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Abstract

Tracking insect movement in a social group (such as ants) is challenging, be-
cause they are not only visually identical but also likely to perform intensive body
contact and sudden movement adjustment (start/stop, direction turning). To ad-
dress this challenge, we introduced an online multi-object tracking framework by
combining both the motion and appearance information of ants. We obtained the
appearance descriptors by using the ResNet model for offline training on a small
(N=50) sample dataset. For online association, cosine similarity metric computes
the matching degree between historical appearance sequences of the trajectory
and the current detection. We validated our method in both indoor (lab-setup)
and outdoor video sequences. The results show that the accuracy and precision of
the model are 99.22%±0.37% and 91.93%±1.46% across 46041 testing samples,
with real-time tracking performance. Additionally, we offered a public dataset of
ant tracking with 46091 samples for future research in relevant domains.

Keywords: Ant Tracking, ResNet Model, Mahalanobis Distance, Appearance
Descriptors

1. Introduction

Behavioral research on social insects (such as ants) enables us to understand 1

their group division, task specialization and other types of distributed problems 2

[1], which may potentially benefit modern applications, such as wireless commu- 3

nication and swarm robot control. Tracking individuals in an insect group for an 4
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extended period is a common approach to understand their behavior. However,5

manually labeling individual insects in a video is labor-intensive, especially for6

grouping organisms, and prone to human errors [2]. Automatic tracking methods7

by computer vision can significantly improve the processing speed and accuracy8

of vital information collection [3, 4, 5].9

However, it is a non-trivial task to track such social insects. Their appear-10

ances are almost visually identical, and their grouping behavior leads to intensive11

interactions and occlusions between each other. Existing methods distinguish in-12

dividuals by using RFID tags, QR codes, color paints [5]. However, RFID tags are13

only detectable within fixed distances; QR codes are usually too heavy for small14

insects; color paints tend to fall off over time. Marking insects by these techniques15

requires particular caution and is labor-intensive for professionals. Furthermore,16

these methods are not conducive to repeated research on insects.17

This paper aims to resolve the challenges above and offers a solution to track18

unlabeled ant individuals automatically. Our method proves to be useful in both19

indoor and outdoor environments. The motivation of this work is to significantly20

improve the work efficiency of biological researchers in relevant tasks. The con-21

tributions of our work include:22

• We introduce an online Multi-Object Tracking (MOT) framework to track23

ant individuals. This framework combines both motion and appearance24

matching, which effectively prevents trajectory fragments and ID switches25

from long-term occlusion caused by frequent interactions of ants, achieving26

efficient and high-precision tracking.27

• We obtain ant appearance features based on the ResNet model with cosine28

similarity metric, to track unlabeled ants for a long time in a fixed position29

camera. The experiments show that our method is successful and robust30

with only a small size (N=50) of the training dataset, which makes it fea-31

sible to be applied in real applications with no need to construct a large32

training dataset.33

• We construct a dataset of ant tracking with a total size of 46091 samples.34

We built the dataset following the standard MOT formulation. In contrast35

to an extensive collection of human tracking datasets, there are few datasets36

of ant tracking which are publicly accessible. We believe this dataset will37

benefit future works with relevant research objectives.38
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2. Related Work 39

2.1. Data Association Methods 40

In recent years, the task of object detection has made significant progress [6]. 41

It leads to a majority number of the MOT frameworks, which adopt the tracking- 42

by-detection paradigm. This paradigm first uses a pre-defined object detector to 43

locate objects of the current frame, then associates detections with trajectories to 44

update tracklets. Depending on the computational efficiency, these methods are 45

categorized as offline and online. 46

The offline MOT methods are in general formulated as a global optimization 47

problem, such as Network Flow [7], Multi-Cut [8, 9], Generalized Maximum 48

Multi Clique Problem (GMMCP) [10] etc. Multi-Cut clusters detections in space 49

and time for the task of re-identification [9]. The GMMCP is an ideal tracking 50

method, which considers the pairwise relationship of all targets in a set of frames. 51

