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Abstract

The purpose of network representation is to learn a set of latent features by obtaining community
information from network structures to provide knowledge for machine learning tasks. Recent
research has driven significant progress in network representation by employing random walks as
the network sampling strategy. Nevertheless, existing approaches rely on domain-specifically rich
community structures and fail in the network that lack topological information in its own domain. In
this paper, we propose a novel algorithm for cross-domain network representation, named as CDNR.
By generating the random walks from a structural rich domain and transferring the knowledge on
the random walks across domains, it enables a network representation for the structural scarce
domain as well. To be specific, CDNR is realized by a cross-domain two-layer node-scale balance
algorithm and a cross-domain two-layer knowledge transfer algorithm in the framework of cross-
domain two-layer random walk learning. Experiments on various real-world datasets demonstrate
the effectiveness of CDNR for universal networks in an unsupervised way.

Keywords: network representation, transfer learning, random walk, information network,
unsupervised learning, feature learning

1. Introduction

Networks generated from mature systems usually have larger numbers of entities such as nodes
and edges than the emerging ones. For example, a new born online social media attracts limited
numbers of users and hasn’t formed massive interactions among them, from where the it gets
extremely scarcer scale than the mature media like Facebook. Furthermore, in some domains such
as the biological domain, it’s difficult to collect sufficient data due to the costs, technique barriers,
ethic reasons and so on. Traditional industries normally lack historical data when data-driven
techniques haven’t brought them benefits. Above scenarios lead to data deficiency which affect
network analysis and learning. Previous approaches developed for network representation based on
large-scale datasets are not able to be applied.

From the domain-specific view, rich data collected from real-world complex systems with large-
scale network datasets. The components in a system are defined as the nodes in a network, direct
interactions between nodes are defined as edges, and connection strengths are described by weights
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on edges. Techniques not only analysis networks but also learn knowledge from network structures
which has become a main stream in network research for artificial intelligence purposes [1, 2]. To
this end, networks are preliminarily categorized based on real-world systems and their physical
properties, such as social network [3, 4], biological network [5] and citation network [6]. As shown
in Figure 1, social networks (a) denote users as nodes and friendship as edges; biological networks
such as the Protein-Protein Interactions (PPI) network (b) models proteins as nodes and PPI as
edges; and citation networks (c) represent papers as nodes and citations as edges.

From all kinds of networks, the information network [7] abstract the information flows from the
original network structure, where the original nodes like users, proteins and authors are treated
as the information users and suppliers and the information interchanges on friendship, PPI and
citations as edges. The information network encode the network behaviors and save them into the
network structure as shown in Figure 1(d). Information networks help us illustrate the entities
in a physical system but raise a question on how to understand the various properties behind the
different network categories especially when the topologies seem no difference as shown in Figure
1.

Network representation aims to learn a latent feature/vector space by learning from the informa-
tion formed by network entities [8]. It inputs the high-dimensional network structures and outputs
relatively low-dimensional representations in encoding as many community properties as possible.
For the use of machine learning, network representation should output complex but highly struc-
tured latent features, to meet the smoothness requirement in learning function and to overcome
the sparsity from input data [9]. To this end, a series of network representation approaches have
been proposed based on the sampling strategy of random walks and the deep learning technique in
the last decade. The random walk is a type of similarity measurement for a variety of problems in
community detection [10, 11], which computes the local community structure information sub-linear
to the size of the input network [12, 13]. A stream of short random walks is used as a basic tool for
extracting information from real-world large-scale information networks [14, 15].

The typical random walk-based network representation algorithms, such as DeepWalk [15], learn
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Figure 1: Illustrations of undirected network structures formed by entities of nodes and edges. (a) Social network is
formed by users {A1,B1,C1,D1} and user friendships; (b) Biological network is formed by proteins {A2,B2,C2,D2}
and protein-protein interactions; and (c) Citation network is formed by papers {A3,B3,C3,D3} and citations. (d)
Information network extracts information flows from (a), (b) and (c) as edges and inherit the nodes {A,B,C,D}.
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sequences of nodes as a stream of short random walks to model the network structures of deep
features which obviously are highly dependent on the sliced window that controls random walk
learning for node sampling purpose. However, when the distance between two nodes is larger than
the sliced window size, the random walk jumps to the next round. Although it could be covered
by introducing a vast amount of sampling, the repetitions increase computational complexity. This
explains the main reason why the networks with small structure scales are barely applicable for
these algorithms. Therefore, the previous works on random walk-based network representations are
limited in a domain-specific way so that the performance mainly relies on the network topological
quality. Our previous work proposed a framework for transferring structures across large-scale
information networks (FTLSIN) [16], however only enabled structural knowledge transfer across
relational information networks and both networks should have large scales. The cases listed in
the beginning of this paper will not be guaranteed satisfying latent feature spaces from the limited
network structures for the further machine learning tasks within one domain.

To address above problems, we propose a novel algorithm for universal cross-domain network
representations (CDNR) with the following contributions.

1) CDNR offers an effective learning solution for the network representation, where the network
doesn’t have enough entities that causes a random walk failure in structural sampling.

2) CDNR determines the relationships between two independent networks which would belong
to irrelevant domains. Similar network patterns are detected so that links generated between
the corresponding communities transfer knowledge in CDNR.

3) CDNR predicts the potential entities for the scarce network structures by employing the cross-
domain two-layer random walk (CD2L-RandomWalk) framework from [16] and integrating
two novel algorithms, cross-domain two-layer node-scale balance (CD2L-NodeBalance) and
cross-domain two-layer knowledge transfer (CD2L-KnowlTransfer).

The rest of the paper is arranged as follows. In Section 2, related works are summarized. In
Section 3, we state the CDNR problem. In Section 4, the proposed CDNR algorithm is explained
in detail. In Section 5, two experiments are designed to evaluate the representations on real-world
datasets. Our conclusions are presented in Section 6.

