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Abstract

We study the problem of unsupervised domain adaptive re-identification (re-ID)
which is an active topic in computer vision but lacks a theoretical foundation.
We first extend existing unsupervised domain adaptive classification theories to
re-ID tasks. Concretely, we introduce some assumptions on the extracted feature
space and then derive several loss functions guided by these assumptions. To
optimize them, a novel self-training scheme for unsupervised domain adaptive
re-ID tasks is proposed. It iteratively makes guesses for unlabeled target data
based on an encoder and trains the encoder based on the guessed labels. Extensive
experiments on unsupervised domain adaptive person re-ID and vehicle re-ID tasks
with comparisons to the state-of-the-arts confirm the effectiveness of the proposed
theories and self-training framework. Our code is available on GitHub.

1 Introduction

To re-identify a particular is to identify it as (numerically) the same particular as one encountered on
a previous occasion[24]. Image/video re-identification (re-ID) is a fundamental problem in computer
vision and re-ID techniques serve as an indispensable tool for numerous real life applications, for
instance, person re-ID for public safety [34], travel time measurement via vehicle re-ID [5]. The
key component of re-ID tasks is the notion of identity, which makes re-ID tasks quite different from
traditional classification tasks in the following ways: Firstly, determining the label involves two
samples, i.e., there is no label when an individual sample is given; secondly, in re-ID tasks the samples
in test sets belong to a previously unseen identity while in classification tasks the test samples all fall
into a known class. Take the person re-ID task as an example, our target is to spot a person of interest
in an image set, which do not have a specific class and is not accessible in the training set.

In many practical situations, we face the problem that the training data and testing data are in different
domains. Going back to the person re-ID example, data from a new camera is placed in a new
environment, i.e., a new domain is added, which are too costly and impractical to be annotated, a
serviceable re-ID model should have a satisfactory accuracy on unlabeled data. Unsupervised domain
adaptation means that learning a model for target domain when given both a fully annotated source
dataset and an unlabeled target dataset. Existing algorithms for unsupervised domain adaptive re-ID
tasks typically learn domain-invariant representation or generate data for target domain through
some newly designed networks, which are practical solutions but lack theoretical support [14, 30, 6].
Meanwhile, current theoretical analysis of unsupervised domain adaptation are only concerned with
classification tasks [2, 3, 17], which is not suitable for re-ID tasks. A theoretical guarantee of the
domain adaptive re-ID problem is in need.
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In this paper, we first theoretically analyze unsupervised domain adaptive re-ID tasks based on [3],
in which three assumptions are introduced for classification. It is assumed that the source domain
and the target domain share a same label space in [3]. However, in re-ID tasks, the notion of label
is defined for pairwise data and the label indicates a data pair belongs to a same ID or not. We
adapt the three assumptions for the input space of pairwise data. Moreover, instead of imposing the
assumptions on the raw data as [3], we assume the resemblance between the feature space of two
domains. The first assumption is that the criteria of classifying feature pairs is the same between two
domains, which is referred to as covariate assumption. The second one is Separately Probabilistic
Lipschitzness, indicating that the feature pairs can be divided into clusters. And the last assumption
is weight ratio, concerning the probability of existing a repeated feature among all the features from
the two domains. Based on the three assumptions, we show the learnability of unsupervised domain
adaptive re-ID tasks. Moreover, since our guarantee is built on well extracted features from real
images, the encoder, i.e. feature extractor, is trained via a novel self-training framework, which is
originally proposed for NLP tasks [19, 20]. Concretely, we iteratively refine the encoder by making
guesses on unlabeled target domain and then train the encoder with these samples. In the light of
the mentioned assumptions, we propose several loss functions on the encoder and samples with
guessed label. And the problem of selecting which sample with guessed label to train is optimized by
minimizing the proposed loss functions. For the Separately Probabilistic Lipschitzness assumption,
we wish to minimize the intra-cluster and inter-cluster distance. Then the sample selecting problem
is turned into data clustering problem and minimizing loss functions is transformed into finding a
distance metric for the data. Also, another metric for Weight Ratio is designed. After combining the
two metrics together, we have a distance evaluating the confidence of the guessed labels. Finally, the
DBSCAN clustering method [5] is employed to generate data clusters according to a threshold on the
distance. With pseudo-labels on selected data cluster from target domain, the encoder is trained with
triplet loss [32], which is effective for re-ID tasks.

We carry out experiments on diverse re-ID tasks, which demonstrate the priority of our framework.
First the well studied person re-ID task is tested and we show the adaptation results between two large
scale datasets, i.e. Market-1501 [33] and DukeMTMC-reID [25]. Then we evaluate our algorithm on
vehicle re-ID task, in which larger datasets VeRi-776 [16] and PKU-VehicleID [15] are involved. To
sum up, the structure of our paper is shown in Figure 2 and our contributions are as follows:

• We introduce the theoretical guarantees of unsupervised domain adaptive re-ID based on
[3]. A learnability result is shown under three assumptions that concerning the feature space.
To the best of our knowledge, our paper is the first theoretical analysis work on domain
adaptive re-ID tasks.

• We theoretically turn the goal of satisfying the assumptions into tractable loss functions on
the encoder network and data samples.

• A self-training scheme is proposed to iteratively minimizing the loss functions. Our frame-
work is applicable to all re-ID tasks and the effectiveness is verified on large-scale datasets
for diverse re-ID tasks.

1.1 Related work

Unsupervised domain adaptation has been widely studied for decades and the algorithms are divided
into four categories in a survey [18]. Using the notions in the survey, our proposed method can
be viewed as a combination of feature representation and self-training. Nevertheless, recently
unsupervised domain adaptation is widely studied for the person re-ID task.

