
This is a repository copy of Learning Binary Code for Fast Nearest Subspace Search.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/150680/

Version: Accepted Version

Article:

Zhou, Lei, Xiao, Bai, Liu, Xianglong et al. (2 more authors) (2020) Learning Binary Code 
for Fast Nearest Subspace Search. Pattern Recognition. 107040. ISSN 0031-3203 

https://doi.org/10.1016/j.patcog.2019.107040

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Learning Binary Code for Fast Nearest Subspace Search

Lei Zhoua, Xiao Baia,⇤, Xianglong Liua, Jun Zhoub, Edwin R. Hancockc

aSchool of Computer Science and Engineering, Beihang University, Beijing, China
bSchool of Information and Communication Technology, Griffith University, Nathan, Australia

cDepartment of Computer Science, University of York, York, U.K.

Abstract

Subspace is widely used to represent objects under different viewpoints, illuminations,

identities, and more. Due to the growing amount and dimensionality of visual contents,

fast search in a large-scale database with high-dimensional subspaces is an important

task in many applications, such as image retrieval, clustering, video retrieval, and visu-

al recognition. This can be facilitated by approximate nearest subspace (ANS) search

which requires effective subspace representation. All existing methods for this prob-

lem represent a subspace by a point in the Euclidean or the Grassmannian space before

applying the approximate nearest neighbor (ANN) search. However, the efficiency of

these methods is not guaranteed because the subspace representation step can be very

time consuming when coping with high-dimensional data. Moreover, the subspace

to point transforming process may cause subspace structural information loss which

influences the search accuracy. In this paper, we present a new approach for hashing-

based ANS search which can directly binarize a subspace without transforming it into

a vector. The proposed method learns the binary codes for subspaces following a sim-

ilarity preserving criterion, and simultaneously leverages the learned binary codes to

train matrix classifiers as hash functions. Experiments on face and action recognition

and video retrieval applications show that our method outperforms several state-of-the-

art methods in both efficiency and accuracy. Moreover, we also compare our method

with vector-based hashing methods. Results also show the superiority of our subspace

∗Corresponding author

Email addresses: leizhou@buaa.edu.cn (Lei Zhou), baixiao@buaa.edu.cn (Xiao Bai),

xlliu@nlsde.buaa.edu.cn (Xianglong Liu), jun.zhou@griffith.edu.au (Jun Zhou),

edwin.hancock@york.ac.uk (Edwin R. Hancock)

Preprint submitted to Pattern Recognation July 10, 2019

*Manuscript

Click here to view linked References



matrix based search scheme.

Keywords: Nearest subspace search, learning binary code, hashing, matrix classifier

1. Introduction

Subspace is important for data representation in many computer vision and pattern

recognition tasks. It has demonstrated excellent capability in capturing the structural

information of specific data, e.g. face images under different illuminations [1, 2, 3, 4],

sequential frames in the video clips [5, 6], different identities [7, 8], and classes of5

similar objects [9, 10]. In a high-dimensional space, data can be either represented

as subspaces or vectors. In practice, due to the high dimensionality and large-scale

nature, it is better to represent these data by subspace rather than vectorized features

because the intrinsic dimension of high-dimensional data is often much smaller than

the ambient dimension [11]. Subspace representation has the ability to retain important10

information with significant dimensionality reduction [12, 13]. This has motivated the

development of subspace representation based visual methods.

Given a searching problem, when a query is represented as a vectorized image and

a dataset is composed of vectors, the problem can be solved by the nearest neighbor

search. Due to the recent growth of visual contents, rapid search in a large dataset is15

highly demanded. Because of the high-computational cost, traditional linear search

(or exhaustive search) is not appropriate to be applied on a large-scale dataset. In-

stead of linear search, many practical strategies have been proposed for approximate

nearest neighbor (ANN) search [14, 15, 16, 17, 18]. The best known approach is hash-

ing methods, which can efficiently solve high-dimensional and large-scale problem-20

s [19, 20, 21, 22, 23]. A hashing algorithm aims to seek compact binary codes for

high-dimensional data so that the Hamming distances between binary codes preserve

the pairwise similarities of the data points. Recently, with the rise of interest in deep

learning technology, there are also many deep hashing methods [24, 25, 26, 27, 28]

which have achieved great success. Since deep learning methods require a large num-25

ber of labeled training samples, these deep hashing methods may be ineffective when

used in an unsupervised way or used with small datasets. These problems can be ef-

2



fectively solved by adopting a subspace representation.

Compared to the vectorized representations, subspace is a more generic data type

in practice [29]. There are many benefits of using subspace methods. First, compar-30

ing subspaces is cheaper than comparing two datasets directly. Second, they are more

robust to missing data which can be filled-in by interpolation [30]. Third, subspace

representation has lower dimension [31] than the original representation and the dis-

tance of subspaces can be efficiently measured by principal angles [32]. Given a query

image (or a set of images) represented as a point (or a subspace) in a high-dimensional35

space, searching the subspace nearest to the query is much faster than a brute sequen-

tial search over the entire database with vectorized representation. When subspace

is used as the representation, how to efficiently find the nearest subspace for a given

query image or subspace has to be studied. This problem is related to a wide range of

computer vision and pattern recognition applications such as face recognition, image40

approximation, speaker recognition, action recognition, and video retrieval. In recent

years, some efficient methods have been proposed for approximate nearest subspace

(ANS) search. Basri et al. [33, 34, 10] proposed to transform subspaces to points, then

solve the subspace searching problem by well-studied ANN search on points. Motivat-

ed by this work, some recent approaches [35, 36] utilized the idea of locality sensitive45

hashing (LSH) [37] to accelerate the searching process. More recently, Xu et al. [38]

proposed a video retrieval framework, which defined a similarity-preserving distance

metric between an image and its orthogonal projection in the subspace of the video.

Since manifold is also widely used for the subspace analysis [39, 40], Grassmannian

based subspace search methods have been proposed [41, 42, 43]. These approaches,50

however, represent subspaces by points in the Euclidean space or Grassmannian space

before applying the ANN methods. This operation increases the dimension of data

since a subspace of dimension d will be transformed into a vector of size Θ(d2). In ad-

dition, the subspace to point transformation may incur subspace structural information

loss and computational cost. Therefore, they can not efficiently solve the ANS search55

problem, specifically for very high-dimensional data in a lager-scale dataset.

The superiority of hashing algorithm in information retrieval comes from two as-

pects [44]. First, binary signatures generated by hashing can significantly reduce the

3



storage space for large-scale data. In addition, pairwise data similarity can be fast

estimated by calculating the Hamming distance between the corresponding binary sig-60

natures. Motivated by these two properties, in our previous work [46], we proposed a

matrix classifier based binary coding method which solves the high-dimensional and

large-scale subspace retrieval problem. However, there are several issues with this

approach. First, the binary codes learning objective function does not consider the

constraint that makes the hamming distance between dissimilar pair large. Second, the65

previous work cannot well handle the condition that query subspaces with different di-

mensions. In order to solve these issues, in this paper, we extend our previous work

and present a new method for linear subspace search based on hashing algorithm. First

we learn the binary codes for a given subspace set following defined similarity pre-

serving criterion. In order to solve the out-of-sample problem (a new query which is70

not used in the training set), our algorithm leverages the learned binary codes to train

a set of matrix classifiers to predict the code for query subspace. Here each bit of the

binary code for subspace is considered as a class label for that subspace. Assume that

we learn r bits binary code for each subspace, then we train r binary classifiers for

the r bits binary code. For any given out-of-sample query subspace, the corresponding75

r bits binary code can be efficiently generated by the r trained binary classifiers. We

choose to use the Support Matrix Machines (SMM) [45] as the binary matrix classifier

because of its excellent capability in capturing the structural information within the

matrix data. As SMM is a linear classifier which requires the dimensionality of the

training and testing samples to be the same, we further extend the SMM to a kernelized80

version. Then our proposed method can address the circumstances in which the query

subspaces have different dimensions.

Compared with the previous similar works [10, 42, 36, 38], the main advantages of

our method are a) that it achieves fast computation without converting a subspace into

a vector in the data space, and b) the matrix classifier can efficiently generate effective85

compact hash codes using structural information for the subspace. In the offline train-

ing stage, we learn the binary codes for a set of given subspaces with their similarities,

and simultaneously train binary classifiers by the learned codes. All calculations in

this stage are done directly on subspace matrices. In the online query stage, the query

4



subspace matrix is directly binarized by the trained classifiers. Then we can use the90

Hamming distance between binary codes to quickly search the ANS. In this way, our

method can efficiently solve the ANS search problem even with a high-dimensional

and lager-scale subspace dataset.

The main technical extensions and contributions of this paper are as follows:

1. The objective function for learning binary codes is different with our previous95

work [46]. We design a more strict objective function which not only considers

the hamming distances between similar pairs, but also constrains the hamming

distances between dissimilar pairs. Therefore, we can learn more discriminative

binary codes for the subspace searching problem.

2. To adapt to complex applications, in which the query subspaces have different100

dimensions, we further extend our method with a kernelized version to address

the circumstances in which the query subspaces have different dimensions.