2. Related Works

The previously used per-node partition function [17] is expensive to compute, especially for
large information networks. To overcome this disadvantage, a series of sampling strategies have
been proposed [18, 19] to analyze the statistics within local structures, e.g., communities and sub-
networks. These approaches are different from traditional representation learning [20, 21, 22].
The latent feature learning of the network representation captures neighborhood similarity and
community membership in topologies [23, 24, 25].

DeepWalk [15] trains a neural language model on the random walks generated by the network
structure. After denoting a random walk that starts from a root node, DeepWalk slides a window
and maps the central node to its representation. Hierarchical Softmax factors out the probability
distributions corresponding to the random walk and the representation function is updated to max-
imize the probability. DeepWalk has produced promising results in dealing with sparsity in scalable
networks, but has relatively high computational complexity for large-scale information networks.
LINE, Node2Vec and Struc2Vec are the other structure-based network representation algorithms
that improve the performance of DeepWalk. LINE [7] preserves both the local network structure
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and the global network structure by first-order proximity and second-order proximity respectively
and can be applied to large-scale deep network structures that are directed, undirected, weighted
and unweighted. Node2Vec [26] explores the diverse neighborhoods of nodes in a biased random
walk procedure by employing classic search strategies. Struc2Vec [27] encodes structural similarities
and generates the structural context for nodes using random walks. The above-mentioned works
has contributed to network analysis by modeling a stream of short random walks.

All the previous works based on random walk to sample networks into a steam of nodes are
under a common assumption of power-law distribution. The power-law distribution exists widely in
real-world networks. It is a special degree distribution that follows P (deg) ∼ deg−a, where deg is a
node degree and a is a positive constant [28]. A network that follows the power-law distribution is
also regarded as a scale-free network with the scale invariance property [29]. The social networks,
biological networks and citation networks being discussed in this paper are observed to be scale-free
in nature [30]. In log-log axes, the power-law distribution shows a linear trend on the slope ratio of
−a (Figure 4 and Figure 6), which reflects that numerous edges connect small degree nodes and will
not change regardless of network scale [31]. It has been observed in [15] that if a network follows
the power-law distribution, the frequency at which a node undertakes in a short random walk will
also follow the same distribution. Meanwhile, random walks in power-law distribution networks
naturally gravitate towards high degree nodes [32].

In this paper, we propose CDNR which employs biased random walk sampling strategies to learn
network structures based on previous works. However, CDNR is different from the deep transfer
learning approaches for cross-domain graph-structured data, i.e., context enhanced inductive repre-
sentation [33], intrinsic geometric information transfer [34] and deep inductive graph representation
[35]. Deep neural network-based network representation usually need to generalize a small set of
base feature for deep learning, such as network statistical properties like node degree, which lost
valuable information from networks. The link predictions in CD2L-RandomWalk are therefore
leveraged on the power-law distribution as well as the distance calculation between the two in-
dependent networks across domains. The network that has small distance to the target network
is regarded as the source domain. The scale invariance property should theoretically ensure that
power law-based CDNR is robust.

3. Problem Statement

Definition 1 (Domain [36]) A domain is denoted as D = {X, P (x)}, where X is the feature
space and P (x) is the marginal probability distribution that x = {x1, · · · , xn} ∈ X.

Definition 2 (Network [30]) Let G = (V,E,W ) be a given network, where V represents one
kind of entities known as nodes, E represents another kind of entities known as edges reflecting
connections between nodes, E ⊆ (V × V ), and W represents the possible weights on E.

Definition 3 (Cross-domain Network Representation) Suppose a source domain Ds =
{Xs, P (xs)} represented by Gs = (V s, Es) and a target domain Dt = {Xt, P (xt)} represented by
Gt = (V t, Et,W t), domains are irrelevant Ds 6= Dt if Xs 6= Xt and P (xs) 6= P (xt); and relevant if
Xs = Xt or P (xs) = P (xt). CDNR employs structural information on W t, from Gs = (V s, Es) to
Gt = (V t, Et,W t), to improve the target domain representations f : V t → Xt in a d-dimensional
latent feature space.

To prepare the structural knowledge from the source domain, CDNR firstly implements a max-
imum likelihood optimization to generate a set of random walks Ws on Gs in the bottom layer of
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CD2L-RandomWalk. A neighborhood NS(us) ⊂ Gs is clustered rooted at node us by the neighbor-
hood sampling strategy S on the biased random walks [26]. Then, CD2L-RandomWalk constructs
links between Gs and Gt. To this end, CD2L-NodeBalance balances the scales of V s and V t by
clustering V s into super nodes V ′ ∈ V in which vs ∈ V ′ share close node degrees with vt ∈ V t; and
generate links between V t and V. CD2L-KnowlTransfer trains the maximized similarities across
two domains and determines how much value should be transferred across the shortest paths P
and Et, where P are formed by the super edges E′ and the values are save in W t. In CDNR, the
representations Xt are learned in the top layer of CD2L-RandomWalk and will be evaluated by a
standard classification task.

3.1. Bottom-layer Random Walk: Knowledge Preparation

The bottom-layer random walk is designed for knowledge preparation in the source domain. The
sampled random walks contains structural knowledge from which will be transferred to the target
domain. The bottom-layer random walk introduces a biased random walk strategy to efficiently
explore diverse neighborhoods and sample the nodes along the shortest path1. Suppose a set of
random walks Ws, each root node vs repeats k times for sampling and each random walk is set in
a length of l. In generating a random walk, suppose we are standing at node c which is the i-th
node in the random walk, 1 < i < l, the node c− 1 denotes the i− 1-th node and the i+ 1-th node
x is chosen from NS(c) based on a probability P (x|c) = πxc

Z where Z is the partition function that
ensures a normalized distribution [9] and πxc = αpq(x, c) is guided by the search bias αpq. To be
specific, αpq(x, c) follows the searching rules: if the length of the shortest path between nodes x
and c − 1 is |Pxc−1| = 0, then αpq(x, c) = 1/p; αpq(x, c) = 1, if |Pxc−1| = 1; and αpq(x, c) = 1/q,

1The shortest path is a path between two nodes for which the sum of its edge weights is minimized.

Table 1: Summary of notations.