Unsupervised domain adaptation and feature representation. Feature representation based
methods try to find a latent feature space shared between domains. In [26], they wish to mini-
mize a distance between means of the two domains. In a more general manner, [22] and [4] try to
find a feature space in which the source and target distributions are similar and the statistic Maximum
Mean Discrepancy (MMD) is employed. Also, [10] utilize features that cannot discriminate between
source and target domains. Our method and these methods have a same intuition that some features
from the source and target domain are generalizable. However, unlike these methods, the process of
approximating the intuition in our method is in an iterative manner and we do not directly optimize
on the distribution of target domain features.

Unsupervised domain adaptation and self-training. Self-training methods make guesses on tar-
get domain and iteratively refine the guesses and are closely related to the Expectation Maximization
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(EM) algorithm [21]. In [27], they increase the weight on the target data at each iteration, which is
actually altering the relative contribution of source and target domains. A more similar work is [1], in
which the model is initially trained on source domain, and then the top-1 recognition hypotheses on
the target domain are used for adapting their language model. In our algorithm, we do not guess the
labels since different re-ID datasets have totally different labels (identities) and instead we perform
clustering on the data.

Unsupervised domain adaptive person re-ID. Due to the rapid development of person re-ID
techniques, some useful unsupervised domain adaptive person re-ID methods are proposed. [23]
adopt a multi-task dictionary learning scheme to learn a view-invariant representation. Besides,
generative models are also applied to domain adaptation in [6, 31]. Wang et al. [30] design a network
learning an attribute-semantic and identity discriminative feature representation. Similarly, Li et al.
[14] leverages information across datasets and derives domain-invariant features via an adaptation
and a re-ID network. Though all the above methods solve the adaptation problem, they are not
supported by a theoretical framework and their generalization abilities are not verified in other re-ID
tasks. Fan et al. [8] propose a progressive unsupervised learning method consisting of clustering and
fine-tuning the network, which is similar to our self-training scheme. However, they only focuses on
unsupervised learning, not unsupervised domain adaptation. In addition, their iteration framework is
not guided by specific assumptions thus having no theoretical derived loss functions as ours.

2 Notations and Basic Definitions
In classification tasks, let X ⊆ Rd be the input space and Y ⊂ R be the output space, and each
sample from the input space is denoted by black lower case letters x ∈ X. We denote source domain
as S and target domain as T , and both of them are probability distribution over the input space X.
Moreover, the real label of each sample is denoted by a labeling function l : X → Y. However,
the above notations could not be directly used to analyze the re-ID tasks, because there is no same
identity in two domains, i.e. S and T do not have the same output (label) space. Fortunately, for
re-ID tasks, by treating re-ID as classifying same or different data pairs we are still able to utilize the
notations and former results with some simple reformulations.

Specifically, in re-ID tasks, we have a training set consist of data pairs, which means that the input
space is (Z,Z) ⊆ Rn×n, and the output space is Y = {0, 1}, where 1 means the identities in the pair
are the same and 0 means different. Observing that in re-ID tasks, the two domain indeed have some
overlapping cues, such as color of clothes, wearing a backpack or not in person re-id. That is, we can
encode the original data from the two domains with some feature variables or latent variables, and
then it is reasonable to assume that distribution of features from two domains satisfy some criteria
just as the assumptions used in [3] for classification tasks. Formally, we denote the feature encoder as
x(·) and x : Z→ Rd, and then the labeling function is l : X×X→ {0, 1}, where X ⊆ Rd is the
extracted feature space. For simplicity, we denote l(x(z1),x(z2)) = l(x1,x2), where z1, z2 means
two different raw data. Note that the labeling function is symmetric, i.e. l(x1,x2) = l(x2,x1).

3 Assumptions and DA-Learnability
In this section, we first introduce some assumptions reflecting how the source domain interacting
with target domain. Then with these assumptions we show the learnability of unsupervised domain
adaptive re-ID.

The first assumption is covariate shift, which means that the criteria of classifying data pairs are the
same for source domain and target domain. In other words, we have lS(x) = lT (x) for classification
tasks, and similarly we can define the covariate shift for re-id tasks on the extracted feature space.
Definition 1 (Covariate Shift). We say that source and target distribution satisfy the covariate shift
assumption if they have the same labeling function, i.e. if we have lS(x1,x2) = lT (x1,x2).
Another assumption is inspired by the “Probabilistic Lipschitzness”, which is originally proposed for
semi-supervised learning in [28] and then investigated with application to domain adaptation tasks
in [3]. This assumption captures the intuition that in a classification task, the data can be divided
into label-homogeneous clusters and are separated by low-density regions. However, in re-id tasks,
the labeling function is a multivariable function, thus the original Probabilistic Lipschitzness is not
applicable. Note that the intuition of re-id tasks is that similar pairs can form as a cluster. That is, for
an instance, the similar data can be divided into a cluster and the cluster is separated out from the
data space with a low-density gap. Mathematically, we have the following definition.
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Definition 2 (Separately Probabilistic Lipschitzness (SPL)). Let φ : R → [0, 1] be monotonically
increasing. Symmetric function f : X×X→ R is φ-SPL with respect to a distribution D on X, if
for all λ > 0,

P
x1,x2∼D

(∃y : |f(x1,x2)− f(x1,y)| > λ‖x2 − y‖) 6 φ(λ) (1)

To ensure the learnability of the domain adaptation task, we still need a critical assumption concerning
how much overlap there is between the source and target domain. We again follow the assumption
used in [3] on the source and target distribution, which is a relaxation of the pointwise density ratio
between the two distributions.
Definition 3 (Weight Ratio). Let B ⊆ 2X be a collection of subsets of the input space X measurable
with respect to both S and T . For some η > 0 we define the η-weight ratio of the source distribution
and the target distribution with respect to B as

CB,η(S, T ) = inf
b∈B
T (b)>η

S(b)
T (b)

(2)

Further, we define the weight ratio of the source distribution and the target distribution with respect
to B as

CB(S, T ) = inf
b∈B
T (b) 6=0

S(b)
T (b)

(3)

Following the notations in [3], we also assume that our domain is the unit cube X = [0, 1]d and let
B denote the set of axis aligned rectangles in [0, 1]d. For our re-ID tasks, the risk of a classifier h on
target domain is

RT (h) = E
x1,x2∼T

[L(h(x1,x2), l(x1,x2))]. (4)

Let the Nearest Neighbor classifier be hNN, then the following theorem implies the learnability of
domain adaptive re-ID, of which the proof is included in supplemental materials.
Theorem 1. Let the domain be the unit cube,X = [0, 1]d, and for some C > 0, let (S, T ) be a pair of
source and target distributions over X satisfying the covariate shift assumption, with CB(S, T ) > C,
and their common deterministic labeling function l : X×X→ {0, 1} satisfying the φ-SPL property
with respect to the target distribution, for some function φ. Then, for all ε, δ > 0, for all (S, T ), if S
is a source generated sample set of size at least

m >
4

εδCe

(
φ−1

( ε
4

)√
d
)d

then, with probability at least 1− δ (over the choice of S), RT (hNN) is at most ε.

