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Abstract

Person attributes are often exploited as mid-level human
semantic information to help promote the performance of
person re-identification task. In this paper, unlike most ex-
isting methods simply taking attribute learning as a clas-
sification problem, we perform it in a different way with
the motivation that attributes are related to specific lo-
cal regions, which refers to the perceptual ability of at-
tributes. We utilize the process of attribute detection to
generate corresponding attribute-part detectors, whose in-
variance to many influences like poses and camera views
can be guaranteed. With detected local part regions, our
model extracts local features to handle the body part mis-
alignment problem, which is another major challenge for
person re-identification. The local descriptors are further
refined by fused attribute information to eliminate inter-
ferences caused by detection deviation. Extensive experi-
ments on two popular benchmarks with attribute annota-
tions demonstrate the effectiveness of our model and com-
petitive performance compared with state-of-the-art algo-
rithms.

1. Introduction

Person Re-identification (Person Re-ID) has become a
very popular and challenging topic during recent years.
Given a pedestrian image of interest called “probe image”,
the Re-ID task aims to search in a large gallery image
database for images of the same identity as the probe, which
can also be treated as an image retrieval task. It is of great
importance in both research fields and video surveillance
applications.

Despite many years of researches on Re-ID task, it is
still an issue full of challenges. Firstly, since the probe
and gallery images are taken under non-overlapped cam-
eras, the large variations of visual perspectives, illumina-
tions and poses can be very confusing when making a judg-
ment on whether two images contain the same identity. Sec-
ondly, since the human body regions are detected by exist-
ing object detection methods such as DPM [4] or Faster-
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Figure 1. Attributes are consistent with human recognition mech-
anism for identifying people. The pedestrian can be described by
a combination of various different kinds of attributes and some of
these attributes can be discriminative for distinguishing between
similar but different persons.

RCNN [14], the detected bounding boxes may be inac-
curate, which together with the pose variations, to cause
the problem of spatial misalignment between two images.
Apart from these, the occlusion problem frequently occur-
ring in realistic video surveillance scenes may cause the ab-
sence of important clues for identifying someone. Consid-
ering the challenges above, learning a view-invariant and
robust feature expression is essential for an effective person
Re-ID system.

With increasing popularity of deep neural networks,
more and more researchers tend to employ deep learning
based feature representations rather than hand-crafted fea-
tures for its excellent generalization on unseen data. Af-
ter pretraining on ImageNet, we can easily acquire rela-
tively powerful global feature representation for target per-
son Re-ID task by further fine-tuning on its own training
sets. While simple and effective, these global appearance
representations cannot settle the misalignment problem de-
scribed above for their lack of semantic perception for hu-
man body parts. Recently, popular researches over human
pose estimation and attention models [22} 24]] have inspired
many ideas for locating human body parts to alleviate the
problems of pose misalignment and background interfer-
ence. However, these methods either rely heavily on ex-
isting pose detection models which may arise errors when



turned to Re-ID task, or use attention model as a part detec-
tor which may be hard to train due to the shortage of prior
semantic knowledge as supervision.

Attribute learning for Person Re-ID task has been stud-
ied in recent years and proven to be of great help when
treated as one kind of mid-level semantic features for its
invariance to many influences like pose, camera views and
lighting conditions. Suppose that we need to identify the
man in the upper left corner of Figure [T} we usually form
a description like “a young man wearing yellow T-shirt and
blue short pants, carrying a backpack”. The description
is fully made up of attribute information which indicates
the consistency of attribute detection with human cogni-
tive mechanisms. While in most existing approaches, at-
tribute information is often simply incorporated into global
feature learning by designing corresponding attribute classi-
fiers [[L1,[13], they reckon without two important clues. On
one hand, most attributes are associated with local regions
and different from the holistic image-level feature repre-
sentation, joint learning of these two kinds of features may
cause the heteroscedasticity (a mixture of different knowl-
edge granularity and characteristics) learning problem [3]]
analysed in [23]. On the other hand, the description of a
stranger is often a combination of several kinds of attributes
while some of them are insignificant for re-identification,
thus the relationship mining and selection of different at-
tributes are vital for a robust learning.

