two cycle mappings

between the visual and textual feature spaces. Specifically, given vi, we first transform it to be

fI2T(vi) in the textual feature space and then learn its reconstructed feature fT2I(fI2T(vi)) in the

visual feature space. Moreover, we also correlate intermediate features derived from FC
(3)
I2T and

FC
(3)
T2I, so as to learn a latent feature space. Similarly, ti is used to start another cycle mapping.

In a nutshell, each cycle mapping can learn dual, reconstructed and latent embeddings in a cyclic

fashion.

8



3.2. Formulation

Next, we will detail the above three embeddings and formulate their loss functions separately.

The entire network contains two cycle-consistent embedding branches: one for image-to-text-to-

image (I2T2I) mapping and the other for text-to-image-to-text (T2I2T) mapping. Here, we take

the I2T2I mapping for an example.

3.2.1. Dual embedding

In a dataset collection with N image-text pairs, the input vi is fed into the first layer FC
(1)
I2T,

where i = 1, . . . , N . By using the following layers FC
(j)
I2T(j = 2, 3, 4), the network finally generates

a dual embedding fI2T(vi) in the textual space, which has the same dimension as the ground-truth

textual feature ti. Then, we normalize the two features and compute their similarity using the

cosine distance

s(fI2T(vi), ti) =
fI2T(vi) · ti

||fI2T(vi)|| · ||ti||
. (1)

Notably, larger scores indicate more similar samples. During training, it is important to construct

a number of negative pairs, in addition to the positive pair. Thereby, we search for the top K

negative samples in a mini-batch for both fI2T(vi) and ti, which are denoted with fI2T(v−i,k) and

t−i,k, respectively, where k = 1, . . . ,K. To learn dual mappings, we need to employ a pairwise

ranking loss function with respect to positive and negative pairs:

Ldual
I2T2I =

N∑
i=1

K∑
k=1

{
max

[
0,m− s(fI2T(vi), ti) + s(fI2T(vi), t

−
i,k)
]

+ αmax
[
0,m− s(fI2T(vi), ti) + s(fI2T(v−i,k), ti)

]}
,

(2)

where m is a margin parameter that defines a threshold to constrain the positive and negative pairs.

α adjusts the weights of the two loss terms. Ideally, the matched distance s(fI2T(vi), ti) should be

smaller than any of the unmatched distances s(fI2T(vi), t
−
i,k) and s(fI2T(v−i,k), ti).

3.2.2. Reconstructed embedding

Despite the fact that the task in this work is about cross-modal matching, it is important as well

to ensure intra-modal consistency, that is, related images (or texts) should have closer distances

than unrelated ones. Hence, we explore reconstructed mappings to maintain the intra-modal seman-

tic consistency, in addition to learning inter-modal correlations with dual mappings. We cascade
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the dual and reconstructed mappings to form an intra-modal autoencoder and minimize the recon-

struction error based on the ranking loss instead of the traditional Euclidean loss. Specifically, we

feed fI2T(vi) into FC
(j)
T2I, to produce a reconstructed embedding feature ṽi in the visual feature

space with

ṽi = fT2I(fI2T(vi)) = fT2I ◦ fI2T(vi). (3)

The ranking loss for making the reconstructed embedding feature ṽi match with the original visual

feature vi can be written as follows

Lrec
I2T2I =

N∑
i=1

K∑
k=1

{
max

[
0,m− s(ṽi,vi) + s(ṽi,v

−
i,k)
]

+ αmax
[
0,m− s(ṽi,vi) + s(ṽ−i,k,vi)

]}
.

(4)

Since Lrec
I2T2I also has an effect on the parameters of FC

(j)
I2T, the reconstructed mappings can help

to improve the learning of dual mappings as well.

Moreover, we employ the t-SNE algorithm [54] to visualize our embedding features. Figure 4

shows the embedding maps with the test data from Flickr30K and MSCOCO, respectively. We

show some original images and texts corresponding to the embedding features. First, the images

and texts in each local window demonstrate high semantic correlations. In addition, these images

themselves have similar visual content, and these texts themselves contain related descriptions.

This observation is consistent with our motivation that a robust embedding method should be able

to consider both inter-modal correlations and intra-modal consistency.

3.2.3. Latent embedding

Furthermore, we exploit a latent feature space to enhance the correlations between the dual and

reconstructed mappings. Latent embeddings are able to distill common semantic information from

visual and textual representations. Specifically, we make use of the intermediate representations

from the third FC layers, i.e. FC
(3)
I2T and FC

(3)
T2I. When vi passes through FC

(3)
I2T, we can extract an

intermediate feature f
(3)
I2T(vi). Also, the dual embedding fI2T(vi) passes through FC

(3)
T2I to generate

another intermediate feature f
(3)
T2I(fI2T(vi)). The ranking loss for matching latent embeddings
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Figure 4: Visualization of our embedding features. For each dataset, we pick 1000 images (red) and 5000 texts
(green). Some images and texts corresponding to the embedding features are shown in local windows, from which
we can observe not only correlations between cross-modal samples, but also relations between intra-modal samples.

thereby becomes

Llat
I2T2I =

N∑
i=1

K∑
k=1

{
max

[
0,m− s

(
f
(3)
I2T(vi), f

(3)
T2I(fI2T(vi))

)
+ s
(
f
(3)
I2T(vi), f

(3)
T2I(fI2T(v−i,k))

)]
+ αmax

[
0,m− s

(
f
(3)
I2T(vi), f

(3)
T2I(fI2T(vi))

)
+ s
(
f
(3)
I2T(v−i,k), f

(3)
T2I(fI2T(vi))

)]}
.

