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1 Highlights of This Work

The contribution of this work can be summarized as follows.

1. This work presents a novel deep-connected architecture of CNN with detailed analytical analysis and
extensive experiments on several datasets.

2. A new activation function is presented to approximate arbitrary complex functions with analytical
analysis on both forward pass and backward pass.

3. The experiments show the competitive performance of our designed network with leSs parameters and
shallower architecture, compared with other state-of-art models.
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Abstract

Recent Progress has shown that exploitation of hidden layer neurons in con-
volutional neural networks (CNN) incorporating-with a carefully designed ac-
tivation function can yield better classificationwresults in the field of computer
vision. The paper firstly introduces a novelsdeep learning (DL) architecture
aiming to mitigate the gradient-vanishing, problem, in which the earlier hid-
den layer neurons could be directly connected with the last hidden layer and
fed into the softmax layer for classification. We then design a generalized
linear rectifier function as theyactivation function that can approximate ar-
bitrary complex functionSwia training of the parameters. We will show that
our design can achieve similarnperformance in a number of object recognition
and video action benchmark tasks, such as MNIST, CIFAR-10/100, SVHN,
Fashion-MNIST¢STL-10;, and UCF YoutTube Action Video datasets, under
significantly less mumber of parameters and shallower network infrastructure,
which is not. only promising in training in terms of computation burden and
memory-usage, but is also applicable to low-computation, low-memory mo-
bile seenarios for inference.
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1. Introduction

Deep convolution neural network (CNN) has achieved great success in
ImageNet competition [1]-[2]. In the review papers in [3]-[4], deep learning
has been well recognized as powerful tools for the computer vision appli-
cations as well as natural language processing in the recent years,This,
however, cannot be possible without the availability of massive imagej/video
datasets collected in the Internet-of-things era, as well as the innovation of
high-performance parallel computing resources. Exploiting these resources,
novel ideas, algorithms as well as modification on the network architecture
of deep CNN has been experimented to achieve higher performance in dif-
ferent computer vision tasks. Deep CNNs thus were found-to be able to
extract rich hierarchical features from raw pixel values and achieved amaz-
ing performance for classification and segmentation tasks in computer vision
field.

A typical CNN usually consists of severaleascaded convolution layers, op-
tional pooling layers (average pooling, max peoling or more advanced pool-
ing), nonlinear activations as well as fully=eonnected layers, followed by a
final softmax layer for classification/detection tasks, where the convolution
layer is employed to learn the gpatiallyslocal-connectivity of input data for
feature extraction, pooling layer is.for reduction of receptive field and hence
prohibits overfitting to someextent,’and nonlinear activations for boosting of
learned features. This netital network can be learned through the well-known
backpropagation algorithm as‘well as momentum (for running average gra-
dients to avoid fluetuations of stochastic gradient learning) to a very good
local optimal paint;, given good weight initialization and appropriate regu-
larization. Siicejthen; deeper CNN architecture (with more layers) [5] and
its variantsy. e.g¢, resnet [6] and highway networks [7] have been introduced
and experimented on various computer vision datasets, which are shown to
achieye state-of-the-art performance. For example, for the ImageNet chal-
lenge [1], al computer vision classification task with a massive dataset with
1000 classes of objects, the elegantly designed GoogleNet [5] achieved the
best performance on the ILSVRC 2014 competition, which employed 5 mil-
lion parameters and 22 layers consisting of inception modules. This validates
the potential of deep CNN to learn powerful hierarchical information from
raw images. However, it is noted that, the advancement of deep CNN largely
follows the development of careful weight initialization, advanced regular-
ization methods, and neural arch design. For example, to avoid overfitting



for deep neural networks, some regularization methods are invented, such as
dropout [8][9], which turns off the neurons with a certain probability in train-
ing. By doing so, the network is forced to learn many variations of itself and
generates a natural pseudo-ensemble classifier. In [10], the authors proposed
batch normalization algorithm, providing powerful ways for co-adaptation of
features learned, which allows for higher learning rates and be less.depend-
able on careful initialization for deep CNN. In [11], the authors.€onsidered
learning sparse representations of features from neural networkssfor aymulti-
task scenario, which in some sense reduces neural network capacity=whereas
avoiding overfitting to some extent.

In spite of its great success, deep CNN is subject, to,some open prob-
lems. One is that the features learned at an intermediateshidden layer could
be lost at classification stage. Another is the gradient_vanishing problem,
which could cause training difficulty or even infeasibility. They are hence
receiving increasing interest in the literature and thesindustry. In this paper,
we are also motivated to mitigate such obstacles by targeting at the tasks of
real-time classification on small-scale applications. To this end, the proposed
deep CNN system incorporates a globally/connected network topology with
a generalized activation function. Global average pooling (GAP) on the neu-
rons of some hidden layers as wellwas the last convolution layers is applied
and results in a concatenated vectox to be fed into the softmax layer. Hence-
forth, with only one classifier ‘and one objective loss function for training,
we shall enjoy the benefit of retaining rich information fused in the hidden
layers while taking miinimal parameters so that efficient information flow in
both forward and¢backward stage is guaranteed, and the overfitting risk is
avoided. Further, the proposed general activation function is composed of
several of piecewise linear functions to approximate complex functions. By
doing do,we can _not only exploit the hidden layer features via rich inter-
connections’between hidden blocks and final block, but also scales up these
learned features with the new designed activation function, leading to a more
powerful joint architecture. It will be shown in the conducted experiments
that the proposed deep CNN architecture yields similar performance with
much-less parameters.