It can be transformed into an optimal solution problem in integer programming 52

[10]. However, searching for the optimal global solution limits the class of objec- 53

tive functions. Using a non-Markov method to extend the objective function can 54

enhance the global consistency of trajectory [11]. 55

In contrast, the online MOT methods match detections and trajectories frame- 56

by-frame, and heavily rely on object detection results due to a short window of 57

the matching process. The Global Nearest Neighbor algorithm (GNN) is widely 58

used for data association [12, 13, 14], which calculates the metric of information 59

matching between objects in two consecutive frames. The matching criteria are 60

based on the information, including appearance, position, direction [13, 14]. In 61

the past, Kalman filter [13, 14] and particle filter [15, 16] were mostly applied to 62

data association process. The standard Kalman filter is used to construct a linear 63

model of constant velocity to predict the object position in the next frame [13, 14], 64

thereby narrowing the searching range of detected bounding boxes [17]. However, 65

in the situation where the state transition and observation model of an object are 66

non-linear, an extended Kalman filter [18] generates more accurate predictions. 67

Particle filters are also used to deal with non-linear problems [15]. However, as 68

the number of particles increases, the computational complexity increases expo- 69

nentially. The Markov Chain Monte Carlo (MCMC) sampling, instead of tradi- 70

tional importance sampling, can reduce the computation complexity of particle 71

filter [16]. Besides, the characteristics used for estimating the association proba- 72

bility are different for various types of objects. Therefore, researchers interactively 73

adapt the association scoring function, thus improving tracking reliability [19]. 74
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In this paper, we adopt the online MOT framework and use the standard75

Kalman filter to predict the motion state of objects, to achieve real-time track-76

ing. According to the prediction results, some objects are initially filtered and77

thus excluded from further matching process. We introduce the measurement of78

cosine appearance similarity to associate detected ants with the trajectories.79

2.2. Appearance Features80

Extracting appearance features is essential for solving the MOT problem. Fea-81

tures, such as color histogram [17], SIFT [12] and feature fingerprint [20], have82

been widely used in appearance modeling. In recent years, using deep networks to83

extract characteristic appearance features has become the mainstream [21]. Many84

tracking frameworks have been introduced for this purpose, such as Residual Net-85

work (ResNet) [22, 23], Long Short-Term Memory (LSTM) [22, 24], Siamese86

[25], and Quadruplet Convolutional Neural Network (Q-CNN) [26, 27].87

Substantial or long-term occlusion brings a severe challenge for MOT. A loop-88

structured two-stage classifier with the kernel is proposed to solve this problem89

[28]. In this work, once the target object is severely occluded, an optimal clas-90

sifier is selected to re-detect it according to the principle of entropy minimiza-91

tion. Other research works introduced the Spatial-Temporal Attention Mecha-92

nism, which adaptively assigns different weights of attention to calculate appear-93

ance features [29]. Similarly, the LSTM network also takes into account the track-94

ing information of the prior period, then extracts the most reliable information for95

the current frame [22, 24], as well as repairs the previous wrong association [30].96

Detection noise will seriously affect the effect of the appearance model, and97

some works have focused on handling this problem [31, 32, 33]. One solution98

is to learn the alternative tracking assumptions via CNN and automatically adjust99

the bounding box, thus getting a reasonable detection result for matching [31].100

Other approaches integrate body joint detection [32] and posture information [33]101

to infer occlusion state and object direction, which can mitigate the effects of102

detection noise.103

Inspired by research works mentioned above, we use the ResNet model for104

pre-training to obtain the appearance descriptor. Also, we store the last 100 frames105

for each trajectory as a gallery of the target, then use the historical appearance106

information for the cosine similarity metric.107

2.3. Social Insects Tracking108

Computer vision technology has benefited biologists’ research on insects. Re-109

searchers have introduced MOT frameworks for tracking social insects, such as110
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bees, fruit flies, and ants. For example, a tool, GuTomasi tracker [34], can effi- 111

ciently track the movement of bees. For Drosophila, researchers cut the wings 112

of Drosophila and let them move in a 2D culture dish. They proposed a track- 113

ing framework by integrating the planar geometric characteristics of Drosophila 114

body and motion direction [13, 14]. Other methods use motion information; thus, 115

the Kalman filter is used to estimate flight status in 3D space, and the Hungar- 116

ian algorithm is used to match Drosophila under multi-viewpoints [35, 18]. In 117

the ant colony, concurrently tracking multiple ants leads to high computational 118

complexity. Using the MCMC method can significantly reduce the sampling time 119

[16, 17], and some researchers developed a GPU-based semi-supervised frame- 120

work to achieve efficient tracking [3]. 121

In this paper, we not only verified the performance of our tracking framework 122

in the lab environment but tested in an outdoor video. The results show high 123

accuracy and precision. To the best of our knowledge, this is the first time to 124

achieve ant colony tracking in a real-world scenario. 125

3. Method Overview 126

Our work provides an open dataset of detected & tracked ants and proposes a 127

novel method for accurately tracking the ants. We captured moving ants in video 128

sequences and prepared a dataset of detected & tracked ants as the benchmark 129

(see details in Sec 4). Our method divides tracking into two stages: offline train- 130

ing and online tracking (Figure 1). For the offline training part, we adopt the 131