(5)
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(a) (b) (c) 

(d) (e) (f) 

Figure 5: Conceptual illustration of loss functions for training CycleMatch. The first row includes the loss functions
in the I2T2I cycle and the second row is for the T2I2T cycle.

Similar to the above I2T2I branch, it is straightforward to express the matching losses in the

T2I2T branch, including Ldual
T2I2T, Lrec

T2I2T and Llat
T2I2T. In Figure 5, we show the six loss functions

for learning cycle-consistent embeddings.

3.2.4. Full objective

During training, we need to incorporate all the loss functions jointly. The full objective is to

minimize the total loss:

arg min
WI2T,WT2I

Ltotal = Ldual
I2T2I + Lrec

I2T2I + Llat
I2T2I + Ldual

T2I2T + Lrec
T2I2T + Llat

T2I2T, (6)

where WI2T and WT2I indicate the parameters in FC
(j)
I2T and FC

(j)
T2I, respectively. They are unshared

due to the specialization of two different modalities.

To demonstrate the effectiveness of our CycleMatch, we utilize the t-SNE [54] algorithm to

visualize the embedding features learned in the visual, textual and latent feature spaces, separately.

As shown in Figure 6, we randomly select 100 image-text pairs from the Flickr30K dataset [55].

From all the feature maps, we can visibly observe high similarities between two matched samples.
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(a) •fI2T(vi) | ∗ ti (b) •ṽi | ∗ vi (c) •f(3)
I2T(vi)| ∗ f

(3)
T2I(fI2T(vi))

(d) •fT2I(ti) | ∗ vi (e) •t̃i | ∗ ti (f) •f(3)
T2I(ti)| ∗ f

(3)
I2T(fT2I(ti))

Figure 6: Visualization of our embedding features by using 100 image-text pairs in Flickr30K [55]. The first and
second rows represent the embedding features learned in the I2T2I and T2I2T branches respectively. In each feature
map, matched samples are shown with the same color. In (a)(d), the dual embedding features (‘•’) can match with
the corresponding target features (‘∗’); In (b)(e), the reconstructed embedding features (‘•’) look closely similar to
the source features (‘∗’). In (c)(f), the two latent embedding features (‘•’ and ‘∗’) can learn to correlate with each
other as well.

4. Late-fusion Inference

By performing cycle-consistent embeddings, we can represent one sample with a set of three

different features, for instance, {vi, fI2T(vi), f
(3)
I2T(vi)} for an image. Since the reconstructed em-

bedding ṽi and the other latent embedding f
(3)
T2I(fI2T(vi)) are related to vi and f

(3)
I2T(vi), we do

not consider them for simplicity. Each of the three features can be used to measure an image-text

matching score. Instead of using only one score, it is encouraged to leverage different scores together

to achieve a more robust inference. This is driven by the late-fusion technique [56] in multimedia

retrieval, which is a simple and efficient approach to combine the prediction scores of individual

features. In this work, we present two effective late-fusion approaches, namely average fusion and

adaptive fusion.
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4.1. Average Fusion

Given a query image Iq, we extract three features {vq, fI2T(vq), f
(3)
I2T(vq)}. Similarly, an arbitrary

text Ti in the dataset can be described with {ti, fT2I(ti), f
(3)
T2I(ti)}. We can compute three similarity

scores between Iq and Ti:


visual score : s(1)(vq, ti) = s(vq, fT2I(ti)),

textual score : s(2)(vq, ti) = s(fI2T(vq), ti),

latent score : s(3)(vq, ti) = s(f
(3)
I2T(vq), f

(3)
T2I(ti)).

(7)

Then we combine the three scores to obtain an average fusion score as follows

savg(vq, ti) =

∑3
j=1 s

(j)(vq, ti)

3
. (8)

It is similar to compute the fusion score savg(tq,vi) in terms of a query text Tq.

4.2. Adaptive Fusion

To study the importance of different features, we further learn adaptive weights when combining

the three scores. As suggested in [57], the score curve by using a superior feature can be sorted in

an “L” shape, while the curve by using an inferior feature tends to gradually descend. In addition,

the area under the curve can be used as an indicator to measure the weight of the corresponding

feature. Driven by this observation, we can use the sorted score curves of the above three features

to decide their weights. Specifically, we utilize each of the three features to compute the score curve

of a query image Iq to all the text samples. Then, we sort the score curves and compute their areas

with respect to the horizonal axis. In Figure 7, we show three sorted score curves for either a query

image or text.

Our adaptive fusion method is inspired by the late fusion in [57], due to its parameter-free

property and efficient computation. However, our method has two major differences from [57].

First, Zheng et al. [57] attempt to integrate different features, including BoW, Color and GIST

features. In contrast, we construct a unified network to extract multiple embedding features, which

have close relations to each other. Second, In [57], they use the total curve to compute the area.
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A smiling child is 

swinging on a swing.

Two men in business clothing have 
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sculpture of a red cube.
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A brown-

haired man 
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yellow , and 
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is surfing.

