
PoseConvGRU: A Monocular Approach for Visual
Ego-motion Estimation by Learning

Guangyao ZhaiI , Liang LiuI , Linjian Zhang, Yong Liu∗

Institute of Cyber-Systems and Control, Zhejiang University

Abstract

While many visual ego-motion algorithm variants have been proposed in the past

decade, learning based ego-motion estimation methods have seen an increasing

attention because of its desirable properties of robustness to image noise and

camera calibration independence. In this work, we propose a data-driven ap-

proach of fully trainable visual ego-motion estimation for a monocular camera.

We use an end-to-end learning approach in allowing the model to map directly

from input image pairs to an estimate of ego-motion (parameterized as 6-DoF

transformation matrices). We introduce a novel two-module Long-term Re-

current Convolutional Neural Networks called PoseConvGRU, with an explicit

sequence pose estimation loss to achieve this. The feature-encoding module

encodes the short-term motion feature in an image pair, while the memory-

propagating module captures the long-term motion feature in the consecutive

image pairs. The visual memory is implemented with convolutional gated re-

current units, which allows propagating information over time. At each time

step, two consecutive RGB images are stacked together to form a 6 channels

tensor for module-1 to learn how to extract motion information and estimate

poses. The sequence of output maps is then passed through a stacked ConvGRU

IGuangyao Zhai and Liang Liu contribute equally to this work.
∗Corresponding author
Email address: yongliu@iipc.zju.edu.cn (Yong Liu)

Preprint submitted to Elsevier June 20, 2019

ar
X

iv
:1

90
6.

08
09

5v
1

 [
cs

.C
V

]
 1

9
Ju

n
20

19

module to generate the relative transformation pose of each image pair. We also

augment the training data by randomly skipping frames to simulate the veloc-

ity variation which results in a better performance in turning and high-velocity

situations. Randomly horizontal flipping and temporal flipping of the sequences

is also performed. We evaluate the performance of our proposed approach on

the KITTI Visual Odometry benchmark. The experiments show a competitive

performance of the proposed method to the geometric method and encourage

further exploration of learning based methods for the purpose of estimating

camera ego-motion even though geometrical methods demonstrate promising

results.

Keywords: Ego-motion, Pose estimation, Deep learning, Convolutional Neural

Networks, Recurrent Convolutional Networks

1. Introduction

For autonomous navigation of intelligent vehicles, the ability of vehicle self-

localization during its movement is very important. The method, estimating the

position of the vehicle by integrating data of various sensors, is called odometry.

With the development of computer vision technology, more and more visual

sensors are used for vehicle positioning and motion estimation. We refer to

the studying problem of obtaining camera pose through vision as VO (Visual

Odometry) [1] or visual ego-motion [2]. The visual sensor not only provides rich

sensory information, but also has the advantages of low cost and small size. The

mainstream visual ego-motion methods mainly estimate camera poses based on

the geometrical characteristics of the objects in the images, so the images must

contain a large number of stable texture features. Once there is an obstruction

in the scene or in a foggy day, and if there are no other sensors (IMU, laser,

etc.), the accuracy of the geometric methods is subject to severe interference.

Since many other sensors may not be useful in many practical applications,

2

localization and ego-motion estimation technique based on vision methods still

has a lot of space for research.

Recently, more and more researchers have paid much attention to the deep

learning study [3], [4], [5]. Developed to present days, kinds of deep learning

approaches represented by convolutional neural networks play very important

roles in the field of computer vision [6], [7]. These deep neural networks are

more effective in extracting image features and finding potential patterns than

traditional methods. Therefore, some related researchers consider applying deep

learning in the field of visual ego-motion research, letting the deep neural net-

work directly learn the geometric relationship through images to realize the

end-to-end pose estimation. This end-to-end process completely eliminates the

steps of feature extraction, feature matching, camera calibration, and graph

optimization in the traditional methods, and directly obtains the camera poses

according to the input images.

This paper mainly studies the problem of camera relative pose estimation

by deep learning, only considering the situation of monocular VO. We intro-

duce a novel Long-term Recurrent Convolutional Neural Networks, contain-

ing two modules, called PoseConvGRU. The feature-encoding module extracts

the short-term motion feature in an image pair, while the memory-propagating

module captures the long-term motion feature in the consecutive image pairs to

estimate camera poses. We sum the l2-loss of 6-DoF pose for each image pair

with another loss term on the sequence of adjacent image pairs by compounding

the poses estimated from each of the image pair measurements, that mimics the

local bundle adjustment optimization in geometric visual odometry to improve

the accuracy of the estimation of camera poses and preserve temporal consis-

tency. We take the sequences 00, 01, 02, 08, 09 for training and the 03, 04,

05, 06, 07, 10 for testing, as common practice. The main contributions are as

3

follows:

• We propose a novel framework named as PoseConvGRU, an approach of

visual ego-motion estimation which is data-driven and fully trainable, with

an explicit sequence pose estimation loss to mimic the bundle optimiza-

tion.

• Our proposed neural network does not matter with the optical flow or

other flow-like subspace, unlike other learning-based ego-motion estima-

tion algorithms, which need to spend plenty of time to calculate the pre-

processed dense optical flow before training the neural network [8] or use

a pre-trained network to estimate the optical flow with additional calcu-

lation costs[9], [10].

• We augment the training data, performed on the KITTI Visual Odometry

[11], by randomly skipping frames to simulate the velocity variation which

results in a better performance in turning and high-velocity situations.

Randomly horizontal flipping and temporal flipping of the sequences is

also performed.