The contribution of this work is hence presented as follows.

e We present an architecture which makes full use of features learned
at hidden layers, avoiding the gradient-vanishing problem to the most
extent. The analytical analysis in closed-form on both forward pass



and backward pass of the proposed architecture is presented.

e We define a generalized multi-piecewise ReLU activation function, which
is able to approximate more complex and flexible functions and scales
up the learned features. The associated analytical analysis on both the
forward pass and the backward pass in closed-form is presented:

e In the conducted experiments, our design is shown to achieveé promising
performance on several benchmark datasets in computer vision-field,
but with less parameters and shallower structure.

The rest of the paper is organized as follows. In Section II/some the re-
lated works are reviewed. In Section III and Section IVi.the details of the
proposed deep CNN architecture as well as the designed activation function
are presented, respectively. Section V evaluateSiwour design on several pub-
lic datasets, such as MNIST [35], CIFAR-10/160 [36], SVHN [37], Fashion-
MNIST [38], STL-10 [39], as well as UCF“Youtube Action Video Data Sets
[40]. We conclude this paper in SectionyVI.

2. Related Work

2.1. Activation Design

One key feature of theSuccess of deep CNN architecture is the use of ap-
propriate nonlinear activation functions that define the value transformation
from the input to output: It was found that the linear rectifier activation
function (ReLU) {12] cangreatly boost performance of CNN in achieving
higher accuracy andyfaster convergence speed, in contrast to its saturated
counterpart functions; i.e., sigmoid and tanh functions. ReLLU only applies
identity mapping on the positive side while drops the negative input, allow-
ing efficient/gradient propagation in training. Its simple functionality enables
training on déep neural networks without the requirement of unsupervised
pre-training and paved the way for implementations of very deep neural net-
works., On the other hand, one of the main drawbacks of ReLU is that
the negative part of the input is simply dropped and not updated through
backward pass, causing the problem of dead neurons which may never be re-
activated again and potentially results in lost feature information through the
back-propagation. To alleviate this problem, some new types of activation
functions based on ReLU are reported for CNNs. Ng et al [13] introduced the
Leaky ReLLU assigning a non-zero slope to the negative part, which however
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is a fixed parameter and not updated in learning. Kaiming et al pushed it
further to allow the slope on the negative side to be a learnable parameter,
which is hence named Parameter ReLU (PReLU) in [14]. Further, [15] intro-
duced an S-shaped ReLU function. In [16], the authors introduced the EEU
activation function, which assigns an exponential function on the negative
side to zeroing the mean activation. The network performance is improved
at the cost of the increasing computation burden on the negativeside, com-
pared with other variants of ReLU. Nevertheless, all of these functions lack
the ability to mimic complex functions in order to extract fniecessary infor-
mation relayed to the next level. In addition, Goodfellow et alintroduced
a maxout function which selects the maximum among .k linear functions for
each neuron as the output in [17]. While maxout has|thespotential to mimic
complex functions and performs well in practice, it takes much more param-
eters than necessary for training and thus reduces its popularity in terms of
computation and memory usage in real-time and mebile applications.

2.2. Network Architecture Design

The other design aspect of deep CNN is on the network size and the
interconnection mechanism of different layers. A natural way to improve
performance is to increase its-Sizey by either depth (number of layers) or
width (number of units in each layer). This works well suited to the case
with a massive number of labelled training data. However, when the amount
of training data is small, this potentially leads to overfitting. In addition, a
non-necessary large neural net size only ends up with the waste of compute
resources, as most{learned/parameters may finally found to be close to zero
and can be simply dropped. Therefore, instead of changing network size,
there is an emerging trend in exploiting the interconnection of the network to
achieve better performance. The intuition follows that, the learned gradients
flowing, frem the output layer to the input layer, could easily be diluted or
even vanished when it reaches the beginning of the network, and vice versa.
This ‘hence greatly prohibits performance improvement of neural networks
over decades. As discovered in the recent literature, addressing these issues
will not only allow the same performance achievable with shallower networks,
but also makes deeper networks trainable.

In [5], an inception module concatenating the feature maps produced by
filters of different sizes, i.e., a wider network consisting of many parallel con-
volution networks with filters of different sizes, was proposed to improve the
network capacity as well as the performance. In [6], the authors proposed
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a residual-network architecture (ResNet) to ease the training of networks,
where higher layers only need to learn a residual function with respect to
the features in the lower layers. In this way, every node only needs to learn
the residual information and thus is expected to achieve better performance
with less training time. With the residual module, the authors found<that
very-deep network (e.g., a 160-layer ResNet was successfully implemented) is
trainable and can achieve amazing performance than its counterparts in the
literature. In [7], a highway network was proposed by the use ofsgating units
for regulating the flow of information through the network, and achieves the
state-of-art performance. In [19], a stochastic depth apprgach was-proposed,
which only allows a subset of network modules through.and replaced the
rest via identity functions in training. By doing so,lit.was discovered that
very-deep networks beyond 1020-layer network is trainable/and achieves very
high performance. In [20], the authors proposed a neural network macro-
architecture based on self-similarity, where the_designed network contains
interacting sub-paths with different lengthsIn 21|, a wide residual network
is proposed, which decreases depth butypincreases width of ResNet and also
achieves the state-of-art performange in experimentation. In [23], the hy-
percolumns were designed to extractiuseful information from intermediate
layers for segmentation and finedsgrained localization at pixel level, since
the final layer information might be too coarse to locate objects. In [24], a
multi-scale spatial partitien network was proposed to classify text/non-text
image classification at_pateh-level first for all patches from different gener-
ated feature maps frem hidden layers, and then at the entire image level for
classification via yotingsIn [25], an end-to-end deep Fisher network, which
combines both convelution neural networks and Fisher vector encoding, was
proposed to.eutperform standard convolution neural networks and standard
Fisher vector methods. In [26], a weak supervision framework was proposed
to learn patch features via only image-level supervisions, and integrated mul-
tiple stages of'weakly supervised object classification and discovery, achieving
state-of-ary performance on benchmark datasets. In [27], a non-linear map-
ping with multi-layered deep neural network was employed to extract features
with anutilmodal fusion for human pose recovery. In [28], a new multiple in-
stance neural network to learn bag representations was proposed to boost
bag classification accuracy and efficiency. In [29], a hierarchical deep neural
network with both depth and width architectures into account was proposed
for multivariate regression problems. In [30], a deep multi-task learning algo-
rithm was developed to jointly learn features from deep convolutional neural
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networks and more discriminative tree classifier for automatic recommenda-
tion of privacy settings for image sharing. In [31], a deep multimodal distance
metric learning method as well as a structured ranking model were proposed
to retrieve images in a precise and efficient way.