To deal with these issues, in this paper we propose a deep
learning based work called Attributes-aided Part Detection
and Refinement model (APDR) which incorporates the at-
tribute learning process in a different way. We wish that
the learning process of attributes should have the perception
for local human body regions and can be used as a pose-
invariant part detector due to its invariance to many influ-
ences like human poses and camera views. Being exploited
as prior knowledge when localizing body parts, attribute in-
formation makes the part detectors easier to learn than those
attention models. Compared with the approaches using ex-
isting pose estimation models, attribute detection is directly
optimized for the Re-ID task to avoid model deviation phe-
nomenon and can provide extra semantic information in the
meantime. Furthermore, attribute learning can detect re-
gions and objects like handbag or hat which may be distinc-
tive for identifying while pose models cannot. Therefore,
the attribute localizer can be considered as a combination
of attention model, human part detection model and salient
object detection model. After that, in order to make our
model work more like human experts that considering the
relationship among attributes when identifying, a simple at-
tribute fusion module is adopted to combine different kinds
of attribute information. Taking it as a guidance, we make
refinement on local part features extracted by the localizers
to filter out the redundant and irrelevant interference intro-

duced by the learned masks, which results in a powerful re-
fined local descriptor for re-identification. The learned local
features, along with holistic image-level feature, can further
improve the accuracy on person re-identification task. We
evaluate our APDR model on two public datasets with at-
tribute annotations to verify the effectiveness of our ideas
and demonstrate that our model can achieve state-of-the-art
performance compared with other person Re-ID models.

The main contributions of our work are summarized
as follows: (1) We propose a novel deep model called
Attributes-aided Part detection and Refinement network
(APDR) to firstly utilize the attribute learning process as
a part localizer, which handles the part misalignment prob-
lem. To our best knowledge, it is the first time that the per-
ceptual ability of attribute learning is explicitly integrated
into person Re-ID task. (2) We design a simple but effec-
tive attribute fusion network to simulate the human behav-
iors of identifying people through attributes. (3) The fused
attribute information is exploited as a guidance to filter out
useless information to refine part features for a better repre-
sentation.

2. Related Works

Person Re-ID. Most popular person Re-ID algorithms
can be categorized into two classes, feature representation
learning and metric learning. For the first category, usually
the human identity labels are exploited as the supervision
for training a classifier for different identities and can be
considered as a classification problem. During recent years,
CNN-based feature representation learning has been dom-
inating various research fields because of its excellent per-
formance and is no exception in person Re-ID community.
Xiao et al. [25] propose a joint learning strategy to train a
single classifier for multiple domains at the same time, and
then fine-tune to adapt to each single domain with a domain
guided dropout policy.

For metric learning methods, the similarity between dif-
ferent samples is compared for person matching. The input
of a deep neural network is often in the form of image pairs
or triplets [1} 18, 21]]. The model will pull the feature distance
of the same identity and push the distance between two dif-
ferent identities during learning process. Varior et al. [21]]
design a gating function inserted in each CNN layer to com-
pare multi-scale similarities between the input image pair.
Zheng et al. [31] design two types of classifiers which com-
bine feature learning and metric learning together. Though
simple and effective, these models with holistic image-level
features did not take the human part misalignment problem
into consideration.