ResNet model and obtain the appearance matching metric (Sec 5). We use a small 132

dataset and effectively extract the hidden features that can be used to describe the 133

appearance variations of a large number of individuals. For the online tracking 134

part, the appearance and motion information are combined to associate trajecto- 135

ries with the detected ants (Sec 6). Our method requires no user interaction and 136

dramatically reduces the time cost. 137

Figure 1: The pipeline of the proposed method.
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4. Dataset Preparation138

4.1. Ant Collection in the Indoor Lab-setup139

An ant colony is a complex biological system. According to reproductive140

ability, it can divide ants into queen and workers. Workers are further divided141

into major, medium, and minor ones based on their different forms of maturity.142

For captured video sequences in indoor lab-setup, we collected a group (N=70)143

of Japanese arched ants. In order to simulate the variations of ant individuals,144

we mix ants of different categories and body sizes: queen (17 mm) and workers145

(7.4-13.8 mm). We released all ants to the environment after the experiment.146

4.2. Ant Video Capture in the Indoor Lab-setup147

When capturing the indoor video, we used a transparent plastic container with148

a diameter of 10 cm to randomly mix the ants and load them into the container149

in batches (10 ants per batch). In the meantime, we applied anti-dusting powder150

in the inner wall of container, preventing ants from escaping from the container151

during the shooting. In our experiment, a high-resolution camera is used as the152

photography device and attached to a tripod. The captured video has a resolution153

of 1920x1080 with a frame rate of 25 fps in the format of H.264. Figure 2(a)154

shows a sample of captured images.155

0001F00001.jpg 0001F00002.jpg 0001F00003.jpg

0001F00004.jpg 0001F00005.jpg 0001F00006.jpg

(a) a group of ants in a container (b) captured sequences of ant No.1

Figure 2: Results from the task of data preparation in the setup of lab environment.

As can be seen from Figure 2, the visual appearance of the ant body in the156

video is difficult to differentiate due to overexposure. Besides, the low frame rate157

also causes the motion blur of ants’ body, due to their high-speed movement. In158

contrast, experimental biologists typically use high-speed cameras (with a frame-159

rate of 500 [36]) to capture and analyze ant behaviors. These two factors pose160

significant challenges to the tracking problem.161
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4.3. Ant Video in the Outdoor Environment 162

For video sequences in the outdoor environment, we directly download the 163

video from an online video website DepositPhoto 1. We purchased the video with 164

a one-time payment of 47.8 USD. The use of this video follows a royalty-free 165

license. The video is 18 seconds in length, 30 frames per second, and 1280x720 166

pixels in resolution. 167

4.4. Dataset Processing 168

After the procedure of video collection, each ant in a video is marked frame by 169

frame. The size of the bounding box is 96x96 and 64x64 for indoor and outdoor 170

scenes respectively. We designed a MATLAB-based labeling software Visual- 171

MarkData with three primary purposes: 1) to minimize the user’s labeling time, 172

2) to reduce the difficulty of labeling, 3) to acquire the appropriate data arrange- 173

ment for the training task. Please see the Appendix for the detailed explanations 174

on the labeling tool. The dataset and source code of our work, including the la- 175

beling software, are provided as the supplementary materials and uploaded to an 176

online public repository 2. 177

In order to quantitatively evaluate the tracking performance, we save the po- 178

sition information of each ant in the pixel coordinates in the original images. We 179

formulate the data hierarchy following the standard format of MOT challenge. 180

The manual labeling on the five indoor sequences and one outdoor sequence costs 181

eight staff-days. In total, we collected 24050 and 22041 samples for indoor and 182

outdoor environments, respectively. For detailed descriptions, please refer to our 183

supplementary materials. 184

5. ResNet-based Appearance Descriptor 185

5.1. ResNet Network Architecture 186

We use the ResNet, a relatively shallow network architecture that can under- 187

take online multi-objects tracking tasks [37]. The network consists of six residual 188

blocks, two convolutional layers, and one pooling layer, for a total of 15 layers 189

(Table 1). The training data are images of a detected ant (Figure 2(b)), and then 190

the feature map is reduced to 12x12 through a series of convolutional layers. After 191