(a) Image-to-text retrieval

(b) Image-to-text retrieval

Figure 7: Illustration of the sorted score curves based on three different features. (a) For the query image, the first
curve (in red) forms the smallest area above the X axis, so the corresponding feature (i.e. visual embedding feature)
can have the largest weight (0.428). We show a matched text at the beginning of the curves and an unmatched text
at the end of the curves. (b) Similarly, we demonstrate a text query example.

However, we compute only the positive area above the axis and omit the negative one 1. This way

can help to decrease the effect of long tails of the curves. For example in Figure 7 (b), the three

curves have almost similar negative areas, based on which it is hard to distinguish the weights of

the three features. Hence, adding the negative area with the positive one will narrow the gap of

significance of different features and fail to learn robust adaptive weights. In the experiments, we

show the advantage of our method over [57].

1The similarity scores in this work are based on the cosine distance, ranging from -1 to 1.
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Formally, the positive area associated with the j-th feature can be approximated by

area
(j)
+ (vq) =

N∑
i=1

max
[
0, s(j)(vq, ti)

]
. (9)

Smaller positive area means that the corresponding feature should have greater weights. Hence,

the adaptive weights of Iq w.r.t. the three features can be expressed with

w(j)(vq) =
1

area
(j)
+ (vq)

. (10)

In addition, we normalize the three weights to make sure
∑3

j=1 w
(j)(vq) = 1. Finally, the adaptive

fusion score for matching Iq and Ti becomes

sadt(vq, ti) =
∑
j

w(j)(vq) · s(j)(vq, ti). (11)

Likewise, we demonstrate a text query Tq in the right of Figure 7, and show its adaptive weights,

w(j)(tq). Notice that our adaptive fusion approach can achieve specific weights for different query

samples. It is an unsupervised and efficient manner without adding extra parameters and manual

tuning. In the experiments, we analyze the effects of these two late-fusion approaches on the

inference of cross-modal retrieval.

5. Discussion

Although the cycle-consistent idea has been adopted in many problems, it should not decrease

the novelty of our work. In this section, we mainly aim to state our similarities and differences

compared to the prior works like CycleGAN.

Similarities: Essentially, cycle-consistent learning is a variant of the auto-encoder model, which

mainly aims to construct a cyclic mapping to reconstruct the input data. Both CycleGAN and

CycleMatch are motivated by the idea of cycle-consistent learning, even though they focus on

addressing different tasks.

Differences: Our proposed CycleMatch uses the idea of cycle-consistent learning, but it still

has task-specific novelties and differences from CycleGAN.
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• First, CycleGAN integrates a cycle-consistency loss with an adversarial loss to perform intra-

modal representation learning, i.e. image-to-image translation between two image sets. In

contrast, our CycleMatch is proposed to address the problem of cross-modal representation

learning between image and text sets. In prior works, the effectiveness of cycle-consistent

learning has not been well investigated in the context of cross-modal tasks. Our work is the

first to extend cycle-consistent learning to address the task of image-text matching.

• Second, our reconstructed embedding is learned with the ranking loss, instead of the tradi-

tional Euclidean loss in CycleGAN. Notably, the ranking loss aims to reconstruct the relations

among data samples rather than the original features. We find that the ranking loss is more

suited for the matching task compared to the Euclidean loss.

• Third, CycleMatch is a novel network architecture that is different from CycleGAN. Notably,

CycleMatch is not based on the GAN model. In addition, we consider the latent embedding

representations, which are not taken into account in CycleGAN.

• Lastly, we contribute to proposing late-fusion inference in order to integrate multiple embed-

ding features learned in the model. This robust and efficient inference is performed in the test

stage and will not complicate the training procedure. The results in our experiments verify

the effectiveness of the late-fusion inference. However, CycleGAN does not provide a robust

inference in its test stage.

In summary, more and more papers [50, 51, 52, 58, 59] are making use of cycle-consistent learning

to solve a variety of problems, such as domain adaptation, video retargeting and zero-shot learning.

These works make promising contributions to the field, even though they are primarily or partially

inspired by CycleGAN. In the future, we believe more related works will be encouraged in the field.

6. Experiments

First, we compare CycleMatch with various baseline models to verify its effectiveness. In ad-

dition, we present in-depth analysis on the two late-fusion approaches. Moreover, our results can

be competitive with the state-of-the-art performance for cross-modal retrieval on two well-known

datasets. Finally, we present additional ablation study on the effect of feature encoders and variance

of test splits.
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6.1. Experimental Setup

We introduce the dataset protocols, evaluation metrics, network details, training details and

time complexity, involved in our experimental setup.

6.1.1. Dataset protocols

The experiments are performed on two well-known datasets. (1) Flickr30K [55] consists of 31,783

images and each image is associated with five different sentences. We use the dataset split of [60],

namely 29,783 training images, 1,000 validation images and 1,000 test images. (2) MSCOCO [61] is

one of the largest multi-modal datasets, which includes 82,783 training images and 40,504 validation

images. We pick five ground-truth sentences for each image. 1,000 test images are selected from

the validation set [60]. Notice that some works [9, 38, 17] merge the remaining validation images

into the training set, to further increase the performance. However, we keep only using the original

training set for fairness.

6.1.2. Evaluation metrics

For evaluating the performance of cross-modal retrieval, we adopt the common metric R@K,

which measures the recall rate of a correctly retrieved ground-truth at top K retrieved candidates.

Generally, K is set to 1, 5 and 10 for both image-to-text and text-to-image retrieval.