4 Reinforcing the Assumptions
In previous section, we show that with some assumptions on the extracted feature space, unsupervised
domain adaptation is learnable. Thus we are concerned with how to train a feature extractor, i.e.
encoder, satisfying the mentioned assumptions. Briefly speaking, we first derive several loss functions
according to the assumptions and then iteratively train the encoder to minimize the loss functions via
a self-training framework.

Self-training framework. Assume that we have an encoder x and some samples D with guessed
label l on target domain, and the loss function is L(x,D, l). In self-training, at first a x(i) is used
to extract features from all available unlabeled samples, and the target now is minimizing the loss
through selecting samples, that is minD,l L(x(i),D, l). On the next round, with these selected
samples, the encoder x(i) is updated by solving the minimization problem minx L(x,D(i), l(i)).

It is worthwhile to note that the covariate shift assumption only depends on the property of labeling
function, thus in this section we only consider the proposed SPL and weight ratio.

4.1 Reinforcing the SPL

Recall that the original data is z ∈ Z and we wish to iteratively find a encoder x(·) such that in
the feature space the SPL property is satisfied as much as possible. So we first need a definition to
evaluate whether one encoder is better than another concerning the SPL property.
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Definition 4. Encoder xa(·) is said to be more clusterable than xb(·) with respect to a labeling
function l and a distribution D over Z, if there exists ε ∈ (0, 1), and λ ∈ {λ1, λ2} with λ1λ2 < 0,
such that

P
z1,z2∼D

(
∃z3 : |l(xa(z1),xa(z2))− l(xa(z1),xa(z3))| − ε > λ‖xa(z2)− xa(z3)‖

)
6 P

z1,z2∼D

(
∃z3 : |l(xb(z1),xb(z2))− l(xb(z1),xb(z3))| − ε > λ‖xb(z2)− xb(z3)‖

)
The above equation differs from the original SPL (1) for the reason that the original form is too strict
to be satisfied. Now we can easily define a loss function

L(x,D, l; ε, λ) = E
z1,z2∼D

[
∃z3 : |l(x(z1),x(z2))− l(x(z1),x(z3))| − ε > λ‖x(z2)− x(z3)‖

]
,

where D means a set of samples and l is the guessed labeling function. However, directly performing
optimization on the loss function is infeasible since the analytical form is unknown. To overcome the
difficulty, we adopt intra-cluster distance and inter-cluster distance,

Lintra(x,D, l) =
∑

l(x(z1),x(z2))=1

‖x(z1)− x(z2)‖, (5)

Linter(x,D, l) =
∑

l(x(z1),x(z2))=0

−‖x(z1)− x(z2)‖. (6)

We show that minimizing Lintra and Linter is appropriate for being more clusterable through the
following theorem.
Theorem 2. For two encoders xa,xb, a distribution D and a labeling function l, then

xa is more clusterable than xb ⇔

{
Lintra(x

a,D, l) 6 Lintra(x
b,D, l)

Linter(x
a,D, l) 6 Linter(x

b,D, l)
For proof we refer reader to the supplemental materials. Here, Definition 4 and Theorem 2 describe
how to evaluate an encoder with a fixed distribution D and labeling function l. Obviously, we can
fix the encoder and rewrite the results to evaluate the samples with guessed labels. For the sake
of conciseness, the details are omitted. When D and l are fixed during the iteration procedure,
minimizing Lintra and Linter are straightforward. Contrastingly, we have to focus more on the
strategy of picking out samples with guessed labels.

Selecting samples via clustering. In spite of the similarity between Lintra and Linter, they do
not share a same strategy regarding the sample selection step. For Lintra, if all the data in T are
encoded with a x, then for each pair (xi,xj), it is natural to assume that a smaller ‖xi − xj‖ implies
a higher confidence that l(xi,xj) = 1. Likewise, a larger ‖xi − xj‖ implies a higher confidence that
l(xi,xj) = 0. But choosing a high confidence different pair as training data does not really improve
the real performance, because the accuracy is more sensitive about the minimal distance of different
pairs, i.e., infi:l(xd,xi)=0 ‖x(zd)− x(zi)‖. So rather than directly selecting different pairs, we treat
the selected samples as a series of clusters and dissimilar pairs are selected on the basis of different
clusters. That is to say, in order to minimize Lintra and Linter simultaneously, we perform clustering
on the data with guessed labels.

Distance metrics and loss functions. Up to this point, we are facing an unsupervised clustering
problem, which is largely settled by the distance metric. In other words, designing a sample selecting
strategy to minimize a loss turns into designing a distance metric between samples, and a better
distance should lead to a lower Lintra and Linter. It is a common practice in image retrieval that the
contextual similarity [12] measure is more robust and beneficial for a lower Lintra.

In our practice, we adopt the k-reciprocal encoding in [35] as the distance metric, which is a variation
of Jaccard distance between nearest neighbors sets. Precisely, with an encoder x, all samples
from T are encoded and with these features a distance matrix M ∈ Rmt×mt is computed where
Mij = ‖xi − xj‖2 and mt is the total number of target samples. Then M is updated by

Mij =

{
e−Mij if j ∈ Ii,
0 otherwise.