1http://www.depositphoto.com
2https://github.com/holmesww/multi-ants-tracking
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that, the model extracted the feature vector of 128 dimensions from the fully con-192

nected layer. Finally, batch normalization (BN) is applied to obtain a normalized193

feature vector for the cosine similarity metric.194

Name Path Size/Stride Output Size

Conv 1 3x3/1 32x96x96

Conv 2 3x3/1 32x96x96

Max Pool 3 3x3/2 32x48x48

Residual 4 3x3/1 32x48x48

Residual 5 3x3/1 32x48x48

Residual 6 3x3/2 64x24x24

Residual 7 3x3/1 64x24x24

Residual 8 3x3/2 128x12x12

Residual 9 3x3/1 128x12x12

Dense 10 128

Table 1: Hierarchy of the ResNet model in our work

5.2. Cosine Similarity Metric Classifier195

We here train an appearance matching model with a cosine similarity met-196

ric. The training dataset is a paired data set D = (xi, yi)N
i=1, where x is the input197

image, with the associated ant ID number yi = 1, · · · ,N. Our method only re-198

quires a small dataset (N=50) and is capable of applying to a much larger dataset199

(N=24000 and 22041 for the indoor and outdoor environments, respectively).200

Usually, CNN places a softmax classifier on top of the network for calculat-201

ing the score of each class. The softmax classifier will select the class with the202

maximum probability as the output. The softmax classifier formula is as follows:203

p(y = k|r) =
exp

(
wT

k r + bk

)
∑C

n=1 exp
(
wT

n r + bn
) (1)
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where r represents the underlying feature trained by the ResNet model, k rep- 204

resents the kth class tag, w, b are parameters of the softmax classifier. Its loss 205

function can be stated as: 206

L(D) = −

N∑
i=1

C∑
k=1

gtyi=k · log p (yi = k|ri) (2)

where L(D) is the sum of the cross entropy losses of the N images, log p(yi = k|ri) 207

is the predicted result of the ith image in the kth label, and gtyi=k is the ground 208

truth. The ResNet model backpropagates the fit error to adjust parameters during 209

iteration. 210

The posterior probability of the softmax classifier is determined by the dis- 211

tance between the input and decision boundaries, which is valid for multi-classification212

tasks. However, our goal is to distinguish objects from the same class. For sev- 213

eral images of the same type of objects, the posterior probability obtained by the 214

softmax classifier cannot be directly used to calculate their similarities. 215

We modify the parameters of the softmax classifier in order to obtain a cosine 216

similarity metric classifier that can measure the similarity of the same type objects 217

[23]. First, in the previous ResNet network architecture, the fully connected layer 218

has been normalized using BN to ensure that it is unit-length || fθ(x)|| = 1, ∀x ∈ 219

RD. Second, weights are normalized, i.e. ω̃ = ω
||ωk ||2

∀k = 1, · · · ,C. The cosine 220

similarity metric classifier can be expressed as: 221

p (yi = k|ri) =
exp

(
κ · ω̃T

k ri

)
∑C

n=1 exp
(
κ · ω̃T

n
) (3)

where κ represents the free scaling parameter. 222

Since the weight and offset are normalized in the training process, the distance 223

effect between the posterior probability and the decision boundary is eliminated. 224

The range of direction angles of each class at the decision boundary is the only 225

factor to be adjusted to get the final classifier. Therefore, we can obtain the ob- 226

ject similarity in different images by calculating the cosine distance between the 227

posterior probabilities. 228

6. Online Multi-Ant Tracking Framework 229

6.1. Trajectory Association Model 230

In a MOT task, the motion information of the object is critical. However, mo- 231

tion paths of ants are irregular with frequent transitions of being static, straight- 232
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through, U-turn. Such a significant motion uncertainty is likely to cause the prob-233

lem of ID switches. Therefore, this paper uses the ResNet model to train the234

appearance features of ants offline, then combines the motion and appearance in-235

formation to associate objects and trajectories in each frame.236

6.1.1. Motion Matching237

We calculate the square of the Mahalanobis distance between the object posi-238

tion predicted by the Kalman filter and the detected ant position to measure the239

degree of motion matching [38], which can be expressed as:240

d(1)(i, j) =
(
d j − yi

)T
S −1

i

(
d j − yi

)
(4)

where d j represents the position of the jth detection box, yi represents the position241

of the ith trajectory predicted by Kalman filter, and S i represents the covariance242

matrix between the ith trajectory and the detected bounding box.243

To further characterize the matching results between trajectories and objects,244

this paper introduces the motion association signal and calculates the 90% confi-245

dence interval of the Mahalanobis distance through the inverse chi-square distri-246

bution. If the squared Mahalanobis distance is less than the threshold, the associ-247

ation between the trajectory and the object is potentially successful. The formula248

can be expressed as a Bernoulli distribution:249

b(1)
i j =

1, d(1)(i, j) < t(1),

0, otherwise.
(5)

where b(1)
i j is the association result between the ith trajectory and the jth detection250

box, which is a 0-1 binary variable. The fact of b(1)
i j = 1 indicates that the jth