Ds, Dt A source domain and a target domain.
Xt, xt, xti A d-dimensional target domain latent feature spaces, a N t-dimensional feature

vectors, and the i-th element of xt.
Gs, Gt A (un)directed unattributed unweighted network from Ds, and a (un)directed

unattributed weighted network from Dt.
V s, V t, vs, vt The node set of Gs, the node set of Gt, a node in V s, and a node in V t.
Es, Et, esij , e

t
ij The edge set of Gs, the edge set of Gt, an edge between vsi and vsj , and an edge

between vti and vtj .
W t, wt

ij The weight set on Et, and a weight in W t on etij .
G, V, E′ A form of super graph for Gs, a super-node set, and a super-edge set.
V ′, e′V ′i V ′j

A super node in V, and a super edge in E′ connecting V ′i and V ′j .

W ′, w′V ′i V ′j
A weight set, and a weight in W ′ on e′V ′i V ′j

.

Ws, Wt The random walk sets on Gs and Gt.
PV ′i V

′
j

A shortest path between V ′i and V ′j over G.
degs, degt, deg′ A set of node degree values on Gs, a set of node degree values on Gt and a set of

node degree values on G.
E∗, W ∗ A link set between Gt and G across domains, and a weight set on E∗.

e∗vtV ′ , w
∗
vtV ′ A link in E∗ that connects vt and V ′, and a weight in W ∗ on e∗vtV ′ .
a The slope ratio of power-law distribution.

Deg(·) The function calculates the node degree.
〈·〉 The average function on a value set.
| · | The function counts the number in a set.
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if |Pxc−1| = 2. The sampling strategy on the biased random walks is computationally efficient
especially for real-world large-scale networks.

4. Knowledge Transfer in Cross-domain Network Representations

CDNR enables the cross-domain random walk-based network representations and assumes both
networks across domains follow the power-law distribution. Representations in CDNR work under
the Skip-gram framework and are optimized by maximum likelihood over biased random walks. The
contributions of CDNR are realized in this section by CD2L-RandomWalk with the two components:
CD2L-NodeBalance and CD2L-KnowlTransfer.

4.1. Cross-domain Two-layer Node-scale Balance and Link Prediction

By transferring knowledge from an external source domain, CDNR deals with the scenarios that
the training sample in the target domain is insufficient to make a good network representation. Such
knowledge transfer belongs to a transfer learning task [37] arises two questions: 1) Link prediction:
how to construct paths between two networks across domains for CD2L-RandomWalk, and 2)
CD2L-NodeBalance: how to solve the problem of unbalanced node scales.

The unbalancedness between Gs and Gt is reflected on the nodes |V s| > |V t| and also on the
connections 〈degs〉 > 〈degt〉, where |V s| and |V t| refer to the node scales, and 〈degs〉 and 〈degt〉 refer
to the average node degrees2. In this case, CD2L-NodeBalance tries to reform Gs into a smaller
size based on the network structures of Gt. For the purpose of discovering sub-graph patterns [38],
a concept of super node [39] is employed and we define the formation for CDNR.

Definition 4 (Super Node in Source Domain) A super node is a sub-graph of the original
source network. Denoting the super-node set V, a super node V ′ ∈ V consists of a group of nodes
{vs} ⊆ V s and the edges {es} ⊆ Es connecting to or from {vs}. The nodes {vs} that clustered
into a V ′ have close node degrees.

To cluster a set of nodes in the large-scale network, a super-node learning based on the nodes
in the target domain is as follows:

ΦSnode : V s → {V ′, e∗vtV ′ , w∗vtV ′ |V t} (1)

where e∗vtV ′ is a predicted link between vt ∈ V t and V ′ = {vs} across domains, and w∗vtV ′ is the
weight on e∗vtV ′ which indicates the similarity between vt and V ′ and how much knowledge should
be transferred from the source domain to the target domain in CD2L-RandomWalk.

CD2L-NodeBalance attempts to pair each node vt with at least one super node V ′ in a minimum
super-node scale |V| and a maximum likelihood between V t and V according to Eq. (4). For each
pair of (vt, V ′), we firstly initialize a link and a weight following,

e∗vtV ′ =

{
1 if w∗vtV ′ > 0
0 if w∗vtV ′ = 0

(2)

w
∗(0)
vtV ′ =

min(Deg(vt), Deg(V ′))

max(Deg(vt), Deg(V ′))
(3)

2The average degree is a mean on the degrees of all nodes in the network.
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where Deg(vt) denotes the degree of vt, Deg(V ′) denotes the degree of V ′, and V ′ is initialized on
nodes in the same degree.

To optimize ΦSnode in Eq. (4), we analysis the degree ranges over V t and V ′ in [1,max(degt)]
and [1,max(deg′)] respectively and reorganize V ′ including merging and dividing super nodes based
on the following three cases.

Denoting the range scales ndegt = |degt| and ndeg′ = |deg′|, there are three possible cases of
CD2L-NodeBalance as follows and as shown in Figure 2. Degree sets degt and deg′ are always
ranked in a decreasing order. A vt finds the corresponding V ′ that are in the same position in degt

and deg′, denoted as Deg(vt) ∼ Deg(V ′).
Case 1: If ndegs = ndegt , only one V ′ links to vt. In this case, CD2L-NodeBalance is completed

in the initialization stage with E∗ = {e∗vtV ′} and W ∗ = {w∗vtV ′}.
Case 2: If ndegs > ndegt , more than one V ′ links to vt. W ∗ = {w∗vtV ′} at the current stage is

going to be optimized in Eq. (4). If w∗vtV ′ turns to 0, the edge e∗vtV ′ is deleted and the V ′ is merged
into another super node that linked with vt and gets the smallest weight.

Case 3: If ndegs < ndegt , there are at least one vt not linked to any V ′. We add a group of
empty super nodes V ′null in a number of ndegt − ndegs and evenly insert them into V. To fill up the
V ′null, a few nodes in V ′ 6= ∅ next to V ′null are removed and added to V ′null. V

′
null then is initialized

w
∗(0)
vtV ′ = 0 by Eq. (3).