2. Related Work

2.1. Progress in geometric research

Matthies et al. proposed to implement robotic indoor navigation through

visual input. The main research at that time was based on the NASA Mars

Exploration Program [12]. The real foundation for the VO problem is a real-

time visual odometry designed by Nister et al. [1], which builds its implementary

framework.

Based on this framework, the solution of the VO problem can be further

divided into two sorts of methods: feature-point methods and direct methods:

4

Feature-point methods mainly extract the feature points in adjacent frame

images, calculating the geometric relationship of the feature points by using

multi-view geometry to estimate the relative camera poses, such as LIBVISO2

[13], ORB-SLAM [14]. However, these kinds of methods are very time-consuming

when extracting features, and we are only concerned about the extracted fea-

ture points with the abundant information of other pixels in images ignored,

so that features extracted from the images are not sufficient to restore visual

ego-motion if the image texture information captured by the camera is scarce,

and typically these methods will not work properly.

Direct methods work as long as there is a change in the scene. The obvious

difference between the direct methods and the feature-point methods is that it is

not necessary to calculate the descriptors and the key points, but the visual ego-

motion is estimated directly based on the luminance information of the pixels

in the images. These methods avoid the prolonged calculation time of features

and the lack of features. According to the number of pixels used, the direct

methods can be further divided into three types: sparse ones, dense ones, and

semi-dense ones. Open-sourced projects using direct methods such as SVO [15],

LSD-SLAM [16], DSO [17] have gradually become important parts of the visual

ego-motion algorithm.

However, all these geometric research works are very cumbersome and com-

plex, and each module needs fine adjustment to achieve good results in a specific

environment. Moreover, the existing frameworks have been basically fixed, the

algorithms have almost reached the bottleneck, and the upside space is get-

ting smaller and smaller. To break through this development bottleneck, it still

needs to face great challenges.

5

2.2. Progress in deep learning

Roberts et al. [18] proposed to study visual ego-motion problems by a learn-

ing method firstly, but this method did not achieve position estimation of the

camera 3-DoF poses, and the error was very large. The first use of deep learn-

ing to study visual ego-motion problems is a method of using convolutional

neural networks to learn visual odometry introduced by Kishore et al. [19],

subtly transforming the pose regression problems into classification problems,

but the reliability of the obtained result is not high since a large error has been

generated in the process of discretizing the direction angle and velocity. The

first method for end-to-end estimation of camera 6-dimensional pose based on

convolutional neural networks is PoseNet proposed by Kendall et al. [20]. The

neural network framework of this method was modified from GoogLeNet [21].

Due to PoseNet’s inaccurate estimation for handling scenes with some obsta-

cles, Kendall et al. [22] proposed a Bayesian convolutional neural network to

regress the camera 6-DoF pose. The advantage of using a Bayesian convolu-

tional neural network is that it can measure the uncertainties of camera’s poses

and use these uncertainties to estimate the localization error and determine

whether the test images is repeated. Mohanty et al. proposed DeepVO [23].

The CNN part of this method is based on AlexNet [24]. It inputs two adjacent

RGB images and directly estimates the relative pose between the two images

in an end-to-end way. For scenes that have not appeared in the training set

before, the estimation results are very unsatisfactory. This work attempts to

regard the FAST features of the images as additional input information, but it

cannot fundamentally solve the scenario migration problem. Costante et al. [8]

proposed two CNN structures to estimate the frame-to-frame poses. Since this

method requires input of optical flow images, pre-processing of optical flow will

cost more calculation resources.

6

Ronald et al. proposed VINet [25]. It not only integrates IMU informa-

tion into the deep neural network to study visual ego-motion problems, but

also applies sequence learning to consider the pose relationship among multiple

frames of images. This paper provides a novel approach to VIO (Visual Inertial

Odometry) field, and the combination of CNN and LSTM for sequence learning

has contributed greatly to subsequent research. The authors above also propose

VidLoc [26], using CNN and LSTM to estimate the global poses of consecu-

tive frames, which achieves a significant improvement over PoseNet [20]. In the

same year, another author of the paper published a new version of DeepVO

[27]. The paper uses the image sequences as input. Firstly, the image features

are extracted by CNN, puted into the RNN to learn the geometry relationship

among successive frames, and then the relative poses of multi-frame are directly

output. The relative transformation poses between the images are very positive

compared to all the previous research work.

The existing visual ego-motion estimation methods based on convolutional

neural network are far less effective than the geometry-based methods. On the

basis of utilizing RGB images, there is a kind of method of using optical flow

to help obtain ego-motion, like [8] , but the calculation of pre-processed dense

optical flow is time consuming, and the accuracy of optical flow calculation has

a great influence on the visual ego-motion estimation, so this sort of method

is difficult to be widely used. Our visual ego-motion estimation method based

on recurrent convolutional neural network [23] performs better than monocular

VISO2, but there is still a gap compared with stereo version. The selection

of image sequences and the design of loss function all have a great influence

on the experimental results in this method, so there is still a lot of space for

improvement on this foundation.

7

Fig. 1. Flow chart of our proposed camera ego-motion estimation method.

Fig. 2. The estimating camera ego-motion results for the sequences 03, 04, 05, 06, 07, 10 of the KITTI visual odometry benchmark produced by our model
with the sequences 00, 01, 02, 08, 09 for training.

Fig. 1. Our proposed end-to-end framework PoseConvGRU can estimate visual ego-motion
by extracting geometrical feature among adjacent monocular RGB images. We can draw the
trajectory after obtaining all the absolute poses.

