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Abstract

Logo detection in real-world scene images is an important problem with ap-
plications in advertisement and marketing. Existing general-purpose object
detection methods require large training data with annotations for every
logo class. These methods do not satisfy the incremental demand of logo
classes necessary for practical deployment since it is practically impossible
to have such annotated data for new unseen logo. In this work, we develop
an easy-to-implement query-based logo detection and localization system by
employing a one-shot learning technique using off the shelf neural network
components. Given an image of a query logo, our model searches for logo
within a given target image and predicts the possible location of the logo by
estimating a binary segmentation mask. The proposed model consists of a
conditional branch and a segmentation branch. The former gives a condi-
tional latent representation of the given query logo which is combined with
feature maps of the segmentation branch at multiple scales in order to obtain
the matching location of the query logo in a target image. Feature match-
ing between the latent query representation and multi-scale feature maps
of segmentation branch using simple concatenation operation followed by
1 x 1 convolution layer makes our model scale-invariant. Despite its simplic-
ity, our query-based logo retrieval framework achieved superior performance
in FlickrLogos-32 and TopLogos-10 dataset over different existing baseline
methods.

Keywords: Logo Retrieval, One-shot Learning, Multi-scale Conditioning,
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Figure 1: Illustration of Query-based logo detection problem.

1. Introduction

Detection of logos in scene images and videos has a number of useful ap-
plications: commercial analysis of brands [1], vehicle-logo detection [2] for
intelligent traffic-control systems and even Augmented Reality [3]. A logo
is a unique symbol representing any brand or organization that expresses
its functionality and distinguishes the brand and its products from others.
A merchant can easily assess the presence of his brand in television, social
media and e-commerce sites by searching for the company’s unique logo.
Detection and localization of logos is a crucial step in inspecting market
trends, allowing companies to meet the customers’ needs by optimizing exist-
ing marketing schemes. Automating logo detection will also allow merchants
to detect copyright infringement cases by testing the originality of suspicious
advertisements.

Logo detection problem can be seen as a special case of object detection
[4] in images. The appearance of a logo varies drastically in real-world images
due to lighting effects, occlusions, rotations, shearing effects and scales. It
is hard to detect different sizes of logos in a diverse contextual environment
with uncontrolled illumination, low resolution, and high background clutter.
In the recent years, logo detection has gained a lot of attention from the com-
puter vision community [5l [6, [7, 8, 9, [10]. Earlier works of logo detection rely
on the bag-of-words approach [11] where SIFT features are quantized into a



vocabulary of learned logo patterns in images. Boia et al. [6] used a novel
approach based on homographic class graphs to perform both logo localiza-
tion and recognition. Recently, significant improvement has been achieved by
adopting deep-learning techniques in this field [12] [7, 13]. In the meantime,
several object detection algorithms have been introduced, namely, R-CNN
[14], Fast R-CNN [I5] and Faster R-CNN [4] which have been successfully
adapted for the logo detection problem [8], boosting object-recognition per-
formances further. In addition, due to advent of deep learning, there have
been significant progress in scene-text detection [16], scene text recognition
[T7], script identification [I8] tasks etc; however, there are very limited re-
cent deep-frameworks towards logo detection and recognition in spite of its
complexity.

Deep-learning based frameworks are largely data-driven, contrary to logo-
datasets that have several image classes but few images. Since deployable
logo detection models need to be robust to new unseen logos, the model
should be designed to satisfy the incremental demands for logo classes, con-
trary to existing methods which are limited to a set of seen logos and are not
scalable enough for practical deployment. With the current problem setup,
it is impossible for models to work with the logo of any brand. To meet the
need for a scalable solution, we re-design the problem statement as shown in
Figure [I] Given a query logo of a particular company or organization, the
main objective would be to find out whether the logo of the same company
or organization is present in a target image or not. If present, the model
fetches its position within the given scene.

Following this problem statement, we propose a one-shot learning based
technique to design a framework that adapts to new logo classes in a data-
efficient way. Recently, one-shot learning [19] has gained notable attention
in learning new concepts from sparse data. One-shot image classification [20]
and one-shot image segmentation [21, 22, 23, 24] are some practical appli-
cations of it. Inspired by these works, we propose a one-shot query based
logo detection framework that consists of two modules: the conditioning
module and the segmentation module. The conditioning part takes a query
logo image and obtains a latent representation which will be used as a con-
ditional input to the segmentation branch. The segmentation network is a
basic encoder-decoder architecture. In order to capture the multi-scale cor-
relation between the query image and different regions of the target image,
we concatenate the conditional latent representation with multiple layers of
the encoder part(segmentation network), followed by 1 x 1 convolution. The
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obtained representation is further combined with the respective layers of the
decoder part in order to better guide the decoder part of segmentation net-
work to generate binary segmentation mask, forming a skip-connection like
architecture [25]. When the model detects high similarity between a query
and some particular region of the target image, the network tries to pro-
duce high response at the corresponding portion of the segmentation map.
To apply our model for a new logo-class, unlike the fine-tuning approach
[21] which may require large number of training samples with correspond-
ing ground truth data, our approach needs only one sample of the logo of
a concerned company or organisation. This query logo sample can be ob-
tained very easily from the official logo design image or just by cropping an
appropriate logo portion from a scene logo image. In this paper, we make
following novel contributions:

e We propose a scalable solution for the logo detection problem by re-
designing the traditional problem setting. We present a query-based logo
search and detection system by employing a simple, fully differentiable
one-shot learning framework which can be used for new logo classes with-
out further training the whole network. To the best of our knowledge, ours
is the first work to address one-shot query based deep learning framework
for logo retrieval which is novel in the literature of logo-retrieval research.

e To deal with the logos of varying sizes, we propose a novel one-shot frame-
work through multi-scale conditioning that is specially designed to learn
the similarity between the query image and target image at multiple scales
and resolutions.