In Case 2 and Case 3, ΦSnode is optimized by maximizing the likelihood between V t and V.
Starting from each vti , a vector ~w = [w1, · · · , wi, · · · , wnnode

]> weights for each pair of (vti , V
′
j ),

where i = 1, · · · , |V t|, j = 1, · · · , nlink and nlink = max(ndeg′ , ndegt). If there is link between
(vti , V

′
j ), wi = w∗vtV ′ ; else wise 0.

max
ΦSnode

∑
i

η
∑
j

[
log (C)− a⊕ log (~δz ~w~w

>~δ>z )
]

(4)

where ~δz is a vector in size of nlink with the value of 0 or 1, which based on Deg(vt) ∼ Deg(V ′)
in Cases 1-3. Let a⊕ = min{as, at} in which as and at are the power-law slope ratio of Gs and

Gt respectively. η = 1
ndegt

e

1−n2
deg′

n
deg′ γeλ controls the range of the likelihood over CD2L-NodeBalance,

where γ is a parameter for V t and λ is a parameter for V. The optimized CD2L-NodeBalance

Case 3

Deg(    ) ~ Deg(V’)tv

Case 1
tv

V’

tvtvi

V’i V’null

Stop

Case 2
tv

V’
V’

V’

G     s

G     t

Figure 2: An illustration of the three cases in CD2L-NodeBalance and their interconversions: 1) Case 2 to Case 1,
2) Case 2 to Case 2, 3) Case 2 to Case 3, 4) Case 3 to Case 2 and 5) Case 3 to Case 3.
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Algorithm 1 The CD2L-NodeBalance algorithm.

Input:
Gt = (V t, Et) in the target domain and Gs = (V s, Es) in the source domain.

Initialize:
V ′(0) ← Cluster vs ∈ V s by node degrees.

n
(0)
degs , n

(0)

degt
← Node degree scales in Gs and Gt.

W ∗(0) ← Apply Eq. (3).

1: while n
(t)
degs 6= n

(t)

degt
do

2: W ∗(t) ← Apply Eq. (4)

3: E∗(t) ← Apply Eq. (2)

4: end while {ε = max
(t)
ΦSnode

−max
(t−1)
ΦSnode

}
5: return E∗ = E∗(t) and W ∗ =W ∗(t)

results suggest the predicted links E∗ ∝ ~δz where W ∗ = ~δz ~w in Case 2 and Case 3.

4.2. Cross-domain Two-layer Knowledge Transfer and Target Domain Edge Evolvement

CD2L-KnowlTransfer transfers the knowledge saved in weights through the predicted links E∗.
The knowledge includes three parts of weights as shown in Figure 3: a weight on the super edge that
reflects the knowledge learning from the random walks in the source domain, two weights on the
predicted links, and the original weight on et (in this paper is 1 or 0). The CD2L-KnowlTransfer
follows:

ΦKnowl : (Gt,G,W ∗)→W t (5)

where G denotes the super graph.
Definition 5 (Super Graph in Source Domain) A super graph G = (V, E′,W ′) reformed

from Gs is formed by super nodes V = {V ′}, super edges E′ = {e′V ′i V ′j } and the super weights

W ′ = {w′V ′i V ′j } on E′, where F : (Ws,V) → E′. If a random walk belongs to Ws goes through V ′i
and V ′j , there will be an e′V ′i V ′j

.

w′V ′i V ′j =
∑
vsi∈V ′i

∑
vsj∈V ′j

1

dWs(vsi , v
s
j )

(6)

Algorithm 2 The CD2L-KnowlTransfer algorithm.

Input:
Ws Random walks of Gs generated in the bottom-layer of CD2L-RandomWalk ; Gt = (V t, Et,W t(0))
in the target domain; and E∗ and W ∗ from Algorithm 1.

1: for etij in Et do
2: w′V ′i V ′j

← Apply Eq. (6).

3: PV ′i V
′
j
← Construct shortest paths between V ′i and V ′j .

4: wt
ij ← Update weight on etij by Eq. (7).

5: etij ← Evolve new edge if w
t(0)
ij = 0 and wt

ij > 0.
6: end for
7: return Gt = (V t, Et,W t)
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Figure 3: An illustration of weight contributions on a target domain network edge in CD2L-KnowlTransfer.

Algorithm 3 The CDNR algorithm.

CD2L-RandomWalk
1: Ws ← Random walks generated from Gs in the Bottom-layer Random Walk.
2: E∗, W ∗ ← Apply Algorithm 1.
3: W t ← Apply Algorithm 2.

Top-layer Feature Learning
1: for ut in Gt do
2: NS(u

t)← Search neighborhood of ut with W t.
3: f ← Apply Skip-gram to optimize.
4: end for
5: return Xt ← A latent feature space of Gt by f .

where dWs(vsi , v
s
j ) is the distance between nodes vsi and vsj in a random walk, and w′V ′i V ′j

calculates

every random walk going over e′V ′i V ′j
.

In having the three parts of weights {w′V ′i V ′j , w
∗
vtiV

′
i
, w∗vtjV ′j

, w
t(0)
ij } that contribute to wtij in CD2L-

KnowlTransfer, the weight on etij ∈ Et in the top layer of the CD2L-RandomWalk are denoted as:

wtij = w
t(0)
ij +

1

Z

∑
V ′i

∑
V ′j

w∗vtiV ′i
· w∗vtjV ′j ·

[ 1

lP

∑
e′
V ′t V ′

t+1
⊆PV ′

i
V ′
j

w′V ′t V ′t+1

]
(7)

where w
t(0)
ij = {0, 1} is the original weight that reflects an edge between vti and vtj or no edge, Z is

for normalization, PV ′i V ′j is the shortest path between V ′i and V ′j over G, lP is the length of PV ′i V ′j ,

e′V ′t V ′t+1
∈ E′ denotes an edge that consists in PV ′i V ′j , and w′V ′t V ′t+1

is the weight on e′V ′t V ′t+1
.

In CD2L-KnowlTransfer above, Gt is enriched in network structures by putting extra weights
on the original edges and also evolves possible edges.