Body part-aligned representations. To deal with the
part misalignment problem in person Re-ID, more and
more algorithms focus on extracting local human part fea-
ture for re-identification and can be classified into two
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Figure 2. The overall architecture of our proposed APDR model. The whole model consists of a two-steam network and is correlated
by the part refinement module. For an input triplet, each image will firstly go through the upper stream to perform identity and attribute
learning, several attribute-part detectors for corresponding attributes are learned to make full use of the perceptual ability of attributes. For
the stream below, the model will utilize the learned detectors to extract part features, and guided by the fused attribute representation, the
part feature can be further refined. Together with global feature, we acquire the final feature representation for our APDR model. (Best

viewed in color.)

categories. One is to employ existing human pose es-
timation algorithms to locate the body parts. Some re-
searchers [24, 27, 29]] adopt CPM [24] to predict human
body joints and generate body regions to extract part fea-
tures, Zhao et al. [27] then design a tree-structured feature
fusion strategy to merge different part features to form the
final feature. Zheng et al. [29] and Su ef al. [17]] rearrange
human part patches to generate a new pose-aligned human
image. These methods rely heavily on the detection accu-
racy of existing models trained for other tasks.

The other category is based on attention models to locate
human parts or salient regions, which can be considered as
an unsupervised manner. Liu et al. [12] exploit LSTMs as
attention modules to locate different human attention parts,
and Zhao et al. [28] learn several human part maps super-
vised only by triplet loss for re-identification. These models
are simple to construct but hard to train because the super-
vision for re-identification is too weak for part detectors to
learn effective salient regions.

Attribute learning. Treated as one kind of middle
and high level semantic feature, attributes have provided
many valuable auxiliary information for person Re-ID. Su
et al. [18] train an attribute learning model treating the
deep attribute feature as the final representation for per-
son matching which ignores the fact that different people
may share similar attributes. Matsukawa and Suzuki [13]
propose new labels by combining different attribute labels
to train extra classifiers in addition to single-attribute la-

bels. Lin et al. [11] have provided the attribute annotations
for two large-scale person Re-ID datasets Market-1501 [30]]
and DukeMTMC-reID [32]. The algorithms above all treat
the attribute learning as a simple feature extraction process,
while ignoring the perceptual ability of attributes.

3. Perceptual attribute detection

Person attribute learning has been studied a lot in recent
years, and has been proven beneficial for the person Re-ID
task. The human attributes can be grouped into two cate-
gories, one of which is corresponding to local parts of the
human body or certain regions of an image such as T-shirt
or backpack, and the other is high-level semantic attributes
that cannot be assigned to specific region of human body
or can be considered as associated with the whole human
body like age and gender. Though containing global in-
formation, it is different from the holistic image-level fea-
ture for its independence of background. Briefly speaking,
apart from the auxiliary semantic information brought by
attributes, the procedure of attribute detection will concen-
trate on discriminative human body parts and salient objects
contained in an input image.

Since the process of attribute detection and part local-
ization can be done at the same time, the motivation of our
work is to train several attribute-part detectors to fully uti-
lize the perceptual ability of human attributes. Compared
with previous approaches based on pose or attention mod-
els, our attribute-part detectors learned through the percep-



tion of human attributes are easier to train and are directly
optimized for the person RelD task. Motivated by these,
we propose a simple attribute detection network based on
ResNet-50 model [5]. As analysed in [23]], co-learning at-
tribute and identity tasks can be beneficial for both tasks,
while different from the architecture in [23]] or [11]], we sep-
arate the attribute and image-level feature learning into two
branches after “pool4” block to avoid the heteroscedasticity
problem [23]]. For image-level feature learning branch, we
simply replace the last 7 x 7 pooling operation by global
average pooling (GAP) to accommodate to different input
resolutions. For attribute learning branch, we remove the
last spatial down-sampling layer of the backbone network to
increase the resolution of the final feature map for preserv-
ing more details, which is beneficial for the further attribute
learning and localization. Let = denote the input image, G
and A represent the global image-level feature extraction
branch and attribute learning branch, the corresponding fea-
ture maps are obtained by:

GF = G(J?, 0!])7 AF = A(Z‘, ea) (D

g = GAP(GF) ()

where 0, and 0, represent the parameters in backbone net-
work, g is the global feature output by image-level feature
learning branch. After acquiring the attribute feature map
AF, we use it to learn several attribute-part detectors to
generate the attention mask for each attribute:

Mi == Nattri,detectom (AF) (3)

where Nottri_detector; (*) is the attribute detector composed
of a Convolution and Sigmoid operation to normalize atten-
tion scores for each location. With the generated masks,
we further extract each attribute feature by performing
weighted average pooling operation over all locations on the
attribute feature map, whose weights are given by attention
masks in Eq.[3]

L HxW

“)

a; = BN (FC(my)) )

where m; denotes the pooled feature of the ith attribute,
AF(x,y) is the c-dim feature vector of location (x,y) on
attribute feature map, [/ and W denote the size of the fea-
ture map. The averaged feature is further sent into a linear
dimension-reduction layer along with a Batch Normaliza-
tion layer to obtain the final attribute feature a;. Finally,
they are sent to their corresponding classifiers, supervised
by the annotated attribute labels with the cross-entropy loss.

N
Latri = Y i *logg; 6)
=1

where IV is the number of attributes, ¢; is the predicted
probability for target class ¢ of the ith attribute and p; = 1
for its corresponding ground-truth class.

Considering that different attributes may target at the
same or similar human body regions, we manually merge
these attributes to share the same attribute attention mask
while generating separate feature representations for them.
Another motivation to merge the location-shared attributes
is to increase the training samples for the attribute-part de-
tector in that some attributes like wearing hat or not may be
hard to learn and detect because of the huge imbalance be-
tween positive and negative samples in common scenarios,
but when learned together with long/short hair attribute, it
is easier for our model to obtain a head-region part detec-
tor. Hence, we design K = 8 attribute detectors for our
model and are corresponding to age, backpack, bag, hand-
bag, lower body, upper body, head, gender for Market-
1501. More details are described in Section[6.2]

For a better optimization for re-identification task, we
adopt both human identity supervision and triplet metric
constraints on the image-level feature:

L
1
Liq = i3 ;pgi * log(gg, ) )
1 M
Liri = 37 217 = dif +-mly ®)

where L, M denote the number of identities and triplets
within a batch, [x]; = max(x,0) is the hinge loss, d =
lgs —g?||3,d = ||g* — g||3 are the distances of positive
and negative pairs, m is the margin to separate them. The
final loss for the perceptual attribute detection is composed
of three terms:

L= Lid + Ltri + )\Lattri (9)

where the parameter ) is determined by cross-validation to
balance the attribute and identity learning to avoid over-
fitting.

4. Part Feature Refinement

When people are re-identifying someone, they usually
pick out the most discriminative attributes such as red coat
or white backpack, and neglect some common attributes
which are not helpful for identification. The relationship
of attributes is also important since we always combine dif-
ferent kinds of attributes to perform recognition. Hence, we
design a simple fusion network to build the relationship of
various attributes. The module is composed of a dense layer
to aggregate all attribute information into a single vector,



the attributes can be merged and selected through trainable
weights 0.

fattri :]:C(alaaQ;“')aN;ef) (10)

Besides this, as described in the section before, people
with different identities may share similar attributes that
can confuse the judgment of our model, so re-identifying
person by directly comparing the attribute information may
not be appropriate. Considering that despite sharing sim-
ilar attributes, the corresponding local features of those
parts should differ from each other due to their different
identities. Based on this observation, we make use of the
attribute-part detectors obtained in the previous section to
extract discriminative human part features. For the reason
that attention regions are learned through attribute labels
whose supervision for localization is a little weak, these re-
gions may overlap with each other and contain some irrele-
vant background information, so we take the fused attribute
feature as a guidance to filter out insignificant components
and refine the part features for a more robust representation.
The part feature refinement process can be seen as follows:

I, =
HxW

(1)

pi = L x o(Wy; tanh(Wy,1; + Whifour + i) (12)

where PF = P(z;6,) denotes the part feature map, 1; and
p; denote the part feature before and after refined, W, is
the linear transformation matrix. The refinement elements
are calculated by correlating part features with the fused at-
tribute information.