(7)

where the indices set Ii is the so called robust set for xi. Ii is determined by first choosing mutual k
nearest neighbors for the probe, then incrementally adding elements. Specifically, denote the indices
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of mutual k nearest neighbors of xi as Kk(xi) and then for all s ∈ Kk(xi), if |Kk(xi) ∩ K k
2
(xs)| >

2
3 |K k

2
(xs)|, let Ii ← Kk(xi) ∪ K k

2
(xs). In particular, for a pair (xi,xj), we have

dJ(xi,xj) = 1−
∑mt

k=1 min(Mik,Mjk)∑mt

k=1 max(Mik,Mjk)
. (8)

4.2 Reinforcing the weight ratio

As mentioned before, weight ratio is a crucial part to support the learnability of domain adaptation.
Apart from directly define a loss based on the original weight ratio definition, a similar way as the
SPL case is minimizing the loss

LWR(x,D) = E
zd∼D

[
inf

zs∼S
‖x(zd)− x(zs)‖

]
, (9)

where S is the source domain. The intuition here is to enhance the degree of similarity, which means
that each target feature is close to some source features. We denote CB,η(S, T ;x) as the weight ratio
when using x as the encoder, where B is defined in Section 3. The following theorem demonstrate
that our LWR makes sense and the proof is in the supplemental materials.
Theorem 3. For two encoders xa,xb, a distribution D, if η is a random variable and its support is a
subset of R+ , then

LWR(x
a,D) 6 LWR(x

b,D)⇔ E [CB,η(S,D;xa)] > E
[
CB,η(S,D;xb)

]
However, unlike Linter and Lintra, it is hard to optimize on x for LWR because of the infimum. On
the other hand, selecting samples is easily done via giving more confidence to the sample with smaller
infzs∼S ‖x(zd)− x(zs)‖. More specifically, for each xi from T , we search the nearest neighbor in
S. The function measuring the confidence for each xi is denoted by

dW(xi) = 1− e−‖xi−NS(xi)‖2 . (10)

whereNS(xi) means the nearest neighbor of xi in source domain S , and a smaller dW means a higher
confidence. To transform dW and dJ onto the same scale, we perform a simple normalization on dW,
i.e., divided by maxi dW(xi). Combining with dJ, the final distance matrix is Mij = d(xi,xj) and

d(xi,xj) = (1− λ)dJ(xi,xj) + λ(dW(xi) + dW(xj)), (11)

where λ ∈ [0, 1] is a balancing parameter.

4.3 Overall algorithm

So far, general outlines of reinforcing the assumptions have been elaborated, except the details about
the clustering method. In our framework, a good clustering method should possess the following
properties: (a) it does not require the number of clusters as an input, because in fact a cluster means
an identity and the number of identities is trivial and unknown; (b) it is able to avoid pairs of low
confidence, that is allowing some points not belonging to any clusters; (c) it is scalable enough
to incorporate our theoretically derived distance metric. We employ the clustering method named
DBSCAN [7], which has stood the test of time and exactly have the mentioned advantages.

Now we provide some other practical details of our domain adaptive re-ID algorithm. At the
beginning, an encoder x(0) is well trained on S and all the pairs are computed with Eqn.(11). Next,
we describe how we set the threshold controlling whether a pair should be used to train. Intuitively,
the threshold should be irrelevant to tasks since the scale of d varies from tasks. So in our method,
we first sort all the distance from lowest to highest and the average value of top pN pairs is set to be
the threshold τ , where N is the total number of possible pairs and p is percentage. On these data with
pseudo-labels, the encoder is then trained with triplet loss [32]. Our whole framework is concluded
in Algorithm 1.

5 Experiments

In this section, we test our unsupervised domain adaptation algorithm on person re-ID and vehicle re-
ID. The performance are evaluated by cumulative matching characteristic (CMC) and mean Average
Precision (mAP), which are multi-gallery-shot evaluation metrics defined in [33].

6



Algorithm 1: Unsupervised Domain Adaptation for Re-ID
input :source domain dataset S, unlabeled target domain dataset T with mt samples, balancing parameter λ,

percentage p, the minimum size of a cluster N1, iteration number N2

output :an encoder x for target domain
1 Train an encoder x(0) on S;
2 Compute T (0) = x(0)(T ), S(0) = x(0)(S);
3 Compute a distance matrix M (0) on T (0), S(0) by Eqn.(11);
4 Sort all the N elements in M (0) from low to high and record the mean of top pN values as threshold τ ;
5 Select train data D(0) = DBSCAN(M (0); τ,N1);
6 Train x(1) on D;
7 for i = 1 to N2 do
8 Compute T (i) = x(i)(T (i−1)), S(i) = x(i)(S(i−1));
9 Compute M (i) on T (i), S(i);

10 Select D(i) = DBSCAN(M (i); τ,N1);
11 Train x(i+1) on D(i);
12 end

Parameter settings and implementation details. In all the following re-ID experiments, we
empirically set λ = 0.1, p = 1.6× 10−3, N1 = 4 and N2 = 20. Basically, the encoder is ResNet-50
[11] pre-trained on ImageNet. Both triplet and softmax loss are used for initializing the network on
source domain, while only triplet loss is used for refining the encoder on target domain. More details
about the network, training parameters and visual examples from different domains are included
in the supplemental materials. Moreover, in the supplemental materials we also investigate other
distance metrics and clustering methods.

5.1 Person re-ID

Table 1: The details of datasets used in our experi-
ments.

Datasets Training Testing
#IDs #Images #IDs #Images

Market [33] 751 12,936 750 19,732
Duke [25] 702 16,522 702 19,889
VeRi [16] 576 37,778 200 13,257
PKU [15] 2,290 24,157 - -

Market-1501 [33] and DukeMTMC-reID [25]
are two large scale datasets and frequently
used for unsupervised domain adaptation exper-
iments. Both of the two datasets are split into
a training set and a testing set. The details in-
cluding the number of identities and images are
shown in Table 1.