3. Methodology

The visual ego-motion problems are quite different from those of classifica-

tion, tracking:

Firstly, visual ego-motion estimation based on deep learning is a regression

problem. It is not possible to accurately obtain the relative pose of two adjacent

frames by simply identifying or detecting the objects in the images;

Secondly, visual odometry problem needs to process two images at the same

time, and it is especially related to the order of the images, because the relative

poses between the two images can be numerically reciprocal from each other

based on their respective references, so that we can obtain two various results.

Therefore, we can not simply use the popular neural network frameworks

such as AlexNet [24], VGGNet [28], GoogLeNet [21], ResNet [29], DenseNet

[30] to solve this estimation problem, but should adopt the structure that can

8

learn the geometric features of the images. The overall framework is shown in

Fig. 1.

Table 1
CNN parameters. We can see the size of kernels decreases more as the depth of the network
going deeper and the size of the feature maps decreases further.

Layer Kernel size Stride Weigths Tensor size

Input - - - 1280×384×6

Conv1 7×7 2 6×64 640×192×64

Conv2 5×5 2 64×128 320×96×128

Conv3 5×5 2 128×256 160×48×256

Conv3 1 3×3 1 256×256 160×48×256

Conv4 3×3 2 256×512 80×24×512

Conv4 1 3×3 1 512×512 80×24×512

Conv5 3×3 2 512×512 40×12×512

Conv5 1 3×3 1 512×512 40×12×512

Conv6 3×3 2 512×1024 20×6×1024

Conv6 1 3×3 1 1024×1024 20×6×1024

Max-pooling 2×2 2 - 10×3×1024

3.1. The Structure of PoseConvGRU

Feature-encoding module. In order to use the effective CNN structure to

automatically learn the geometric relationship from two adjacent images, our

approach leverages the network structure proposed by Dosovitskiy et al. -

FLowNetSimple [31] , which ignores the decoder part in the network, only focus-

ing on the front convolution encoder. In DeepVO, the output feature maps of

Conv6-1 are directly input into subsequent modules, which not only hugely in-

creases network parameters and magnifies the storage of GPU, but also makes

the training complexity of the network expanded, so we add a layer of Max-

pooling behind the Conv6-1 layer to reduce dimensions of the feature maps.

The parameters of the CNN are shown in Table. 1 . As shown in Fig. 2 ,

the convolutional neural network contains a total of 10 convolutional layers, and

9

Feature-encoding module

Ma
x-p
oo
ling

Co
nv6

_1

Co
nv6

Co
nv5

_1
Co
nv5

Co
nv4

_1

Co
nv4

Co
nv3

_1

Co
nv3

Co
nv2

Co
nv1

64
128

256
512

512
1024

Te
m

po
ra

l W
in

do
w

t

t-1

t-2

Feature map

Fig. 2. Feature-encoding module. We map RGB images temporally into this module to get
output feature maps for estimating ego-motion further.

each layer is followed by a nonlinear activation function - ReLU (Rectified linear

unit). The number of convolution kernels increases gradually as the depth of

the network expands, so that more feature maps can be obtained, which can

represent more abstract features, and the decreasing of the feature map size

means that the CNN is paying more attention to large-scale and significant

features. The size of the convolution kernel is also gradually reduced from 7 × 7

to 5 × 5 and finally to 3 × 3 for capturing local features. The input of CNN is the

original continuous multi-frame RGB images, resized to 1280 × 384. Assuming

that sequences length is n + 1, when adjacent two frames are combined in a

sliding window, we can obtain n sets of image pairs. These image pairs are

respectively subjected to 10 convolutional layers and the last Max-pooling layer

to obtain feature maps of 10 × 3 × 1024 size. For multiple pairs of images

generated by a time series, we refer to the structure of the Siamese network

[32] , using different branches to deal with similar problems, but will keep the

CNN parameters weight-shared in the same time series, which means all the

images of a sequence perform the feature extraction through the exact same

CNN layer. We do not perform any pre-processing operations such as random

clipping and rotating, to change the geometric relationship of the objects in the

images, so that the original information of the images can be used for accurate

10

pose estimation rightly.

Memory-propagating module. The memory module builds a visual mem-

ory in the video clip, i.e., a long-term joint visual representation of all the clip

frames to generate the transformation pose of each pair since it allows the neu-

ral network to automatically learn the intrinsic relationship among successive

poses, module structure shown in Fig. 3. We use a stacked ConvGRU (con-

volutional gated units) [33] as our memory-propagating module, mathematical

expression shown in the Equation. 3.1 [34]. On the one hand, ConvGRU can

remember the states of historical moments, such as the geometric relationship

coming from the previous frames of images, and then estimate the pose of the

current moment utilizing the geometric constraint within multiple frames; on

the other hand, we choose ConvGRU rather than ConvLSTM as our memory

module because it is shown that GRU has similar performance to LSTM but

with reduced number of gates thus fewer parameters [35] . The image sequence

is extracted by our feature-encoding module to obtain multiple 10 × 3 × 1024

tensors propagated into the stacked ConvGRU. In order to further improve the

presentation capability and dynamic characteristics of the whole framework, 3

cells of ConvGRU are used in the practice. The end output, used for pose

regression, will be a 6-dimensional pose vector, which respectively represents

the relative poses (∆x,∆y,∆z,∆ψ,∆χ,∆φ) between adjacent two images. Fi-

nally, we transform obtained pose vectors to SE(3) and calculate the absolute

ego-motion.

zt = σ (Whz ∗ ht−1 +Wxz ∗ xt + bz)

rt = σ (Whr ∗ ht−1 +Wxr ∗ xt + br)

ĥt = Φ (Wh ∗ (rt � ht−1) +Wx ∗ xt + b)

ht = (1− zt)� ht−1 + z � ĥt

(1)

11

Fig. 3. Memory-propagating module. We pass feature maps obtained from feature-encoding
module into the stacked ConvGRU to propagate the long-term memory from video clips for
camera poses regression.