2. Related Works

Traditional methods:. Logo-related research has been carried out for over
two decades in the area of computer vision and pattern recognition. Ear-
lier, logo recognition and detection were categorized as a specific problem
of object detection. The primary models were developed on geometric ob-
ject features [26] which relied on properties of objects such as lines, vertices,
curves and shapes. Later on, properties of pixel value (luminance or color)
were introduced as photometric object [27, 28] 29] features, which eventually
replaced the previous ones. These features were computed locally, could solve
the problem of occlusion to an extent and were able to distinguish similar



objects better way [27]. Thereafter many logo-related works were carried
out with the methods of content-based indexing and retrieval in trademark
databases. The main goal is to assist in trademark infringement detection
by checking a newly designed trademark with registered logos in archives
[30, BT, B2, B3]. The task of trademark recognition in videos is inherently
harder due to loss of quality of original logos during processing (e.g. color
sub-sampling, video interlacing, motion blur, etc.). However in this case,
it is assumed that the acquired images are of good quality and moderate
distortion free. Kovar et al. [34] applied a heuristic technique to discard
sparse or small populated edge regions of the images and analysed the set
of significant edges during logo detection. The work in [35] deals with the
logos that appear on the rigid planar surfaces having homogeneous colored
background in images using Hough Transformation. Color histogram back
projection is applied on candidate logo regions [36] to recognize candidate
logos. Multidimensional receptive field histograms are also used to perform
the task of logo recognition. Here, the most likely logo region is computed for
every candidate region. Therefore, if a region in the image does not contain
a logo, the identification precision gets reduced.

The traditional logo recognition models are well established on key-point
based detectors and descriptors (specially SIFT). SIFT-based models [29] ba-
sically take an image and transform it into a large collection of feature vectors
that are invariant to affine transformations and even robust to different light-
ing conditions. One of its main characteristics is the ability to detect stable
salient points in the image across multiple scales. On the basis of this, Lam-
berto et al. [37] proposed a representation of trademarks and video frame
contents using SIFT feature-points mainly targeting to detect, localize and
retrieve trademarks in a robust manner, irrespective of irregularities. The
classification of retrieved trademarks is analyzed by matching a set of SIF'T
feature descriptors for each trademark instance with the features detected in
every frame of the video. Kleban et al. [38] proposed a logo detection model
by clustering matching spatial configurations of frequent local features and
introducing spatial pyramid mining. Alexis and Olivier presented a new
content-based retrieval framework [39] using a thresholding strategy in order
to improve the accuracy of query images. In [40], the author described the
logo detection problem as a small object detection problem and solved it by
interactive visual object search through mutual information maximization.
Romberg and Lienhart [41] exploited a large scale recognition approach using
feature bundling. As feature bundles carry more information about the image



content than single visual words, they aggregated individual local features
into bundles and then detected logos by querying the database of reference
images based on features. Based on the analysis of the local features and
basic structure, such as edges, curves, triangles, etc. Romberg et al. [42] pre-
sented a system by encoding and indexing the spatial layout of local features
found in logos. Revaud et al. [43] introduced dedicated correlation-based
burstiness model using a down-weight technique for noisy logo detections.
Boia et al. [44], 6] smartly exploited homographic class graphs to analyze
logo localization and recognition tasks. It is noteworthy that they used in-
verted secondary models to control inverted colors instances. Marcal et al.
[45] presents a robust queried-by-example logo retrieval system where logos
are compactly described as a variant of the shape context descriptor. They
perform k-NN search in the locality sensitive hashing database to retrieve
logos. Jianlong et al. [46] exploits local features to form a visual codebook
and build an inverted file to accelerate the indexing process. Then several
groups are proposed according to the local feature type namely point type,
shape type and patch type. Finally, adaptive feature selection with weight
updating mechanism is used to perform logo retrieval. Jingiao et al. [47]
used k-means clustering to develop a visual logo dictionary, and next, latent
semantic indexing and analysis is used for logo retrieval. Soysal et al. [4§]
considered spatial similarity of local patterns by utilizing a descriptor for
scene logo retrieval.

Deep learning-based methods:. Bianco et al. [12] applied an unsupervised
segmentation algorithm to produce a number of object proposals that are
more likely to contain a logo object. Thereafter these object proposals are
processed through a query expansion step in order to deal with the variation
of logo instances. Finally, pre-trained CNN model with SVM classifier was
used for logo recognition. Based on the previous Deep-CNN based pipeline,
Eggert et al. [7] trained an SVM classifier on synthetic training examples to
compare with a trained classifier on real images. The main objective of this
approach was to demonstrate the benefit of using synthetic images during
training. Iandola et al. [I3] investigated several variations of GoogLeNet
architecture including GoogLeNet with global average pooling and auxiliary
classifier after each inception layers. Oliveira et al. [§] exploited Fast R-CNN
to detect graphic logos. To tackle the limitation of large-scale graphic logo
datasets, transfer learning was used to leverage image representation.