3. Experiments on several public databases with different tasks are presented. The

results show that our method outperforms all the state-of-the-art subspace search

methods in both searching accuracy and efficiency. Moreover, we also compare105

the proposed method with several vector-based hashing methods. The results

also show the superiority of our subspace matrix based searching scheme.

In the rest of the paper, a review of related work is given in Section 2. In Section 3,

we define the similarity between subspaces. We then propose an efficient hashing

based subspace search method with SMM classifier. We further extend the SMM to110

a kernelized version for query subspace with different dimensions in this section. In

Section 4, we show the results of three sets of experiments on five public datasets for

face, action, gesture recognition and video retrieval. The conclusions are drawn in

Section 5.

2. Related Work115

In this section, we review the related work on ANS search. One of the earliest

method in this area was proposed by Basri, Hassner and Zelnik-Manor (BHZ) [10],

5



which represents a subspace X as its orthogonal bases matrix X1. Then a scalable

mapping is defined to map X to a vector by taking the entries of the upper triangular

portion of XXT with the diagonal entries scaled by 1/
p
2. This allows traditional120

ANN vector search methods be applicable to the data. Based on the mapping, this

method can solve the ANS problem when both query and database elements are either

points or subspaces of different dimensions. However, when the dimension d of the

subspace is very high, the corresponding vector has size d(d + 1)/2, so the efficiency

of this method suffers from high-dimensional data.125

Motivated by the above method, Wang et al. proposed a Grassmannian-based hash-

ing solution to the ANS search problem [42]. This method represents the subspace as

a point on a Grassmannian manifold, and is referred to as GLH (Grassmannian-based

Locality Hashing). The LSH takes advantage of the relative geometric positions of d-

ifferent subspaces which are encoded in their principal angles with random lines. As a130

result this method provides good results when the ambient dimension is high. However,

instability still exists due to the strong randomness of LSH, which makes the search ac-

curacy decreased when the training dataset is small [37]. A similar approach proposed

by Stephen and Bruce introduces a subspace forest for determining the approximate

nearest neighbors of points on the Grassmann manifolds [41], which can rapidly clas-135

sify actions by a set of labeled samples. The subspace forest works in a manner that is

conceptually similar to randomized forests for ANN computations, but maintains the

Grassmann manifold geometry.

Ji et al. presented a method to produce similarity-preserving binary signatures for

subspaces (BSS) [36]. In this method, the angular similarity and angular distance be-140

tween subspaces is first defined. Then a sign-random-projection function is applied to

generate binary signatures for the subspace. It is proved that the Hamming distance

between the binary signatures is an unbiased estimator of the pairwise angular dis-

tance. Hence, LSH is applied to the ANN vector search problem. Since this method

transforms the subspace matrices into higher dimensional vectors, it needs long bi-145

nary codes to preserve the similarity between subspaces. As shown in Figure 1, the

1In our method, all operations on a subspace are done on its orthogonal bases matrix.

6



Query 

Subspace 𝑿𝒒 ∈ ℝ𝒅×𝑫
𝑍 = 𝑋𝑞𝑋𝑞𝑇 = 𝑧11 ⋯ 𝑧1𝑑⋮ ⋱ ⋮𝑧𝑑1 ⋯ 𝑧𝑑𝑑

𝑔 𝑍 = 𝑧112 , 𝑧12, … , 𝑧1𝑑, 𝑧222 , 𝑧23, … , 𝑧𝑑𝑑2 ∈ ℝ𝑑′ 0
1

0

1

0

1

𝑔(𝑍)Transform the subspace matrix into the vector

Query 

Subspace 𝑿𝒒 ∈ ℝ𝒅×𝑫

𝐻 𝑋𝑞 = sgn(𝑉𝑇𝑔 𝑍 ), 𝑉 ∈ ℝ𝑑′×𝑟

ℎ𝑘 𝑋𝑞 = sgn(𝑡𝑟(𝑊𝑘𝑇𝑋𝑞 + 𝑎𝑘)𝐻(𝑋𝑞) = {ℎ1 𝑋𝑞 , … , ℎ𝑟 𝑋𝑞 }
Matrix classifiers

Computation complexity 𝑶(𝑫𝒅𝟐)
Computation complexity 𝑶(𝒓𝒅′)

Computation complexity 𝑶(𝒓𝑫𝒅)

BSS

Our method

Figure 1: The comparison of search process between BSS [36] and our proposed method. For a query

subspace, BSS first transforms the subspace matrix into higher dimensional vector g(Z) ∈ R
d
0

, where d
0

=

d(d + 1)/2. Then a sign-random-projection function is applied to generate binary signatures for subspace.

Our method directly binarize the query subspace by the trained matrix classifiers without transforming the

subspace matrix into vector form. As shown in the figure, the computation complexity of search process

for BSS is O(Dd2 + rd
0

) = O((D + r)d2). For our method, the computation complexity is O(rDd).

And experiments show that BSS needs more than r = 2000 bits binary codes to achieve a good result. But

our method achieves a good result only with r = 64 bits binary codes. Therefore, our method significantly

outperforms BSS in the query time.

subspace matrix to vector transforming process will cause information loss and calcu-

lational cost.

In order to solve the video retrieval problem with a subspace representation, Li

et al. [43] have proposed a method which learns hash functions using a max-margin150

framework across both Euclidean space and a Riemannian manifold (HER). More re-

cently, Xu et al. [38] proposed a video retrieval framework, which define a similarity-

preserving distance metric between an image and its orthogonal projection in the sub-

space of the video. They first represented videos as subspaces of frames, and then

asymmetrically projected images and videos into a common Hamming space, where155

they could efficiently retrieve the most relevant videos provided with an image query.

Actually, their method also converts the subspace matrix into vector, and then learns

similarity-preserving binary codes by the Euclidean distance between images and video

subspaces.

7



The drawbacks of existing methods are solved in our algorithm. We leverage the160

binary classifier as the hash function to encode a subspace into a binary code. On one

hand, the compact binary code for the subspace can significantly reduce the storage

space and computational cost for large-scale data. On the other hand, experiments

show that our method achieves less information loss than previous works.

3. Proposed Method165

In this section, we describe a hashing based method that solves the ANS search

problem. We first define the similarity between subspaces and construct an affinity ma-

trix for learning the binary code. Then the binary codes for given subspace set can be

learned by a similarity preserving criterion. In order to solve the out-of-sample prob-

lem, our algorithm leverages the learned binary codes to train a set of binary classifiers170

as hash functions. Here each bit of the binary code for subspace is considered as a class

label for that subspace. Then we can train r binary classifiers for the r bits binary code.

For any given out-of-sample query subspace, the corresponding r bits binary code can

be efficiently generated by the r trained binary classifiers.

A subspace is generally represented as a matrix composed of the orthonormal bases175

of the data set. Our proposed method aims to utilize the significant structural informa-

tion residing in a subspace to learn effective binary codes. Motivated by previous

vector-based hashing methods [20, 47], our method makes three significant novel im-

provements to the subspace search problem. First, in common with most existing hash-

ing methods, the newly proposed objective function for learning the binary codes not180

only guarantees that the Hamming distance for similar data is small but additional-

ly guarantees that the Hamming distance for dissimilar data is large. This makes the

learned binary codes more discriminative. Second, we leverage the matrix classifiers

and use them as hash functions to directly binarize the subspace matrix. The nucle-

ar norm term in the matrix classifier imposes a low-rank constraint on the regression185

matrix which allows us to utilize more effectively the structural information residing

in the subspace. Thirdly, we extend our method to obtain a novel kernelized method

for subspace query which can gauge the similarity of data residing in subspaces with

8



different dimensions. By contrast, most existing hashing methods require that the di-

mensionality of the training and testing data be the same. Our method is detailed in the190

remainder of this section.

3.1. Similarity Between Subspaces

First we define the similarity between linear subspaces. In our method, we use the

principal angles proposed in [48] which reveal the relative positions of two subspaces.

Let F and G be linear subspaces in R
d, whose dimensions satisfy

p = dim(F) � dim(G) = q � 1 (1)

The principal angles {✓i}
q
i=1 2 [0,⇡/2] between these two subspaces are defined re-

cursively by

cos ✓k = fT
k gk = max

f2F,kfk2=1

fT [f1,...,fk�1]=0

max
g2G,kgk2=1

gT [g1,...,gk�1]=0

fT g (2)

Let F be a d⇥ p matrix whose columns are orthonormal bases for subspace F . Let

G be a d⇥ q matrix whose columns are orthonormal bases for subspace G. It is easy to

prove that the cosine of each principal angle equals a singular value of FTG. Assume

that the SVD of FTG is

FTG = Udiag(�1,�2, ...,�q)V
T (3)

where 1 � �1 � �2 � ... � �q � 0. Assume that the principal angles satisfy

0  ✓1  ✓2  ...  ✓q  ⇡/2, we can get

cos ✓i = �i, i = 1, 2, ..., q (4)

The first principal angle ✓1 is the smallest angle between a pair of unit vectors

from two subspaces. The cosine of the principal angle �1 is the first canonical corre-

lation [49]. The i-th principal angle and canonical correlation are defined recursively.