3.2. Loss Function for PoseConvGRU

Visual ego-motion estimation problem can be regarded as a conditional prob-

ability problem: given an image sequence X = (X1, X2, ..., Xn+1), calculated

the appearance probability of the poses Y = (Y1, Y2, ..., Yn) between two adja-

cent images in this series.

p(Y |X) = p (Y1, Y2, . . . , Yn|X1, X2, . . . , Xn+1) (2)

The problem to be solved here is how to decide the optimal network parameters

w∗ to maximize the above probability.

w∗ = argmax
w

p(X|Y ;w) (3)

So for M sequences, MSE (Mean Squared Error) is used as the error evaluation

function, and the loss function that needs to be optimized finally can be obtained

as

w∗ = argmax
w

1

MN

M∑
i=1

N∑
j=1

∥∥∥Pij − P̂ij

∥∥∥2
2

+ β
∥∥∥Φij − Φ̂ij

∥∥∥2
2

(4)

12

(P̂ij , Φ̂ij) represents the position and orientation of the image at the jth moment

in the ith sequence relative to the image at the next moment in the sequence

while β is a scale factor used to maintain the balance between the position error

and the orientation error. ‖ · ‖2 represents a two norm.

3.3. Mirror-like Constraints through Data Augmentation

We further add some constraints into network by processing data augmen-

tation along the training step aiming to perform better in tests.

Data preparation. We take the sequences 00, 01, 02, 08, 09 in KITTI dataset

[11] for training, which can not satisfy realistic requirements because of high-

velocity situations, velocity-variable situations, or even car-reversing situations,

so it is necessary to augment data for facing challenges above. Our data aug-

mentation is performed on the fly. We augment the training data by randomly

skipping frames to simulate the first and second challenge, which results in a

better performance. Randomly horizontal flipping and temporal flipping of the

sequences is also performed to allevate influnences caused by the last challenge.

Advanced mirror-like constraints. PoseConvGRU-cons increases the accu-

racy of camera relative ego-motion estimation by adding some advanced con-

straints. Framework and specific implementation can be shown in Fig. 4.

The left half is exactly the same as PoseConvGRU. Image sequences pass

through the feature-encoding module, Memory-propagating module and ob-

tained outputs represent the relative poses between two adjacent frames. The

right half and the left half are completely symmetrical, except that the image se-

quences RE input in reverse order, which are augmented in the data preparation

process and the obtained outputs represent the relative poses of the previous

frames relative to the current frames. The loss function based on MSE of all

13

Fig. 4. Constraints in practice. The structure of whole framework presents a mirror-like
symmetric construction. All CNNs in this model are weight-shared.

output poses, express as

Loss =
1

MN

M∑
i=1

N∑
j=1

∥∥∥P1ij − P̂1ij

∥∥∥2
2

+ β1

∥∥∥Φ1ij − Φ̂1ij

∥∥∥2
2

+

∥∥∥P2ij − P̂2ij

∥∥∥2
2

+ β2

∥∥∥Φ2ij − Φ̂2ij

∥∥∥2
2

(5)

(P̂1ij , Φ̂1ij) represents the position and orientation of the image at the jth

moment of the forward input in the ith sequence relative to the image at the

next moment in the sequence while (P̂2ij , Φ̂2ij) represents the position and

orientation of the image at the jth moment of the backward input in the ith

sequence relative to the image at the previous moment in the original sequence.

β1 and β2 separately represent the scale factors of the position error and the

orientation error in the positive sequence input and the reverse sequence input.

‖ · ‖2 represents l2-loss we use.

14

4. Experiment

In this section, we validate our proposed framework on the KITTI Visual

Odometry / SLAM Evaluation dataset [11] and we take monocular VISO2-M

and stereo VISO2-S [13] as our compared methods. Only the first 11 series of

the KITTI dataset have the ground truth data of the images (sequence 00-10),

so quantitative experiments can be performed in these 11 scenarios to compare

the advantages and disadvantages of the various methods, noted that ablation

experiments are proceeded along this part.

The specific procedure to compare approaches is to firstly select the training

sets, the validation sets and the test sets from these 11 scenarios that do not

repeat each other. Then train models using the training sets along settling

down hyper-parameters with the validation sets, and test models on the test

sets. Finally we use the ground truth already collected to evaluate the error.

4.1. Traning and Evaluating Protocols on PoseConvGRU

We use the same method as Wang et al. used in the paper [23], sequence 00,

01, 02, 08, 09 are used as the training sets; the remaining 6 scenes (sequence 03,

04, 05, 06, 07, 10) are used as evaluation sets. The validation sets is randomly

selected from the training sets, following the principle of sampling without re-

placement. The specific data is shown in Table. 2. A key issue here is how to

generate sample sequences of images. In the experiment, we randomly select a

frame of images as the starting frame, and then successively take several frames

to form an image sequence of length T1. In order to simplify the data training

process, a fixed-length sequence is used, and the starting frames of two adjacent

sample sequences are also selected across multiple frames, thereby avoiding ex-

cessive data overlap between samples. If we want to augment data set, we can

sample sequences every other frame. One key rule of sampling is to ensure that

15

there are enough identical scenes between the two images. If camera moves too

fast in some frames, data augmentation must be handled carefully.