4.3. Top-layer Random Walk and Network Representations

CDNR represents Gt in the top layer of CD2L-RandomWalk after CD2L-NodeBalance and
CD2L-KnowlTransfer. CDNR learns the latent feature space by f : V t → Xt in the Skip-gram
framework.

9



Given a node ut in the target domain with the window size r, we obtain a cross-domain Skip-
gram for Gt by maximizing the following log-likelihood function of f in observing a neighborhood
of NS(ut),

max
f

∑
ut∈V t

logPr(NS(ut)|f(ut)) (8)

where Wt is learned on P (xt|ut) =
πxtut

Z that πxtut = αpq(x
t, ut) · wtxtut , while Ws is learned on

πxsus = αpq(x
s, us).

In summary, Algorithm 3 of CDNR is formed by CD2L-RandomWalk and Top-layer Feature
Learning. The main advantage of CDNR is that when the network representation is poor be-
cause it lacks structures, the CD2L-RandomWalk enables knowledge transfer from external do-
mains and CDNR doesn’t need to rebuild a network representation model. CDNR offers an effi-
cient cross-domain learning with a relatively low computational cost of O(〈degt〉|V t|) on CD2L-

NodeBalance, O(|Et|) on CD2L-KnowlTransfer and O(〈degt〉2|V t|) on network representation in
line with Node2Vec [26].

5. Experiments

This section evaluates the effectiveness of the CDNR compared to the baseline algorithms of net-
work representations in both single-label classifications (Section 5.2) and multi-label classifications
(Section 5.3).

5.1. Baseline Algorithms

This experiment evaluates the performance of the unsupervised CDNR on the target networks.
The representation outputs are applied to a standard supervised learning task, i.e., linear SVM
classification [40]. The experiments choose a simple classifier because we want to put less em-
phasis on classifiers in evaluate the network representation performance. The baseline algorithms
are chosen from the previous domain-specific network representations and a deep inductive graph
representation as follows.

• DeepWalk (Perozzi et al. 2014) [15] is the first random walk-based network representation
algorithm. By choosing DeepWalks, we exclude the matrix factorization approaches which
have already been demonstrated to be inferior to DeepWalk.

• LINE (Tang et al. 2015) [7] learns latent feature representations from large-scale information
networks by an edge-sampling strategy in two separate phases of first- and second-order prox-
imities. We excluded a recent Graph Factorization algorithm [41] because LINE demonstrated
better performance in the previous experiment.

• Node2Vec (Grover et al. 2016) [26] learns continuous feature representations of nodes using
a biased random walk procedure to capture the diversity of connectivity patterns observed in
networks with the biased parameter α which is controlled by parameters of p and q.

• Struc2Vec (Ribeiro et al. 2017) [27] learns node representations from structural identity by
constructing a hierarchical graph to encode structural similarities and generating a structural
context for nodes.

• DeepGL (Rossi et al. 2018) [35] learns interpretable inductive graph representations by
relational functions for each representing feature and achieve inductive transfer learning across
networks. It inputs a 3-dimensional base features to a CNN and outputs the representation
in d dimensions where d depends on learning.
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5.2. Experiment on Single-label Dataset

5.2.1. Single-label Datasets

Two academic citation networks are selected as the datasets. Both of them are used for the
multi-class classification problem [42]. Nodes are denoted as papers in these networks.

Table 2: Single-label classification dataset statistics.

Domain Datasets
Num. of Num. of Num. of
Nodes Edges Categories

Source DBLP 60,744 52,890 4
Target M10 10,310 77,218 10
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-1
0

(a) dblp
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(b) dblp RW
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(c) M10
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-8
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-6

(d) M10 RW

Figure 4: Power-law distribution of the single-label classification datasets and their random walks on the networks.
The X-axial is denoted as log(Deg) of the network and the Y-axial is denoted as log(Pr(Deg)). Each power-law
distribution pair of the network and its random walks should follow the same pattern so that random walks over the
network can conduct skip-gram based network representations. For example, (a) and (b) are formed as a power-law
distribution pair following the same pattern by which random walks on the dblp network are guaranteed a network
representation on dblp.

• DBLP dataset3 (source network) consists of bibliographic data in computer science. Each
paper may cite or be cited by other papers, naturally forming a citation network. The network
in this dataset abstracts a list of conferences from four research areas, i.e., database, data
mining, artificial intelligence and computer vision.

• CiteSeer-M10 dataset4 (target network) is a subset of CiteSeerX data which consists of
scientific publications from 10 distinct research areas, i.e., agriculture, archaeology, biology,
computer science, financial economics, industrial engineering, material science, petroleum
chemistry, physics and social science.

5.2.2. Experiment Setup

For the evaluations, we randomly partition the dataset in the target domain into two non-
overlapping sets for training and testing by nine groups of training percentages, {0.1, 0.2, · · · , 0.9}.
We repeat the above steps 10 times and thus obtain 10 copies of the training data and testing data.
The reported experimental results are the average of the 10 runs and their variance.

3http://arnetminer.org/citation (V4 version is used)
4http://citeseerx.ist.psu.edu/
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The parameters of CDNR are set in line with typical values used for DeepWalk [15], LINE [7],
Node2Vec [26] and Struc2Vec [27]. For networks in both the source domain and the target domain,
let the dimensions of feature representation be d = 128, the walk length be l = 80, the number of
walks of every source node be k = 10, the window size be r = 10, workers = 8, and the search bias
α be with p = 1 and q = 1. Let the learning rate ρ start from 0.025 as in [7] and the convergence
track on 0.1 in our experiment. For Struc2Vec, let OPT1 (reducing the length of degree sequences),
OPT2 (reducing the number of pairwise similarity calculations) and OPT3 (reducing the number
of layers) all in values of True, and the maximum number of layers be 6. The parameters in CD2L-
NodeBalance is set as γ = 100 and λ = 100. In these settings, the total number of random walks
over an input network is w = SampleSize × k and the size of the random walks is w × l. For
DeepGL [35], the operator is chosen from {mean, sum, maximum, Hadamard, Weight Lp, RBF}
which gets best results in base feature learning; Lp is set in 1; feature similarity threshold is set in
0.01; maximum depth of layer is set in 10; and convergence for feature diffusion is set in 0.01.