Further, in [32], the authors introduced a Network in Network (NIN) ars
chitecture that contains several micro multi-layer perceptrons between the
convolutional layers to exploit complicated features of the input,inferma-
tion, which is shown to reduce the number of parameters while.aghieve great
performance in the public datasets. In [33], the authors intredueed a new
type of regularization with auxiliary classifiers employed 6n the hidden lay-
ers, to strengthen the features learned by hidden layers...However, the use
of the auxiliary classifiers introduces a lot of extra parameters in training,
where only the final classifier is employed in the inference stage. In [34], the
authors introduced a densely connected architéeture within every block to
ensure high information flow among layers in the network, achieving state-
of-art performance in most public datasets.

3. Global-Connected Net (GC-Net)

In this section, the proposedsietwork architecture, namely Global-Connected
Net (GC-Net) is presented, followed by the discussion of the proposed acti-
vation function in Sec. 4.

As shown in Fig. 1,thewproposed GC-Net, consists of n blocks in total, a
fully-connected final hidden, layer and a softmax classifier, where a block can
have several convolutional layers, each followed by normalization layers and
nonlinear activationilayers. Max-pooling/Average pooling layers are applied
between conmected blocks to reduce feature map sizes. The distinguished
feature of the proposed GC-Net network architecture from the conventional
cascaded structure is that, we provide a direct connection between every
block/and thedast hidden layer. These connections in turn create a relatively
larger. vector full of rich features captured from all blocks, which is fed as
input into the last fully-connected hidden layer and then to the softmax
classifier to obtain the classification probabilities in respective of labels. In
addition, to reduce the number of parameters in use, we only allow one fully-
connected layer to the final softmax classifier, as more dense layers only has
minimal performance improvement while requires a lot of extra parameters.

In our GC-Net design, to reduce the amount of parameters as well as
computation burden, we shall first apply global average pooling (GAP) to
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Figure 1: Comparison,ofteur proposed GC-Net (left) with conventional cascaded CNN
architecture (right), svhere GAP stands for global average pooling in GC-Net.

the output.feature maps of all blocks and then connects them with the last
fully-connected, hidden layer. In this sense, we further flatten the neurons
obtained from these blocks to obtain the 1-D vector for each blocks, i.e., p;
from blockji’(i = 1,--- , N) of length m;. We then apply the concatenation
operations on all of these 1-D vectors, which hence resulted in a final 1-D

vector/consisting of neurons from these vectors, i.e., p = (pl, - ,p)? with
its length defined as m = Zfil m;. This resulted vector is then taken as the
input to the last fully-connected hidden layer before the softmax classifier for
classification. Therefore, to incorporate with this new feature vector, a weight
matrix Wy, = (W] - W )T for the final fully-connected layer
is required, where s, is the number of classes of the corresponding dataset for



recognition. The final result fed into the softmax function hence is presented
as,

N
' =p'W=> p'W, (1)
i.e., ¢ = WTp, where W; = W,, ., for short. € is the input vectorinto the
softmax classifier, as well as the output of the fully-connected layer with p
as input.

Therefore, in the back-propagation stage, defining dL/d€ asithe gradient
of the loss function(denoted by L) with respect to the input fed to the softmax
classifier!, the gradient to the concatenated vector is then'given by,

p dcdp c p1 dpn
Therefore, for the resulted vector p; after pooling frem the output of block
i, we obtain its gradient dL/dp; directly from the'softmax classifier.

Further, taking the cascaded back-propagation process into account, ex-
cept block n, all other blocks will alse receive the gradients from its following
block in the backward pass. Let us'\define-the output of block 7 as B;, and
the final gradient of the outputref block ¢ from the loss function as %
Then, taking both gradients combing from the final layer and the adJacent

block of the cascaded structure into account, the derivation of ddﬁL is hence

i

summarized in Lemma~l,

Lemma 1. The full grddient of the output of block i (i < n) is given by,
dIN, dldp;  dL dBy;,
dB; 7dp;dB, dB,., dB;

(3)

dL dp; ~ [ dL dp; r By
Ay () T g
dpidB; ;% dp; dB,; dBy,
where ?é“ 15 defined as the gradient for the cascaded structure from block
@

9+ 1 back-propagated to block of j. 1s the gradient of the pooled vector of

block i, i.e., p;, with respect to the associated output of block v, namely B..

!Note that the gradient dL/dé can be readily derived from the standard back-
propagation algorithm and can be found in the textbooks in the literature and hence
is omitted.



The proof of Lemma 1 is straightforward from the chain rule in differen-
tiation and hence is omitted. As observed in Lemma 1, each hidden block
can receive gradients from its direct connection with the last fully connected
layer. Interestingly, the earlier hidden blocks can even receive more gradi-
ents, as it not only receive the gradients directly from the last layer, backs
propagated from the standard cascaded structure, but also those gradients
back-propagated from the following hidden blocks with respect to their direct
connection with the final layer. Therefore, the gradient-vanishing problem is
expected to be mitigated to some extent. In this sense, the featuressgenerated
in the hidden layer neurons are well exploited and relayed for classification.