It is known that the principal angles are related to the geodesic distance [50]. Then the

similarity between subspaces F and G can be defined as

SF,G = cos ✓F,G =

Pq

i=1 cos
2 ✓ip

p
p
q

=

Pq

i=1 �
2
ip

p
p
q

(5)

9



Since the singular values have the property that
Pq

i=1 �
2
i = kFTGk2F , where kAkF is

the Frobenius norm of A, we can rewrite the subspace similarity as

SF,G =
kFTGk2Fp

p
p
q

(6)

Given the defined similarity between subspaces, we can construct an n ⇥ n affinity

matrix S for a subspace set {X1,X2, ...,Xn}. Where Sij 2 [0, 1] is the similarity

between Xi and Xj .195

3.2. Model Formulation

Given a set of linear subspaces X = {X1,X2, ...,Xn} ⇢ R
d, the goal is to search

the approximate nearest subspace in X for a given query subspace Xq . In order to

achieve rapid search, we transform the subspaces into binary codes. Here we assume

that Xi is a matrix whose columns are orthonormal bases of Xi and bi is the corre-200

sponding r bit binary code for Xi. Our goal is to learn a set of hash functions which

can well preserve the similarities between subspaces in X .

Based on the definition of subspace similarity in Eq. (6), we first calculate the

affinity matrix S for X . Let H(·) be a set of r hash functions to be learned, and

H(·) = {h1(·), h2(·), ..., hr(·)} 2 {�1, 1}r. The binary codes and hash functions can205

be learned simultaneously. In other words, our method aims to learn a set of binary

codes B = {bi}
n
i=1 2 {�1, 1}r⇥n which well preserves the similarities between sub-

spaces in X and simultaneously learns a set of hash functions that map X to the learned

binary codes.

In our previous work [46], the objective function to learn binary codes is

min
B2{�1,1}r⇥n

n
X

i=1

n
X

j=1

Sij

r � bTi bj
2

(7)

where
r�bTi bj

2 is the Hamming distance between bi and bj . However, minimizing ob-210

jective function (7) can only make the Hamming distance between similar pairs small.

It does not consider the Hamming distance between dissimilar pairs. In other words,

the discrimination of binary codes of dissimilar pairs cannot be guaranteed.

In this paper, we design a more strict objective function to solve this problem.

When Xi and Xj are similar, it is expected that the Hamming distance between two

10



binary codes H(Xi) and H(Xj) be small. Correspondingly, H(Xi)
TH(Xj) is close to

r. Conversely, when Xi and Xj are dissimilar, the Hamming distance between H(Xi)

and H(Xj) shall be large, i.e., H(Xi)
TH(Xj) is close to �r. Formally, the similarity

preserving criterion can be defined as

H(Xi)
TH(Xj) =

8

>

<

>

:

r when Sij is close to 1

�r when Sij is close to 0

(8)

To meet this similarity preserving criterion, the optimization objective function can be

written as

min
H

n
X

i=1

n
X

j=1

(H(Xi)
TH(Xj)� r(2Sij � 1))2 (9)

Considering these two situations to minimize objective function (9): a) When Sij is

close to 1, i.e., subspaces Xi and Xj are similar, r(2Sij � 1) is close to r. Then it is215

expected that H(Xi)
TH(Xj) is close to r, i.e., the Hamming distance between H(Xi)

and H(Xj) is near 0. b) When Sij is close to 0, i.e., subspaces Xi and Xj are dissimilar,

r(2Sij � 1) is close to �r. Then it is expected that H(Xi)
TH(Xj) is close to �r, i.e.,

the Hamming distance between H(Xi) and H(Xj) is close to r.

Optimizing Eq. (9) directly for learning hash functions is difficult. Hence we de-

compose problem (9) into two simple sub-problems:

min
B2{�1,1}r⇥n

n
X

i=1

n
X

j=1

(bTi bj � r(2Sij � 1))2 (10)

and

min
H

n
X

i=1

r
X

k=1

�(b
(k)
i = hk(Xi)) (11)

where b
(k)
i is the k-th bit of bi and � 2 {0, 1} indicates whether the relationship between220

b
(k)
i and hk(Xi) is defined. The solution to problem (10) is the optimal binary codes

which can preserve the similarity between subspace set X , and problem (11) is to

learn a set of functions H(·) = {h1(·), h2(·), ..., hr(·)} 2 {�1, 1}r which map the

subspaces to corresponding binary codes.

11



3.3. Optimization225

Learning binary codes. Problem (10) can be rewritten into a matrix form

min
B2{�1,1}r⇥n

kBTB � r(2S � 1)k2F (12)

Since r(2S � 1) is a constant term, this becomes a least-squares problem. Let B(k)

be the k-th row of matrix B, then B(k) = (b
(k)
1 , b

(k)
2 , ..., b

(k)
n ). In this way, Eq. (12)

becomes

min
B2{�1,1}r⇥n

k
r

X

k=1

B(k)TB(k) � r(2S � 1)k2F (13)

We can use a greedy method to solve B(k) sequentially. In each step, it only solves one

vector B(k) given the previously solved vectors B(1), B(2), ..., B(k�1). Let a residue

matrix be defined as

Rk�1 = r(2S � 1)�
k�1
X

t=1

B(t)TB(t)(R0 = r(2S � 1)) (14)

B(k) can be solved by minimizing the following cost function

kB(k)TB(k) �Rk�1k2F
=(B(k)B(k)T )2 � 2B(k)Rk�1B

(k)T + tr(R2
k�1)

=n2 � 2B(k)Rk�1B
(k)T + tr(R2

k�1)

=� 2B(k)Rk�1B
(k)T + const

(15)

Discarding the constant term, we get a compact objective

max
B(k)2{�1,1}n

B(k)Rk�1B
(k)T (16)

Since the constraint B(k) 2 {�1, 1}n is discrete, Eq. (16) is a nonconvex problem.

Here we apply the spectral relaxation method to relax this constraint. Then the follow-

ing quadratic problem can be defined

max
B(k)

B(k)Rk�1B
(k)T

s.t. B(k)B(k)T = 1

(17)

The solution to this quadratic problem is the eigenvector corresponding to the largest

eigenvalue of Rk�1.

12



The solution to Eq. (17) generates real-values vectors B̄(k) = (b̄
(k)
1 , b̄

(k)
2 , ..., b̄

(k)
n ).

Next we need to transform B̄(k) into binary codes via a proper threshold. Following the

Spectral Hashing method [51], a good binary code shall satisfy that each bit has 50%230

chance of being 1 or �1. Therefore, we select the median value of B̄(k) as a threshold.

If b̄
(k)
i is larger than the median value, b

(k)
i = 1 (b

(k)
i is the k-th bit of bi). Otherwise,

b
(k)
i = �1. Then discriminative binary codes B can be obtained, which well preserves

the similarities between subspaces in X .

Learning hash functions. Although we have learned the binary codes for subspace235

set X , it does not mean that the ANS search problem has been solved. For a given new

query subspace Xq , if we add it into the subspace set X and update all binary codes

according to the method presented above, the high computational cost obviously can

not be accepted for practical applications. According to the idea of hashing algorithm,

we need a set of hash functions which can map the query subspace to the corresponding240

binary code. The solution to problem (11) is the required hash functions.

Problem (11) can be treated as a binary classification problem. Each bit of the

binary codes for the subspace can be considered as a class label (class ’1’ or class ’�1’)

for that subspace. A binary classifier can be trained for each bit of the learned binary

codes. The subspace is generally represented as a matrix composed the orthonormal245

bases which contain significant structural information concerning the subspace. If we

simply concatenate the column vectors of X into a single long column vector, the

subspace structural information will be disrupted. Therefore, instead we leverage the

matrix classifiers as hash functions. To this end, we train r matrix classifiers by the

learned r-bit binary codes in problem (10). Then we use the r binary matrix classifiers250

to obtain the r-bit binary code for any query subspace.

In this paper, we choose to use the Support Matrix Machine (SMM) [45] as the

matrix classifier due to its excellent capability in capturing the structural information

within the matrix data. To capture the correlation among columns or rows within the

matrix data, SMM imposes a low-rank constraint on the regression matrix W to lever-

age the structural information. Since the nuclear norm kWk⇤ is the best convex ap-

proximation of rank(W ) over the unit ball of matrices, and the hinge loss is well fit for

13



large margin principle, the formulation of SMM model is

min
W,a

1

2
kWk2F + ⌧kWk⇤ + C

n
X

i=1

{1� yi[tr(W
TXi) + a]}+ (18)

where {1 � e}+ = max{0, 1 � e} is the hinge loss, W is the matrix of regression

coefficients, a is an offset term, C is a regularization parameter, and yi is the class

label of Xi. SMM is based on a penalty function which is the combination of the

squared Frobenius norm kWk2F and the nuclear norm kWk⇤.255

Because each bit of the binary code is independent of each other, the binary classi-

fiers of each bit can be trained independently. For the bit b
(k)
i , the corresponding SMM

can be trained by the following formulation

min
Wk,ak

1

2
kWkk2F + ⌧kWkk⇤ + C

n
X

i=1

{1� b
(k)
i [tr(WT

k Xi) + ak]}+ (19)

Here we consider b
(k)
i as a class label for Xi. After learning the binary classifier, the

corresponding hash function can be formulated as hk(X) = sgn(tr(WT
k X) + ak),

where the sign function sgn(x) returns 1 if x > 0 and �1 otherwise.