Very recently, Bianco et al. [5] proposed a deep learning pipeline in-



vestigating the benefits of different training choices such as class-balancing,
data augmentation, contrast normalization, sample-weighting and explicit
modelling of background class. Su et al. [9] has introduced a framework to
generate new training data for logo detection by synthesizing context and
thus it intends to increase the robustness against unseen cluttered back-
ground. Based on the similar hypothesis, a more advanced framework [49]
using Generative Adversarial Networks has been designed to generate con-
text consistent logo images for training. [50] proposed a incremental learning
approach which discovers informative training images from noisy web data
in order to improve the performance. In contrast to these recent works, we
here intend to explore the existing benchmark logo-datasets and design a
new one-shot deep framework for query-based logo retrieval.

One shot learning:. Creditably, one-shot learning requires only a single an-
notated image to learn a new class. For few-shot learning, only a few exam-
ples of a class are needed to generalize knowledge for recognition. In recent
years, one-shot learning is applied to various fields of computer vision such
as image classification and visual question answering. The Siamese network
architecture by Koch et al. [20] has shown that few-shot image classifica-
tion can outperform several classification baselines for a binary verification
task. The siamese network makes use of two shared network to extract fea-
tures from two input images and a similarity score between the two feature
representations decides the correspondence between the input images. An-
nother important recent work in few-shot classification is Matching networks
[51] that learns to determine the correct class label for a given query image
from unseen catagories. Discriminative methods described in [52, 53] have
the ability to update parameters of a base classifier that has learnt from
training classes, while adapting to new classes for the specific task. But the
complication in adapting classifiers in this manner is that they are prone to
overfitting. Bertinetto et al. [52] trained two-branch networks, where one
branch receives an example and generates a set of dynamic parameters and
second branch classifies the query image based on those parameters and a
set of learnt static parameters. Noh et al. [54] used a similar approach for
question answering. Most of the existing works on one-shot learning focus on
classification, not structured output. In [21], a simple approach is proposed
by authors to perform one-shot semantic segmentation by fine-tuning a pre-
trained segmentation network on a labelled image. But, this method is prone
to overfitting. Later, Shaban et al. [23] introduced a two-branched network
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Figure 2: Query-based logo detection framework: At-first, the conditional network G
takes the query logo image Ig and outputs a latent representation z; € RI*1X%12 [p
the main segmentation branch, the target image I} is taken as input. After 5 stages of
down-sampling, the encoder part reduces the input to 8 x 8 x 256. The earlier obtained
z; is concatenated with last layer of each stage via a tile operation. Suppose, at stage-1,
i.e. s=1, the feature map f** is combined with the z; after the necessary tile operation.
Then, after applying a 1 x 1 convolution on the combined representation, it is further
concatenated with its respective layer at the decoder side as shown in the figure.

to support dense semantic image segmentation in the one-shot setting. A
N-way (classes) few shot segmentation framework based on metric learning
and prototype learning has been introduced by Dong et al. [55]. Very re-
cently, Zhang et al. [24] proposed a one-shot semantic semantic framework
with a new mask average pooling operation[24]. These earlier frameworks
do not consider multi-scale information, and the performance is limited in
real-world logo datasets.

In contrast, instead of overly complicated network design, we use off-the-
shelf neural network components in our architecture design that is trainable
end-to-end. The contribution of the work lies in following aspects in terms of
network design choices: (1) We use a parameterized 1 x 1 convolution layer in
order to measure the similarity in high-dimensional space. (2) A multi-scale
conditioning operation is used in order to handle the logos of different scale.
(3) Skip-connection between encoder-decoder parts of the network is found
to be helpful for better information passing.



3. Problem Setup

The main objective of the logo detection problem is to find out whether
a query logo of a particular company or organization is present in a target
image or not. If it is present, we obtain a segmentation map containing
information about the spatial location of the query in that target image.
More formally, given a query image [, and a target image I, our job is to
find out a segmentation map I,, which is a binary 2D-matrix. The value
1 in the segmentation map represents the region containing the query logo
whereas 0 represents background. During training, we have access to a large

number of query target-mask triplets {17, I}, I} }

N - .
(3
¢+ 1n p,_, where I} is the semantic

. i= ;
segmentation map of /; given the conditional query image I of various logo
classes. In the experiments, we have seen that our model is also able to

generalize to unknown logos.