6.1.3. Network details

In terms of the image encoder, we employed the powerful ResNet-152 [8] pre-trained on the

ImageNet dataset [62]. Besides, we recast the CNN model to its fully convolutional network (FCN)

counterpart, which can capture rich region representations. The last layer of the FCN model is

spatially averaged to generate a 2,048 dimensional visual representation. To extract the textual

representation, we utilized the pre-trained RNN encoder proposed in [63]. It can represent one

sentence with a 4,096 dimensional feature vector. Currently, we did not fine-tune the feature

encoders during the training.

As for the two groups of four FC layers in CycleMatch (i.e. FC
(j)
I2T and FC

(j)
T2I), the channels of

the first three layers are fixed as [2048,512,512]. Note that, FC
(4)
I2T should have the same dimension

as the textual feature and FC
(4)
T2I should be equal to the size of the visual feature.
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Figure 8: Illustration of training loss cost during training CycleMatch on the Flickr30K and MSCOCO datasets.

6.1.4. Training details

We implemented the proposed approach based on the Caffe library [64]. It is important to

shuffle the training samples randomly during the data preparation stage. The hyper-parameters

are evaluated on the validation set of each dataset. We trained the model using SGD with a mini-

batch size of 500, a weight decay of 0.0005, a momentum of 0.9 and an initialized learning rate

of 0.1. The learning rate is divided by 10 when the decrease in loss stabilizes. We set α = 2 and

m = 0.1 in all the experiments. The number of negative samples in each min-batch is 50. The

whole training procedure terminates after 60 epochs for both datasets.

In Figure 8, we show the training loss of the six loss functions on the two datasets. It can be

observed that the loss tend to converge during the training epochs.

6.1.5. Time complexity

We use the total loss in Eq. (6) to perform the training procedure. Each loss term is a simple

and efficient ranking loss that is widely used in retrieval tasks. We used a Titan X card with 12
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Table 1: Summary of various embedding methods for image-text matching.

Embedding methods Main description

LatentMatch a latent embedding model by matching f
(3)
I2T(vi) and f

(3)
T2I(ti).

DualMatch a dual embedding model by learning two dual mappings: I→T and T→I.

CycleMatch(w/o latent) an ablation model without latent embeddings between dual and reconstructed mappings.

CycleMatch(I2T2I) an ablation model with an I2T2I cycle branch and an I→T dual mapping.

CycleMatch(T2I2T) an ablation model with a T2I2T cycle branch and a T→I dual mapping.

CycleMatch a fully implemented model with two cycle branches.

Table 2: Comparison of different embedding approaches for cross-modal retrieval on Flickr30k and MSCOCO. Higher
R@K numbers are better, where K = 1, 5, 10. The full CycleMatch method outperforms others on both datasets.

Flickr30K dataset MSCOCO dataset
Method Image to Text Text to Image Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

LatentMatch 49.7 77.4 85.0 37.8 69.8 80.6 53.9 82.9 90.8 43.0 75.8 85.9
DualMatch 53.4 80.5 87.1 40.1 70.9 81.0 56.3 83.5 91.5 45.5 76.7 87.5

CycleMatch(w/o latent) 56.8 81.7 90.3 41.1 72.5 81.3 58.5 84.0 92.4 46.9 78.3 88.7
CycleMatch(I2T2I) 57.0 82.4 91.0 42.4 73.6 82.0 61.1 85.5 93.1 46.3 79.3 89.0
CycleMatch(T2I2T) 56.4 81.9 90.6 43.2 74.3 82.6 59.7 84.7 92.6 47.6 79.7 89.6

CycleMatch 57.8 83.3 90.9 43.2 74.8 83.8 60.5 86.3 93.7 47.2 80.3 90.4

GB to train all models in the experiments. For the full CycleMatch model, training required about

19 hours on the Flickr30K dataset and 47 hours on the MSCOCO dataset, respectively.

6.2. Comparisons with Baseline Approaches

To demonstrate the superiority of our approach, we designed several baseline models (see Ta-

ble 1) based on the same network settings and training hyper-parameters as CycleMatch. In terms

of inference, LatentMatch is evaluated with only the latent score. However, all the other models

have both visual and textual scores. For consistency we utilize the average fusion approach to

accomplish their inference. Table 2 reports the cross-modal retrieval performance of these models

on both Flickr30K and MSCOCO. Overall, CycleMatch surpasses LatentMatch and DualMatch

with significant improvements, and achieves overall superior performance over other variants of

CycleMatch. In the next, we can report the results from several aspects.

6.2.1. Impact of reconstructed embeddings

First, we explain the benefit of constructing the cycle-consistent embeddings in our model.

Primarily, cycle-consistent learning used in our model can benefit the dual embeddings. As can be

seen in Figure 3, the reconstructed embeddings are built on top of the dual embeddings, therefore

the reconstruction loss can help the training of the dual embeddings. The main difference between
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DualMatch and CycleMatch(w/o latent) is that the latter model introduces a reconstructed mapping

upon the traditional dual mapping. As reported in Table 2, the performance gap shows between

DualMatch and CycleMatch(w/o latent) verifies the benefit of adding reconstructed embeddings in

a cyclic fashion.