Comparison methods are selected in three as-
pects. Firstly, we show the performance of direct
transfer, that is directly using the initial source-
trained encoder on the target domain. Also, the
plain self-training scheme is compared as a baseline, which means sample selection only depends on
their Euclidean distance. Secondly, our method is compared with three most recent state-of-the-art
methods2: SPGAN [6], TJ-AIDL [30] and ARN [14]. We report the original results quoted from in
their papers. Thirdly, we show the results of our methods with and without dW, which can be viewed
as ablation studies. The results are shown in Table 2, from which we can observe the following facts:
(a) The accuracy of self-training baseline is high and even better than two recent methods, indicating
that our clustering based self-training scheme is fairly good; (b) The version without dW is better than
self-training baseline, which shows the effectiveness of dJ, and after incorporated with dW the final
method achieves the highest accuracy, reflecting the advantage of dW. Thus our two assumptions are
both useful according to the ablation studies. (c) Although the proposed dW is beneficial, the increase
of accuracy brought by it varies from different tasks. We think this is related to the distribution of
source and target domains. Please refer to for more discussion in B.3 on this problem.

Furthermore, we draw the mAP curves (Figure 1) during the iterations of the adaptation
task Duke→Market, in which self-training baseline, using distance without dW and λ =
{0.05, 0.1, 0.5, 0.7} are compared. We can see that except the baseline, all the curves have a similar

2Our results also outperforms PTGAN[31] by large margin, but the comparison with PTGAN is not shown
here since we adopt a different backbone network.
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Table 2: Comparison of unsupervised domain adaptive person re-ID methods.

Methods DukeMTMC-reID→Market-1501 Market-1501→DukeMTMC-reID
rank-1 rank-5 rank-10 mAP rank-1 rank-5 rank-10 mAP

Direct Transfer 46.8 64.6 71.5 19.1 27.3 41.2 47.1 11.9
Self-training Baseline 66.7 80.0 85.0 39.6 40.8 53.9 60.5 24.7

SPGAN [6] 57.7 75.8 82.4 26.7 46.4 62.3 68.0 26.2
TJ-AIDL [30] 58.2 74.8 81.1 26.5 44.3 59.6 65.0 23.0

ARN [14] 70.3 80.4 86.3 39.4 60.2 73.9 79.5 33.4
Ours w/o dW 75.1 88.7 92.4 52.5 68.1 80.1 83.2 49.0

Ours 75.8 89.5 93.2 53.7 68.4 80.1 83.5 49.0

Table 3: Comparison of unsupervised domain adaptive
vehicle re-ID methods.

Methods PKU-VehicleID→VeRi-776
rank-1 rank-5 rank-10 mAP

Direct Transfer 52.1 65.1 71.1 14.6
Self-training

Baseline 74.4 81.6 84.6 33.5

SPGAN [6] 57.4 70.0 75.6 16.4
Ours w/o dW 76.7 85.5 89.3 35.3

Ours 76.9 85.8 89.0 35.8
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Figure 1: Convergence comparison

tendency toward convergence. A subtle distinction is that after 18 iterations methods with smaller λ
become unstable, while methods with larger λ move toward convergence.

5.2 Vehicle re-ID

We use VeRi-776 [16] and part of PKU-VehicleID [15] for vehicle re-ID experiments3, the details
are included in Table 1. Unlike person re-ID, currently there are no unsupervised domain adaptation
algorithms designed for vehicle re-ID. Thus, we use the existing solutions for person re-ID as
comparisons4. As shown in Table 3, not only are the conclusions from person re-ID verified again,
but also the generalization ability of our method is shown. We discover that the compared SPGAN
generates quite presentable images and we put the images into supplemental materials, but their
accuracy is still lower than the self-training baseline, not to mention our proposed method.

6 Conclusion and Future Work

In this work, we bridge the gap between theories of unsupervised domain adaptation and re-id tasks.
Inspired by previous work [3], we make assumptions on the extracted feature space and then show
the learnability of unsupervised domain adaptive re-id tasks. Treating the assumptions as the goal of
our encoder, several loss functions are proposed and then minimized via self-training framework.

Though the proposed solution is effective and outperforms state-of-the-art methods, there are still
problems unsolved in our algorithm. Firstly, with regard of the weight ratio assumption, we propose
the loss function LWR, which is ignored when updating the encoder because of the intractable
infimum. So designing another feasible loss function is an interesting direction of research. Another
promising issue is to improve the data selecting step in the self-training scheme. We turn the data
selecting step into a clustering problem, which can be thought of as a version with hard threshold.
This suggest that there may be a better strategy which utilize the relative values between distances.
We hope that our analyses could open the door to develop new domain adaptive re-ID tasks and can
lift the burden of designing large and complicate networks.

3In PKU-VehicleID, the camera information is not provided but needed when computing the CMC and mAP,
so we only test with the setting that PKU-VehicleID as source dataset and VeRi-776 as target dataset.

4We only test SPGAN. Because (1) source code of ARN is not available; (2) TJ-AIDL requires attribute
labels as an input, which is not available in vehicle re-ID datasets. For SPGAN, the experiments are carried out
with their default parameters for person re-ID.
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Supplementary Materia

A Theorems and Proofs

To prove Theorem 1, we first give a lemma on the upper error bound of RT (hNN). Let B denote
the set of axis aligned rectangles in [0, 1]d and, given some η > 0, let Bη denotes the class of axis
aligned rectangles with side-length η. For a sample set S from source domain, we have
Lemma 1. Let the domain be the unit cube, X = [0, 1]d, and for some C > 0 and some η > 0,
let (S, T ) be source and target distributions over X satisfying the covariate shift assumption, with
CB,η(S, T ) > C, and their common re-id labeling function l : X × X → {0, 1} satisfying the
φ-SPL property with respect to the target distribution, for some function φ. Then, for all m, and all
(S, T ),

E
S∼Sm

[RT (hNN)] 6 2φ(
1

η
√
d
) +

2

ηdCme
(12)