4. Proposed Framework

4.1. Overview

Our proposed end-to-end network can be divided into two steps: (i) condi-
tioning step and (ii) segmentation step. In the conditioning part, we extract a
conditional latent representation of the query image through a Convolutional
Neural Network or CNN. The segmentation part of our model is a modified
version of the U-Net [25] architecture. The encoder intends to extract more
robust feature information from the target image and subsequently, the de-
coder tries to obtain the corresponding segmentation map conditioned on the
latent representation of the query logo-image. By the word conditioning, we
here intend to segment regions of the target image conditioned on the query
latent vector; in other words, the regions in target image which have a close
similarity with the conditional query logo image. In order to overcome the
possibility of drastic mismatch in scale and resolution between the query logo
and the target image containing that logo, we encourage the model to learn
multi-scale conditioning by combining the logo representation at different
scales to the encoder part of the U-Net architecture. The proposed one-shot
learning framework is fully differentiable and the two-branch architecture can
be trained in an end-to-end manner.



4.2. Conditioning Module

Logo-to-dense feature map conversion is a primary step in our architec-
ture. Examining the power of extracting robust task-specific feature repre-
sentation of convolutional networks, we use a CNN as the feature extractor.
For this purpose, at first, we resize each query logo image to a fixed size of
64 x 64. Next, we feed the query image [; to the network G(.) which encodes
the image to a latent representation z'. Specially, the logo image is converted
into a multichannel feature vector of unit spatial dimension (i.e. 1 x 1 x 512)
for further use. Thus,

2 = G(I}; 60) (1)

where 2t € RY>1*512 and 6 is the parameter of the network. We adapt

VGG-16 like architecture consisting of 13 convolution layers with rectified
non-linearity (ReLLU) activation after each layer. After 6 max-pooling layers,
the input image gets converted to 2% shape of feature map giving a final
feature representation of dimension 1 x 1 x 512.

4.8. Multi-scale Segmentation module

In this section, we describe our multi-scale segmentation module. Given

a target image I} and the obtained latent representation z’ of query logo,

the segmentation network F(.) will try to obtain a segmentation map I¢ .
Mathematically,

Ii, = F(I}, 2 0p) (2)

where 0 is the parameters of the network. Following the architecture of
U-Net, we have introduced two networks: Encoder network and Decoder
network. Encoder network encodes the target image to a latent representa-
tion. The encoder follows the typical structure of a CNN. It consists of a set
of two convolution layers of 3 x 3 filter size and followed by a 2 x 2 max-
pooling layer with stride 2. This set of operations are repeated five times to
progressively down-sample the input image until we get a bottleneck layer
where we get the final latent feature representation. In this five-stage down-
sampling process we have used increasing number of filters: 64, 128, 256, 512
and 512 respectively in each stage. After, each stage of down-sampling the
spatial dimension of the feature maps are reduced % times. Thus, the final
latent feature map is 2% of the input image. For example, if I; has the shape
of 256 x 256 x 3, then the latent feature map is of 8 x 8 x 512. We have seen
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that further down-sampling the obtained spatial representation eventually
degrade the results to some extent.

In order to learn the correlation between the query image and the target
image, a naive approach would be to just concatenate the latent represen-
tations of the two networks. However, the said method has several disad-
vantages: 1. The scale difference between the query and the target image
makes it difficult to achieve robust segmentation with a single scale condition-
ing approach. Thus, multi-scale aggregation is required to obtain detailed
parsing maps. 2. Even state-of-the-art logo detection frameworks find it
hard to detect smaller logos and ones present in very large scenes. Recent
works on object detection [50], 57, 58| 59] reveal that the feature map of the
shallower convolution layers have higher resolution and are helpful to detect
small objects whereas the deeper layers contain richer task-specific semantic
information.

Multi-scale Conditioning:. Taking cues from the aforesaid observations, we
make use of the in-network hierarchical feature produced from feature maps
of encoder part of the segmentation network having different spatial reso-
lution. Let, given a target image I! € RT*W*C the feature map extracted
from the s** stage of the five-stage convolution network be f* € RHs*xWsxCs
where, H, = &L and W, = 1. Earlier, we got z* € R"!*%12 a5 the conditional
query logo representation. In order to impose condition on the segmentation
network using latent query vector 2, we use a technique similar to sliding
window based template matching. To measure the similarity between la-
tent query vector z* and each discrete feature f%% in f“* we use a simple
concatenation operation followed by a 1 x 1 convolution.

Fon = Convyy ([f0:21) (3)
where f"$ represents the feature representation at position (m,n), and which,
upon concatenation with 2 gives a vector of size 1 x 1 x (Cy + 512). The
number of 1 X 1 convolutional filters in s layer is set to Oy, and thus it gives
77’:” of dimension 1 x 1 x Cs. By this simple operation(eqn. , it tries to
capture the similarity between the latent query vector and feature embedding
at (m,n) position of the feature map f** from segmentation network. High

activation values in f signifies high extent of matching that the query logo
is likely to be present at that location and vice-versa. Mathematically, lets