It is noted that our design differs from all the reported xesearch in the lit-
erature as it builds connections among blocks, instead of-enly within blocks,
such as ResNet [6] and Dense-connected nets [34]. Our design is also different
from the deep-supervised nets in [33] which connects every hidden layer with
an independent auxiliary classifier (and not the final layer) for regulariza-
tion but the parameters with these auxiliary classifiers are not used in the
inference stage, hence results in inefficiency of parameters utilization. In our
design, in contrast to the deep-supervised’net [33], each block is allowed to
connect with the last hidden layer that commects with only one final softmax
layer for classification, for both“the.training and inference stages. All of the
designed parameters are hence efficiently utilized to the most extent, espe-
cially in the inference stage, compared with [33]. It is noted that internal
features are also utilized. in¥23]/and [24]. However, in [23], these features are
firstly up-sampled and summed up before fed into a tanh activation for final
classification. In [24], these intermediate-level feature maps are decomposed
into patches for'classification at patch level for every patch before the fi-
nal image-level classification. In our design, however, to reduce computation
burden, we do GAP on all of these feature maps and concatenate them into a
single vector for classification only at the image level with only one classifier.

Note also that by employing global average pooling (i.e., using a large ker-
nehsize for/pooling) prior to the global connection in our design, the number
of resulted features from all blocks is greatly reduced, which hence signif-
icantly simplifies our structure and makes the extra number of parameters
brought by this design minimal. Further, this does not affect the depth of the
neural network, hence has negligible impact on the overall computation over-
head. It is further emphasized that, in back-propagation stage, each block
can receive gradients coming from both the cascaded structure and directly
from the generated 1-D vector as well, thanks to the newly added connections
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between each block and the final hidden layer. Thus, the weights of the hid-
den layer will be better tuned, leading to higher classification performance.
It is noted that, thanks to parallel computing of GPU cores, as long as
the memory space is sufficient, the computation cost of the added features
from hidden layers on forward pass of GC-Net in Eqn. (1) is negligible. In
addition, computation overhead for the added global average pooling layers
on the hidden blocks is also minimal compared with convolution dayers,, For
the backward pass, it is also observed that the computation cost-of GC-Net is
also minimal as we only need a split operator for gradients of peoled.features
from different blocks in Eqn. (2) as well as an addition operater to sum
the hierarchical gradients and the associated GC-Net,connection gradients
for specific hidden blocks in Eqn. (3). Therefore, the.overall computation
overhead brought by GC-Net is minimal and can be.safely neglected.

4. Generalized ReLU Activation

To collaborate with GC-Net, a new type of\nonlinear activation function
is proposed and the details are presented as follows.

4.1. Definition and Forward Phase of GReL U

As shown in Fig. 2, the Generalized Multi-Piecewise ReLU, termed
GReLU, is defined as a cembination of many piecewise linear functions as
presented in (5) as follows:

(

l1+z (2+1 l)+kn($—ln), if x € [ln,OO);
l1+l€1((L‘—l1), ifx e [ll,lg);
ylx) =<z if xe(lq,l);
lwl + k,l(x — lfl), if x € [Z,Q, lfl);
3 LT k(o — L) Fha(r —1y,), if 2 € (—o0,ly).

(5)

As defined in (5), if the inputs fall into the center range of (I_1,[;), the slope
is set to be unity and the bias is set to be zero, i.e., identity mapping is
applied. Otherwise, when the inputs are larger than [q, i.e., they fall into
one of the ranges on the positive direction in {(l1,1s), -, (ln—1,1n), (ln, 20)},
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Figure 2: Description of GReLU with other popular nonlinear activation functions. In
GReLUpwe sét the ranges of sections are (—oo, —0.6), (—0.6,—0.2), (—0.2,0.2), (0.2,0.6),
(0.6,00) and thé corresponding slopes for these sections are (0.01,0.2,1,1.5,3), respec-
tively:

and=we assign slopes (ki,---,k,) to those ranges, respectively. The bias
c¢an then be readily calculated from the multi-piecewise linear structure of
the designed function. Similarly, if the inputs fall into one of the ranges on
the negative direction in {(I_1,1-2), -, (I-(n-1),l-n), (—n, —00)} we assign
(I-1,--+ ,l-(n-1), ) to all of those ranges, respectively. By doing so, the use-
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ful features learned from linear mappings like convolution and fully-connected
operations are hence boosted through the designed GReLU activation func-
tion.

To fully exploit the designed multi-piecewise linear activation functien,
both the endpoints I; and slopes k; (i = —n,---,—1,1,--- ,n) are sét to
be learnable parameters, and for simplicity and computation efficiency we
restrict on channel-shared learning for the designed GReLU activation func-
tions. Further, we do not impose constraints on the leftmost and rightmost
points, which are then learned freely while the training goes‘on.

Therefore, for each activation layer, GReLLU only has 4n (n isthe number
of ranges on both directions) learnable parameters, wherein 2n/accounts for
the endpoints and another 2n for the slopes of the piecewise linear functions,
which is definitely negligible compared with millions‘ef parameters in current
popular deep CNN models. For example, GoogléNet has 5 million parameters
and 22 layers. It is evident that, with increasedwn, GReLLU can approximate
complex functions even better at the cost of extra computation resources
consumed, but in practice even a smallun (n'= 2) suffices for image/video
classification tasks.

4.2. Relation to Other ActivationwEunctions

It is readily observed that GRellU is a generalization of its prior counter-
parts. For example, setting theslopes of all sections in the positive range to
be unity (shared) and thatief the sections in the negative direction another
shared slope, it degenerates, into leaky ReLU if the update of parameters is
not allowed, and PRellU otherwise. Further, by setting the slopes of the
negative side to be zero, it is degenerated into ReLLU function assuming no
update of parameters: In this sense, GReLU is a natural extension to these
functions,while‘has higher potential to learn rich features and thus perform
better than/its eounterparts.