In addition to the above quantitative evaluation, we show image-to-text retrieval results as well

to qualitatively compare the two methods. As shown in Figure 9, CycleMatch (w/o latent) can

retrieve more accurate text descriptions than DualMatch, given the same query image. According

to both quantitative and qualitative comparisons, it shows the improvements achieved by adding

the cycle-consistency in our model.
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Figure 9: Image-to-Text retrieval results on the datasets, (a) Flickr30K and (b) MSCOCO. The ground-truth de-
scriptions are in green. By comparison, CycleMatch (w/o latent) achieves more accurate results than DualMatch.
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Table 3: Evaluation on the effect of using different fully-connected layers on the latent embedding. The two-score
adaptive fusion is used here. By comparison, fc(3) is the best one for learning the latent embedding on most
measurements.

Flickr30K dataset MSCOCO dataset
Method Image to Text Text to Image Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

latent embedding with FC(1) 57.2 82.1 90.6 42.1 73.5 83.3 59.5 85.0 93.4 46.9 79.3 89.4
latent embedding with FC(2) 58.2 83.3 91.9 43.3 74.9 84.3 60.7 86.4 94.0 47.5 80.5 90.4
latent embedding with FC(3) 58.6 83.6 91.6 43.6 75.3 84.2 61.1 86.8 94.2 47.9 80.9 90.9

6.2.2. Impact of latent embeddings

By comparing the results of CycleMatch and CycleMatch(w/o latent), we find that integrating

the latent embeddings into CycleMatch brings further improvements over all metrics. For example,

R@5 shows about 2% gains for both I→T and T→I. Although using only latent embeddings (i.e.

LatentMatch) is inferior to other models, it is beneficial to adopt them to improve other embedding

methods like CycleMatch.

Moreover, we conduct an experiment below to test the effect of using different fully-connected

(FC) layers on the latent embeddings. Apart from using the layer FC(3), we also test the latent

embedding based on FC(1) or FC(2). In Table 3, we show the results by using three different FC

layers. It can be seen that the both FC(2) and FC(3) features show better results than FC(1).

Although FC(1) feature has more dimensions, its representation power is less than FC(2) and

FC(3). One main reason is that FC(1) is the first layer in the network, but FC(2) and FC(3) are

closer to the high-level semantics. In addition, FC(3) has slight improvements over FC(2). Based

on these results, we decide to construct the latent embedding with the FC(3) features.

6.2.3. Impact of cycle branches

Both CycleMatch(I2T2I) and CycleMatch(T2I2T) can outperform LatentMatch and DualMatch,

even though only one cycle-consistent embedding branch is used. By comparing these two models,

CycleMatch(I2T2I) performs better for I→T retrieval, while CycleMatch(T2I2T) yields better re-

sults for T→I retrieval. When we incorporate the two cycle branches jointly, namely CycleMatch,

it achieves overall superior performance over any single cycle branch on both datasets.

In addition to the R@K performance, we further present the matching scores computed by

using our embedding features. To be specific, we randomly select 100 image-text pairs from the

test set, and compute the similarity between one image and text. As shown in Figure 10, matched

image-text pairs (with the same index) have greater similarity scores than unmatched ones.
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Figure 10: Similarity matrix of 100 image-text pairs from the test set. The related images and texts have the same
index numbers. The diagonal line demonstrates high inter-modal correlations for matched image-text pairs. The
original cosine scores are re-scaled to be [0,1].

Table 4: Evaluation on the effect of different inference strategies on the R@K measurements. The two-score strategy
based on the adaptive fusion achieves the best results (in bold face).

Flickr30K dataset MSCOCO dataset
Inference method Image to Text Text to Image Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

One-score, without fusion 54.8 82.6 90.1 40.1 70.9 81.0 58.6 85.5 92.6 45.5 78.3 88.7
Two-score, average fusion 57.8 83.3 90.9 43.2 74.8 83.8 60.5 86.3 93.7 47.2 80.3 90.4
Two-score, adaptive fusion 58.6 83.6 91.6 43.6 75.3 84.2 61.1 86.8 94.2 47.9 80.9 90.9
Three-score, average fusion 57.4 83.5 91.0 43.2 74.7 83.9 59.7 86.0 94.0 46.9 80.6 89.8
Three-score, adaptive fusion 57.8 83.8 91.2 43.5 74.7 84.0 61.0 86.4 94.5 47.8 81.0 90.7

6.3. Analysis of Late-fusion Inference

Recall that CycleMatch contains visual, textual and latent scores for inference (Section 4).

In this experiment, we compare three strategies to study the effect of two late-fusion inference

approaches on the retrieval performance of CycleMatch. Specifically, the one-score strategy uses

only a single visual score; the two-score strategy integrates visual and textual scores together; the

three-score strategy combines all three scores by further adding the latent score. Table 4 reports the

results of the three strategies. For the two-score and three-score strategies, we present the results

of using the average and adaptive fusion, respectively. From the results, we can make the following

observations:

1) The two-score strategy improves the one-score counterpart with 1%-3% gains. As the visual

and textual scores match the samples in two different feature spaces, their complementary scores

are able to improve the inference quality.
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Figure 11: Visualization of adaptive weights for 1000 image queries and 5000 text queries on Flickr30K(a, b) and
MSCOCO (c, d). Each dot in the maps is a query sample, having two weights for the adaptive fusion. Note that
w(1)(·) + w(2)(·) = 1. The weights of query samples are mostly gathered between 0.4 and 0.6. It suggests that both
visual and textual scores play an important role in the inference results.