251

detection box is potentially associated with the ith trajectory, given the metric of252

motion matching. The squared Mahalanobis distance threshold t(1) is set to 15.507253

in our experiment.254

6.1.2. Appearance Matching255

In this paper, the ResNet model utilizes the metric of cosine similarity to per-256

form the offline training of ant’s appearance features. We obtain a 128-dimensional257

feature vector as the appearance descriptor r [38], which characterizes an ant’s ap-258

pearance. In the online tracking process, the ith trajectory is designated with a set259

Ki of feature vectors (N=100) from the most recent successful associations. The260

formula expression is denoted as follows:261

d(2)(i, j) = min
k

{
1 − r jr

(i)
k

}
, for r(i)

k ∈ Ki (6)
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where r j denotes the eigenvector value of the jth detection box under the cosine 262

similarity association model, r(i)
k denotes the kth appearance descriptor of the ith

263

trajectory, and d(2)(i, j) denotes the matching degree between the appearance of the 264

jth detection box and the ith trajectory. The above equation computes the minimal 265

distance between the current detection box and all trajectories. This metric is used 266

to filter the tracking trajectories and associate them with the detection box in the 267

following step. 268

This paper introduces an appearance-associated signal b(2)
i j . An object is po- 269

tentially associated with one trajectory if its appearance matching degree satisfies 270

the following condition: 271

b(2)
i j =

1, d(2)(i, j) < t(2),

0, otherwise.
(7)

In the formula, b(2)
i j follows the Bernoulli distribution. The threshold t(2) is set to 272

0.2, based on the observed outputs from the ResNet model. The fact of b(2)
i j = 1 273

indicates that the jth detection box is potentially associated with the ith trajectory, 274

given the metric of appearance matching. 275

6.1.3. Comprehensive Matching 276

Our method obtains a small set of candidate trajectories CT for each detection 277

box, considering both the motion and appearance information. The ith trajectory 278

is added to the candidate set of the jth detection box, if the condition of bi j = 1 is 279

satisfied: 280

bi j =

2∏
m=1

b(m)
i, j (8)

This equation indicates that only if both b(1)
i, j , b

(2)
i, j are true, the ith trajectory is asso- 281

ciated with the jth detection box. Among all trajectory candidates in CT of the jth
282

detection box, we associate the detection box with the trajectory with the maximal 283

value of the appearance similarity. 284

6.2. Matching Cascade Model 285

When the object is blocked for a long duration, the uncertainty of the object 286

position predicted by the Kalman filter increases as the occlusion time passes 287

by. It indicates that the covariance matrix increases, resulting in a decrease in 288

the Mahalanobis distance. If another object moves to this point at this moment 289

and competes with the object for the detection box, the trajectory with a longer 290
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occlusion time is more likely to be associated. It causes the problem of ID switch291

and the tracking discontinuity. In order to solve this problem, this paper introduces292

the concept of matching cascade [38], which preferentially matches the trajectory293

closest to the time of the last association. In other words, give priority to allocation294

the trajectory with the same occlusion time, in order to avoid ID switches.295

6.3. Track Update296

After cascade matching of the current frame, the trajectories need to be up-297

dated. There are three operations to update a trajectory: set to be a tentative tra-298

jectory, set as a confirmed trajectory, delete a trajectory. For detections that cannot299

be associated with existing trajectories, a new trajectory will be created and con-300

sidered to be tentative in the first two associations. We require three consecutively-301

associated frames before converting this tentative trajectory into a confirmed one;302

otherwise, delete it [38].303

If an unmatched trajectory has been matched successfully in the current frame,304

we compute the mean moving speed of the object to estimate its position in the305

next frame. Otherwise, suspend the tracking of this trajectory. If the lost frames306

of a confirmed trajectory exceed the predefined maximum number of Amax, the307

trajectory will be deleted.308

7. Results and Discussions309

7.1. Hardware, Software and Parameters310

The hardware configuration is Intel (R) Core (TM) i7-9700K GPU GeForce311

RTX 2080 Ti, and the memory is 16.0GB, and we implemented in Python envi-312

ronment. All source code and dataset are attached as supplementary files. In the313

training experiment, the batch size of the ResNet model is set to 16, the learning314

rate is set to 1e-4, and the number of steps is 100000. In this model, there are315