In summary, the motivation of designing the attribute
fusion module lies in two aspects. On one hand, by ag-
gregating different kinds of attribute information to form a
mid-level human semantic feature, we want to simulate the
recognition process of human beings to form a compact at-
tribute descriptor. On the other hand, the fused attribute fea-
ture can serve as a guidance for the part feature refinement
process, promoting the performance of the part branch.

All the refined part features p; are concatenated and then
dimension-reduced to form the final local feature. Together
with the holistic feature, the final feature representation is
shown in Eq. it contains three types of information: re-
fined human part feature, fused attribute information and
holistic image-level feature. We do not concatenate the
fused attribute feature into our final feature representation
for two reasons: one is that it is designed for aggregating
attribute information but not directly optimized for distin-
guishing between different people, especially for those with
similar attributes, the other is that during performing part
refinement, the fused attribute information has been inte-
grated into the local representations, whose effectiveness
will be reflected in the final feature expression.

The part feature refinement module is optimized during
the second training phase, where the local feature is super-
vised by identity loss and the final feature by triplet loss.
For the reason that person Re-ID is more a distance metric
task than classification task, only triplet loss is applied to
make the global and local features cooperate well in final
representation.

fp :FC(plap27apK70p) (13)

f=[f,, g 14)
5. Implementation Details

We implement our proposed algorithm based on PyTorch
framework on a GTX Titan Xp GPU with 12GB memory.
We adopt ResNet-50 pretrained over ImageNet as our back-
bone network. The feature dimensions of holistic and part
feature are both set to 256, thus to form the 512-d final fea-
ture. The number of learned attribute masks is set to 8 for
both two datasets.

We exploit a two-stage training scheme, In the first stage,
we perform perceptual attribute detection to simultaneously
obtain the global image-level feature, individual attribute
features and perceptual attribute masks. With learned at-
tribute masks and individual attribute features, in the sec-
ond training stage, we mainly optimize the attribute fusion
module and part refinement module to obtain the refined lo-
cal features.

The whole network is optimized using stochastic gradi-
ent descent (SGD) with momentum on mini-batches, the
initial learning rate for the first training stage is set to 0.01
and decreased by 0.2 every 50 epochs. In the second train-
ing phase, the learning rate setting of attribute fusion and
part feature refinement module is the same as above, while
for the perceptual attribute learning module which has been
optimized in the first stage, we set a small learning rate of
0.0001 to keep the learned features and masks basically un-
changed for a stable learning. The hyper-parameters m and
A in the loss function are set to 0.2 and 0.1, the weight decay
and momentum are set to 0.0005 and 0.9 respectively.

6. Experiments

In this section, we report our experimental results on
standard datasets and give a detailed ablation study over dif-
ferent modules of our APDR model. Extensive experiments
are conducted on two large and challenging benchmarks:
Market-1501 [30] and DukeMTMC-reID [15] [32], which
demonstrate that our approach is comparable to other state-
of-the-art algorithms.

6.1. Datasets and evaluation metric

Market-1501 is one of the largest and most challenging
person RelD datasets lately. The original images are col-
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Figure 3. Examples of the attention masks learned in different settings. We adopt K = 8 in our APDR model. (Best viewed in color.)

lected from 6 cameras in front of a supermarket in Tsinghua
University and the pedestrian bounding boxes are cropped
by Deformable Part Model (DPM) [4]. The dataset con-
tains 32668 annotated bounding boxes of 1501 identities,
and 27 kinds of attribute labels for each identity. Among
1501 identities, 12936 images of 751 identities are parti-
tioned for training and the rest 750 identities are left for
testing.