4.3. ‘Backward Phase of GReLU

Regarding the training of GReLU, the gradient descent algorithm for
bagk-propagation is applied. The derivatives of the activation function with
respect to the input as well as the learnable parameters are hence given in

13



(6)-(8) as follows.
((kn, ifz€ll,, )
ay(x) kl, ifz e [ll, 12),

={ 1, ifze(ly,h): (6)
k_q, ifxell ol q);

[ ko, f 2 € (—00,l_p).

( (L — 1) H{z > i} + (2 — L) Hlse < liga ),
ifieql,./,n—1}
(.I' — ll)[{:c > ll},
dy(z) if i = n; (7)
ok | (@ —U){z <L},
if i = —n;
(li,1 — ZZ)I{ZC < li—l} + (l‘ — lz)[{h,l <z < li},
L ifie{-n+1,---,—-1}.
(k)l',l — k’l)[{{ﬂ > ll}, if 4 > 1;
Oy(z) ) AL— k) I{z > 1}, ifi=1, (8)
ol; 4 (1 3 k,1)1{$ <= lfl}, if 1 =—1;

(ki—i—l — kz)]{l’ <= lz}, if i < —1.

where the derivative to-the input is simply the slope of the associated linear
mapping when,the input falls in its range, and /{-} is an indication function
returning/unity when the event {-} happens and zero otherwise.

The back-propagation update rule for the parameters of GReLU activa-
tion function can be derived by chain rule as follows,

OL < OL dy;
80i n ; ayj 80i (9)

where L is the loss function, y; is the output of the activation function, and
0; € {k;,1;} is the learnable parameters of GReLU. Note that the summation
is applied in all positions and across all feature maps for the activated output
of the current layer, as the parameters are channel-shared. g—;j is defined as

14



the derivative of the activated GReLLU output back-propagated from the loss
function through its upper layers. Therefore, the simple update rule for the
learnable parameters of GReLU activation function is
oL

aOi

where « is the learning rate. The weight decay (e.g., L2 regularization) is
not taken into account in updating these parameters.

(10)

0; +— 0, — «

4.4. Benefits of GReLU

From the discussion above, it is therefore found out that designing GReLU
as a multi-piecewise linear function has several beneéfits, 'eompared to its
counterparts. One is that it enables approximation of complex functions
whether they are convex functions or not, whilenost of activation functions
however cannot. This demonstrates its stronget.capability in feature learning.
Further, since it only employs linear mappings.in different ranges along the
dimension, it inherits the advantage of the nen-saturate functions, i.e., the
gradient vanishing/exploding effect is mitigated to the most extent. We shall
discuss its effect further in the experiment part.

4.5. Computation Complezity Analysis

Due to the fact that we have 2n-learnable parameters for slopes and 2n
learnable parameters forsections, it is observed from forward pass in Eqn.
(5), at most O(log (2 + 1)), time complexity is required to find the right
interval for data points¢ while the computation cost of the linear operator
(e.g., y = a+b(x~mp)) iskind of complexity O(1) and is minimal. Regarding
the backward pass inyEqn. (6)-(8), the computation cost is also bounded
up by O(log(2n'+ 1)) in Eqn. (6) while O(2) in Eqn. (7) (at most two
comparisen operators in indication functions) and O(1) in Eqn. (8) with only
one comparison operator. In this sense, the computation cost of one GReLLU
activation is 'of the order of O(log (2n + 1)) ReLU activation functions, and
is"negligible with small n, as the computation cost of ReLLU activations in
neural metworks is minimal compared with other layers in neural models.

5. Experiments and Analysis

5.1. Overall Setting

The following public datasets with different scales, MNIST, CIFAR10, CI-
FAR100, Fashion-MNIST, SVHN, and UCF YouTube Action Video datasets,
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are employed to test the proposed GC-Net and GReLU. Experiments are
firstly conducted on small neural nets using the small dataset MNIST and
compare the resultant performance with that by the traditional CNN schemes.
Then we move to a larger CNN for performance comparison with other state-
of-the-art models, such as stochastic pooling, NIN [32] and Maxout [17], for
all of these datasets. Due to the complexity of GReLU, we freeze the learn-
ing of slopes and endpoints in the first few steps treating it like a Teaky
ReLU function, and then starts to learn them thereafter. Our=experiments
are implemented in PYTORCH with one Nvidia GeForce GTX. 1080-and we
use ADAM optimizer to update weights for the experiments if not-otherwise
noted. It is also noted that in all experiments we do not apply data augmen-
tation on these considered datasets? Better results ate hence expected with
extensive search for these parameters..

5.2. MNIST On SmallNet

The MNIST digit dataset [35] contains 7000028 x 28 gray-scale images
of numerical digits from 0 to 9. The dataset is,divided into the training set
with 60000 images and the test set with L0000 images.

In this SmallNet experiment, MNIST is-used for performance comparison
between our model with conventional ‘'ones, as well as study on effects of both
the GC-Net as well as the new designed activation function. The proposed
GReLU activated GC-Net"(GC-Net-GReLU) is composed of 3 convolution
layers with small 3x 3 filtersisand only 16, 16 and 32 feature maps, respectively.
The 2 x 2 max pooling layer with a stride of 2 x 2 was applied after both of the
first two convolutien layers/ GAP is applied to the output of each convolution
layer and the collected averaged features are fed as input to the softmax
layer for classification. The total number of parameters amounts to be only
around 8.3K. Fer a fair comparison, we also examined the dataset using a
3-convolution-layer CNN with ReLU activation (C-CNN-ReLU), with 16, 16
and 36 feature maps equipped in the three convolutional layers, respectively.
Therefore, both tested networks use a similar amount of parameters (if not
the same).