Proof. A test pair (x1,x2) gets the wrong label under two conditions: (a) at least one test data do not
have a close neighbor with all the m training data; (b) (x1,x2) have a close neighbor pair which have
the opposite label. For (a), we can use the results from Lemma 7 and Theorem 8 in [3]. Specifically,
let C1, C2, · · · , C1/η

d be a cover of the set [0, 1]d using boxes of side-length η. We have

E
S∼Sm

[ ∑
i:S∩Ci=∅

T (Ci)

]
6

1

ηdCme
. (13)

If x is in the box Cx, then the probability of (a) can be expressed as P(Cx1
∩S = ∅∨Cx2

∩S = ∅).
Observing that

P(Cx1
∩ S = ∅ ∨ Cx2

∩ S = ∅) 6 P(Cx1
∩ S = ∅) + P(Cx2

∩ S = ∅)

and P(Cx ∩ S = ∅) =
∑
i:S∩Ci=∅ P(Ci), so (a) is bounded by 2

ηdCme
. For (b), we denote the

nearest neighbor to x in S is NS(x) and then (b) means in the box we have

l(x1,x2) 6= l(NS(x1), NS(x2)) ∧ ‖NS(x1)− x1‖ 6 η
√
d ∧ ‖NS(x2)− x2‖ 6 η

√
d. (14)

Seeing that

|l(x1,x2)− l(NS(x1), NS(x2))|
= |l(x1,x2)− l(x1, NS(x2)) + l(x1, NS(x2))− l(NS(x1), NS(x2))|
6 |l(x1,x2)− l(x1, NS(x2))|+ |l(x1, NS(x2))− l(NS(x1), NS(x2))|

So

P
(
l(x1,x2) 6=l(NS(x1), NS(x2)) ∧ ‖NS(x1)− x1‖ 6 η

√
d ∧ ‖NS(x2)− x2‖ 6 η

√
d
)

6 P
(
|l(x1,x2)− l(x1, NS(x2))| >

1

η
√
d
‖NS(x2)− x2‖

)
+ P

(
|l(x1, NS(x2))− l(NS(x1), NS(x2))| >

1

η
√
d
‖NS(x1)− x1‖

)
6 2φ(

1

η
√
d
)

Combining the two bounds together, we conclude our proof.

If we have a stronger weight ratio assumption, i.e. CB(S, T ) > C, we get the following result of
domain adaptation learnability.
Theorem 4. Let the domain be the unit cube,X = [0, 1]d, and for some C > 0, let (S, T ) be a pair of
source and target distributions over X satisfying the covariate shift assumption, with CB(S, T ) > C,
and their common deterministic labeling function l : X×X→ {0, 1} satisfying the φ-SPL property
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with respect to the target distribution, for some function φ. Then, for all ε, δ > 0, for all (S, T ), if S
is a source generated sample set of size at least

m >
4

εδCe

(
φ−1

( ε
4

)√
d
)d

then, with probability at least 1− δ (over the choice of S), the target error of the Nearest Neighbor
classifier is at most ε.

Proof. From the proof in Theorem 1, the error was bounded under two circumstances. As for (a), we
apply Markov’s inequality and get

E
S∼Sm

[
2

∑
i:S∩Ci=∅

T (Ci) >
ε

2

]
6

4

εηdCme
(15)

Then for (b), we just set 2φ( 1
η
√
d
) = ε

2 , so η =
√
d

φ−1(ε/4) . Finally, setting the probability to be smaller
than δ yields that if

m >
4

εδCe

(
φ−1

( ε
4

)√
d
)d

then with probability at least 1− δ, the target error of the Nearest Neighbor classifier is at most ε.

Theorem 5. For two encoders xa,xb, a distribution D and a labeling function l, then

xa is more clusterable than xb ⇔

{
Lintra(x

a,D, l) 6 Lintra(x
b,D, l)

Linter(x
a,D, l) 6 Linter(x

b,D, l)

Proof. (⇒) There exists ε ∈ (0, 1), and λ ∈ {λ1, λ2} with λ1λ2 < 0, such that

P
z1,z2∼D

(
∃z3 : |l(xa(z1),xa(z2))− l(xa(z1),xa(z3))| − ε > λ‖xa(z2)− xa(z3)‖

)
6 P

z1,z2∼D

(
∃z3 : |l(xb(z1),xb(z2))− l(xb(z1),xb(z3))| − ε > λ‖xb(z2)− xb(z3)‖

)
When l(z1, z2) = 1, l(z1, z3) = 1, and λ = λ1 < 0,

P
z1,z2∼D

(
∃z3 : ‖xa(z2)− xa(z3)‖ > −

ε

λ1

)
6 P

z1,z2∼D

(
∃z3 : ‖xb(z2)− xb(z3)‖ > −

ε

λ1

)
.

So Lintra(x
a,D, l) 6 Lintra(x

b,D, l). And let l(z1, z2) = 1, l(z1, z3) = 0, and λ = λ2 > 0, then

P
z1,z2∼D

(
∃z3 : ‖xa(z2)− xa(z3)‖ 6

1− ε
λ1

)
6 P

z1,z2∼D

(
∃z3 : ‖xb(z2)− xb(z3)‖ 6

1− ε
λ1

)
.

So Linter(x
a,D, l) 6 Linter(x

b,D, l).
(⇐) We have ∑

l(xa(z1),xa(z2))=1

‖xa(z1)− xa(z2)‖ 6
∑

l(xb(z1),xb(z2))=1

‖xb(z1)− xb(z2)‖.

Denote C1 as the mean value of Lintra(x
b,D, l), then

P
z1,z2∼D

(
∃z3 : ‖xa(z2)− xa(z3)‖ > C1

)
6 P

z1,z2∼D

(
∃z3 : ‖xb(z2)− xb(z3)‖ > C1

)
.