DukeMTMC-reID is a subset of the DukeMTMC
dataset [15] designed for person re-identification. It con-
sists of 36411 human bounding boxes belonging to 1812
identities, among which 1404 identities appear in more than
two cameras and 408 identities appear in only one camera
treated as distractors. The dataset provides 23 kinds of at-
tributes for each identity. The training set contains 16522
images of 702 identities and the rest 702 identities are as-
signed to the testing set.

Following the evaluation metrics widely used, we adopt
both cumulative matching characteristics (CMC) and mean
average precision (mAP) to evaluate our model under sin-
gle query setting. The CMC score measures the accuracy of
identifying the correct match at each rank. While for multi-
ple ground truth matches in gallery, it can’t tell how well all
the ground-truth matching images in the gallery are ranked.
To remedy this, we also report mAP scores of our model.

6.2. Ablation study

The number of attribute-part detectors. We empirically
study how the number of attribute-part detectors affects our
model’s performance. The number of annotated attribute
labels in Market-1501 is 27, among which 8 and 9 at-
tributes are respectively corresponding to colors of upper-
body and lower-body clothing, so we first merge these to
two multi-class attributes and form 12 kinds of attributes.
Furthermore, as described in previous section, we merge at-

tributes targeted at the same or similar regions to share one
mask. We do not share the same mask between gender and
age because although they can be considered as related to
the whole body, they contain different high-level semantic
meanings and may result in emphasizing on different re-
gions. Finally, we form 8 different masks for the 12 kinds
of attributes.

Based on above analysis, we conduct the experiment
over Market-1501 dataset with different numbers of detec-
tors K = 1,8,12. When K = 1, we simply generate one
mask for all attributes and the mask can be seen as a detec-
tor for the whole body. The results are shown in Table [I]
and the learned masks are shown in Figure[3] We find that
the learned masks are able to concentrate on the whole hu-
man body regions to eliminate the influence of irrelevant
background, while still miss some vital regions like heads
and handbags. When K = 12, we can observe that some
of the detected regions are similar to each other thus are
redundant, and some learned masks cannot target at corre-
sponding regions precisely due to the imbalanced training
samples, like the one relevant to hat.

When K = 8, which is denoted as our “perceptual at-
tribute learning”, the learned 8 masks can concentrate on
different salient regions and are highly consistent with their
target attributes. Obviously, merging the hair and hat at-
tribute to one head mask yields more satisfying localization
results than the K' = 12 setting. We also find that the age
and gender masks which correspond to high-level semantic
attributes, though related to the whole body, have their own
focuses. For the gender mask, it prefers the regions of heads
and lower body parts, we analyze the reason is that we usu-
ally judge the gender of someone firstly by observing his
facial feature or hair length, the lower-body clothing can
also be more discriminative for judging than upper-body
clothing, such as ‘dress’ for female and ‘pants’ for male,



Table 1. The validation performance with different numbers of attribute-part detectors and the comparisons with different baselines over

two datasets.

Market-1501

DukeMTMC-relD

12/10 masks for attributes 90.5 96.5
Perceptual attribute learning | 91.3 96.5

Models rank-1 | rank-5 | rank-10 | mAP | rank-1 | rank-5 | rank-10 | mAP
Baseline 87.6 94.9 96.9 69.0 76.0 87.5 90.8 57.6
Baseline + Triplet Loss 88.6 95.8 97.3 719 | 79.7 89.4 92.1 62.1
1 mask for attributes 90.3 96.2 98.0 76.4 81.1 90.5 934 65.8

91.7 76.7 80.8 90.1 93.2 65.9
97.9 77.0 82.0 91.2 93.8 66.4

Part branch 89.5 96.4 97.8 73.7 80.5 90.5 93.2 64.6
Refined part branch 90.7 96.6 97.9 76.0 81.1 90.3 93.3 65.2
APDR (Ours) 93.1 97.2 98.2 80.1 84.3 92.4 94.7 69.7

compared to “T-shirt” for both genders. While the age mask
focuses mainly on the upper body region, which is proba-
bly because that human often estimate the age of someone
depending on the style of upper clothing. In summary, with
the appropriate choice for the number of attribute-part de-
tectors, the performance is the best among the three settings
and the learned masks are satisfactory.