In/MNIST, neither preprocessing nor data augmentation was performed
on this dataset, except we re-scale the pixel values to be within (—1, 1) range.

2The hyperparameters used in all the experiments are only manually set due to the
computation resources constraint while the slopes and end-points of GReLU are manually
initialized.

16



Table 1: Ablation experiment.
Model Error Rates

GC-Net + GReLU 0.78%
GC-Net + ReLU 0.90%
C-CNN + GReLU 0.86%
C-CNN + ReLU 1.7%

Table 2: Impact of learning rate.
Learning Rate Error Rates

1.0 1.3%
0.1 1.03%
0.01 0.78%
0.001 0.85%
0.0001 1.49%

The experiment result in Fig. 3 shows that the proposed GReLU activated
GC-Net achieves an error rate no larger thian 0.78% compared with 1.7% by
the conventional CNN, which is over, 50%/of improvement in accuracy, after
a run of 50 epochs. It is also observed that the proposed architecture tends
to converge fast, compared with its'eonventional counterpart. In fact, for our
model, test accuracy exceéds below 1% error rate only starting from epoch
10, while the conventional net reaches similar performance only after epoch
15.

5.2.1. Ablation Study

In this patt, we investigate the contribution of GC-Net architecture and
GReLU activation separately in the conducted ablation study in Table. 1
with the SmallNet setup, where C-CNN denotes the conventional CNN struc-
ture./It is observed that each component of the proposed network indepen-
dently. contributes to the final performance improvement, validating the de-
sign of, both components. This follows from the fact that, GC-Net exploits
the features learned to the most extent, while GReLU boosts the learned
features via rich nonlinearities and scales them up for final classification.
Since the functions of both components are not quite overlapped, putting
them together in the proposed framework should yield higher performance,
as demonstrated in the conducted ablation experiments in Table. 1.
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Table 3: Error rates on MNIST without data augmentation.

Model No. of Param.(MB) Error Rates
Stochastic Pooling 0.22M 0.47%
Maxout 0.42M 0.47%
DSN+softmax 0.35M 0.51%
DSN+SVM 0.35M 0.39%
NIN + ReLU 0.35M 0.47%
NIN + SReLU 0.35M + 5.68K 0.35%
GReLU-GC-Net 0.078M 0.42%
GReLU-GC-Net 0.22M 0:27%

5.2.2. Impact of Learning Rate

In this part, we discuss the impact of some optimizer hyperparameter, i.e.,
specifically the learning rate. We hence conduetedrexperiments on GC-Net
with GReLLU by applying different learning ratesas shown in Table. 2 with
the SmallNet setup. As expected, learning rate,of 1.0 is kind of too large and
cannot reach 1% error rate. Instead; a learning rate of 0.01 is good enough
to achieve the highest performance; since, MNIST is a simple classification
task. With the learning rate asfsmall as 0.0001, the network weights might
not be sufficiently updated or probably get stuck at some saddle points, and
hence the performance is the worst.

5.2.83. Performance Benehmarking

We have also condueted other experiment on the MNIST dataset to fur-
ther verify its pérformance with relatively more complex models. Different
from the previous one; we kept all the schemes to achieve similar error rates
while observing the required number of trained parameters. Again, we used
a networkywith three convolutional layers by keeping all convolutional layers
with 64 featuré maps and 3 x 3 filters. The experiment results are shown in
Table 3, where the proposed GC-Net with GReLU yields a similar error rate
(i.e., 0.42% versus 0.47%) while taking only 25% of the total trained parame-
ters by its counterparts. The results of the two experiments on MNIST clearly
demonstrated the superiority of the proposed GReLU activated GC-Net over
the traditional CNN schemes. Further, with roughly 0.20M parameters, a rel-
atively larger network with our framework achieves the state-of-art accuracy
performance, i.e., 0.27% error rate, while its benchmark counterparts, DSN,
achieves 0.39% error rate with a total of 0.35M parameters.
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5.3. CIFAR10

The CIFAR-10 dataset contains 60000 natural color (RGB) images with
a size of 32 x 32 in 10 general object classes. The dataset is divided into
50000 training images and 10000 testing images. All of our experiments_ are
implemented without data augmentation and we employ the same pre=
processing strategy in [32]. The comparison results of the proposed4GReLU
activated GC-Net to the reported methods in the literature on this dataset,
including stochastic pooling, maxout [17], NIN [32], are given<in Table. 4.
It is observed that our method achieves comparable performance while tak-
ing greatly reduced number of parameters employed in /other models. In-
terestingly, one of our shallow model with only 0.092M. parameters in 3
convolution layers achieves comparable performance withseonvolution kernel
method. For the experiments with 6 convolution layers.and only 0.11M pa-
rameters, our model achieves promising performamnce with error rate around
12.6%. With roughly 0.61M parameters, our model achieves comparable per-
formance in contrast to Maxout with 5M parameters. Actually, compared
with NIN consisting of 9 convolution layers and roughly 1M parameters,
our model achieves competitive performance, only in a 6-convolution-layer
shallow architecture with roughly 60%. of parameters of it. These results
hence well demonstrate the advantage of our proposed GReLU activated
GC-Net method, which accomplishes similar performance with less parame-
ters and a shallower strueture (less convolution layers required), and hence
is appropriate for memeory-efficient and computation-efficient scenarios, such
as mobile/embedded“applications. In addition, it is observed that, our 9-
convolution-layer 4nodelis“able to achieve around 8.4% error rate with only
around 1M parameters without data augmentation.