2800,864 network parameters. For the online tracking framework, this article sets316

Amax = 30 and the minimum cosine distance to be 0.2.317

7.2. Training ResNet318

The training dataset contains 50 images of detected ants. To construct this319

dataset, we randomly select six ants from all detected and labeled ants, and ran-320

domly select 8 to 10 images for each of them. A larger dataset can be used to train321

ResNet. In our pilot experiment, we use 19849 images for training and achieve the322

performance of MOTA: 99.8%, MOTP: 94.0%. Although our current implemen-323

tation uses only 50 samples, this does not cause a significant deterioration of our324
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tracking performance. See detailed discussions on the statistics of our method in 325

the following section. The use of a small training dataset is one of the advantages 326

of our method since this eliminates the demand of manually constructing a large 327

training dataset. This is similar to existing works [28, 39] which can track targets 328

at high accuracy and effectively reduce the labeling demand. However, these two 329

methods focus on the task of single-target tracking, which is different from our fo- 330

cus. The training time based on the above hardware platform is about 30 minutes. 331

In addition, a set of manually-labeled tracking results is used as ground truth to 332

evaluate the performance. 333

Using the above model and parameter settings, after 100,000 iterations, the 334

total training loss and accuracy convergence of the 128-dimensional sample fea- 335

tures set are shown in Figure 3. The blue curve represents the decline in total 336

training loss, and the red curve represents the increase in accuracy. The training 337

loss and accuracy of the model both had a stable convergence performance. After 338

nearly 40,000 iterations, the total loss of the model converges to about 1.1, and 339

the accuracy tends to be stable. 340
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Figure 3: the ResNet model training loss and accuracy convergence curves.

7.3. Tracking Performance in Indoor Lab-setup 341

The results of multi-ants tracking video (indoor lab-setup) obtained in the 342

above experiment are shown in Figure 4. There are 10 ants in each video. Each ant 343
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4: Tracking result in an indoor lab-setup environment.

is positioned in a square bounding box of different colors. The ant’s ID number344

is indicated in the upper left corner of the bounding box, to observe the tracking345
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accuracy. In order to quantify the performance of the model, we use the following 346

eight indicators of MOT to evaluate tracking performance [40]: 347

• False Positive (FP): the total number of false alarms. 348

• False Negative (FN): the total number of objects that did not match success- 349

fully. 350

• Identity Switch (IDS): the total number of object switches during the track- 351

ing process. 352

• Fragments (FM): the total number of incidents that the tracking result inter- 353

rupts the real trajectory. 354

• Mostly Tracked (MT): the proportion of predicted trajectories that hits suc- 355

cessfully in real trajectories, over 80%. 356

• Most Lost (Mostly Lost, ML): the proportion of predicted trajectories that 357

hits successfully in the real trajectory, no more than 20%. 358

• Multi-object Tracking Accuracy (MOTA): tracking accuracy of IDS consid- 359

ering false positives and missed objects. 360

• Multi-object Tracking Precision (MOTP): tracking consistency between la- 361

beled and predicted bounding boxes. 362

• Frame Rate (FR): the number of frames being tracked per second. 363

Table 2 demonstrates the tracking results in the indoor lab-setup environment 364

(Figure 4). We found that the MOTA from Video 1 to Video 5 is close to full, 365

MT value is 10, and IDS rarely happens. This indicates that all ants are accurately 366

tracked in each video, with few tracking drifts. At the same time, the average 367

MOTP value is as high as 91.74%, which means that we can track ants’ positions 368

precisely. A small amount of FN and FM indicates that most of the matches are 369

successful, signifying that our model can robustly track multi-ants simultaneously 370

in a global scope. Besides, due to the GPU-based online tracking process, the 371

frame rate is around 35 fps, which is well above the standard video rate (24 fps). 372

In order to visualize the tracking performance in the whole video process, 373

this paper compares tracking results with the ground truth for Video 5 and draws 374

the tracking error graph (Figure 5). The left side of this figure shows the complete 375

tracking of the video, where the abscissa represents the frame number, the ordinate 376
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FP FN IDS FM MT ML MOTA MOTP FR