For DukeMTMC-relD’s 23 kinds of attributes, we also
merge the 8 colors of upper-body clothing and 7 colors
of lower-body clothing to two multi-class attributes, hence
form 10 different kinds of attributes and design 8 detectors
for them. The 8 detectors are corresponding to backpack,
bag, handbag, feet, gender, head, upper body and lower
body. Comparison results are shown in Table[T}

Baseline comparison. The comparisons of different base-
lines are listed in the first block of Table|l} Compared with
the simple baseline which only adopts identity labels as su-
pervision, our attribute learning baseline outperforms it by
a large margin, which verifies the effectiveness of learn-
ing with attribute information. We add triplet loss to our
baseline in that person re-identification is actually a met-
ric learning problem. Taking the perceptual attribute learn-
ing as our strong baseline, the best performance is obtained,
apart from which the learned attribute features and attention
masks can be utilized for latter part feature extraction and
refinement.

We also conduct a baseline experiment on sharing the
same feature representation for both attribute and identity
learning, but the model is hard to optimize and results in
unstable accuracy, so we do not list it in Table This phe-
nomenon verifies the existence of heteroscedasticity learn-
ing problem and the effectiveness of our baseline structure
design which separates the two learning tasks. However,
considering the correlation between attribute and identity
information, the two branches share the network weights
in shallow layers and moreover, the learned robust attribute
information is later incorporated into the final feature rep-
resentation. In this way, we make full use of the semantic
attribute information and at the same time, the heteroscedas-

ticity learning problem can be avoided.

Effect of attribute fusion and part feature refinement.
We empirically analyze the effectiveness of the attribute fu-
sion and part refinement module in our model. The motiva-
tion of designing the attribute fusion module has been de-
scribed in Section [d] whose effectiveness will be reflected
in the refined part features.

To further validate the effectiveness of refinement for
part features, we firstly concatenate all initial part features
to form the local descriptor and evaluate on test sets, whose
results are denoted as “part branch”. From the results we
find that using part features alone can outperform the “base-
line with triplet loss”, which demonstrates the effectiveness
of our learned attribute attention masks for discriminative
local feature extraction. After refinement, the accuracy of
the part branch is further improved. Finally, by concatenat-
ing the refined local feature and global feature, we get the
results of our APDR model. It promotes the accuracy by
a large margin compared with the attribute learning base-
line, which is 1.8% gain for rank-1 and 3.1% for mAP
on Market-1501, 2.3% for rank-1 and 3.3% for mAP on
DukeMTMC-relD.

6.3. Comparison with the state-of-the-arts

In this section, we present the results of comparison with
several state-of-the-art algorithms. Since our proposed ap-
proach involves both attribute learning and part detection,
we compare our model with both two types of algorithms.

Results on Market-1501. On Market-1501, we com-
pare our proposed algorithm with many state-of-the-art ap-
proaches, including manual feature designing algorithms:
LOMO+XQDA [10] and BoW [30], metric learning based
algorithms: KISSME [7], WARCA [6] and SCSP [2], at-
tribute learning algorithms: Attribute-Person Recognition
network (APR) [[L1], Attribute-Complementary Re-id Net
(ACRN) [16], algorithms based on part detection: Part
Aligned Deep Features (PADF) [28]], Harmonious Attention
Network (HA-CNN) [9]], Refined Part Pooling (RPP) [20],
Attention-Aware Compositional Network (AACN) [26],



Table 2. comparisons with state-of-the-arts on Market-1501.

Table 3. comparisons with state-of-the-arts on DukeMTMC-relD.