2) The adaptive fusion outperforms the average one in terms of both two-score and three-score

strategies. Although their performance gap over the R@K measurements is not significant, the

adaptive fusion is an efficient method without imposing extra parameters and manual tuning. In

addition, the inference time of the adaptive fusion is close to that of the average fusion.

3) The three-score strategy fails to achieve further improvements over the two-score one. We

attribute this to the fact that, the latent score measures the similarity between f
(3)
I2T(vi) and f

(3)
T2I(ti).

However, we do not use a direct matching loss between them during training CycleMatch. Although

adding this latent score for inference will not bring further performance gains, learning the latent

embeddings in CycleMatch is still important for improving the entire embedding procedure. As we

discussed earlier, CycleMatch performs better than the variant without latent embeddings, namely

CycleMatch(w/o latent).

As we can see, the two-score adaptive fusion achieves the best results. In Figure 11, we further

present and analyze the two adaptive weights (i.e. w(1)(·) and w(2)(·)), which are learned in the

two-score adaptive fusion for visual and textual scores. Figure 11(a,b) and (c,d) shows the weights

for Flickr30K and MSCOCO, respectively. For I2T retrieval, we illustrate the adaptive weights of

1000 image queries, namely w(1)(vq) and w(2)(vq); for T2I retrieval, we show all the weights of 5000

text queries, denoted as w(1)(tq) and w(2)(tq). Notice that, each dot in Figure 11 represents a query

sample that learns individual weights based on its score curves. It can be seen that most samples

have weights ranging from 0.4 to 0.6, which suggests that both visual and textual scores have an

important impact on the inference results.

Comparison with the late fusion in [57]. This experiment is used to compare the results
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Table 5: Comparison of two different methods for computing adaptive-fusion weights. The method by using only a
positive area are better that of using both positive and negative areas.

Flickr30K dataset MSCOCO dataset
Inference method Image to Text Text to Image Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Two-score, positive&negative areas 58.1 83.3 91.2 43.2 75.0 83.8 60.7 86.3 93.8 47.4 80.5 90.6
Two-score, positive area 58.6 83.6 91.6 43.6 75.3 84.2 61.1 86.8 94.2 47.9 80.9 90.9

Three-score, positive&negative areas 57.5 83.6 91.0 43.3 74.7 83.8 60.5 86.0 94.2 47.3 80.6 90.4
Three-score, positive area 57.8 83.8 91.2 43.5 74.7 84.0 61.0 86.4 94.5 47.8 81.0 90.7

Table 6: Comparison with the state-of-the-art approaches on Flickr30K. In addition, we present the image and text
encoders used in these approaches. Our CycleMatch (the two-score adaptive fusion) achieves better results on R@K
measurements (in boldface).

Method Image encoder Text encoder
Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10

DCCA [32] AlexNet TF-IDF 16.7 39.3 52.9 12.6 31.0 43.0
DVSA [34] AlexNet RNN 22.2 48.2 61.4 15.2 37.7 50.5
UVSE [36] VGG-19 RNN 23.0 50.7 62.9 16.8 42.0 56.5
mCNN [35] VGG-19 CNN 33.6 64.1 74.9 26.2 56.3 69.6

VQA-aware [65] VGG-19 RNN 33.9 62.5 74.5 24.9 52.6 64.8
GMM-FV [33] VGG-16 GMM+HGLMM 35.0 62.0 73.8 25.0 52.7 66.0
m-RNN [60] VGG-16 RNN 35.4 63.8 73.7 22.8 50.7 63.1

RNN-FV [66] VGG-19 RNN 35.6 62.5 74.2 27.4 55.9 70.0
HM-LSTM [13] AlexNet RNN 38.1 - 76.5 27.7 - 68.8

DSPE [9] VGG-19 HGLMM 40.3 68.9 79.9 29.7 60.1 72.1
sm-LSTM [11] VGG-19 RNN 42.5 71.9 81.5 30.2 60.4 72.3
VSE++ [67] ResNet-152 RNN 43.7 - 82.1 32.2 - 72.1

DualCNN [38] ResNet-152 ResNet-152 44.2 70.2 79.7 30.7 59.2 70.8
RRF-Net [12] ResNet-152 HGLMM 47.6 77.4 87.1 35.4 68.3 79.9
2WayNet [16] VGG-16 GMM+HGLMM 49.8 67.5 - 36.0 55.6 -

DAN [10] ResNet-152 RNN 55.0 81.8 89.0 39.4 69.2 79.1
CycleMatch (Ours) ResNet-152 RNN 58.6 83.6 91.6 43.6 75.3 84.2

of our adaptive fusion and the one in [57]. Recall that our method computes only the positive area

above the axis, while the method in [57] considers both positive and negative areas. As reported in

Table 5 below, the results with only a positive area are better in the context of both two-score and

three-score fusion cases, even though the performance gap between the two methods is slight.

6.4. Comparisons with State-of-the-art Approaches

In Table 6 and Table 7, we present a comprehensive comparison with previous papers where they

reported the cross-modal retrieval performance on Flickr30K and MSCOCO. It can be seen that

our CycleMatch (the two-score adaptive fusion) outperforms recent state-of-the-art approaches [10,

12, 67] with promising improvements on both datasets. It is worth noting that these approaches
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Table 7: Comparison with the state-of-the-art approaches on MSCOCO. In addition, we present the image and text
encoders used in these approaches. Our CycleMatch (the two-score adaptive fusion) outperforms other approaches
by achieving promising results (in boldface).