5.2.3. Single-label Classification
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(a) Node2Vec on dblp
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Figure 5: Network representation on dblp and M10 in a 2-dimensional latent feature space.

We use Macro-F1 and Micro-F1 [43] to evaluate classification performances and the results are
shown in Table 3. The F1 scores are designed to evaluate the effectiveness of category assignments
[44].

F1(r, p) =
2rp

r + p
(9)

We use the indicators of true positive (tp), false positive (fp) and false negative (fn) to measure

12



the standard recall (r) and precision (p). In Micro F1, let r =
∑
tp∑

tp+
∑
fn and p =

∑
tp∑

tp+
∑
fp . The

Micro F1 score computes the global n × m binary decisions, where n is the number of total test
nodes, and m is the number of categories of binary labels. In Micro F1, let r = 1

m

∑ tp
tp+fn and

p = 1
m

∑ tp
tp+fp . The Macro F1 score computes the binary decisions on individual categories and

then averages the categories.
Representation Analysis. Figure 5 (a) illustrates the feature spaces of dblp by CDNR

bottom-layer random walk (Node2Vec) and Figure 5 (b) illustrates the feature spaces of dblp by
CDNR. These two illustrations show almost the same distribution and obtain good mappings in a
low dimension compared to PCA (Figure 5 (c)), LLE (Figure 5 (d)) and Laplacian (Figure 5 (e))
based network representations.

Effectiveness of search priority in random walks. In Table 3, DeepWalk and Struc2Vec
demonstrate worse performance than LINE, Node2Vec and our CDNR, which can be explained by
their inability to reuse samples, a feat that can be easily achieved using the random walk. The
outstanding performance of Node2Vec among baseline algorithms indicates that the exploration
strategy is much better than the uniform random walks learned by DeepWalk and LINE. The
parameter of search bias α adds flexibility in exploring local neighborhoods prior to the global
network. The poor performance of DeepWalk and LINE mainly occurs because the network struc-
ture is rather sparse, feature noise, and contains limited information. CDNR performs best on the
M10 network, as dblp is also a citation network that naturally share similar network patterns with
M10. Such patterns are captured by CDNR and transfered to M10. On average, there are smaller
variances in the performance of CDNR on the dblp2M10 learning task.

Importance of information from source domain. Table 3 shows that CDNR outperforms
the domain-specific baseline algorithms, which use topological information from the source domain
to learn the network representation in the target domain. When a top layer is working base
on the CD2L-RandomWalk, the information in the source network is transferred to the source
network by adjusting the weights on the edges of the target network. This procedure achieves
better performance and shows the significance of transferring topological information from the
external domains.

5.3. Experiment on Multi-label Datasets

5.3.1. Datasets

We select five real-world large-scale networks of different kinds as the experimental datasets,
consisting of three online social networks (Blog3, Facebook), two citation networks (arXivCit-
HepPh, arXivCit-HepTh) and one biological network (PPI). All of them are for the multi-class
multi-label classification problem. In the online social networks, nodes represent users and the
users’ relationships are denoted as edges. In the citation networks, papers are denoted as nodes
and edges describe the citations in this experiment. In the biological network, genes are denoted
as nodes and edges represent the relationships between the genes.

• Blog3 (BlogCatalog3) dataset5 is a social blog directory which manages bloggers and their
blogs. Both the contact network and selected group membership information is included.
The network has 10,312 nodes, 333,983 undirected edges and 39 different labels. Nodes are
classified according to the interests of bloggers.

5http://socialcomputing.asu.edu/datasets/BlogCatalog3
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Table 4: Multi-label classification dataset statistics.

Datasets Network
Num. of Num. of Ave. Num. of

Labels
Nodes Edges Degree Categories

Blog3 Social 10,312 333,983 64.776 39 Interests
Facebook Social 4,039 88,234 43.691 10 Groups

PPI Biological 3,890 37,845 19.609 50 States
arXivCit-HepPh Citation 34,546 421,578 24.407 11 Years
arXivCit-HepTh Citation 27,777 352,807 25.409 11 Years
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Figure 6: Power-law distributions of multi-label classification datasets and their random walks.
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• Facebook dataset6 consists of circles (i.e., friends lists) from Facebook. This dataset con-
tains user profiles as node features, and circles as edge features and ego networks. The network
has 4,039 nodes, 88,234 undirected edges and 10 different labels representing groups of users.

• PPI (Protein-Protein Interactions) dataset7 is a subgraph of the PPI network for Homo
Sapiens, which obtains labels from hallmark gene sets and represents biological states. The
network has 3,890 nodes, 76,584 undirected edges and 50 different labels.

• arXivCit-HepPh (arXiv High-energy Physics Citation Network) dataset8 and
arXivCit-HepTh (arXiv High-energy Physics Theory Citation Network) dataset9

are abstracted from the e-print arXiv. arXivCit-HepPh covers all the citations within a
dataset of 34,546 papers (regarded as nodes) with 421,578 directed edges. arXivCit-HepTh
covers all the citations within a dataset of 27,777 papers (regarded as nodes) with 352,807
directed edges. If a paper vi cites paper vj , the graph contains a directed edge from vi to vj .
The data consist of papers from the period January 1993 to April 2003, categorized by year.

The networks chosen in the experiment follow the power-law distribution [31], as do the random
walks on the networks [15], as shown in Figure 6.

5.3.2. Experiment Setup

Table 5: Networks selected as the source domain and target domain for CDNR by distance.

Source Domain Target Domain

Blog3 PPI
arXivCit-HepTh PPI
arXivCit-HepPh PPI

Facebook PPI

Blog3 Facebook

This experiment summarizes the network statistics in Table 4. Node degree reflects the con-
nection capability of the node. A network is selected as a source domain or a target domain
follows |V s| > |V t| and 〈degs〉 > 〈degt〉. These selections are shown in Table 5. The experiment
setup for the multi-label classification evaluation is as same as the setup in the single-label dataset
experiment.