Market-1501 DukeMTMC-relD
Methods rank-1 | rank-5 | rank-10 | mAP Methods rank-1 | rank-5 | rank-10 | mAP
LOMO+XQDA | 43.8 - - - APR 70.7 - - 51.9
BoW 35.8 52.4 60.3 14.8 ACRN 72.6 84.8 88.9 52.0
KISSME 444 63.9 72.2 20.8 AACN 76.9 - - 59.3
WARCA 45.2 68.2 76 - HA-CNN 80.5 - - 63.8
SCSP 51.9 72.0 79.0 26.4 RPP 83.3 - - 69.2
ACRN 83.6 92.6 95.3 62.6 PABR 84.4 92.2 93.8 69.3
APR 84.3 93.2 95.2 64.7 APDR (Ours) | 84.3 92.4 94.7 69.7
PADF 81.0 92.0 94.7 634 +re-ranking 87.3 93.0 95.2 83.2
AACN 85.9 - - 66.87
HA-CNN 91.2 - - 75.7
PABR 91.7 96.9 98.1 79.6 is adopted to further improve the accuracy of the original
RPP 93.8 97.5 98.5 81.6 “PABR” model, our algorithm performs almost the same
APDR (Ours) 93.1 97.2 98.2 80.1 as the final “PABR” model on rank-1. And on the whole,
+re-ranking 94.4 97.0 97.9 90.2 our algorithm achieves a better performance. Similar as on

Part-Aligned Bilinear Representations (PABR) [[19].

The detailed comparison results are listed in Table
We can observe from the table that our approach performs
better than most state-of-the-art algorithms except a little
lower than “RPP” and achieves the best accuracy in terms
of both rank-1 and mAP after applying re-ranking pro-
cess [33], which is often adopted as a post-process algo-
rithm for re-identification to further boost accuracy. Though
simple to construct, the “RPP” model cannot handle well
the large pose variations which occur more frequently in
DukeMTMC-relD thus results in an inferior performance,
and the partitioned parts demonstrate less semantic meaning
for specific human body parts than our model. Our model
outperforms “PABR”, which also adopts a two-stream net-
work architecture, by 1.4% on rank-1, 0.5% on mAP before
re-ranking. It is worth noting that our algorithm performs
much better than either attribute learning methods or most
human part based algorithms. For the former, we fully ex-
ploit the perception ability of human attributes instead of
simply classifying them correctly and for the later, the part
detection based on attribute information is more reliable for
Person Re-ID task than those based on existing pose models
or attention models.

Results on DukeMTMC-reID. We also evaluate our al-
gorithm on another large benchmark with attribute anno-
tations. Compared with Market-1501, person images from
DukeMTMC-reID have more variations in resolution and
background due to more complex scene layout, resulting
in a more challenging task. We compare our approach
with APR [11]], ACRN [16], HA-CNN [9], AACN [26],
RPP [20]], PABR [19] and Tablereports the results. From
the results we can find that our model performs equally well
on the DukeMTMC-relD benchmark and achieve the state-
of-the-art performance. Although the ‘dilation’ structure

Market-1501, the accuracy can be further improved by a
large margin after the re-ranking process.

7. Conclusion

In this paper, we proposed a novel Attributes-aided Part
Detection and Refinement model aiming to utilize the per-
ceptual ability of attribute learning and solve the part mis-
alignment problem in person Re-ID at the same time. We
demonstrated that, the attribute information is associated
with discriminative body parts and salient regions, thus can
be exploited to generate attribute-part detectors. Besides, in
order to simulate the human cognitive mechanism of deal-
ing with multiple attributes, we merge attributes through a
simple module for a more compact attribute representation.
Taking the learned attribute-part detectors as part localizers,
we extract and further refine the local part features guided
by fused attribute information to eliminate the noises intro-
duced by detection deviation. The experiments on two large
popular benchmarks verified the effectiveness of our model.
In future work, we will dig more into understanding human
recognition mechanism for re-identifying people, including
but not limited to attribute information.
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