5.4. CIFAR100

The CIFAR100 dataset also contain 60000 natural color (RGB) images
with @ size 0f/32 x 32 but in 100 general object classes. The dataset is divided
inte. 50000/ training images and 10000 testing images. Our experiments on
this dataset are implemented without data augmentation and we employ
the same preprocessing strategy in [32]. The comparison results of our model
to,the reported methods in the literature on this dataset, are given in Table.
5. It is observed that our method achieves comparable performance while
taking greatly reduced number of parameters employed in other models. As
observed in Table. 5, one of our shallow model with only 0.16M parame-
ters and 3 convolution layers, achieves comparable performance with deep
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Table 4: Error rates on CIFAR-10 without data augmentation.

Model No. of Param.(MB) Error Rates
Convolutional kernel - 17.82%
Stochastic pooling - 15.13%
ResNet [19] (110 layers)  1.7M 13.63%
ResNet [19] (1001 layers) 10.2M 10.56%
FractalNet[20] (21 layers) 38.6M 10.18%
Maxout >b5M 11.68%
Prob Maxout > 5M 11.35%
DSN (9 conv layers) 0.97TM 9.78%
NIN (9 conv layers) 0.97M 10.41%
Ours (3 conv layers) 0.092M 17.23%
Ours (6 conv layers) 0.11M 12.55%
Ours (6 conv layers) 0.61M 10.39%
Ours (8 conv layers) 0.91M 8.43%

ResNet in [19] of 1.7M parameters.  In the €xperiments with 6 convolution
layers, it is observed that, with roughly 10% of parameters in Maxout, our
model achieves higher performanee. In addition, with roughly 60% of param-
eters of NIN, our model accomplishes competitive (or even slightly higher)
performance with it, whichhowever consists of 9 convolution layers (3 layer
deeper than the compared'model). This hence validates the powerful feature
learning capabilities ©f our, désigned GC-Net with GReLU activations. In
such way, we can achieve similar performance with shallower structure and
less parameters.< Intaddition, one of our deep model with 8 layers achieves
performance 6n par with other state-of-art models.

5.5. Street View House Numbers (SVHN)

The SVHN Data Set contains 630420 RGB images of house numbers,
collected by Google Street View. The dataset comes in two formats and we
only consider the second format, with all images being of size 32 x 32 and
the task is to classify the digit in the center of the image, however possibly
some digits may appear beside it but are considered noise and ignored. This
dataset is split into three subsets, i.e., extra set, training set, and test set,
and each with 531131, 73257, and 26032 images, respectively, where the
extra set is a less difficult set used to be extra training set. Compared with
MNIST, it is a much more challenging digit dataset due to its large color and
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Table 5: Error rates on CIFAR-100 without data augmentation.

Model No. of Param.(MB) Error Rates
ResNet [19] 1.7TM 44.74%
Stochastic pooling - 42.51%
Maxout >5M 38.57%
DSN 1M 34.57%
NIN (9 conv layers) 1M 35.68%
Ours (3 conv layers) 0.16M 44.79%
Ours (6 conv layers) 0.62M 35.59%
Ours (8 conv layers) 0.95M 33174%

Table 6: Error rates on SVHN without data‘augmentation.

Model No. of Param.(MB) “Error Rates
Stochastic pooling - 2.80%
Maxout > 5M 2.47%
DSN 1.98M 1.92%
NIN (9 conv layers)  1.98M 2.35%
Ours (6 conv layers) 0.61M 2.35%
Ours (8 conv layers) 0.90M 2.10%
Ours(10 conv layers) 1:26M 1.96%

illumination variations:

In SVHN, in data‘preprocessing, we simply re-scale the pixel values to be
within (—1,1) range, identical to that imposed on MNIST. It is noted that
for other methods, logal contrast method is employed for data preprocessing.
Even so, it iS,ohserved in Table. 6 that, our models are quite competitive
compared/with other benchmark models. For example, one model with only
6 convolution layers and 0.61M parameters, achieves roughly the same per-
formance with NIN, which consists of 9 convolution layers and around 2M
parameters. For a deeper model with 8 convolution layers and 0.90M pa-
rameters, we achieve competitive performance in contrast to other models,
which’ validates the powerful feature learning capabilities of the designed ar-
¢hitecture. Finally, for a model with 10 convolution layers and only 60%
parameters of DSN and NIN, our model achieves performance on par with
other state-of-art models.
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Table 7: Error rates on Fashion-MNIST without data augmentation.

Model No. of Param.(MB) Error Rates
AlexNet 10.1%
GoogleNet - 6.3%
ResNet18 (data augmentation) 5.1%
VGG16 26M 6.5%
Google AutoML (24 hour) 6.1%
Capsule Net (data augmentation) 8M 6:4%

Ours (8 conv layers) 0.91M 5.53%

5.6. Fashion-MNIST Dataset

Fashion-MNIST [38] is a dataset of Zalando’s” article images, which in-
cludes a training set of 60000 examples and a“test set of 10000 examples.
Every fashion product on Zalando has a set of ‘pictures shot by professional
photographers, demonstrating different aspects of the product, i.e. front and
back looks, details, looks with model and in ‘an outfit. Similar to MNIST
dataset, each image is rescaled to be a 28°X28 gray-scale image, with a la-
bel from 10 classes. Fashion-MNIST" s created to serve as a direct drop-in
replacement for the original MNIST, dataset to benchmark machine learning
algorithms, since it shares the same,image size and structure of training and
testing splits, however is niuch more challenging than the naive hand-written
digits. It is also noted-.that our experiment on this dataset is conducted
without data augmentation,

From Table. 74 it is‘ebserved that the performance of our designed net-
work is competitive 'with other state-of-art models. For example, compared
with capsulemetwork; our network achieves slightly better performance but
only with/around 12% of parameters in capsule network. In addition, our
model achieves eompetitive performance, even compared with a much deeper
resnet18 model with data augmentation. Interestingly, we even outperformed
Google AutoML with 24 hour of extensive hyperparameter tuning and neural
architecture search. These comparisons hence demonstrate the effectiveness
ofithe/designed neural architecture as well as the designed GReLU activation
function.