In like manner, denote C2 as the mean value of Linter(x
a,D, l), then

P
z1,z2∼D

(
∃z3 : ‖xa(z2)− xa(z3)‖ 6 C2

)
6 P

z1,z2∼D

(
∃z3 : ‖xb(z2)− xb(z3)‖ 6 C2

)
.

Theorem 6. For two encoders xa,xb, a distribution D, if η is a random variable and its support is a
subset of R+ , then

LWR(x
a,D) 6 LWR(x

b,D)⇔ E [CB,η(S,D;xa)] > E
[
CB,η(S,D;xb)

]
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Proof.

LWR(x
a,D) 6 LWR(x

b,D)
⇔ P

zd∼D
zs∼S

(‖xa(zd)− xa(zs)‖ 6 η) > P
zd∼D
zs∼S

(‖xb(zd)− xb(zs)‖ 6 η)

⇔ (∀b0 ∈ B) P
zd∼D
zs∼S

(xa(zs) ∈ b0|xa(zd) ∈ b0) > P
zd∼D
zs∼S

(xb(zs) ∈ b0|xb(zd) ∈ b0)

⇔ P
zs∼S

(xa(zs) ∈ b0|T (b0;xa) > η) > P
zs∼S

(xb(zs) ∈ b0|T (b0;xb) > η)

⇔ E [CB,η(S,D;xa)] > E
[
CB,η(S,D;xb)

]

B Additional Experimental Details and Results

We present the structure of the paper in Figure 2 and the most important contributions in our work are
Theorem 2 and 3, both of which aim to turn the abstract and somewhat too theoretical assumptions
into practical loss functions. Although Theorem 1 seems like a straightforward extension of previous
work [3], it plays a fundamental role in the paper. Through the DA-learnability shown in Theorem
1, we can see that the three assumptions imposed on the distribution of two domains in Section 3
are sufficient for solving the domain adaptive re-ID problem. In other words, the sufficiency of
reinforcing the three assumptions in Section 4 is shown via Theorem 1.

DA-learnability

(Theorem 1)

Covariate Shift

(Def 1)

SPL

(Def 2)

Weight Ratio

(Def 3)

Theoretical guarantee

Feature space

Raw data

Unlabeled data from target domain

Encoder

Loss

(Eq.5,6)

Loss

(Eq.9)

Thm 2 Thm 3

Train the encoder

Generate 

pseudo-labels
Generate 

pseudo-labels

Practical application

Figure 2: Structure of the paper.

B.1 Visualization of datasets and results

To understand the variations between different domains more clearly, Figure 3 presents some samples
from the datasets used in our experiments. These datasets all have their own special characteristics.
For instance, people riding a bicycle are common in Market-1501, while these people are rare in
DukeMTMC-reID. More importantly, the images in these re-ID datasets are heavily related to the
cameras, which means that the images contain information closely knitted together with the camera,
such as background, viewpoints or lighting condition.

Moreover, we present some generated samples of SPGAN for vehicle re-ID. As shown in Figure 4,
their image-image translation indeed works but fails to produce satisfactory re-ID results as person
re-ID. This indicates that either their proposed generative method is not suitable for unsupervised
domain adaptive vehicle re-ID, or their parameters need careful tuned for a new task.
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(a) Sample images from Market-1501 [33] (b) Sample images from DukeMTMC-reID [25]

(c) Sample images from VeRi-776 [16] (d) Sample images from PKU-VehicleID [15]

Figure 3: Sample images from different datasets.
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Original Generated Original Generated

Figure 4: Sample images generated by SPGAN on vehicle datasets.

B.2 Encoder network

Basically, the encoder network is ResNet-50 [11] pre-trained on ImageNet and the whole network is
presented in Figure 5.

Person re-ID. The size of input images is 256× 128× 3, so the output of conv5 is 8× 4× 2048
and a average pool layer is added after conv5 to have a output of size 1 × 1 × 2048. We denote
the output of this layer as feat1. During training on the source domain, feat1 is connected to
a fully-connected (fc) layer with output 2048, denoted fc0, then the 2048 fc layer is connected
to a fc layer with output 751 (Market-1501) or 702 (DukeMTMC-reID). Let the output of finally
fc layer be fc1. The loss functions are Softmax(fc1) and Triplet(feat1), which are added
directly (without extra balancing parameter). The model is trained by Adam optimizer [13]. Training
parameters are set as follows: batch size 128 (PK sampling with P=16, K=8); maximum number
epochs 70; learning rate 3e-4.

When training with data from target domain, there is no fc1 layer and we use two triplet loss,
that is Triplet(feat1) and Triplet(fc0). The trick of using two triplet losses comes from
[29]. The model is trained by stochastic gradient descent and in each iteration step we perform
data augmentation (random flip and random erasing) on the data. Training parameters are set as
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H×W×3

Input
ResNet-50

(H/32)×(W/32)×2048

Encoder

(conv1-conv5)

Average

Pooling

1×1×2048

FC

fc0

2048

FC

N

fc1

feat1

Source Domain

Softmax

loss

Triplet

loss
Triplet

loss

Target domain loss Source domain loss

Figure 5: The architecture of our unsupervised domain adaptive network with ResNet-50 based
encoder.

Real labels of target data

Source ID 1

Source ID 2

Target ID 1

Target ID 2

Pseudo labels of target data w/o dW (λ = 0, ρ = 0.6)

Source ID 1

Source ID 2

Target ID 1

Target ID 2

Not labeled

Pseudo labels of target data with dW (λ = 0.5, ρ = 0.6)

Source ID 1

Source ID 2

Target ID 1

Target ID 2

Not labeled

Figure 6: An example to show the effectiveness of dW.

follows: batch size 128 (PK sampling with P=32, K=4); momentum 0.9; maximum number epochs
70; learning rate 6e-5. The networks are trained with two TITAN X GPUs.

Vehicle re-ID. All parameters including network architecture are same as person re-ID, except
the size of input data. The input data here are resized to 224× 224× 3 and the output of conv5 is
7× 7× 2048.