denote conditional query representation as Z and one discrete feature f;°
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as F'. Using 1 x 1 convolution operation with parameters 6, we intend to
model P(Y|F, Z;0:x1) where Y denotes the similarity between F' and Z. To
illustrate, P(Y|Fy, Z1;61x1) > P(Y|Fy, Z; 0141) when the similarity between
Fy and Z; is higher than F, and Z;. These parameters of 1 x 1 convolutions
are learnt implicitly from the traditional cross-entropy loss in an end-to-end
manner. In other words, this 1 x 1 convolution is a function that takes Z
and F' as input, and predicts their similarity at its output in terms of ac-
tivation values. Unlike other works [24], instead of using cosine-similarity
computation for feature matching, we make such choice mainly because of
two reasons: : First, using a parameterized layer to capture the similarity is
expected to be robust to various kind of deformations, illuminations present
in real word logo retrieval scenarios. Second, 1 x 1 convolution handles the
intra-class variance well, in other words, sometimes it is found that despite
same logo-class it has some difference in terms of the color of the logo, font
used, presence of text inside a logo (for example in adidas logos, sometimes
the text remains missing). Also, it is to be noted that we use the final
latent query representation from conditioning module for multi-scale condi-
tioning at every layer in encoder part (segmentation network) since deeper
latent representation is supposed to contain better semantic information of
the query logo, instead of using pooled feature representation from earlier
layers of conditioning module. More comparison with alternative choices are
given in ablation study (Section [5.5).

For faster and efficient implementation, a tile operation is performed on
2' to convert it to a specific spatial dimension such that is compatible for
concatenation with f»%: z2° = Tile(2';s.), where s, is the scale required to
tile 2 € RS2 to a new dimension z7° € R¥s*xWsx512 and concatented
with f** giving a dimension of RHs*Wsx512+Cs = Thjis is followed by a 1 x 1
convolution with Cj filters:

—i

F* = Conws o ([f+; 2)) (4)

where F° € RH-xWsxCs - Alternatively, it can be interpreted as applying a
sliding window based template matching over the target image with stride 2°
(since every max-pooling layers steps down the spatial resolution of feature-
map by a factor of 2) for s stage in encoder part of segmentation network.

The decoder network of the segmentation model is similar to the encoder
part, the only difference being that up-convolution has been used. Every
stage in the decoder path consists of an up-sampling layer followed by a
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2 x 2 up-convolution layer. After that, we combine this with the previously
obtained fused representation of the corresponding stage. At last, two 3 x
3 convolutions, followed by a ReLU completes the set of operations for a
particular stage. These set of operations are repeated for all the stages until
we get the predicted segmentation map E through a SoftMax layer. At the
end, we define a pixel-wise binary cross entropy loss L which is used to train
the complete model.

L= g7 22 D (~Lilog(T;) )

The aim of the model is to minimize this loss by updating the parameter of
the both the conditioning () and segmentation (6r) modules of the network
through back-propagation technique in an end-to-end manner.

Some earlier works like Mask-RCNN [60] first predicts the bounding box
using Region Proposal Network(RPN) and then performs the instance seg-
mentation as a two steps process. This requires two separate loss functions
for region proposal and final instance segmentation, respectively. In con-
trast, we avoid using a two steps process and predict the segmentation map
in a single step directly, and thus it makes the process faster as well as easy
for implementation. That becomes feasible because of multiscale condition-
ing and parameterized similarity matching layer with skip connections that
helps in better information passing between encoder and decoder part of the
framework.

5. Experiment

We have evaluated the performance of our framework in both one-shot
and traditional settings. In the one-shot setting, given an unseen conditional
query logo image (from the test set), the model trained on a completely
disjoint set of logo classes returns a reference binary mask for localization.
In the traditional setting, on top of our query-based strategy, we experi-
ment with the traditional train-test split strategy used by previous works [9]
where some images for each logo-class are utilized for training while the rest
is used for evaluation. Despite our one-shot architecture, we evaluated the
framework in the traditional setup in order to directly measure our model’s
performance against the traditional setting that has been adopted by ev-
ery existing work. Although different classification and recognition problems
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have been extended to query-based retrieval setups (e.g. image classification
to image retrieval [61], handwriting recognition to query-based word spot-
ting [62]), not many prior works using deep learning frameworks exist that
addresses logo retrieval in an open-vocabulary scenario and is robust to chal-
lenges like low resolution, cluttered background etc. While existing methods
are designed for more complicated tasks (e.g. detection and localization of all
the logos in the training set), the boost in performance even in sparse train-
ing data plus the ability to generalize to unseen logos in the wild justifies our
proposal to extend the problem-statement from a traditional to query-based
setup.

5.1. Datasets

Our model makes use of binary masks as ground truths. FlickrLogos-32
[63] is a very popular logo dataset consisting of boundary box annotations
as well as binary masks. Therefore, we train our model on this dataset.
To evaluate the robustness of the one-shot architecture we explored another
dataset Toplogos-10 [9]. The main reasons to select FlickrsLogos for training
and TopLogos for testing are as follows: (a) To the best of our knowledge,
FlickrsLogos is the only logo dataset which has binary segmentation mask as
ground truth along with bounding box labels. Rest of the available datasets
have bounding box labels only. (b) During testing, we preferred to use TopL-
ogos because it has instances of logos of varying sizes and different cluttered
background scenario which provides many challenges for logo detection. Brief
discussions of these datasets are given below.

Training Set - FlickrsLogos-32: This dataset comprises 8,240 images
from 32 different logo classes, each class representing a particular brand.
Each class has 70 images with ground truth annotations in the form of bound-
ing boxes and binary masks. To make the dataset congenial for our approach,
we ignore 6,000 images with no logo class. Thus, we have total 32 x 70 i.e.
2240 images available for our experiments.