Since the objective function Eq. (19) is convex in both W and a, we use the Alter-

nating Direction Method of Multipliers (ADMM) [52] to optimize this convex problem.

The objective function Eq. (19) can be equivalently written as

min
Wk,ak,Vk

H(Wk, ak) +G(Vk) (20)

subject to Vk �Wk = 0

where

H(Wk, ak) =
1

2
kWkk2F + C

n
X

i=1

{1� b
(k)
i [tr(WT

k Xi) + ak]}+ (21)

and

G(Vk) = ⌧kVkk⇤ (22)

Then the augmented Lagrangian function of Eq. (20) is

L(Wk, ak, Vk,Λ) =H(Wk, ak) +G(Vk) + tr[ΛT (Vk �Wk)]

+ (⇢/2)kVk �Wkk2F
(23)

14



where ⇢ > 0 is an augmented Lagrangian parameter, and Λ is a penalty parameter.

ADMM solves Eq. (23) with the following iterative equations

(W
(i+1)
k , a

(i+1)
k ) = min

Wk,ak

L(Wk, ak, V
(i)
k ,Λ(i)) (24)

V
(i+1)
k = min

Vk

L(W
(i+1)
k , a

(i+1)
k , Vk,Λ

(i)) (25)

Λ
(i+1) = Λ

(i) + ⇢(V
(i+1)
k �W

(i+1)
k ) (26)

The condition of stopping iteration is that the primal residual r(i+1) = kV (i+1)
k �

W
(i+1)
k k2F and the dual residual t(i+1) = ⇢kV (i+1)

k � V
(i)
k k2F converge to 0.260

From the solution of Eq. (19), we can successively obtain r hash functions {h1(·),

h2(·), ..., hr(·)}, where

hk(X) = sgn(tr(WT
k X) + ak) (27)

Then we can efficiently get the corresponding r bits binary code for the query subspace

by these hash functions.

We name our proposed model Hashing based Subspace Search with SMM (HSS-

SMM). The proposed method is summarized in Algorithm 1.

3.4. For Different Query Dimension265

In practice, the dimension of the query subspace may be different from that of the

training subspace [53]. However, due to the restriction by the dimension of classification-

plane, linear matrix classifiers such as bilinear SVM [54] and SMM [45] both require

that the dimensionality of the training and testing samples be the same. In our proposed

HSS-SMM model, the dimension of query subspace must be equal to the training sub-270

space due to the restriction by Wk.

To solve this problem, we extend the SMM to a kernelized version for query sub-

space with different dimensions. Here we use the projection kernel for subspace which

is defined as

(Xi, Xj) = tr(�(Xi)
T�(Xj)) = kXT

i Xjk2F (28)

15



Algorithm 1: The proposed HSS-SMM model.

Input: Training subspaces X = {Xi}
n
i=1 ⇢ R

d and the hash bits r.

Output: Hash functions H = {hi}
r
i=1 and the binary codes B = {bi}

n
i=1 of X .

Steps:

1. Construct orthonormal bases Xi ⇢ R
d⇥D from subspaces Xi.

2. Compute similarity between subspaces by Eq. (6).

3. Construct affinity matrix S for X .

4. Optimize the quadratic problem Eq. (17), the solution is B̄ = {b̄i}
n
i=1

5. Choose the r median values v1, v2, ..., vr of the r eigenvectors obtained in

step 3 as threshold.

for i = 1, ..., n do

for l = 1, ..., r do

If the l-th element of b̄i is larger than vl, b
(l)
i = 1.

Otherwise, b
(l)
i = �1.

end

end

6. Optimize Eq. (19) with B fixed.

for k = 1, ..., r do

Optimize Eq. (19) by the ADMM algorithm, achieving Wk and ak.

hk(X) = sgn(tr(WT
k X) + ak).

end

where Xi ⇢ R
d⇥p, Xj ⇢ R

d⇥q , and p 6= q. From the subspace distance definition in

equation (6), the projection kernel can measure the similarity between subspaces with

different dimensions.

Then, for the k-th bit binary code, the training model of kernel SMM is

min
Wk,ak

1

2
kWkk2F + ⌧kWkk⇤

s.t. b
(k)
i (tr(WT

k �(Xi)) + ak) � 1, i = 1, 2, ..., n.

(29)

Wk =
Pn

i=1 !k,i�(Xi) and ak can be obtained by solving the dual problem of E-

16



Algorithm 2: The search process of our method.

Input: Query subspace Xq 2 R
d, the dimension D and binary codes B of

subspace dataset.

Output: The binary code bq of Xq and the approximate nearest subspace for the

given query subspace.

Steps:

1. Construct orthonormal bases Xq ⇢ R
d⇥Dq from subspaces Xq .

2. Learn the binary code for query subspace.

while Dq = D do

Calculate the binary code of Xq by Eq. (27),

bq = (h1(Xq), h2(Xq), ..., hr(Xq)).

end

while Dq 6= D do

Calculate the binary code of Xq by Eq. (30),

bq = (h1(Xq), h2(Xq), ..., hr(Xq)).

end

3. Calculate the Hamming distances between bq and B.

4. Rank the Hamming distances and return the approximate nearest subspace

with the smallest Hamming distance to the query subspace.

q. (29). Then the hash function learned by the kernel SMM can be written as

hk(X) = sgn(tr(WT
k �(X)) + ak)

= sgn(

n
X

i=1

!k,itr(�(Xi)
T�(X)) + ak)

= sgn(

n
X

i=1

!k,i(X,Xi) + ak)

(30)

Similarly, we can train r matrix classifiers for each bit of the r bits binary code.275

Then we get the hash functions H(·) = {h1(·), h2(·), ..., hr(·)}. We call this mod-

el HSS-KSMM. Given two query dimensionality settings, the search process of our

method is summarized in Algorithm 2.

17



3.5. Differences with Vector-based Hashing

Our subspace search framework is motivated by the two-steps hashing algorithm.280

But there are some novel differences. First, our method is designed to directly binarize

the subspace matrix. To the best of our knowledge, it is the first work to directly

binarize the matrix from data. Second, we extend our method to give a kernelized

version for query subspaces with different dimensions. This is achieved by using the

projection kernel designed for measuring subspace similarity. Most existing hashing285

algorithms require that the dimensionality of the training and testing samples be the

same.

When we transform the subspace matrix into vector form, this problem can be

solved with vector-based hashing algorithms. We emphasize that subspace structural

information will be utilized by the nuclear norm term in objective function Eq. (18).290

If we simply concatenate each column vector of X into a single long column vector,

subspace structural information will be disrupted. We have designed experiments to

compare our method with vector-based hashing algorithms. Results show the superior-

ity of our subspace matrix based search scheme.

3.6. Complexity Analysis295

Here we analyse the time complexity of our algorithm. In the offline training pro-

cess, for a subspace set X = {Xi}
n
i=1 ⇢ R

d⇥D, the matrix multiplication for distance

between subspaces in Eq. (6) needs O(dD2). The affinity matrix can be computed in

O(n2dD2).

In the online searching process, calculating the r bit binary code by Eq. (27) for a300

query subspace costs O(rDd). Therefore, the encoding time for the query subspace in

our algorithm is linearly dependent on the dimension d of training subspaces, regardless

the size of training set. Experiments show that our method outperforms the previous

works in the query time.

18



4. Experiments305

4.1. Baseline Methods

To evaluate the effectiveness of the proposed method, several state-of-the-art or

classical nearest subspace search methods were taken as the baseline algorithms, in-

cluding BHZ [10], BSS [36], IBC/BBC [38], and manifold methods GLH [42], HER [43].

As HER, and IBC/BBC are designed for query-by-image video retrieval, we only com-310

pared with them for video retrieval experiments. We also present the results of our pre-

vious work BCMC (Binary Coding by Matrix Classifier) [46]. Moreover, to show the

superiority of our subspace matrix based search scheme, we compared it with vector-

based unsupervised hashing methods including SH [51], ITQ [55], TSH [56], DH [24],

DeepBit [26], and HashGAN [57]. For these methods, we first need to transform the315

subspace matrix into the vector form. For fair comparison, we investigated two ways

to transform the subspace matrix into the vector form. In the first method X is mapped

to a vector by taking the entries of the upper triangular portion of of the outer-product

XXT with the diagonal entries scaled by 1/
p
2. Since the transformation can preserve

the similarity between subspaces, i.e, the distance between subspace matrices is equal320

to the distance between their vector form obtained from this transformation (the proof

is shown in BSS [36]). This subspace transformation has been widely used in the pre-

vious works on subspace search. We refer to these methods as SH-1, ITQ-1, TSH-1,

DH-1, DeepBit-1 and HashGAN-1. A second method is simply to concatenate each

column vector of X to form a single long column vector. We refer to these methods as325

SH-2, ITQ-2, TSH-2, DH-2, DeepBit-2 and HashGAN-2. We then utilized the result-

ing vector-based hashing methods to search for the approximate nearest subspace.