Video 1 0 0 0 0 10 0 99.4 92.1 36.11

Video 2 7 10 4 7 10 0 98.8 91 34.58

Video 3 6 6 0 6 10 0 99.1 89.8 35.21

Video 4 8 8 4 6 10 0 98.9 91.8 35.45

Video 5 1 2 0 0 10 0 99.8 94 35.33

Outdoor 66 55 34 7 99 2 99.3 92.9 35.24

Table 2: Tracking performance evaluation.

represents the ant number, and the color represents the error value. The maximum377

value of the tracking error (FN or IDS) is 50. In the left image, false tracking is378

difficult to identify with human observation, and the overall rendering shows an379

excellent tracking effect. These indicate that the proposed model can track the380

ants in the laboratory environment accurately for a long time.381

Figure 5: Tracking error graph over time in the case of indoor lab-setup environment.
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7.4. Outdoor Environment 382

Results in the previous section showed that our method achieved satisfactory 383

tracking results in the lab set-up. We hope to further evaluate the effectiveness of 384

our tracking framework in real-world environments, to obtain more meaningful 385

and persuasive evaluation-data. At the same time, in real-world ant swarms, their 386

interactions and complex environments may expose the limitations of our model, 387

which will provide reliable guidance for our future efforts. We selected a 569- 388

frame (18 seconds) outdoor ant video for testing. In addition to the complex 389

environment in the video, 101 ants appeared in the entire video, with an average 390

of 40 ants per frame. Moreover, this outdoor test is far more challenging than our 391

previous experiments because most ants are fast-moving. We directly used the 392

pre-trained model from the ideal lab images, instead of re-training with outdoor 393

images. Figure 6 shows the tracking results. 394

Figure 6: Tracking performance in an outdoor environment.

According to Table 2 (the last row for the case of outdoor environment), 395

MOTA value is 99.3%, indicating that our model can still accurately track each ant 396

in a complex real-world environment. The precision index - MOTP value - even 397

exceeds the average of tracking results in previously ideal environments, conse- 398

quently indicating that our model is robust. Besides, the value of FM is maintained 399

at the same level compared to the ideal environment. The result shows that this 400

metric is not affected by the concentration of ant colonies and the complexity of 401

the environment, thus showing that our model can alleviate the trajectory frag- 402

mentation problem. 403

We observed that the metric of IDS increased to 34. An in-depth analysis 404

showed that this is caused by the newly-entered ants which are associated with 405

the existing trajectories. When constructing the ground truth, we assign a new 406

trajectory to an ant entering into the video. The number of created trajectories 407

by our method is 77, but 101 ants appeared in the video. The difference between 408

these two numbers is the same as the IDS, which indicates that 34 ants who should 409

have their new trajectories were incorrectly assigned to the existing trajectories of 410
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other ants, resulting in trajectory drift. However, it is worth noting that since all411

IDS occur due to the entrance of new ants, it also illustrates that our tracking412

model is accurate while ants are moving inside the video scene.413

7.5. Occlusion Handling414

The strategy of combining both motion and appearance matching leads to a415

boost of our capability in tracking ants when severe occlusion happens between416

individuals. Figure 7 shows an example. Ants No. 4 and 6 cross each other from417

Frame 109 to 136, and the occlusion lasts around one second. During this interval,418

these two ants demonstrate close body contact with each other, and the bounding419

boxes almost overlap (Frame 124). Our algorithm can still accurately identify420

and track both individuals after they depart from each other. The success of our421

method builds upon the capability to predict the motion state of ants.422

Figure 7: Tracking in the scenario involving severe occlusion.

7.6. Limitation and Failure Case423

In order to further analyze the failure case of our method, we conduct an in-424

depth analysis of the tracking results from Frame 1 to 50 (Figure 5). The tracking425

plot of ant No.7 in Frame 9 is dark red, indicating an occurrence of either FN or426

IDS. However, the other ants do not report the corresponding tracking errors of427

IDS, which informs that it is a false negative on ant No.7, rather than an incident428

of ID switch. It is worth pointing out that the subsequent trajectory tracking is still429

correct, indicating that the model can re-identify the same ant after the trajectory430

is temporarily miss-associated.431

To further analyze this FN problem, we intercept the video sequence from432

Frame 7 to 10, with a specific focus on ant No.7 (Figure 8). The results in Fig-433

ure 8 show that in Frame 7 and 8, the body of the ant No.7 is blurred because of434
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(a) (b) (c) (d) (e)

Figure 8: Analysis of the FN of ant No. 7.