Evaluation set - TopLogos-10: It contains 700 images of 10 different
clothing brand logos with various degree of composition complexity in the
logos. Basically, there are ten logo classes: Adidas, Chanel, Gucci, Helly
Hansen, Lacoste, Michael Kars, Nike, Prade, Puma, Supreme. For every
class, there are 70 images with fully manually labelled logo bounding boxes.
But, unlike the FlickrsLogos-32 it does not have binary mask annotations.
This dataset contains natural images where logo instances in a variety of con-
text, e.g. Hats, wallets, shoes, shown gels, lipsticks, spray, phone covers, eye
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glasses, jackets, peaked caps, T-shirts, and sign boards. In short, Toplogos-
10 represents logo instances with varying sizes in natural real-world scenarios
that provide real challenges for logo detection. The main reason behind using
TopLogos-10 dataset is to check the generalization ability of our framework
in a completely unseen scenario with more complexity, which is a pressing
need of one-shot framework. Even if TopLogos has only 10 logo classes, every
query-target pair (note that, this number is large) is unknown to the trained
model during testing and it challenges the model to deal with real one-shot
scenarios like varying logo sizes, different cluttered background etc.

5.2. Implementation Details

We will discuss some salient details of our model: starting from data
preparation to training and inference details.

Data preparation: (a) One-shot setting: As discussed earlier, we have
used FlickrsLogos-32 dataset for training our model in one-shot setting. It
contains 2240 images with ground truth annotations. We denote this set as
D! and their corresponding masks as D™. The images of these two sets are
resized to a fixed dimension 256 x 256. Now, we obtain the conditional query
logo objects by cropping the main images with respect to their bounding
boxes followed by resizing to a dimension of 64 x 64. This forms the condi-
tional set of query objects D?. Then, we generate a large number of triplets
from the obtained image sets {D?, D*, D™}. If n is the number of images per
logo class then n x (n — 1) triplet combination is possible per class. In total,
for 32 logo classes we get 32 x (70 x 69) i.e. 154560 triplets. We use 90% of
these triplets as our training set and 10% triplets as validation set. (b) Tra-
ditional setting: In this set-up, our main objective of query-based logo search
remains unchanged. But, now we generate our training triplets only from a
small set (40 images per class) of the available data in the FlickrsLogos-32
dataset. These triplets will be used for training the model. And for testing
we will use the rest of the images for each class.

Training: We train our model in an end-to-end fashion from scratch
using these large number of generated triplets {I7, I7, Ijn}jil where N is the
total number of triplets. The conditioning branch takes I} € RO****3 as an
input and obtains a conditional representation of the logo object. This rep-
resentation will be concatenated with the segmentation network at different
scale. The segmentation branch takes I} € R?56%2%6X3 a5 input and tries to
predict a binary segmentation mask I’ . We use Gaussian initialization with
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0.01 standard deviation. We train our model using stochastic gradient de-
scent (SGD) optimizer with initial learning rate 0.0004 and momentum and
weight decay are set to 0.9 and 0.0005 respectively. The model is trained for
100K iterations with batch size of 32 for optimizing loss up to a satisfactory
level. We have implemented the whole model in Tensorflow and run on a
server with Nvidia Titan X GPU with 12 GB of memory.

Testing: In one-shot setting, the main advantage of our model is that
once it’s trained it can be used for any logo class. To test the scalability and
robustness of our model we have used a different dataset. For traditional
setting, we test our model on the same FlickrsLogos-32 dataset but with
testing images available for each class.

The final binary segmentation mask is obtained by using a threshold of 0.5
on the predicted mask. To obtain quantitative results on these datasets, we
generate a minimum bounding box for each logo instances covering the mask
from the predicted binary mask. To attain bounding boxes from the output
map, first, we compute the topmost spatial position T" (z; , y;), bottom most
binary pixel position B (xy , 3), leftmost binary pixel position L (x;, ;)
and topmost binary pixel position R (z, , y.). Then, we evaluate bounding
box value X' = x;, Y/ =y, H = y, —y, and W = z, — x;. At last,
these bounding boxes are compared with the ground-truth bounding boxes
to obtain the Intersection over Union (IoU). For the performance evaluation,
we have used mean Average Precision (mAP) metric for all classes. For
the mAP calculation, we choose the IoU threshold as 0.5. It means that a
detection will be considered as positive if the IoU between the predicted and
ground-truth exceeds 50%. As the proposed logo detection technique is based
on segmentation of the logo, we have also included the mean pixel IoU or
mPixIoU [64] as another metric for the evaluation purpose. However, unlike
FlickrsLogos-32 dataset, other dataset does not have any pixel level binary
annotation. Thus, the mPixloU metric is shown only for FlickrsLogos-32
dataset. The code is available here [l

5.5. Baselines

To exploit the robustness of our approach, we compared the following
baselines with our proposed approach.
Fine-tuning: As suggested by [21], we fine-tune a pre-trained FCN

Thttps://github.com/AyanKumarBhunia/Deep-One-Shot-Logo-Retrieval.
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network (only the fully connected layers) with full supervision on the available
paired data of a particular logo class and test it on the target images.