4.2. Datasets and Evaluation Criteria

Datasets: To evaluate the performance of our HSS-SMM and HSS-KSMM mod-

els, we undertook three sets of experiments on five public datasets. Since the subspace330

is generated from similar image set, it is infeasible to compare subspace search meth-

ods on the datasets in which each category contains only one or two example images.

We chose several public datasets in which each category contains sufficient images to

19



Figure 2: Images on the left are sample faces under varying illuminations from the CMU Multi-PIE Face

Database. The images on the right are cropped frames randomly chosen from the video clips in the YouTube

Faces Database.

construct reliable and stable subspaces. The first experiment performed was face recog-

nition using two datasets, namely a) the CMU Multi-PIE Face Database [58] and b) the335

YouTube Faces Database [59]. The CMU Multi-PIE Face Database was published in

2010. It consists of more than 750,000 images collected from 337 people under 15

view points and 19 illumination conditions with a multitude of different facial expres-

sions. The YouTube Faces Database was published in 2011. It contains 3425 videos

of 1595 different people. For each subject, there are 2.15 videos on average. We used340

the frame-images database which contains sequential frames extracted from the videos,

and cropped only the face from each image (see Figure 2).

The second experiment performed was action and gesture recognition on the UCF101

Dataset [60] and the Cambridge Gestures Dataset [61]. The UCF101 was published in

2012. It contains 101 action categories collected from 13320 videos (see examples in345

Figure 3). The Cambridge Gestures Dataset contains 900 image sequences of 9 gesture

classes with three kinds of hand shapes (flat, spread, v-shape) and three kinds of mo-

tions (leftward, rightward, contraction). The combination of hand shapes and motions

yield 9 classes of gestures. Each class has 100 image sequences (10 arbitrary motions

of 2 subjects under 5 different illuminations).350

The last one was video retrieval on the Big Bang Theory (BBT) [43]. The Big

Bang Theory is a sitcom (about 20 minutes each episode) which includes many full-

20



Figure 3: Some frames randomly chosen from the video clips in the UCF101 Dataset.

view shots of about 5 to 8 characters at a time. In our experiment, we used the BBT1

(The Big Bang Theory Season 1) which consists of 3,341 face videos of the first 6

episodes that are represented by block Discrete Cosine Transformation (DCT) feature355

as used in [62], which forms a 240⇥ 240 covariance video representation.

Evaluation criteria: We used the top 1 search accuracy (recognition accuracy),

query time for one search, and storage cost of dataset to evaluate the performance of

all subspace search methods under comparison. The query time for one search is the

average of all test which includes both encoding time and search time for the query360

subspace. The storage cost of dataset includes both the training set and testing set.

4.3. Face Recognition

Since subspace is commonly used to capture the appearance of faces under vary-

ing illuminations, we test the performance of our method by searching the approxi-

mate nearest neighbors on the CMU Multi-PIE Face Database and the YouTube Faces365

21



Table 1: The top 1 search accuracy of different methods on two face databases, with different dimension

dq = 4, 9, 13 of query subspaces. Here we show the accuracy of BSS with binary code length r = 2, 000.

The accuracy of our methods and vector-based hashing methods are with binary code length r = 32. ’-’

denotes that the method can not deal with the different query dimension.

Method
CMU Multi-PIE Face Database YouTube Faces Database

dq = 4 dq = 9 dq = 13 dq = 4 dq = 9 dq = 13

HSS-KSMM 0.9214 0.9321 0.9311 0.8626 0.8912 0.8745

HSS-SMM - 0.9316 - - 0.8863 -

BCMC [46] 0.9023 0.9301 0.9075 0.8414 0.8821 0.8572

BSS [36] 0.8624 0.8925 0.8751 0.8072 0.8251 0.8062

GLH [42] 0.8317 0.8549 0.8401 0.7693 0.8014 0.8130

BHZ [10] 0.7925 0.7735 0.7516 0.7318 0.7015 0.6803

HashGAN-1 [57] - 0.9055 - - 0.8570 -

DeepBit-1 [26] - 0.8602 - - 0.8357 -

DH-1 [24] - 0.8514 - - 0.8315 -

TSH-1 [56] - 0.8385 - - 0.8225 -

ITQ-1 [55] - 0.8352 - - 0.8031 -

SH-1 [51] - 0.8214 - - 0.7842 -

HashGAN-2 [57] - 0.8712 - - 0.8152 -

DeepBit-2 [26] - 0.8326 - - 0.7634 -

DH-2 [24] - 0.8210 - - 0.7505 -

TSH-2 [56] - 0.7924 - - 0.7412 -

ITQ-2 [55] - 0.7865 - - 0.7265 -

SH-2 [51] - 0.7815 - - 0.7243 -

Database.

Experiment setup: In our experiment, we first resized all the face images to

32 ⇥ 32. For the CMU Multi-PIE Face Database, we constructed 20 9-dimensional

training subspaces by randomly choosing 600 face images for each people, i.e, for

each subspace with 30 face images from one person, we vectorized them to 30 1,024-370

22



dimensional vectors and computed their first 9 principal components. The rest of the

images were used for constructing query subspaces in the same manner. In practice, the

dimension of the query subspace may be different from the training subspace. There-

fore, according to the empirical set in previous works [10, 42, 36], we constructed

query subspaces with different dimensions dq = 4, 9, 13 which included dimensions375

smaller than, equal to, or larger than the dimensions of the training subspaces. For the

YouTube Faces Database, we randomly chose 30 frame-images from each video as the

training set, and the rest of the images were used for the query set. Then we construct-

ed training subspaces and query subspaces by the same manner as used in the CMU

Multi-PIE Face Database.380

Table 2: The query time (second) for one search by different methods on two face databases, with different

dimension dq = 4, 9, 13 of query subspaces. Here we show the query time of BSS with binary code length

r = 2, 000. The query time of our methods and vector-based hashing methods are with binary code length

r = 32. ’-’ denotes that the method can not deal with different query dimensions.

Method
CMU Multi-PIE Face Database YouTube Faces Database

dq = 4 dq = 9 dq = 13 dq = 4 dq = 9 dq = 13

HSS-KSMM 1.357e-4 1.357e-4 1.357e-4 4.723e-4 4.723e-4 4.723e-4

HSS-SMM - 7.872e-5 - - 2.735e-4 -

BCMC [46] 7.872e-5 7.872e-5 7.872e-5 2.735e-4 2.735e-4 2.735e-4

BSS [36] 6.517e-3 6.517e-3 6.517e-3 0.0221 0.0221 0.0221

GLH [42] 0.1125 0.1125 0.1839 0.2415 0.2415 0.3757

BHZ [10] 0.4357 0.9245 1.425 0.9517 2.174 3.381

TSH [56] - 1.628e-3 - - 5.125e-3 -

ITQ [55] - 1.041e-3 - - 2.453e-3 -

SH [51] - 9.256e-4 - - 2.132e-3 -

Results: For each query subspace, we first encoded it by the learned hash functions

Eq. (27) or Eq. (30). Then we searched for the nearest subspace in the training set in

terms of Hamming distance between the binary codes. The top 1 search accuracy of our

23



Table 3: The storage cost (byte) on two face databases (include the training set and the query set). Here we

show the storage cost of the state-of-the-art method BSS with binary code length r = 2, 000, and the storage

cost of our HSS-KSMM model with binary code length r = 32.

Method Multi-PIE Face YouTube Face

Original subspace 7.354e8 6.290e9

BSS [36] 4.263e6 3.209e7

HSS-KSMM 8.175e4 6.846e5

500 1000 1500 2000 2500 3000

r(code length)

0.7

0.8

a
c
c
u

ra
c
y

dq=4

dq=9

dq=13

(a) BSS

4 8 16 32 64 128

r(code length)

0.4

0.5

0.6

0.7

0.8

0.9

a
c
c
u

ra
c
y

dq=4

dq=9

dq=13

(b) HSS-KSMM

Figure 4: (a) The accuracy of BSS method with different code lengths on the YouTube Faces Database. (b)

The accuracy of our HSS-KSMM model with different code lengths on the YouTube Faces Database.

HSS-SMM and HSS-KSMM models, compared with BHZ [10], GLH [42], BSS [36],

BCMC [46] and vector-based hashing methods SH [51], ITQ [55], TSH [56],DH [24],385

DeepBit [26], HashGAN [57] are shown in Table 1. Here we show the accuracy of BSS

with binary code length r = 2, 000. The accuracy of our methods and the vector-based

hashing methods are with binary code length r = 32. Due to the strong capability of

classifiers to express the mapping of subspaces and binary codes, our method achieves

better accuracy than the state-of-the-art subspace search method BSS with shorter code.390

We can see from Table 1 that both HSS-KSMM and HSS-SMM outperform the state-

of-the-art unsupervised deep hashing method HashGAN. In addition, HSS-KSMM can

not only deal with query subspace of different dimensions, but also achieve better ac-

curacy than HSS-SMM and our previous work BCMC.