5.7. STL10

The STL-10 dataset [39] is an image recognition dataset which is initially
developed to boost unsupervised feature learning, and is inspired by CIFAR-
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Table 8: Error rates on STL-10 without data augmentation.

Model No. of Param.(MB) Error Rates
Convolutional kernel 37.68%
GoogleNet - 37.7%
ResNet-50 37.23%
VGG16 26M 37.39%
Ours (8 conv layers) 0.91M 32.54%

10 dataset. In fact in STL-10 each class has fewer labelledAraining examples
than that of CIFAR-10, however a large number of unlabelléd images is
provided for unsupervised/semi-supervised learning purposes. In our work,
however, we are only interested in learning how-“to classify these labelled
examples and the unlabelled images are negleéted in, this experiment. In
STL-10, the samples are colored images of size 96 X 96.-These images are from
10 classes, i.e., airplane, bird, car, cat, deer;.dég;-horse, monkey, ship, truck,
and is in fact a resized subset of ImageNet. Forsupervised learning purposes,
STL-10 dataset has 500 training images perrclass and 800 test images per
class, and hence is a relatively smallidataset compared with datasets from
other experiments.

For STL-10, we conduct our experiment by simply training from scratch
over the small supervised“dataset.” The experiment is conducted without
data augmentation. It is howeyer noted that, for efficient computation, we
down-sample STL-10dmages t6 be compatible with CIFAR-10 images, i.e., of
size 32 x 32 for both experiments (which however has some negative impact
on the performance)s

The results are reported in Table 8. Note that for GoogleNet, resnet-50
and vggl6s/these models are firstly trained on ImageNet and transferred and
fine-tunédyon STL-10. As is observed, even training from scratch over only
the downsampled version of 5000 training images with labels, our designed
model is able to achieve better performance than convolutional kernel method
and other state-of-art methods.

5.8. UCF YouTube Action Video Dataset

The UCF YouTube Action Video Dataset is a popular video dataset for
action recognition. It is consisted of approximately 1168 videos in total and
contains 11 action categories, including: basketball shooting, biking/cycling,
diving, golf swinging, horse back riding, soccer juggling, swinging, tennis
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Table 9: Error rates on UCF Youtube Action Video Dataset without data augmentation.

Model No. of Param.(MB) Error Rates
[40]: static features - 63.1%
[40]: motion features - 65.4%
[40]: hybrid features - 71.2%
Ours - 72.6%

swinging, trampoline jumping, volleyball spiking, and walking with a dog.
For each category, the videos are grouped into 25 groups avith over 4 action
clips in it. The video clips belonging to the same group may share some
common characteristics, such as the same actor, similar background, similar
viewpoint, and so on. The dataset is split into training set/and test set, each
with 1,291 and 306 samples, respectively. It is\noted that UCF YouTube
Action Video Dataset is quite challenging due, to“large variations in cam-
era motion, object appearance and pose, 6bjéet scale, viewpoint, cluttered
background, illumination conditions, etc. For'each video in this dataset, we
select 16 non-overlapping frames clips. \ However, due to the limitation of
GPU memory, we simply resize eachframe into size 36 x 36 and then crop
the centered 32 x 32 for training.to\guarantee that a batch of 16 samples
is fit for 8G memory of GTX1080:Due to the down-sampling implemented
on original frames, some pérformance degradation is expected. Further, we
only allow convolution acress space within each frame but not across frames
over time epochs for this wideo classification task, This however will definitely
have some negative impact,on performance, as in fact we do not try to exploit
the temporal relationship of frames to the most extent. In another point of
view, this implementation only needs a much smaller amount of parameters,
and hence/can be trained with a small budget and expected to be deployed
in real-time~ideo analysis. Even with such simple setup, our designed neu-
ral network is/capable of achieving higher performance, than the benchmark
method using hybrid features in [40].

6.n.Conclusion

In this work, we have designed an architecture, which makes full use of
the hidden layer features, as well as alleviates the gradient-vanishing prob-
lem. Further, a generalized linear rectifier activation function was proposed
to boost the performance. The combination of the two designs is demon-
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strated to achieve state of art performance in several object recognition and
video action recognition benchmark tasks, including MNIST, CIFAR-10/100,
SVHN, Fashion-MNIST, STL-10 and UCF YouTube Action video datasets,
with greatly reduced amount of parameters and even shallower structufe:
Henceforth, our design can be employed in small-scale real-time applicas
tion scenarios, as it requires less parameters and shallower network structure
whereas achieving matching/close performance with state-of-the-att models.

One can extend our work in several ways. Firstly, one can-maturally in-
corporate our architecture and GReLU with other state-of-art,architectures
such as resnet and densenet. These architectures are independentrof ours as
they are more involved in the design of blocks of the deep neural networks,
while ours is on the flow of intermediate layers to (final,classification. In
this sense, one can merge these designs together tosfurther improve perfor-
mance by enjoying benefits of different works. Seeondly, due to the fact that
different hidden layers provide feature information at different level, diving
deeper to utilize them instead of concatenation at*the last layer would be of
great interest to investigate and expected to beost the performance as well.
Further, in this work, we do not tune the/hyperparameters to optimize per-
formance, one can fine tune these hyperparameters and observe their impact
on the designed network, e.g., Optimization on the initialization of GReLLU
parameters as well as learning rates._In addition, one can apply the designed
architecture to deeper neural networks and fine tune it in other interesting
computer vision tasks suchias autonomous driving.
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