5.3.3. Multi-label Classification

In the multi-label classification setting, every node is assigned one or more labels from a finite
set Y . In the training phase of the CDNR node feature representations, we observe a fraction of
the nodes and all their labels, and predict the labels for the remaining nodes. The multi-label
classification in our experiment inputs the network representations to a one-against-all linear SVM
classifier [44]. We use the F1 score of Macro-F1 and Micro-F1 to compare performance [43] in
Tables 6-9.

6https://snap.stanford.edu/data/egonets-Facebook.html
7https://downloads.thebiogrid.org/BioGRID
8http://snap.stanford.edu/data/cit-HepPh.html
9http://snap.stanford.edu/data/cit-HepTh.html
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Experimental results from the algorithmic perspective. A general observation drawn
from the results is that the learned feature representations from other networks improve or maintain
performance compared to the domain-specific network representation baseline algorithms. CDNR
outperforms DeepWalk, LINE, Node2Vec, Struc2Vec and DeepGL in all datasets with a gain of
19.29%, 49.57%, 15.66%, 58.83% and 10.06%, respectively. CDNR outperforms DeepWalk, LINE,
Node2Vec and Struc2Vec on the PPI dataset and the Facebook dataset in 100% of the experiment,
and outperforms DeepGL on the PPI dataset in 100% and the Facebook dataset in 88.89% of the
experiment. The losses of CDNR to DeepGL on the training percentages of {80%,90%} might
caused by classifier and training sample selection and NN-based DeepGL shows robustness than
other algorithms.

Experimental results from the dataset perspective. The general results on the PPI
dataset (Tables 6 and 7) reflect the difficulty of cross-domain learning. Considering the domain
similarities, a cross-domain adaption from either the social networks or the citation networks to
the biological network as shown in our experiment would not be recommended in transfer learn-
ing. However, CDNR is capable of capturing useful structural information from network topologies
and removing noise from the source domain networks in an unsupervised feature-learning envi-
ronment, so CDNR on PPI still shows a slight improvement and almost retains its representation
performances. Therefore, cross-domain network knowledge transfer learning works in unsuper-
vised network representations. CDNR is less influenced by domain selections when the transferable
knowledge is mainly contributed by network topologies.

Examining the results in detail shows that the source domain networks of arXivCit-HepTh and
Facebook provide a larger volume of information to the PPI target domain network than other pairs
of CDNR experiments, which promote knowledge transfer across domains. The citation networks of
arXivCit-HepPh and arXivCit-HepTh transfer 11 categories of Years to PPI (biological network, 50
categories of States, network average degree of 19.609) with a network average degree of 24.407 and
25.409 respectively. The social networks of Blog3 and Facebook transfers 39 categories of Interests
with the network average degree of 64.776 and 43.691 respectively. The show that unsupervised
CDNR works especially well in dense networks, however, domains share rare natural similarities
still can’t guarantee a good knowledge transfer (Blog32PPI: Interests to States).

In addition, the general results on the Facebook dataset (Tables 8 and 9) show promising
improvements by CDNR compared to other baseline algorithms. Unsupervised representations
of CDNR allow learning from small categories to large categories, and in a heterogeneous label
space. CDNR uses its CD2L-RandomWalk learning algorithm to capture the useful topologies in a
large-scale information network.

5.4. Statistical Significance

To demonstrate that CDNR is indeed statistically superior to the baseline algorithms, we sum-
marize our results for all classification evaluation tasks in Table 10 by pairwise t-test at a confidence
level of α = 0.05. The statistical significance is validated on every paired CDNR and baseline algo-
rithm. On the single-label datasets, for example CDNR from the dblp dataset to the M10 dataset
(CDNRdblp2M10) is compared with DeepWalk, LINE, Node2Vec, Struc2Vec and DeepGL by pair-
wise t-test.

9.02E-18 in line 11 column 8 of Table 10 is a mean significance value averaged from nine signif-
icance values on {10%, · · · , 90%} training percentages. Each of these significance values is t-tested
between CDNRBlog32Facebook and LINE. Since the CDNR multi-label dataset experiment is con-
ducted across five datasets,the statistical significance is validated for each scenario; for example
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Table 10: Pairwise t-test results of CDNR versus baseline algorithms.

CDNRdblp2M10 CDNRBlog32PPI

DeepWalk LINE Node2Vec Struc2Vec DeepGL DeepWalk LINE Node2Vec Struc2Vec DeepGL

Micro-F1 3.78E-13 7.29E-12 7.39E-07 8.13E-11 5.47E-07 3.66E-09 2.73E-07 1.03E-08 1.88E-08 8.98E-08

Macro-F1 1.04E-11 1.15E-08 4.31E-04 6.22E-10 5.07E-06 2.92E-04 3.17E-10 5.51E-03 7.26E-09 2.93E-09

CDNRarXivCit-HepPh2PPI CDNRarXivCitHepTh2PPI

DeepWalk LINE Node2Vec Struc2Vec DeepGL DeepWalk LINE Node2Vec Struc2Vec DeepGL

Micro-F1 1.38E-08 2.77E-07 1.75E-08 2.65E-08 9.47E-08 1.12E-07 1.53E-06 2.51E-08 1.92E-07 2.02E-06

Macro-F1 7.00E-04 6.25E-09 3.45E-03 1.79E-08 4.82E-09 7.15E-04 1.04E-07 3.18E-03 1.74E-07 4.45E-07

CDNRFacebook2PPI CDNRBlog32Facebook

DeepWalk LINE Node2Vec Struc2Vec DeepGL DeepWalk LINE Node2Vec Struc2Vec DeepGL

Micro-F1 2.20E-08 5.29E-07 1.18E-09 4.18E-08 4.61E-07 2.04E-03 9.02E-18 5.54E-07 2.95E-09 4.57E-03

Macro-F1 6.35E-04 7.98E-09 1.27E-03 1.25E-08 2.60E-08 7.94E-07 1.35E-12 2.65E-06 2.87E-09 9.85E-01

CDNRBlog32PPI is CDNR from Blog3 to PPI, and 3.66E-09 in line 3 column 7 is averaged from
the nine significance values by pairwise t-testing CDNRBlog32PPI and DeepWalk.