24



As the state-of-the-art method BSS also produces binary codes for subspaces, we395

compared our method with BSS by using different code lengths on the Youtube Faces

Database. As shown in Figure 4, when r = 32, dq = 9, our method achieves an

accuracy of more than 89%. But BSS needs more than 2,000 bit binary codes to

achieve an accuracy of 85%. In our experiment, BHZ stores subspace with a vector

in 1, 024 ⇥ (1, 024 + 1)/2 = 524, 800 dimensions, GLH stores subspace in 1024 di-400

mensions, BSS stores subspace with 2,000 bits binary code, and our method can store

subspace with only 32 bits binary code. Thus our method has superiority in both query

time and storage cost. Table 2 and Table 3 show the query time and storage cost re-

spectively, where the query time includes both encoding time and search time for the

query subspace. It can be seen from Table 2 that our method HSS-SMM is about 80405

times faster than the state-of-the-art in query time due to the shorter code length. And

the storage cost is also significantly reduced by our method from Table 3. Therefore,

our method can efficiently solve the high-dimensional data problem.

4.4. Action and Gesture Recognition

Subspace is also a good representation of video clips. In this section, we show410

the superiority of our method by action and gesture recognition experiments on the

UCF101 Dataset and Cambridge Gestures Dataset.

Experiment setup: In our experiments, for the UCF101 Dataset, we randomly

chose 30 videos from each action category for training, and the rest videos were used

for querying. We resized all the videos to 20⇥ 20⇥ 30 by taking the middle 30 frames415

for each sequence. For the 20⇥20⇥30 data cube, we constructed 9-dimensional train-

ing subspace by vectorizing the 30 20⇥ 20 images to 30 400-dimensional vectors and

computing their first 9 principal components. The query subspaces were in different

dimensions dq = 4, 9, 13.

For the Cambridge Gestures Dataset, we randomly chose 60 image sequences for420

training, and the rest 40 image sequences were used for querying. Then we construct-

ed training subspaces and query subspaces by the same manner used in the UCF101

dataset. For each video sample, we resized it to 20⇥ 20⇥ 30 by taking the middle 30

frames for each sequence (see examples in Figure 5).

25



Leftward

Flat

Rightward

Flat

Contract

Flat

Leftward

Spread

Rightward

V-shape

Figure 5: Some image sequences randomly chosen from the Cambridge Gestures Dataset.

Results: We calculated the top 1 search accuracy for each method respectively.425

The results are shown in Table 4. Here we show the accuracy of BSS with binary code

length r = 3, 000. The accuracy of our methods and vector-based hashing method-

s are with binary code length r = 64. We can see from Table 4 that our proposed

methods HSS-SMM and HSS-KSMM both achieve better recognition accuracy than

previous works BHZ, GLH, BSS, BCMC and the state-of-the-art unsupervised deep430

hashing method HashGAN. The search accuracies of our methods and BSS with d-

ifferent binary code lengths are shown in Figure 6. It can be seen that our methods

can generate better recognition accuracy with shorter binary code. Table 5 and Table 6

show the query time and storage cost of all the methods on the UCF101 dataset and

the Cambridge Gestures dataset, where the query time includes both encoding time435

and search time for the query subspace. Table 5 shows that our method HSS-SMM

is about 80 times faster than the state-of-the-art in query time thanks to the shorter

code length. Table 6 shows that both HSS-SMM and HSS-KSMM significantly reduce

the storage cost of subspace data. This suggests that our method is potentially more

26



Table 4: The top 1 search accuracy of different methods on the UCF101 dataset and Cambridge Gestures

dataset, with different dimensions dq = 4, 9, 13 of query subspaces. Here we show the accuracy of BSS

with binary code length r = 3, 000. The accuracy of our methods and vector-based hashing methods are

with binary code length r = 64. ’-’ denotes that the method can not deal with the different query dimensions.

Method
UCF101 Cambridge Gestures

dq = 4 dq = 9 dq = 13 dq = 4 dq = 9 dq = 13

HSS-KSMM 0.7345 0.7526 0.7501 0.9410 0.9535 0.9468

HSS-SMM - 0.7483 - - 0.9424 -

BCMC [46] 0.7058 0.7365 0.7184 0.9165 0.9402 0.9260

BSS [36] 0.7014 0.7155 0.7123 0.9136 0.9342 0.9255

GLH [42] 0.6612 0.6825 0.6814 0.8415 0.8532 0.8463

BHZ [10] 0.6085 0.6138 0.6105 0.7518 0.7715 0.7603

HashGAN-1 [57] - 0.7235 - - 0.9210 -

DeepBit-1 [26] - 0.7005 - - 0.9016 -

DH-1 [24] - 0.6849 - - 0.8852 -

TSH-1 [56] - 0.6524 - - 0.8710 -

ITQ-1 [55] - 0.6306 - - 0.8342 -

SH-1 [51] - 0.6279 - - 0.8217 -

HashGAN-2 [57] - 0.6618 - - 0.8725 -

DeepBit-2 [26] - 0.6385 - - 0.8475 -

DH-2 [24] - 0.6327 - - 0.8326 -

TSH-2 [56] - 0.6143 - - 0.7911 -

ITQ-2 [55] - 0.5925 - - 0.7683 -

SH-2 [51] - 0.5812 - - 0.7526 -

suitable than previous methods on large-scale dataset with high dimensionality for real440

world applications.

27



Table 5: The query time (second) for one search by different methods on the UCF101 dataset and Cambridge

Gestures dataset, with different dimensions dq = 4, 9, 13 of query subspaces. Here we show the query time

of BSS with binary code length r = 3, 000. The query time of our methods and vector-based hashing

methods are with binary code length r = 64. ’-’ denotes that the method can not deal with the different

query dimensions.

Method
UCF101 Cambridge Gestures

dq = 4 dq = 9 dq = 13 dq = 4 dq = 9 dq = 13

HSS-KSMM 7.934e-4 7.934e-4 7.934e-4 1.215e-3 1.215e-3 1.215e-3

HSS-SMM - 6.755e-4 - - 9.025e-4 -

BCMC [46] 6.755e-4 6.755e-4 6.755e-4 9.025e-4 9.025e-4 9.025e-4

BSS [36] 6.127e-2 6.127e-2 6.127e-2 6.921e-2 6.921e-2 6.921e-2

GLH [42] 0.9251 0.9251 1.436 1.316 1.316 1.935

BHZ [10] 4.125 8.274 12.08 4.312 9.235 15.036

TSH [56] - 1.025e-2 - - 1.835e-2 -

ITQ [55] - 8.120e-3 - - 1.147e-2 -

SH [51] - 7.836e-3 - - 9.752e-3 -

Table 6: The storage cost (byte) of the UCF101 dataset (include training set and query set). Here we show

the storage cost of BSS with binary code length r = 3, 000, and the storage cost of our method with binary

code length r = 64.

Method UCF101 Cambridge Gestures

Original subspace 5.247e9 3.521e8

BSS [36] 5.047e7 3.231e6

HSS-KSMM 9.851e5 7.231e4

4.5. Video Retrieval

In this section, we show the superiority of our method by a video retrieval experi-

ment on the Big Bang Theory (BBT). We compared our method with the state-of-the-

28



500 1000 1500 2000 2500 3000

r(code length)

0.7

0.8

0.9

a
c
c
u

ra
c
y

dq=4

dq=9

dq=13

(a) BSS

4 8 16 32 64 128

r(code length)

0.5

0.6

0.7

0.8

0.9

1

a
c
c
u

ra
c
y

dq=4

dq=9

dq=13

(b) HSS-KSMM

Figure 6: (a) The accuracy of state-of-the-art method BSS with different code lengths on the Cambridge

Gestures Dataset. (b) The accuracy of our HSS-KSMM model with different code lengths on the Cambridge

Gestures Dataset.

art query-by-image video retrieval methods HER [43], and IBC, BBC [38].445

We constructed two sets of experiments, query-by-image and query-by-video video

retrieval. For query-by-image experiment, the experiment set of HER, IBC, and BBC

are as done in [43] and [38]. For our method, we randomly extracted 300 videos from

the 3341 videos for training and 100 videos from the rest as queries for 10 trials. Then

we calculated the average retrieval accuracy on 10 testing sets. We first represent train-450

ing videos as subspaces and learn the corresponding binary codes. Then we train a

set of classifiers as hash functions. The binary codes of query images can be effi-

ciently obtained by the learned classifiers, i.e. Eq. (30), where an image is considered

as one-dimensional subspace. The average retrieval accuracy with different length of

hash code is shown in Table 7. Our proposed method outperforms the state-of-the-art455

methods.

Although HER, IBC, and BBC are designed for query-by-image video retrieval,

they can also be applied to query-by-video video retrieval. We use their definition

of distance between projected image and video subspace to calculate the distance be-

tween video subspaces, and then apply their coding method. For our method, we first460

represent training and query videos as subspaces and then use our ANS retrieval algo-

rithm. Table 7 shows the result that our method significantly performs better than the

state-of-the-art methods.

29



Table 7: Comparison with the state-of-the-art methods on BBT1 database with different length of hash code.