Table 2
The components of dataset

Dataset Sequence Total image pairs

Train
00 01 02 08 09

15320

Validation 640

Test 03 04 05 06 07 10 7230

Training details. The entire network was built on the popular deep learning

framework PyTorch-0.4.1. We trained our model using the AMSGrad [36] vari-

ant of Adam [37].The initial learning rate is 10−4 . As the number of training

increases, the learning rate will be appropriately reduced to ensure that the

optimization function is closer to the optimal solution. It uses two NVIDIA

TITAN X (Pascal) GPUs for acceleration. The batch size is set to 32. It takes

about 0.15 hours to train an epoch (all training data is trained for one time).

After the end of an epoch, all training samples will be disordered to ensure that

the training loss curve will drop smoothly. It takes about 20 hours for the entire

experiment to achieve a small loss error.

In general, training the network combining these two modules is difficult to

converge, in order to shorten the convergence time, feature-extracting module is

pre-trained firstly. As shown in our ablation experiments part 4.2, we actually

only train CNN and FC layers to estimate camera poses (Recurrent Neural

Network excluded), structure shown in Fig. 5 . The Xavier Initialization method

is used for setting weights in network parameters during training [38], and the

bias is zero-initialized.

After pre-training process, we directly uses the parameters of the trained

model in CNN as the initial parameters in the feature-extracting module of

PoseConvGRU, that is, the fine-tuning operation.

16

Fig. 5. The structure of Ours-onlyNN. We leverage the FlowNetSimple structure, adding a
extra max-pooling layer to estimate poses directly. Details can be seen in 4.2 .

Suppose the image sequence length is T1 = 11 , and the ConvGRU’s batch

size is set to 4, so the batch size of the first module is (11−1)×4 = 40 . For each

batch size, we sets the initial state of the GRU to 0. This is because, on the one

hand, the image sequences we use are not selected according to the principle of

no resampling. So without disordering the samples, the adjacent two batches

will contain the same image frames, if the state here needs to pass through the

two batch sizes, we need to ensure that the last frame of the first batch is the

same as the first frame of the second batch, which however limits the diversity of

the networks samples. On the other hand, this sampling method is equivalent to

dividing a scene into a number of irrelevant tracking segmented series (including

repeated images). So each sample can be learned the regulations separately.

Setting the initial state of ConvGRU to 0 means that each sample was learned

from the same state, and actually the experiments proved it is indeed feasible.

There are also related methods to learn the initial state as a network parameter

when training Recurrent Neural Network, but this is not necessary for our case.

Additional constraints illustrations. For PoseConvGRU with advanced

17

constraints (PoseConvGRU-cons) , it is similar to the origin. The only difference

is that the image sequences need to be input in positive ones and reverse ones

to the network, and the relative poses between two adjacent images contain

both the positive input and reversed input. When T1, T2 are kept constant,

the batch size in PoseConvGRU-cons is half of that of original PoseConvGRU.

Other parameters remain unchanged during training. It takes about 0.5 hours

to train an epoch. The entire experiment was trained for about 50 hours.

Evaluation metrics. We evaluate our approaches on translation / rotation

errors for subsequences and translation / rotation errors for different speeds,

which are most commonly used evaluation metrics on the KITTI VO/SLAM

dataset. The subsequences generally take 8 kind of lengths: 100m, 200m, ...,

800m. When calculating the error, we should sample the sequence of the same

length from the entire trajectory, calculate the change of the camera poses on

this sequence, and compare them with the ground truth, deriving translation

and rotation error respectively, computing the average error of all the sample

sequences as the average error of the current sequence. Finally we traverse the

subsequence of 8 different lengths to obtain the average error of various subse-

quences.Another evaluation metric relies on the speed of the mobile platform.

We take an average of 7 values from the lowest speed to the highest speed,

calculating the error between the estimated poses and ground truth at different

speeds.

4.2. Ablation and Comparison Experiment

In this section, we compare our proposed PoseConvGRU with monocular

geometrical methods VISO2-M and stereo geometrical method VISO2-S and

design ablation experiments along with other branches to verify each module’s

effectiveness as well as conduct several comparison experiments to reveal and

verify implementation details in addition. All the following experiments are

18

carried out on KITTI VO dataset.

We actually firstly pre-train CNN and some FC layers adding constraints to

estimate visual ego-motion directly, constrained structure performed in Fig. 6

then we remove FC layers remaining CNN along with parameters as our initial

feature-encoding module in PoseConvGRU. Next we proceed fine-tuning with

training stacked ConvGRU to achieve our whole framework. As a result, we

derive four branches named Ours-onlyCNN, Ours-onlyCNN-cons, Ours, Ours-

cons.

Fig. 6. The structure of Ours-onlyCNN-cons. We do the same constraints as done in 3.3
part to help proceed ablation experiment.

Effectiveness on epoch in pre-training process. Because the pre-training

process is quite long, in order to test the model in the middle of training, the

model parameters are saved every few epoch. Taking Ours-onlyCNN-cons as an

example, the whole training process last for about 100 epochs, and the models

with epoch=15, 55, 75, 100 were taken out for testing. The trajectory curves

on the training set are shown in Fig. 7. The trajectory curves on the test set

are shown in Fig. 8, and the curves of the evaluation metrics on the test set are

shown in Fig. 9.

Fig. 7 shows that at the initial stage of training, since the translation and

rotation error are both large, the trajectory of epoch-15, with the error between

frames gradually accumulating, gets more and more away from the real one.

19

Fig. 7. Trajectories under different epoch (training sets) (Best viewed with zoom-in.)