U-Net: Here, we focus on the naive way for generating segmentation
maps by considering each logo class as a separate semantic class. We use U-
Net [25] encoder-decoder network that takes the target image as input and
outputs segmentation map without any conditional reference. Note that this
set-up cannot be extended to new classes.

SiameseFCN: Siamese networks are extensively used for one-shot clas-
sification tasks [20]. In this method, we use two pre-trained FCNs to extract
dense features from query images and target images. L1 similarity metric is
used to learn the coherence between the feature for every pixel in the query
image and the target image in order to produce a pixel-level binary mask.

CoFCN: Here, we explore a conditional segmentation network based
on FCN [23]. At first, we feed query images in the conditional branch to
generate a set of parameters 6. We use # in the parameterized part of the
learned segmentation model, which takes target images as input and produces
a segmentation map.

SG-One: This one-shot segmentation framework [24] uses a new masked
average pooling operation to extract the latent representation of the query
image. However, since our framework uses cropped query image (i.e. support
set), we use simple global average pooling instead, and use cosine-similarity
followed by a tanh layer for similarity matching with rest setup similar to
[24]. A quite similar one-shot framework has also been addressed for visual
tracking problem [24].

5.4. Evaluations

Traditional setting: We have compared our results with the baselines
and some state-of-the-art logo detection methods [13] 8, [41), O] as well as
evaluated the performance using popular bounding box detectors like Faster-
RCONN[ [4], YOLOP[66] and SSDF| [65] while opting for VGG as the baseline
architecture. Due to limited data, we initialize this framework with weights
trained on Pascal-VOC dataset (see Table . Among popular traditional
logo detectors, Reallmg [9] gives highest mAP score of 81.1% and uses a
deep model to synthetically generate training data in order to improve its

Thttps://goo.gl/zQsSka (Faster-RCNN)
Zhttps://goo.gl/vUFEuq (YOLO)
3https://goo.gl/vxR9c7 (SSD)
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Table 1: Comparison of Logo detection performance on FlickrsLogos-32 dataset following
traditional setting.“#” denotes query-based frameworks.

Method mPixIoU mloU mAP
Bag of Words (BoW) [41] - - 54.5
Deep Logo [13] - - 74.4
BD-FRCN-M [] - T35
Reallmg [9] - - 81.1
Faster-RCNN [4] - - 70.2
SSD [65] - - 67.5
YOLO [60] - - 68.7
U-Net [25] 20.3 30.1 405
#SiameseFCN [20] 70.8 77.6 79.4
#CoFCN [23] 71.4 81.9  84.1
#SG-One [24] 76.5 845  86.9
#QOurs 78.2 86.7 89.2

Table 2: Logo detection performance on Evaluation set following one-shot setting

Training set | Testing set | Method mPixIoU | mIoU | mAP

Fine-tuning 15.8 24.1 274

. . SiameseFCN 36.9 46.5 51.1
FlickrsLogos | FlickrsLogos

(20 classgs) (12 classfs) CoFCN 44.6 bL.3 59.7

SG-One 52.3 59.7 64.4

Ours 59.1 66.3 66.8

Fine-tuning - - 14.7

FlickrsLogos TopLogos SlameseFCN - - 24.4

(20 classes) | (10 classes) CoFCN - - 29.2

SG-One - - 36.9

Ours - - 40.1
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Figure 3: Some qualitative results of our method: In the first two rows we have shown
results on FlickrLogo-32 using traditional setting and for the next two rows we have shown
one-shot results on TopLogos-10 dataset. I Here, images are in the following order (left
to right): query logo, target image, predicted mask, and final detection result (shown by
boxes on the images),respectively.
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performance. Though state-of-the-art object detectors like Faster-RCNN,
YOLO, SSD achieve impressive performance on benchmark object detection
datasets, their performance is limited in FlickrLogos-32 dataset because of
limited training data. For the same reason, the performance of U-Net is poor.
SiameseFCN, which is a query-based framework, performed moderately on
FlickrLogo-32 dataset. CoFCN performed well with a high mAP of 84.1%
which is 3.0% and 9.4% greater than Reallmg [9] and Deep Logo [13] respec-
tively. The proposed multi-scale query based detection technique achieved a
better mAP than the previous state-of-the-art method [9] with 8.1% increase
in absolute mAP; our rival query-based method, SG-One [24] trails by 2.3%
mAP value.

One-shot setting: For the one-shot setup, the results shown in Table 2] in-
dicate the capability of different methods to generalize to new classes. These
results are comparatively lower than the results observed in the traditional
setting. We realize that this is because we are trying to evaluate the perfor-
mance of the model on a more open space setting by allowing the system to
detect logo in a target scene from a single reference logo sample; contrarily, in
the traditional setup, the total number of logo classes is fixed and 40 images
from each logo class were used to train the model. The fine-tuned baseline
produces relatively low mAP since it quickly overfits to the fine-tuning data
in the support set. For FlickrLogo-32, our proposed method outperformed
the general fine-tuning based approach by 39.4% mAP value. On TopLogos-
10, which is a clothing-logo dataset with dense background clutter, observed
results are relatively low. We demonstrate some qualitative results of our
framework in Figure 3. We have also evaluated the performance by varying
[oU threshold from 0.5 to 0.8 and the performance of our framework drops
to a limited extent compared to other competitive methods (see Figure |4)),
and thus it illustrates the superiority of our design choices.