Method
Query-by-image Query-by-video

16-bit 32-bit 64-bit 128-bit 16-bit 32-bit 64-bit 128-bit

HSS-KSMM 0.5576 0.5973 0.6052 0.6136 0.6051 0.6486 0.6604 0.6652

HSS-SMM 0.6024 0.6458 0.6587 0.6602 0.6024 0.6458 0.6587 0.6602

BCMC [46] 0.5520 0.5915 0.6014 0.6083 0.6013 0.6415 0.6523 0.6589

BBC [38] 0.5080 0.5401 0.5643 0.5718 0.5378 0.5537 0.5752 0.5968

IBC [38] 0.5152 0.5369 0.5561 0.5645 0.5425 0.5542 0.5736 0.5904

HER [43] 0.5049 0.5227 0.5490 0.5539 0.5214 0.5431 0.5614 0.5854

HashGAN-1 [57] 0.4832 0.5250 0.5389 0.5670 0.5023 0.5350 0.5602 0.5900

DeepBit-1 [26] 0.4455 0.4731 0.4928 0.5292 0.4716 0.4982 0.5376 0.5611

DH-1 [24] 0.4225 0.4468 0.4816 0.5127 0.4524 0.4817 0.5139 0.5475

TSH-1 [56] 0.3613 0.3752 0.3910 0.4154 0.3626 0.3912 0.4165 0.4321

ITQ-1 [55] 0.3310 0.3421 0.3573 0.3812 0.3428 0.3547 0.3761 0.3923

SH-1 [51] 0.3019 0.3096 0.3215 0.3541 0.3064 0.3186 0.3421 0.3596

HashGAN-2 [57] 0.4125 0.4370 0.4632 0.4810 0.4502 0.4886 0.4980 0.5103

DeepBit-2 [26] 0.3728 0.3886 0.4107 0.4239 0.4079 0.4305 0.4567 0.4793

DH-2 [24] 0.3758 0.3852 0.4096 0.4125 0.4058 0.4267 0.4513 0.4689

TSH-2 [56] 0.3325 0.3407 0.3528 0.3627 0.3198 0.3367 0.3452 0.3526

ITQ-2 [55] 0.3142 0.3158 0.3263 0.3381 0.3153 0.3241 0.3387 0.3504

SH-2 [51] 0.2932 0.3015 0.3124 0.3256 0.2916 0.3104 0.3221 0.3268

5. Conclusion

We have presented a hashing based method to solve the ANS search problem. Our465

method first learns the binary codes for training subspaces following a similarity p-

reserving criterion. Then the learned binary codes are used to train a set of matrix

binary classifiers as hash functions. The compact binary code for query subspace can

be efficiently generated by these matrix classifiers. Our method is further expanded

to cope with the case that query subspaces have different dimensions from the target470

database. The main contribution of our proposed method is that we do not transform

30



subspace into vector form, which fully utilize the subspace structural information. Sev-

eral experiments on face datasets and video datasets verify that our method can achieve

significant improvement in query time and storage cost with superior accuracy, when

compared with several state-of-the-art approaches. Furthermore, we also compare our475

method with several vector-based hashing methods. The results also show the superi-

ority of our subspace matrix based searching scheme. For future work, we will expand

this method with manifold based subspace similarity measurement such as Grassmann

kernels defined by KL-divergence.

References480

[1] X. Wang, X. Tang, Random sampling for subspace face recognition, International

Journal of Computer Vision 70 (1) (2006) 91–104.

[2] X. Zhang, Y. Jia, A linear discriminant analysis framework based on random

subspace for face recognition, Pattern Recognition 40 (9) (2007) 2585–2591.

[3] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, Y. Ma, Robust face recognition485

via sparse representation, IEEE Transactions on Pattern Analysis and Machine

Intelligence 31 (2) (2009) 210–227.

[4] L. Wang, X. Wang, J. Feng, Subspace distance analysis with application to adap-

tive bayesian algorithm for face recognition, Pattern recognition 39 (3) (2006)

456–464.490

[5] M. Blank, L. Gorelick, E. Shechtman, M. Irani, R. Basri, Actions as space-time

shapes, in: International Conference on Computer Vision, Vol. 2, 2005, pp. 1395–

1402.

[6] G. Liu, S. Yan, Latent low-rank representation for subspace segmentation and

feature extraction, in: International Conference on Computer Vision, 2011, pp.495

1615–1622.

31



[7] A. W. Fitzgibbon, A. Zisserman, Joint manifold distance: a new approach to ap-

pearance based clustering, in: Computer Vision and Pattern Recognition, Vol. 1,

2003.

[8] H. Zhang, A. C. Berg, M. Maire, J. Malik, Svm-knn: Discriminative nearest500

neighbor classification for visual category recognition, in: Computer Vision and

Pattern Recognition, Vol. 2, 2006, pp. 2126–2136.

[9] V. Blanz, T. Vetter, Face recognition based on fitting a 3d morphable model, IEEE

Transactions on Pattern Analysis and Machine Intelligence 25 (9) (2003) 1063–

1074.505

[10] R. Basri, T. Hassner, L. Zelnikmanor, Approximate nearest subspace search,

IEEE Transactions on Pattern Analysis and Machine Intelligence 33 (2) (2011)

266–278.

[11] R. Vidal, Subspace clustering, IEEE Signal Processing Magazine 28 (2) (2011)

52–68.510

[12] D. S. Broomhead, M. J. Kirby, The whitney reduction network: A method for

computing autoassociative graphs, Neural Computation 13 (11) (2001) 2595–

2616.

[13] D. Broomhead, M. Kirby, Dimensionality reduction using secant-based projec-

tion methods: The induced dynamics in projected systems, Nonlinear Dynamics515

41 (1-3) (2005) 47–67.

[14] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, A. Y. Wu, An optimal

algorithm for approximate nearest neighbor searching fixed dimensions, Journal

of the ACM (JACM) 45 (6) (1998) 891–923.

[15] E. Kushilevitz, R. Ostrovsky, Y. Rabani, Efficient search for approximate nearest520

neighbor in high dimensional spaces, SIAM Journal on Computing 30 (2) (2000)

457–474.

32



[16] M. Muja, Fast approximate nearest neighbors with automatic algorithm configu-

ration, in: International Conference on Computer Vision Theory and Application

Vissapp, 2009, pp. 331–340.525

[17] A. Andoni, P. Indyk, R. Krauthgamer, H. L. Nguyen, Approximate line nearest

neighbor in high dimensions, in: Proceedings of ACM-SIAM Symposium on

Discrete Algorithms, 2009, pp. 293–301.

[18] B. Wang, X. Liu, K. Xia, K. Ramamohanarao, D. Tao, Random angular projec-

tion for fast nearest subspace search, in: Pacific Rim Conference on Multimedia,530

Springer, 2018, pp. 15–26.

[19] M. Datar, N. Immorlica, P. Indyk, V. S. Mirrokni, Locality-sensitive hashing

scheme based on p-stable distributions, in: Symposium on Computational Ge-

ometry, 2004, pp. 253–262.

[20] D. Zhang, J. Wang, D. Cai, J. Lu, Self-taught hashing for fast similarity search,535

in: International ACM SIGIR Conference on Research and Development in In-

formation Retrieval, 2010, pp. 18–25.

[21] X. Liu, J. He, B. Lang, Multiple feature kernel hashing for large-scale visual

search, Pattern Recognition 47 (2) (2014) 748–757.

[22] J. Song, L. Gao, L. Liu, X. Zhu, N. Sebe, Quantization-based hashing: a general540

framework for scalable image and video retrieval, Pattern Recognition 75 (2018)

175–187.

[23] X. Bai, C. Yan, H. Yang, L. Bai, J. Zhou, E. R. Hancock, Adaptive hash retrieval

with kernel based similarity, Pattern Recognition 75 (2018) 136–148.

[24] V. E. Liong, J. Lu, G. Wang, P. Moulin, J. Zhou, Deep hashing for compact binary545

codes learning, in: Computer Vision and Pattern Recognition, 2015, pp. 2475–

2483.

[25] Z. Dong, S. Jia, T. Wu, M. Pei, Face video retrieval via deep learning of binary

hash representations., in: AAAI Conference on Artificial Intelligence, 2016, pp.

3471–3477.550

33



[26] K. Lin, J. Lu, C. S. Chen, J. Zhou, Learning compact binary descriptors with un-

supervised deep neural networks, in: Computer Vision and Pattern Recognition,

2016, pp. 1183–1192.

[27] H. Liu, R. Wang, S. Shan, X. Chen, Deep supervised hashing for fast image

retrieval, in: Computer Vision and Pattern Recognition, 2016, pp. 2064–2072.555

[28] Z. Dong, C. Jing, M. Pei, Y. Jia, Deep cnn based binary hash video representations

for face retrieval, Pattern Recognition 81 (2018) 357–369.

[29] X. Wang, X. Tang, A unified framework for subspace face recognition, IEEE

Transactions on Pattern Analysis and Machine Intelligence 26 (9) (2004) 1222–

1228.560

[30] J. Hamm, D. D. Lee, Grassmann discriminant analysis: a unifying view on

subspace-based learning, in: International Conference on Machine Learning,

2008, pp. 376–383.

[31] J.-M. Chang, M. Kirby, H. Kley, C. Peterson, B. Draper, J. R. Beveridge, Recog-

nition of digital images of the human face at ultra low resolution via illumination565

spaces, in: Asian Conference on Computer Vision, Springer, 2007, pp. 733–743.