As the number of epoch increases, the trajectory on the training set and the

ground truth get closer and closer, and the epoch-75 almost perfectly coincides

on the sequence 00, 02, 09, which is also consistent with the continuous decline

in training error. When the number of iterations is further increased, it is

found that the trajectory of epoch-100 on sequence 02, 08 deviates far from the

counterparts. In fact, the training error at this moment is lower than that of the

previous ones. It happens because the loss function describes only the MSE of

the poses between two adjacent frames. When the poses of some frames deviates

far away from the ground truth, even if the poses of other frames is estimated

accurately, the trajectory still drift far away. If we continue to train, the training

error will be further reduced, and the scene trajectory will surely fluctuate

around the ground truth, but the variation will be more modest. However, due

to limited time and the convergence performance for the training scene does not

20

Fig. 8. Trajectories under different epoch (test sets) (Best viewed with zoom-in.)

represent the generalization ability of the model, it is also necessary to consider

the presentation on the test sets.

Fig. 8 shows the trajectory curves for different sequences in the test sets. It

can be clearly seen from sequence 03, 05 that as the number of epoch increases,

the estimated trajectory becomes closer to the ground truth, indicating that

the framework designed in this paper can learn the motion relationship between

two adjacent frames. Even if many scenes are not seen before, the camera

21

ego-motion can also be estimated well, and do not have overfitting problem.

An important reason is that we uses tricks such as dropout when training the

network. For sequence 04, the model test results under different epoch times

are almost the same. It can be seen that the camera basically moves straight

forward, and the rotation change is modest, so the translation estimation is very

sensitive to this scene. It will be better to design network for the translation and

rotation separately. For sequence 06, 07, The test results of the models saved

by epoch-55, epoch-75 and epoch-100 basically have no obvious performance

improvement, illustrating that the networks learning ability has reached the

bottleneck, and even if the number of epoch is increased, the performance will

not increase significantly. For sequence10, the estimated trajectory performs

better on epoch-55 and epoch-75 than epoch-100, indicating that the model

may have overfitting problem for this scenario. In order to further analyze the

performance of the model, it is also necessary to compare the quantitative test

metrics between the models.

The four graphs in Fig. 8 represent the former error evaluation metrics on the

test sets: the upper left graph shows the translation error subsequences under

different length, the upper right graph shows the rotation error under different

length subsequences, and the lower left graph shows the translation errors at

different speeds. The lower right graph shows the rotation error at different

speeds. It can be seen that for subsequences of the same length, as the number

of training epoch increases, the translation error and the rotation error are

significantly improved, but there is basically no large improvement after epoch-

75. For the ego-motion estimation at the same speed, the translation error of

the ultimate training (epoch-75) is less obvious than it of the initial training

(epoch-15), especially when the speed exceeds 40 km/h , the effect of epohc-75

is worse than that of epoch-55. One big reason is that the speed distribution in

22

Fig. 9. Comparison results (test sets) under different epoch

the scenes of the training sets and the test sets is different. Therefore, if there

is a lack of image pairs with higher speed in the training sets, test sets will not

accurately estimate the high-speed translation. To alleviate this problem, we

can try to expand the sample (sample in every few frames) in the training sets,

thus improving the generalization ability of the model.

Quantitative Experiment result. For PoseConvGRU, set β = 0.9, T1 =

3, T2 = 2, network parameters iterated 90 epochs were used for testing. For

PoseConvGRU-cons, set β1 = 0.9, β2 = 0.999, network parameters iterated 80

epochs were used for testing. The trajectory on the test set is shown in Figure

4.14, and the evaluation metrics on the test set are shown in Figure 4.15.

The experiment totally compared six methods, including two baseline meth-

ods VISO2-M and VISO2-S, Ours-onlyCNN and Ours-onlyCNN-cons, Ours and

Ours-cons. As can be seen from Fig. 10, the six methods can slightly estimate

23

the shape of the trajectory accurately, but the details are various from each

other, and it is difficult to compare the advantages and disadvantages of various

methods from a certain situation. For example, PoseConvGRU-cons fits the real

trajectory better on the Sequence 03 than the onlyCNN, but is slightly inferior

to the onlyCNN-cons on the Sequence 05.

Fig. 10. Trajectories of our methods and LIBVISO2 on the Sequence 03, 04, 05, 06, 07, 10
(test sets) (Best viewed with zoom-in.)

Fig. 11 shows the error of the six methods on different evaluation metrics,

which can objectively reflect the performance of various methods. PoseCon-

vGRU is basically better than onlyCNN on the evaluation of four kinds of er-

24

rors, because PoseConvGRU is fine-tuning on the basis of onlyCNN, and joins

ConvGRU for multi-frame constraints. ConvGRU does improve the accuracy

of visual ego-motion estimates. PoseConvGRU-cons is superior to PoseCon-

vGRU in these evaluation metrics, indicating that the performance of the net-

work can be improved by adding these advanced constraints. However, the

effect of PoseConvGRU-cons is comparable to that of onlyCNN-cons. The main

reason we believe is that the sample size is far from enough, because both

PoseConvGRU-cons and onlyCNN-cons is to double the training data. Yet, the

training data in our paper is limited, so we can only obtain different samples by

combining the existing images. This does not essentially introduce new sample

images, so even though we constrain our framework with multi-frame through

ConvGRU, it is impossible to improve the generalization ability of the network

further. The performance of the four deep learning methods proposed in this

Fig. 11. Comparison results of different methods on the Sequence 03, 04, 05, 06, 07, 10 (test
sets)

25

paper is better than the monocular VISO2-M, while the latter two methods

with constraints are slightly inferior to the stereo VISO2-S. Our future work

consider taking into account the stereo RGB image to achieve better effect.