In Table 10, each value less than α = 0.05 indicates that the difference is statistically significant.
The results in Table 10 confirm that CDNR statistically outperforms DeepWalk, LINE, Node2Vec,
Struc2Vec and DeepGL in all cases expect CDNRBlog32Facebook on Macro-F1 in DeepGL which
caused by the inferior results on {80%,90%} training percentages.

5.5. Parameter Sensitivity

In this experiment, CDNR sets the representational dimension d in 128 following the setting
in baselines of DeepWalk, LINE, Node2Vec and Struc2Vec. However, in DeepGL, representational
dimensions are determined by deep neural network training. The benefit of DeepGL, according to
[35], is that it is able to determine the appropriate number of features automatically, as opposed to
setting it to some fixed value. Unlike other techniques, DeepGL derives new feature layers as long
as new and informative features are found. There is at least one new feature from the current layer
remaining after pruning. In order to address the emphasis that dimensional parameter d puts on
network representations, we set up a parameter sensitivity testing in this part.

CDNR on M10, PPI and Facebook setting in different feature learning dimensions, d={2, 3,
4,8,16,32,64,128,256}, are evaluated in Figure 7. On average, representations trend to converge
when d > 16 and get a convergence on d = 128.

In Tables 3 and 6-9, the representation performance of CDNR in d = 128 has been proved
significant compared with DeepGL in dDeepGL that varies in learning. In the format of [Minimum
dDeepGL, Average dDeepGL, Maximum dDeepGL], the DeepGL feature dimensions on M10, PPI
and Facebook are [57, 66, 80], [51, 61, 70], [56, 64, 82], respectively. In this part, the representation
dimensional sensitivities in CDNR are compared with DeepGL-base. To set up, DeepGL is tested
on the 3-dimensional base features; correspondingly, CDNR is evaluated on the representations in
d = 3; and the performances in d = 3 are compared with the CDNR performance in d = 128. The
sensitivity results in Figure 8 show that CDNR on d = 128 achieves the best performance than
CDNR d = 3 and DeepGL-base; DeepGL significantly relies on operators which represent large
variance in the red bold line; and DeepGL-base can barely reach a convergence.

In conclusion, for a common real-world network with sparse structure, CDNR outperforms
DeepGL by outputting a dense feature matrix with relatively smaller dimensional size. When
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Figure 7: CDNR dimensional sensitivity on d = {2, 3, 4, 8, 16, 32, 64, 128, 256}. Lines in nine colors denote dimensional
sensitivity on training sample percentages {10%,20%,30%,40%,50%,60%,70%,80%,90%}. The error bars in each line
on d points reflect the variance in 10-time testing.
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Figure 8: Dimensional sensitivity analysis between CDNR and DeepGL-base. The thin lines denoted by operator
= {Mean, Sum, Maximum, Hadamard, Weighted Lp, RBF} are tested on the 3-dimensional (d = 3) base features
generated by DeepGL; the red bold line is drawn from the average DeepGL-base experimental results; the orange
bold line represents the CDNR experimental results when the dimensional parameter d is set in 3; and the blue bold
line represents the CDNR experimental results in d = 128. Experiments on PPI dataset get more CDNR results by
transferring knowledge from different source domains.
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evaluating against DeepGL, it explains that DeepGL outputs a sparse feature matrix in contrast to
other approaches even if it is larger. However, fixing the number of features is arbitrary in the case
of DeepGL. Therefore, CDNR shows less dimensional sensitivity in cross-domain feature learning.

6. Conclusions

This work proposed a solution for a new random walk-based CDNR problem. Compared to
previous network representation approaches, CDNR enables effective knowledge transfer from the
external domains. Two key components flexibly tackle the challenges. The algorithm is general for
universal real-world networks and is computational efficient for knowledge transferring from large-
scale networks with runtime that is linear in the number of edges of the target network. CDNR has
all the desired properties: flexible with any kind of networks for variety of domains and learning
scenarios, effective for sampling network structures from source domain, efficient for learning from
gained knowledge, and accurate with a mean improvement in F1 score of 30.68%. Future works of
similarity learning across domains and between networks based on network patterns will be studied
to address the limitation in CDNR.
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nation based on Gaussian mixture model probability densitiespractices and algorithms, Pattern
Recognition 39 (7) (2006) 1346–1358.

[21] P. Zhu, W. Zuo, L. Zhang, Q. Hu, S. C. Shiu, Unsupervised feature selection by regularized
self-representation, Pattern Recognition 48 (2) (2015) 438–446.

[22] S. Ding, L. Lin, G. Wang, H. Chao, Deep feature learning with relative distance comparison
for person re-identification, Pattern Recognition 48 (10) (2015) 2993–3003.

24



[23] C. Yang, Z. Liu, D. Zhao, M. Sun, E. Y. Chang, Network representation learning with rich
text information, in: Proceedings of the 24th International Joint Conference on Artificial
Intelligence, 2015, pp. 2111–2117.

[24] S. Pan, J. Wu, X. Zhu, C. Zhang, Y. Wang, Tri-party deep network representation, in: Proceed-
ings of the 25th International Joint Conference on Artificial Intelligence, 2016, pp. 1895–1901.

[25] C. Tu, W. Zhang, Z. Liu, M. Sun, Max-margin deepwalk: Discriminative learning of net-
work representation., in: Proceedings of the 25th International Joint Conference on Artificial
Intelligence, 2016, pp. 3889–3895.

[26] A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in: Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
ACM, 2016, pp. 855–864.

[27] L. F. Ribeiro, P. H. Saverese, D. R. Figueiredo, Struc2vec: Learning node representations from
structural identity, in: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM, 2017, pp. 385–394.

[28] M. E. Newman, Power laws, Pareto distributions and Zipf’s law, Contemporary Physics 46 (5)
(2005) 323–351.

[29] A.-L. Barabási, Scale-free networks: A decade and beyond, Science 325 (5939) (2009) 412–413.
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