Method Image encoder Text encoder
Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10

STV [68] VGG-19 RNN 33.8 67.7 82.1 25.9 60.0 74.6
DVSA [34] AlexNet RNN 38.4 69.9 80.5 27.4 60.2 74.8

GMM-FV [33] VGG-16 GMM+HGLMM 39.4 67.9 80.9 25.1 59.8 76.6
m-RNN [60] VGG-16 RNN 41.0 73.0 83.5 29.0 42.2 77.0

RNN-FV [66] VGG-19 RNN 41.5 72.0 82.9 29.2 64.7 80.4
BiLSTM-Max [63] ResNet-101 RNN 42.6 75.3 87.3 33.9 69.7 83.8

mCNN [35] VGG-19 CNN 42.8 73.1 84.1 32.6 68.6 82.8
UVSE [36] VGG-19 RNN 43.4 75.7 85.8 31.0 66.7 79.9

HM-LSTM [13] AlexNet RNN 43.9 - 87.8 36.1 - 86.7
order-embeddings [69] VGG-19 RNN 46.7 - 88.9 37.9 - 85.9

DSPE [9] VGG-19 HGLMM 50.1 79.7 89.2 39.6 75.2 86.9
VQA-aware [65] VGG-19 RNN 50.5 80.1 89.7 37.0 70.9 82.9
DualCNN [38] ResNet-50 ResNet-50 52.2 80.4 88.7 37.2 69.5 80.6
sm-LSTM [11] VGG-19 RNN 53.2 83.1 91.5 40.7 75.8 87.4
2WayNet [16] VGG-16 GMM+HGLMM 55.8 75.2 - 39.7 63.3 -
RRF-Net [12] ResNet-152 HGLMM 56.4 85.3 91.5 43.9 78.1 88.6
VSE++ [67] ResNet-152 RNN 58.3 - 93.3 43.6 - 87.8

CycleMatch (Ours) ResNet-152 RNN 61.1 86.8 94.2 47.9 80.9 90.9

employ different feature encoders that have a significant influence on the performance. For a clear

comparison, we further list the image and text encoders used in these approaches. In the following

experiments, we will study the effect of different feature encoders on the performance of CycleMatch.

To boost the performance, recent several approaches [38, 67, 17, 43] further fine-tune the image

encoders during training their models. Their results with fine-tuning the image encoders achieve

better performance on MSCOCO than Flickr30K. We should know that it is feasible to fine-tune

the image encoders while training our CycleMatch, which can help to further improve our re-

sults. In addition, the fine-tuning process will maintain the findings we mentioned as above. More

importantly, our results on the Flickr30K dataset can even compete with the fine-tuned results

in [38, 67, 17, 43]. On the MSCOCO dataset, the fine-tuned approaches [38, 67, 17, 43] merge

the validation images into the training set to further increase the performance. However, we still

use the original training set for a fair comparison with other prior approaches. Notice that, the

accuracies of image-to-text retrieval are higher than those of text-to-image retrieval, because one

image is annotated with several texts but one text matches with only one image.
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Image Query

An old man 

holding a 

camera while 

walking a small 

brown dog.

Two guys are 

stacking lots 
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together.
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(1) A man in a red cap singing ( or talking ) into a microphone 

during the day with trees in the background.

(2) a black male with a red hat holding a microphone.

(3) A black man in a brown shirt and hat speaks into a microphone.

(4) An african american man has on a brown hat and wearing a 

brown button shirt holding a microphone as he sings.

(5) A black man with a white hat and sunglasses speaks into a 

microphone outside a Chase bank.

Text Query

MSCOCO

(1) A crowd of people are gathering at many different tents, most 

of which have white roofs, outside.

(2) Workers erect a pavilion for an event in the park.

(3) A group of people are standing in the sand trying to hold a

large pole.

(4) A group of people outside are walking under a large reflective

round sculpture.

(5) All kinds of different people outside on a pier.

Image Query

Text Query

Image Query

S
u
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s 
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se

s

(1) a cat snuggled next to luggage on the floor.

(2) a cat laying in front of luggage on the floor.

(3) a white, blue and black cat lays on the floor near 

several suitcases.

(4) a brown cat sleeping in a black piece of luggage.

(5) a cat sitting in a black piece of luggage.

Flickr30K

the sun shines 

through a 

window into 

a clean living 

room with a 

tile floor.

Text Query

F
ai
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as

es

Image Query

(1) a food entree is shown on a plate.

(2) an egg and vegetable fritter is served with a side of broccoli.

(3) a closeup view of a plate holding potatoes, broccoli, and ham.

(4) a plate with a piece chicken and some broccoli.

(5) a close up picture of some food on a plate.

a man that is 

in the water 

with a 

surfboard.

Text Query

Figure 12: Qualitative results of our CycleMatch on Flickr30K and MSCOCO. Given one query, the top-5 candidates
are retrieved. In the success cases, the correct matches are highlighted with green. In the failure cases, our method
can still retrieve some reasonable candidates related to the query.

In addition to the quantitative evaluation, we present our image-to-text and text-to-image re-

trieval examples in Figure 12, which includes both success and failure cases. For each query sample,

the top-5 candidates are retrieved, of which the ground-truth samples are highlighted in green. We

notice that, the retrieved candidates are semantically related to the query sample in some extent,

even for the failure cases.