Qualitative Experiment result. Quantitative experiments only use the first

11 sequences with ground truth to proceed training and testing, which can

quantitatively analyze error. Considering that the latter 11 scenes in KITTI do

not provide ground truth, we can still use the trained model to test in these

scenes and visually evaluate the effect of our method. In this paper, all the

images of sequence 00-11 are used as the training sets, with a total of 23190

image pairs, taking a small part as the validation sets, and then we adopt the

method in quantitative experiment to train it. When the model converges to a

certain extent, the training sets and the validation sets are combined for fine-

tuning until the training error is basically not reduced. The model at this time

is taken as the final model of the qualitative experiment. Then use this model

to test on sequence 11-21. We only show the performance of PoseConvGRU and

onlyCNN.

It takes about 0.2 hour to train an epoch, and the whole experiment takes

20 hours to achieve a small training error. We saved the model parameters of

the epoch-100 for subsequent testing. When training PoseConvGRU, the pre-

processing of the dataset is consistent with that of onlyCNN: all scenarios of

sequence 00-10 are regarded as training sets for our framework. In order to

speed up the convergence time of the network, we uses the parameters of the

pre-trained model in onlyCNN as the initial parameters of the feature-encoding

module. The other parameter settings during training are exactly the same as

the PoseConvGRU in quantitative experiment. An epoch takes about 0.4 hour,

and the whole experiment takes 40 hours to achieve a small training error. We

tested the trained onlyCNN and PoseConvGRU models on the sequence 11-21.

26

Fig. 12. These six sequences do not have ground truth, so we proceed the qualitative
experiments. (Best viewed with zoom-in.)

The partial results are shown in Fig. 12, which also include the test results of

two baseline methods VISO2-M and VISO2-S. From the scale of the scene, the

range of these 11 scenes is from 100m 100m (such as sequence 14) to 2000m

5000m (such as sequence 21), and is quite different with training sets. From

the perspective of vehicle speed, the top speed of the first 11 scenes is basically

around 60km/h, while in the latter 11 scenes, the running speed of the vehicle

is even as high as 90 km/h . When the camera frame rate is fixed at 10 fps ,

the movement between two adjacent images will become intense, and the lack

27

of such samples in the training sets will affect the generalization ability of the

deep learning.

Because of the lack of real trajectory data, we use the results of the VISO2-S

method as a reference. In sequence 11, 13, 15, 16, 17, 18, the effect of CNN-

VO-cons is better than that of CNN-VO and VISO2-M, and the trajectory of

CNN-VO is also more accurate than VISO2-M. In most scenarios, the VISO2-M

trajectory has large deviations in scale compared to the other three methods.

This shows that the scale problem of monocular VISO2 in geometric method is

a very big obstacle in pose estimation, and deep learning method can basically

overcome this difficulty.

5. Conclusion

We propose a novel data-driven Long-term Recurrent Convolutional Neural

Networks (PoseConvGRU) encoding geometrical features in images to gauge

camera poses, which is completely end-to-end. Our proposed neural network is

more real-time and less calculation-consuming, unlike other learning-based ego-

motion estimation algorithms, which need to spend plenty of time to calculate

the pre-processed dense optical flow before training the neural network or use

a pre-trained network to estimate the optical flow with additional calculation

costs. The main idea is to use CNN to extract the geometric relationship features

of two adjacent images in the image sequences along with data augmentation,

then pass the feature maps through a stacked ConvGRU module for feature

learning on the time series, and finally achieve the regression of the relative

poses among consecutive multi-frame images. The performance of our approach

is better than VISO2-M, a traditional geometric monocular method facing VO

problem. In the future, we plan to focus on the stereo study of end-to-end

visual ego-motion estimation, since some significant information like scale can

28

be directly obtained from stereo images.

Acknowledgment

This research was carried out at the Institute of Cyber-Systems and Control,

Zhejiang University, China.

References

References

[1] D. Nistér, O. Naroditsky, J. Bergen, Visual odometry, in: Computer Vision

and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE

Computer Society Conference on, Vol. 1, IEEE, 2004, pp. I–I.

[2] Y.-S. Chen, L.-G. Liou, Y.-P. Hung, C.-S. Fuh, Three-dimensional ego-

motion estimation from motion fields observed with multiple cameras, Pat-

tern Recognition 34 (8) (2001) 1573–1583.

[3] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang,

G. Wang, J. Cai, et al., Recent advances in convolutional neural networks,

Pattern Recognition 77 (2018) 354–377.

[4] G. Yao, T. Lei, J. Zhong, A review of convolutional-neural-network-based

action recognition, Pattern Recognition Letters 118 (2019) 14–22.

[5] S. M. Erfani, S. Rajasegarar, S. Karunasekera, C. Leckie, High-dimensional

and large-scale anomaly detection using a linear one-class svm with deep

learning, Pattern Recognition 58 (2016) 121–134.

[6] H. Yang, C. Yuan, B. Li, Y. Du, J. Xing, W. Hu, S. J. Maybank, Asym-

metric 3d convolutional neural networks for action recognition, Pattern

Recognition 85 (2019) 1–12.

29

[7] X. Bu, Y. Wu, Z. Gao, Y. Jia, Deep convolutional network with locality

and sparsity constraints for texture classification, Pattern Recognition 91

(2019) 34–46.

[8] G. Costante, M. Mancini, P. Valigi, T. A. Ciarfuglia, Exploring represen-

tation learning with cnns for frame-to-frame ego-motion estimation, IEEE

robotics and automation letters 1 (1) (2015) 18–25.

[9] P. Muller, A. Savakis, Flowdometry: An optical flow and deep learning

based approach to visual odometry, in: 2017 IEEE Winter Conference on

Applications of Computer Vision (WACV), IEEE, 2017, pp. 624–631.