its fast movement. It indicates that the frame rate of our captured video is not suf- 435

ficient and increases the tracking difficulty. In Frame 8, since the speed exceeds 436

the threshold, the framework fails to associate the labeled detected bounding box 437

with the trajectory. In this scenario, we create a new bounding box at the pre- 438

dicted position by the Kalman filter. Therefore, the trajectory lost its association 439

in Frame 8 and 9. In other words, FN occurs twice, as shown in Figure 8(e). 440

Following the flow of trajectory update, a new trajectory, numbered as 11, 441

is generated and set in a tentative state, as shown in Figure 8(e). However, in 442

Frame 10, since the displacement of the ant No.7 is reduced, the motion matching 443

with the Trajectory 7 satisfies the threshold, while the Trajectory 11 does not. So 444

the detection of the ant No.7 is re-associated with the original Trajectory 7, and 445

Trajectory 11 is deleted because it matches less than three frames. The analysis 446

results show that the model can accurately recognize the ant after the omission 447

and is capable of self-correction. 448

8. Conclusion 449

Tracking individuals in a group of social insects enables biologists to effec- 450

tively and accurately understand their collective intelligence in decision making 451

and task division [17]. This work combines both the motion and appearance in- 452

formation, and can successfully track unmarked ants in real-time. Our method 453

can significantly reduce the cost of research and increase the speed of information 454

collection. We use the ResNet model for offline training on a small sample data 455

set of 50 images to describe the appearance of the ants. The experimental results 456

show that the accuracy and precision of the model are 99.22% and 91.93% (aver- 457

age across 46041 testing samples), effectively alleviating ID switches or fragments 458

caused by severe long-term occlusion. This confirms that an appearance descriptor 459

from a small training dataset can effectively apply to an extensive testing dataset. 460
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Our method can successfully handle the scenarios of indoor lab-setup and outdoor461

environment. To address one of our limitations (discussed in Sec. 7.6), we will462

explore alternative motion models to solve miss matching caused by the abrupt463

change in speed. For the problem of IDS in the outdoor scene, we plan to intro-464

duce additional mechanism to identify the new entrants in the scene and create465

separate trajectories for association.466

For future work, we consider tackling the problem of detection to identify467

ants in images, thus building a complete detecting-tracking framework. Our cur-468

rent implementation uses the manually-labeled detection results as the baseline.469

However, we acknowledge that although the detection problem is independent of470

the track, the detection quality does significantly affect the tracking accuracy and471

precision. Therefore, a robust detection method is a critical component as part of472

the complete solution of ant behavior analysis. In addition, we will extensively473

test and improve our model using data sets with more complex occlusions and il-474

lumination changes, thereby enabling real-time tracking of ants in the real-world.475

Although the pilot experiment of an outdoor environment (Figure 6) preliminar-476

ily confirms the effectiveness of our method, a rigorous analysis is required for a477

wide range of outdoor scenarios. Further, drawing on the idea of transfer learning,478

we intend to extend our model to other kinds of ants, even other insects (such as479

bees). Investigating the differences in appearance descriptors across different ant480

and insect species may reveal exciting findings, in correlation with the biological481

research studies.482
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Appendix608

We developed a labeling software VisualMarkData in this paper to collect the609

data used for detecting and tracking ants. Figure 9 shows the interface of software.610

The main operations are as follows.611

Prepare for labeling: Before labeling, the user clicks ”Choose Image Set” to612

select an image set, and ”Output Directory” to select the storage path of labeling613

results. The filename of the image set is defined in the format of ”AntXImageY”,614

where X is the number of ants in the first frame and Y is the size of the bounding615

box. For example, the image set, named as ”Ant10Image96”, indicates that this616
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Figure 9: The interface of VisualMarkData.

image set contains 10 ants in the first frame and each ant will be marked with a 617

bounding box with its size of 96x96. 618

Label: The user clicks on the body center of ant, and the software can auto- 619

matically save the position information of ant in the current frame. Moreover, it 620

can automatically intercept a square patch centered on the labeling point as the 621

training image. It should be emphasized that the user does not label all the ants 622

in one image simultaneously, but only labels the same ant until he/she finishes the 623

entire image set. After that, the user labels another ant from the first frame. This 624

way helps reduce the difficulty of labeling. 625

Next: The user clicks ”Next” to update the interface with the image on the 626

next frame. The labeled position on the previous frame is displayed with a green- 627

dotted frame, which can help the user quickly locate the target ant. 628

Previous: If the labeled position of the previous frame is incorrect, the user 629

can click ”Previous” to return to the previous frame and re-label. 630

Check and modify: After the user finishes labeling the entire image set, 631

he/she needs to check the quality of labeled results. In this case, the user can 632

enter the frame to be modified. 633
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