6.5. Effect of Feature Encoders

As shown in Figure 3, we extract visual and textual features from off-the-shelf feature encoders.

The proposed CycleMatch can be compatible with diverse feature encoders, but it is still encouraged

to study the effect of different feature encoders on the performance. We report the results in Table 8.

Considering the image encoders, we use the VGG-19 and ResNet-152 models to extract the visual

features and compare their results. We can see that, ResNet-152 has a considerable improvements

over VGG-19 on all measurements, especially for R@1 accuracies. This shows the benefit of using

more powerful CNN models for improving the visual embeddings. In addition, the feature dimension

with ResNet-152 (i.e. 2,048) is lower than that with VGG-19 (i.e. 4,096). Therefore, in this work
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Table 8: Evaluation on the effect of different feature encoders on the performance of CycleMatch. By comparison,
ResNet-152 is a superior image encoder and RNN is a more powerful text encoder.

Flickr30K MSCOCO
Image encoder Text encoder Image to Text Text to Image Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
Effect of image encoders

VGG-19 RNN 51.4 80.6 88.1 38.5 71.0 81.3 55.1 83.5 91.3 43.7 76.7 88.4
ResNet-152 RNN 58.6 83.6 91.6 43.6 75.3 84.2 61.1 86.8 94.2 47.9 80.9 90.9

Effect of text encoders

ResNet-152 word2vec 48.1 78.7 87.4 37.7 70.8 81.1 55.9 83.8 91.8 44.7 79.1 87.7
ResNet-152 HGLMM 54.5 81.6 90.9 41.3 73.1 82.8 58.4 85.5 93.4 46.2 80.3 89.4
ResNet-152 RNN 58.6 83.6 91.6 43.6 75.3 84.2 61.1 86.8 94.2 47.9 80.9 90.9

Table 9: Evaluation on the effect of fine-tuning the image encoder during training CycleMatch.

Flickr30K MSCOCO
Image encoder Text encoder Image to Text Text to Image Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

VGG-19 without fine-tune 51.4 80.6 88.1 38.5 71.0 81.3 55.1 83.5 91.3 43.7 76.7 88.4
VGG-19 with fine-tune 54.8 83.1 90.5 42.3 74.8 84.5 60.2 87.3 94.0 49.3 81.2 91.8

we take the ResNet-152 model as the preferable image encoder.

In terms of the text encoders, we test another two encoders apart from the RNN encoder. The

first one is word2vec [70], which describes each word in the sentence with a 300-dimensional feature

vector. We then compute the average of all the word features to represent the sentence feature.

The second one is an expensive representation based on the Hybrid Gaussian-Laplacian mixture

model (HGLMM) [33]. Specifically, HGLMM computes a 18,000-dimension feature vector with 30

centers (i.e. 300*30*2). Similar to [9], we further reduce it to a 6,000-dimension feature vector in

order to decrease the training complexity. As shown in Table 8, the RNN encoder is more powerful

than both word2vec and HGLMM. In addition, the feature dimension based RNN (i.e. 4,096) is

feasible and practical during training CycleMatch.

6.6. Effect of Fine-tuning Image Encoders

In this experiment, we perform the fine-tuning (ft) process for the VGG-19 image encoder. The

results in Table 9 show considerable improvements for all R@K measurements. Similarly, fine-

tuning ResNet-152 can bring further improvements as well, while it is out of the scope in our work.
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Table 10: Evaluation on the effect of different test splits on the performance of CycleMatch. The results on the
MSCOCO dataset show that CycleMatch can achieve high mean accuracy and low standard deviation.

Image
encoder

Text
encoder

Image to Text Text to Image
R@1 R@5 R@10 R@1 R@5 R@10

ResNet-152 RNN 60.23 ± 1.46 88.08 ± 1.19 94.88 ± 0.77 47.73 ± 0.91 81.89 ± 0.88 91.41 ± 0.62

6.7. Variance of Test Splits

For a fair comparison, we employ the standard data split including 1,000 test images that are

captured from the validation set [60, 12]. However, no prior work has studied the effect of using

different test splits on the retrieval performance. To this end, we perform 100 times of evaluations

on the MSCOCO dataset. For each evaluation, we randomly select 1,000 images from the validation

set and test the results with the proposed CycleMatch. As shown in Table 10, our results show

high mean accuracy and low standard deviation. This reveals the proper stability of our approach

for cross-modal retrieval. It is worth mentioning that we cannot conduct this experiment on the

Flickr30K dataset, as its test set (i.e. including only 1000 images) has been already fixed.

7. Conclusions

In this paper, we have developed a novel embedding method for the multi-modal task of match-

ing visual and textual representations. We proposed cycle-consistent embeddings to learn both

intra-modal correlations and intra-modal consistency. Our approach taking advantage of multiple

embedding techniques is able to outperform any single embedding method. The experimental re-

sults have demonstrated the superiority of our method over other embedding methods. In addition,

we have presented two simple and efficient late-fusion approaches to increase the inference qual-

ity. The late-fusion inference can integrate different matching scores together without increasing

the training complexity. Finally, our approach has shown state-of-the-art performance for cross-

modal retrieval on Flickr30K and MSCOCO. In the future, we will take into account local relations

when matching images and sentences, for example, semantic correlations between visual regions

and phases. One potential solution is to exploit the attention mechanism to localize the objects

corresponding to the phase description.
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