[10] G. Costante, T. A. Ciarfuglia, Ls-vo: Learning dense optical subspace for

robust visual odometry estimation, IEEE Robotics and Automation Letters

3 (3) (2018) 1735–1742.

[11] A. Geiger, P. Lenz, R. Urtasun, Are we ready for autonomous driving?

the kitti vision benchmark suite, in: Conference on Computer Vision and

Pattern Recognition (CVPR), 2012.

[12] H. P. Moravec, Obstacle avoidance and navigation in the real world by a

seeing robot rover., Tech. rep., STANFORD UNIV CA DEPT OF COM-

PUTER SCIENCE (1980).

[13] A. Geiger, J. Ziegler, C. Stiller, Stereoscan: Dense 3d reconstruction in

real-time, in: Intelligent Vehicles Symposium (IV), 2011 IEEE, Ieee, 2011,

pp. 963–968.

[14] R. Mur-Artal, J. M. M. Montiel, J. D. Tardos, Orb-slam: a versatile and

accurate monocular slam system, IEEE transactions on robotics 31 (5)

(2015) 1147–1163.

30

[15] C. Forster, M. Pizzoli, D. Scaramuzza, Svo: Fast semi-direct monocular

visual odometry, in: Robotics and Automation (ICRA), 2014 IEEE Inter-

national Conference on, IEEE, 2014, pp. 15–22.

[16] J. Engel, T. Schöps, D. Cremers, Lsd-slam: Large-scale direct monocular

slam, in: European Conference on Computer Vision, Springer, 2014, pp.

834–849.

[17] J. Engel, V. Koltun, D. Cremers, Direct sparse odometry, IEEE transac-

tions on pattern analysis and machine intelligence 40 (3) (2017) 611–625.

[18] R. Roberts, H. Nguyen, N. Krishnamurthi, T. Balch, Memory-based learn-

ing for visual odometry, in: Robotics and Automation, 2008. ICRA 2008.

IEEE International Conference on, IEEE, 2008, pp. 47–52.

[19] K. R. Konda, R. Memisevic, Learning visual odometry with a convolutional

network., in: VISAPP (1), 2015, pp. 486–490.

[20] A. Kendall, M. Grimes, R. Cipolla, Posenet: A convolutional network for

real-time 6-dof camera relocalization, in: Proceedings of the IEEE interna-

tional conference on computer vision, 2015, pp. 2938–2946.

[21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-

han, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in:

Proceedings of the IEEE conference on computer vision and pattern recog-

nition, 2015, pp. 1–9.

[22] A. Kendall, R. Cipolla, Modelling uncertainty in deep learning for camera

relocalization, in: Robotics and Automation (ICRA), 2016 IEEE Interna-

tional Conference on, IEEE, 2016, pp. 4762–4769.

[23] V. Mohanty, S. Agrawal, S. Datta, A. Ghosh, V. D. Sharma,

31

D. Chakravarty, Deepvo: A deep learning approach for monocular visual

odometry, arXiv preprint arXiv:1611.06069.

[24] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with

deep convolutional neural networks, in: Advances in neural information

processing systems, 2012, pp. 1097–1105.

[25] R. Clark, S. Wang, H. Wen, A. Markham, N. Trigoni, Vinet: Visual-inertial

odometry as a sequence-to-sequence learning problem., in: AAAI, 2017, pp.

3995–4001.

[26] R. Clark, S. Wang, A. Markham, N. Trigoni, H. Wen, Vidloc: 6-dof video-

clip relocalization, arXiv preprint arXiv:1702.06521.

[27] S. Wang, R. Clark, H. Wen, N. Trigoni, Deepvo: Towards end-to-end visual

odometry with deep recurrent convolutional neural networks, in: Robotics

and Automation (ICRA), 2017 IEEE International Conference on, IEEE,

2017, pp. 2043–2050.

[28] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-

scale image recognition, arXiv preprint arXiv:1409.1556.

[29] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recog-

nition, in: Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 770–778.

[30] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, K. Keutzer,

Densenet: Implementing efficient convnet descriptor pyramids, arXiv

preprint arXiv:1404.1869.

[31] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,

P. van der Smagt, D. Cremers, T. Brox, Flownet: Learning optical flow

32

with convolutional networks, in: Proceedings of the IEEE International

Conference on Computer Vision, 2015, pp. 2758–2766.

[32] G. Koch, Siamese neural networks for one-shot image recognition, 2015.

[33] N. Ballas, L. Yao, C. Pal, A. Courville, Delving deeper into con-

volutional networks for learning video representations, arXiv preprint

arXiv:1511.06432.

[34] M. Siam, S. Valipour, M. Jagersand, N. Ray, Convolutional gated recurrent

networks for video segmentation, in: 2017 IEEE International Conference

on Image Processing (ICIP), IEEE, 2017, pp. 3090–3094.

[35] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of

gated recurrent neural networks on sequence modeling, arXiv preprint

arXiv:1412.3555.

[36] J. R. Sashank, K. SATYEN, K. SANJIV, On the convergence of adam and

beyond, in: International Conference on Learning Representations, 2018.

[37] D. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv

preprint arXiv:1412.6980.

[38] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feed-

forward neural networks, in: Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics, 2010, pp. 249–256.

33

	1 Introduction
	2 Related Work
	2.1 Progress in geometric research
	2.2 Progress in deep learning

	3 Methodology
	3.1 The Structure of PoseConvGRU
	3.2 Loss Function for PoseConvGRU
	3.3 Mirror-like Constraints through Data Augmentation

	4 Experiment
	4.1 Traning and Evaluating Protocols on PoseConvGRU
	4.2 Ablation and Comparison Experiment

	5 Conclusion