These improvements over other existing one-shot frameworks [20], 23], 24]
are mainly due to following design choices in our framework. (1) Multi-scale
conditioning (2) Parameterized similarity matching operation through 1 x 1
convolutional layer at every scale (3) Skip connection between encoder and
decoder part of the network. Overall, our framework is undoubtedly simple,
easy to implement and understand.

5.5. Ablation Study

In this section, we have given a comprehenssive analysis of each sub-
variant of our framework along with quantitative analysis for different alter-
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Table 3: mAP (%) of different variants of our configuration on FlickrsLogos-32 dataset
using traditional setting

k-shot setting | Traditional

Method == =5 7125 Setting
Variant 1 - - - 36.5
Variant 2 | 59.1 | 64.5 | 65.6 82.7
Proposed | 66.8 | 71.2 | 71.6 89.2

21



native network design choices. Here, we have also shown results for k-shot
cases, using k different samples of the query image as our conditional in-
put serially, and final binary mask is obtained by logical OR operation be-
tween the k predicted binary maps. For the traditional set-up we have used
FlickrsLogos-32 dataset as before. For k-shot setting, we have trained our
model using images of 20 classes of FlickrsLogos-32 dataset and the remaining
part is used for testing (Table (3.

e Variant 1: Here, we use a general U-Net architecture without any con-
ditioning branch(not a query-based framework) and notice limited perfor-
mance.

e Variant 2: In this variant, we use conditional query representation, which
is concatenated with the latent space of segmentation module, in order to
fetch of the location of query logo in a target image. However, it fails to
detect small logos in images, specifically when the size of the query logo
image and the actual logo present in the target differs considerably.

e Proposed Method: We overcome the above problems by employing a multi-
scale conditioning operation. This makes our model capable of detecting
small transformed logos, which is the one of the major challenges for logo
detection.

Alternative Designs: To localize the query logo within the target scene
image, instead of cosine-similarity measure, we focus on simple concatenation
operation followed by 1 x 1 convolution to learn the correlation. Using a
parameterized layer for similarity matching at multiple-scales offers a better
performance in the context of logo detection (see section. Keeping rest of
the architecture same, we calculate cosine similarity at each spatial position
of feature-map from encoder (segmentation) network with conditional query
latent vector (converted to the same depth as f** using 1 x 1 convolution),
followed by a tanh layer and finally combine to the corresponding decoder
stage. This alternative network design achieves mAP values of 64.1% and
87.8%, trailing ours by 2.7% and 1.4% for one-shot and traditional setting
on the FlickrsLogos-32 dataset (same setting as Table .Also, we tried using
pooled (Global Average Pooling [67]) feature representation of feature maps
from multiple layers of the conditional network, with an intuition to get a
multi-scale representation of the query logo and evaluate similarity (ours)
with feature maps of same stage from segmentation network; the results,
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Figure 5: Some failure cases of our frameworks. Yellow box is the Ground-Truth. Green
box is True Positive. Red box is False Positive. First row illustrates a false-positive case
where our model wrongly predicts logo instances(marked in red). This happens due to
certain extent of similarity between the query logo and irrelevant patch in the target image.
In the second row, it fails to detect a logo instances due to different orientation. Third
row shows a failure case due to tiny size of the logo and irregular illumination.

however, drop by 5.6%. This signifies that the final latent representation from
deep layers of the conditional network contains higher semantic information
of the logo that can be used as a conditional input to segmentation network
to fetch the logo at multiple-scales of the target image.

Error Analysis: Figure [5|shows some of the failure cases of our framework.
Here, we have used simple pixel-wise cross-entropy loss to train the network;
however, rotation invariant network design could be explored on the top
of our proposed multi-scale conditioning framework, so that rotation related
error (see second row of b)) could be avoided. Adversarial feature deformation
[68] could be used to generalize the model from limited data. In addition,
it is to be noted that in spite of multiscale-conditioning it fails in few cases
for tiny size of the logo. To alleviate such errors, a feature magnification
module like [69] or attention mechanism [70] could be helpful. In addition,
the imbalance between foreground-background could be better handled using
newly proposed focal-loss [71] which adds a multiplying factor to the normal
cross-entropy loss in order to emphasize on hard, misclassified examples.
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6. Conclusion

In this paper, we have re-designed the traditional logo detection problem
setting by proposing a query based logo search system that uses a one-shot
architecture. The driving idea of our architecture is the use of multi-scale
conditioning with a skip-connection based architecture that predicts a logo
segmentation mask. The proposed framework is simple and easy to imple-
ment. It is capable of detecting new logo classes without additional training
data.

We demonstrate the effectiveness of our system by doing experiment on
unseen logos in the wild. From the experiments on publicly available logo
detection datasets, we noted that our proposed system outperformed the
benchmark results [13], 8, 41}, 9] without even extending existing logo datasets.

Though our system is scale invariant, it may fail for logos which are tiny
in size. A feature magnification module [69] could be useful to improve the
performance in such cases. Also, the imbalance between fore-ground and
background information could be handled properly to boost the performance
further. In future we plan to work on these to improve the accuracy.
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