B.3 More results

Effectiveness of dW. From Table 2, Table 3 and Figure 1, we observe that in a practical view, using
dW actually is not appealing. We think the reasons are two folds. Firstly, the effectiveness of dW
depends on the distribution of source and target domain. In Fig.(6), we design a simple example in
2D feature space to show the validity of dW. In the left figure, the grey points denotes the extracted
feature from source space and the colored points denotes the features of target data with real label. In
the middle figure, we show the pseudo labels generated with DBSCAN when setting λ = 0, i.e., not
using dW. In the right figure, the results with dW is shown. Comparing the middle figure and the right
figure, we can see that dW is important in such situation. The key idea in this demo is that those “easy”
target points happen to be near the source data. Here, “easy” target points means the points belonging
to the same ID are “close” in the extracted feature space with present encoder. This example can be
also used for classification tasks since the Weight Ratio is a shared assumptions between our work
and [3]. Secondly, dW is derived from LWR, but the potential value of LWR is not fully exploited
in our algorithm. Thus, using dW in practical application is not appealing. However, when not
using dW, the results are stable and good enough and already outperforms existing methods by large
margin, which shows the power of the self-training scheme in domain adaptive re-ID problems. For
real applications, if the computation resources are limited, we recommend just setting λ = 0 and not
making the effort to search for an optimal λ.

Comparison of distance metrics. As for other contextual distance metrics, we test the performance
of using the original Jaccard distance with or without dW (also set λ = 0.1). For the Jaccard distance,
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Table 4: Comparison of distance metrics.

Methods DukeMTMC-reID→Market-1501
rank-1 rank-5 rank-10 mAP

Jaccard distance 63.8 80.0 85.3 37.1
Jaccard distance with dW 65.7 81.2 86.5 38.1

Table 5: Comparison of clustering methods.
Distance Metrics rank-1 rank-5 rank-10 mAP

Euclidean 63.5 76.6 80.7 36.9
Ours w/o dW 62.4 74.6 78.9 35.2

Ours 62.4 74.5 78.8 35.6

we first compute the k = 20 nearest neighbor set and then compute the distance between the sets.
Another conclusion is that taking dW into consideration is also beneficial for Jaccard distance.
However, both of the two distance metrics are worse than the self-training baseline, i.e., Euclidean
distance. The reason is that the Jaccard distance only consider the nearest neighbor sets and therefore
pairs without overlapping nearest neighbors will have a Jaccard distance 1, which is too strict to
generate enough training pairs. The shortcoming also leads to a slow or even halted increasing of
accuracy, for more details see the convergence comparison paragraph and Figure 1. As is shown in
Table 4, k-reciprocal encoding employed in our method positively improve the performance of plain
Jaccard distance.

Comparison of clustering methods. Due to the restrictions of a suitable clustering method, we
only test a version with affinity propagation [9]. For task DukeMTMC-reID→Market-1501, we
investigate the effectiveness of affinity propagation with other distance metrics. It is obvious that
affinity propagation is not a proper clustering method for the reason that all data are used for clustering,
which means it cannot avoid those pairs of low confidence. As shown in Table 5, a interesting fact is
that with affinity propagation just using Euclidean distance is better than our proposed distance. The
reason behind this phenomenon is that the number of IDs (clusters) generated by affinity propagation
is much larger when using our proposed distance. In Figure 7, we show the number of IDs with
respect to each iteration step. Using our distance leads to a larger number of clusters out of the reason
that our distance will enlarge the gap between the dissimilar pairs, which is ought to be beneficial
of getting rid of these helpless stray samples. However, affinity propagation is a clustering method
that every sample is assigned to some cluster and therefore using our distance performs worse than
Euclidean distance.

0 2 4 6 8 10 12 14 16 18 20
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800

1000
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Figure 7: The number of IDs (clusters) on the target dataset of each iteration step when using affinity
propagation.
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Table 6: The impact of the parameter p on person re-ID (from DukeMTMC-reID to Market-1501).
rank-1 rank-5 rank-10 mAP

p = 1.0× 10−3 72.7 87.4 91.7 49.0
p = 1.2× 10−3 73.3 86.0 89.5 49.6
p = 1.4× 10−3 74.2 88.0 92.1 50.8
p = 1.6× 10−3 75.8 89.5 93.2 53.7
p = 1.8× 10−3 75.7 89.1 92.8 52.2
p = 2.0× 10−3 75.1 88.7 92.3 51.6
p = 2.2× 10−3 72.9 87.4 91.7 49.2

Parameters analysis Among all the parameters in our algorithm, the most influencing parameters
are the percentage p and the balancing parameter λ. Since the influence of λ has been reported, here
we perform experiments with a series of different p from DukeMTMC-reID to Market-1501 and the
results are shown in Table 6. As we can see from the table, even a small change (2× 10−4) of p has a
discernible impact on the final accuracy. It is because that we use large scale datasets and the number
of all possible pairs from target datasets is large. Take Market-1501 as an example, the number of
training images is 12,936, so the number of all data pairs is over 8× 107. Thus a small change of p
can cause a large change of the threshold.

Convergence comparison. In Figure 8, we use DukeMTMC-reID as source domain and Market-
1501 as target domain and we first show the convergence results with different distance metric and
clustering method in (a) and (b). Several conclusions can be drawn from the curves: First, we can see
that the Jaccard distance based version becomes more stable after adding dW; Second, the accuracy of
the Jaccard distance based version almost stops increasing after 14 iterations, which is caused by the
special property of Jaccard distance mentioned before; Third, using affinity propagation converges
very fast and after about 8 iterations the accuracy stop increasing, which is caused by the inaccurate
number of clusters and all the samples are used to train the network. Thus the loss functions fail to be
minimized through sample selection step. Moreover, we show the results with different p in (c) and
(d). It is obvious that all the curves have a similar convergence tendency, which demonstrates that our
iteration process is robust with regard of the crucial parameter p.
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Figure 8: Convergence comparison of different versions. We use DukeMTMC-reID as source domain
and Market-1501 as target domain.
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