[32] J. R. Beveridge, B. A. Draper, J.-M. Chang, M. Kirby, H. Kley, C. Peterson,

Principal angles separate subject illumination spaces in ydb and cmu-pie, IEEE

Transactions on Pattern Analysis and Machine Intelligence 31 (2) (2008) 351–

363.570

[33] R. Basri, T. Hassner, L. Zelnikmanor, Approximate nearest subspace search with

applications to pattern recognition, in: Computer Vision and Pattern Recognition,

2007, pp. 1–8.

[34] R. Basri, T. Hassner, L. Zelnik-Manor, A general framework for approximate

nearest subspace search, in: International Conference on Computer Vision Work-575

shops, 2009, pp. 109–116.

34



[35] J. Ji, J. Li, S. Yan, Q. Tian, B. Zhang, Similarity-preserving binary signature

for linear subspaces., in: AAAI Conference on Artificial Intelligence, 2014, pp.

2767–2772.

[36] J. Ji, J. Li, Q. Tian, S. Yan, B. Zhang, Angular-similarity-preserving binary signa-580

tures for linear subspaces, IEEE Transactions on Image Processing 24 (11) (2015)

4372–80.

[37] A. Gionis, P. Indyk, R. Motwani, Similarity search in high dimensions via hash-

ing, in: International Conference on Very Large Data Bases, 1999, pp. 518–529.

[38] R. Xu, Y. Yang, F. Shen, N. Xie, H. T. Shen, Efficient binary coding for subspace-585

based query-by-image video retrieval, in: Proceedings of the 2017 ACM on Mul-

timedia Conference, ACM, 2017, pp. 1354–1362.

[39] R. G. Baraniuk, M. B. Wakin, Random projections of smooth manifolds, Foun-

dations of computational mathematics 9 (1) (2009) 51–77.

[40] T. Marrinan, J. R. Beveridge, B. Draper, M. Kirby, C. Peterson, Flag manifolds590

for the characterization of geometric structure in large data sets, in: Numerical

Mathematics and Advanced Applications-ENUMATH 2013, Springer, 2015, pp.

457–465.

[41] S. O’Hara, B. A. Draper, Scalable action recognition with a subspace forest, in:

Computer Vision and Pattern Recognition, 2012, pp. 1210–1217.595

[42] X. Wang, S. Atev, J. Wright, G. Lerman, Fast subspace search via grassmannian

based hashing, in: International Conference on Computer Vision, 2013, pp. 2776–

2783.

[43] Y. Li, R. Wang, Z. Huang, S. Shan, X. Chen, Face video retrieval with image

query via hashing across euclidean space and riemannian manifold, in: Computer600

Vision and Pattern Recognition, 2015, pp. 4758–4767.

[44] A. Andoni, P. Indyk, Near-optimal hashing algorithms for approximate nearest

neighbor in high dimensions, in: IEEE Symposium on Foundations of Computer

Science, 2006, pp. 459–468.

35



[45] L. Luo, Y. Xie, Z. Zhang, W. Li, Support matrix machines, International Confer-605

ence on Machine Learning (2015) 938–947.

[46] L. Zhou, X. Bai, X. Liu, J. Zhou, Binary coding by matrix classifier for efficient

subspace retrieval, in: Proceedings of the 2018 ACM on International Conference

on Multimedia Retrieval, ACM, 2018, pp. 82–90.

[47] F. Shen, C. Shen, W. Liu, H. Tao Shen, Supervised discrete hashing, in: Computer610

Vision and Pattern Recognition, 2015, pp. 37–45.

[48] G. H. Golub, C. F. Van Loan, Matrix computations. 1996, Johns Hopkins Univer-

sity, Press, Baltimore, MD, USA (1996) 374–426.

[49] H. Hotelling, Relations between two sets of variates, in: Breakthroughs in statis-

tics, Springer, 1992, pp. 162–190.615

[50] A. Edelman, T. A. Arias, S. T. Smith, The geometry of algorithms with orthog-

onality constraints, SIAM journal on Matrix Analysis and Applications 20 (2)

(1998) 303–353.

[51] Y. Weiss, A. Torralba, R. Fergus, Spectral hashing., in: Conference on Neural

Information Processing Systems, 2008, pp. 1753–1760.620

[52] T. Goldstein, Donoghue, S. Setzer, Fast alternating direction optimization meth-

ods, Siam Journal on Imaging Sciences 7 (3).

[53] J. Sun, Y. Zhang, J. Wright, Efficient point-to-subspace query in `1 with applica-

tion to robust face recognition, European Conference on Computer Vision (2012)

416–429.625

[54] H. Pirsiavash, D. Ramanan, C. Fowlkes, Bilinear classifiers for visual recognition,

in: International Conference on Neural Information Processing Systems, 2009,

pp. 1482–1490.

[55] Y. Gong, S. Lazebnik, Iterative quantization: A procrustean approach to learning

binary codes, in: Computer Vision and Pattern Recognition, 2011, pp. 817–824.630

36



[56] G. Lin, C. Shen, D. Suter, A. V. D. Hengel, A general two-step approach to

learning-based hashing, in: International Conference on Computer Vision, 2013,

pp. 2552–2559.

[57] K. Ghasedi Dizaji, F. Zheng, N. Sadoughi, Y. Yang, C. Deng, H. Huang, Unsuper-

vised deep generative adversarial hashing network, in: Proceedings of the IEEE635

Conference on Computer Vision and Pattern Recognition, 2018, pp. 3664–3673.

[58] R. Gross, I. Matthews, J. Cohn, T. Kanade, S. Baker, Multi-pie., Image and Vision

Computing 28 (5) (2010) 807–813.

[59] L. Wolf, T. Hassner, I. Maoz, Face recognition in unconstrained videos with

matched background similarity, in: Computer Vision and Pattern Recognition,640

2011, pp. 529–534.

[60] K. Soomro, A. Roshan Zamir, M. Shah, UCF101: A dataset of 101 human actions

classes from videos in the wild, in: CRCV-TR-12-01, 2012.

[61] T.-K. Kim, S.-F. Wong, R. Cipolla, Tensor canonical correlation analysis for ac-

tion classification, in: Computer Vision and Pattern Recognition, 2007, pp. 1–8.645

[62] M. Bauml, M. Tapaswi, R. Stiefelhagen, Semi-supervised learning with con-

straints for person identification in multimedia data, in: Computer Vision and

Pattern Recognition, 2013, pp. 3602–3609.

37



Lei Zhou received the Bachelor’s degree in 2016 from the School of 
Mathematics and Systems Science, Beihang University, Beijing, 
China, where he is currently working toward the Ph.D. degree at the 
School of Computer Science and Engineering. 
His current research interests include machine learning, computer 
vision, and image processing. 
 

 

 

Xiao Bai received the B.Eng. degree in computer science from 
Beihang University of China, Beijing, China, in 2001, and the Ph.D. 
degree in computer science from the University of York, York, U.K., 
in 2006. 
He was a Research Officer (Fellow, Scientist) with the Computer 
Science Department, University of Bath, until 2008. He is currently a 
Full Professor with the School of Computer Science and Engineering, 

Beihang University. He has authored or co-authored more than 60 papers in journals 
and refereed conferences. His current research interests include pattern recognition, 
image processing, and remote sensing image analysis. 
 

 

Xianglong Liu received the B.S. and Ph.D. degrees in computer 
science from Beihang University, Beijing, in 2008 and 2014. From 
2011 to 2012, he visited the Digital Video and Multimedia Laboratory, 
Columbia University as a joint Ph.D. student. He is currently an 
Assistant Professor with Beihang University. 
His research interests include machine learning, computer vision, and 
multimedia information retrieval. 

 

 

Jun Zhou received the B.S. degree in computer science and the B.E. 
degree in international business from Nanjing University of Science 
and Technology, Nanjing, China, in 1996 and 1998, respectively. He 
received the M.S. degree in computer science from Concordia 
University, Montreal, Canada, in 2002, and the Ph.D. degree from the 
University of Alberta, Edmonton, Canada, in 2006. He is a senior 

lecturer in the School of Information and Communication Technology at Griffith 
University, Nathan, Australia. Previously, he had been a research fellow in the Research 
School of Computer Science at the Australian National University, Canberra, Australia, 
and a researcher in the Canberra Research Laboratory, NICTA, Australia. 
His research interests include pattern recognition, computer vision and remote sensing 
with their applications to spectral imaging and environmental informatics. 
 

 

*Author Biography



Edwin R. Hancock holds a BSc degree in physics (1977), a PhD 
degree in high-energy physics (1981) and a D.Sc. degree (2008) from 
the University of Durham, and a doctorate Honoris Causa from the 
University of Alicante in 2015. He is Professor in the Department of 
Computer Science, where he leads a group of some faculty, research 
staff, and PhD students working in the areas of computer vision and 
pattern recognition. His main research interests are in the use of 

optimization and probabilistic methods for high and intermediate level vision. He is a 
fellow of the International Association for Pattern Recognition and the IEEE. He is 
currently Editor-in-Chief of the journal Pattern Recognition, and was founding Editor-
in-Chief of IET Computer Vision from 2006 until 2012. He has also been a member of 
the editorial boards of the journals IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Pattern Recognition, Computer Vision and Image Understanding, Image 
and Vision Computing, and the International Journal of Complex Networks. He is 
currently Vice President of the IAPR. 


