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Abstract

The paper presents a new theory of invariants to Gaussian blur. Unlike earlier

methods, the blur kernel may be arbitrary oriented, scaled and elongated. Such

blurring is a semi-group action in the image space, where the orbits are classes

of blur-equivalent images. We propose a non-linear projection operator which

extracts blur-insensitive component of the image. The invariants are then for-

mally defined as moments of this component but can be computed directly from

the blurred image without an explicit construction of the projections. Image

description by the new invariants does not require any prior knowledge of the

blur kernel parameters and does not include any deconvolution. The invariance

property could be extended also to linear transformation of the image coor-

dinates and combined affine-blur invariants can be constructed. Experimental

comparison to three other blur-invariant methods is given. Potential applica-

tions of the new invariants are in blur/position invariant image recognition and

in robust template matching.
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Flusser), lebl@utia.cas.cz (Matěj Lébl), matped@ee.oulu.fi (Matteo Pedone)

Preprint submitted to Pattern Recognition February 14, 2020

                  



1. Introduction

In image processing and analysis, we often have to deal with images which are

degraded versions of the original scene. One of the most common degradations

is blur, which usually appears as a smoothing or suppression of high-frequency

details of the image. Capturing an ideal scene f by an imaging device with

the point-spread function (PSF) h, the observed image g can be modeled as

a convolution of both

g(x) = (f ∗ h)(x) . (1)

This linear image formation model, even if it is very simple, is a reasonably

accurate approximation of many imaging devices and acquisition scenarios. In

this paper, we concentrate our attention to the case when the PSF is a Gaussian

function with unknown parameters.5

Gaussian blur appears whenever the image has been acquired through a tur-

bulent medium and the acquisition/exposure time is by far longer than the

period of Brownian motion of the particles in the medium. Random fluctu-

ations of the refractive index perturb the phase of the light and blur the ac-

quired image. Ground-based astronomical imaging through the atmosphere,10

long-distance aerial and satellite surveillance, taking pictures through a haze,

underwater imaging, and fluorescence microscopy are typical examples of such

situation (in some cases, the blur may be coupled with a contrast decrease).

Gaussian blur is also introduced into the images as the sensor blur which is due

to a finite size of the sampling pulse. It may be sometimes applied intentionally15

as a low-pass filter for noise suppression, as a graphic tool to soften the image,

and as a preprocessing when building the scale-space image pyramid to pre-

vent aliasing artifacts. Few examples of Gaussian-blurred images can be seen in

Fig. 1.

Eq. (1) is an example of an inverse problem, where we want to estimate f20

from its degraded version g, while the PSF may be partially known or unknown.

This task is ill posed. Without additional constraints, infinitely many solutions

satisfying Eq. (1) may exist. Solving of (1) has been known in image processing
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(a) (b) (c) (d)

Figure 1: Examples of the Gaussian blur: (a) a sunspot blurred by atmospheric turbulence, (b)

underwater photo blurred by light dispersion, (c) a picture taken through haze, (d) a digitally

low-pass filtered image.

literature as image restoration and can be traced back to 1960’s. Despite of

its long history, it has not been fully resolved. Although some of the current25

image restoration and deconvolution methods yield good results, they rely on

prior knowledge incorporated into regularization terms or in other constraints.

If such prior knowledge is not available, the methods may diverge or converge

to a solution which is far from the ground truth. In case of a Gaussian blur, the

parametric shape of the PSF can be used as a prior but another specific problem30

appears. Since any Gaussian function is infinitely divisible (it can be expressed

as a convolution of arbitrary number of Gaussians) and since the convolution

is an associative operation, the deconvolution may eliminate only a part of the

actual blur, while the rest of the blur may be mistakenly considered as a part

of the original image. From a purely mathematical point of view, there is in35

principle no chance to avoid these formally correct but actually false solutions

if no other prior information is available.

In 1990’s, some researchers not only realized all the above-mentioned diffi-

culties connected with the solving of Eq. (1) but also found out that in many

applications a complete restoration of f is not necessary and can be avoided,40

provided that an appropriate image representation is used. A typical example

is a recognition of objects in blurred images, where a blur-robust object descrip-

tion forms a sufficient input for the classifier. This led to introducing the idea of

blur invariants. Roughly speaking, blur invariant I is a functional fulfilling the
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Figure 2: Four approaches to analysis of blurred images. Image restoration via deconvolution

(first branch), description and recognition by blur invariants (second branch), matching by

minimum blur-invariant distance (third branch), and brute-force searching an augmented

database (last branch).

constraint I(f) = I(f ∗ h) for any h from a certain set S of admissible PSF’s.45

Many systems of blur invariants have been proposed so far. They differ from one

another by the assumptions on the PSF, by the mathematical tools used for in-

variant construction, by the domain in which the invariants are defined, and by

the application area which the invariants were designed for (see [1], Chapter 6,

for a survey of blur invariants and further references).50

Instead of constructing blur invariants of an individual image, in a few pa-

pers the authors proposed rather to use blur-invariant distance to measure the

similarity between a blurred query image and clear database elements. This

may help for such PSF’s for which the invariants I(f) are difficult to design or

expensive to calculate.55

The last group of methods replaces the theoretical construction of blur in-

variants with a brute-force search of an augmented database, which contains nu-

merous samples of artificially generated blurred versions of each clear database

image.

Fig. 2 illustrates the differences between these four approaches. Relevant60

work of all these categories are reviewed in Section 2.

All current methods dealing with Gaussian blur, regardless of the category

they belong to, suffer from two serious limitations. The first one is that they

were designed for circular Gaussian blur only and cannot handle more general
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scenarios. The assumption of the circular symmetry of the blur is an intrin-65

sic aspect of most methods. The generalization from circular to anisotropic

arbitrary oriented Gaussian blur is non-trivial and requires completely new ap-

proaches. The second limitation, which is partially connected with the first one,

is that almost all current methods cannot handle simultaneously the blur and

geometric transformations, such as rotation, scaling and affine transformation.70

They either cannot be adapted to handle spatial transformations at all (this

is true namely for the invariant distances) or the possibility of the adaptation

is coupled with the assumption of circular blur, which must not be violated

under the spatial transformation (which is not the case of an affine transform).

Since in practical applications the template rotation/scaling/affine transform75

may be present quite often, this is a serious drawback. One might think that

an anisotropic Gaussian blur does not appear often in practice but the opposite

is true. If the sensor has different resolution in horizontal and vertical direction

then, even if the ground-truth PSF is circular, the image is blurred differently

in x and y. If, moreover, the sensor parameters are not adjusted w.r.t. the80

database images, we face the problem of recognition of rotated/scaled/skewed

and blurred images by an arbitrary-shaped Gaussian. An anisotropic Gaussian

blur appears also if the turbulence in the medium, we are taking the picture

through, is in certain direction more significant (due to wind for instance) than

in the others. All this is a clear call for a discovery of more advanced invariants.85

The main novel contribution of this paper is the design of the combined in-

variants to Gaussian blur and spatial affine transformation. This problem has

not been tackled in the literature so far. This is accomplished through a deriva-

tion of the invariants w.r.t. blurring with a general (anisotropic) Gaussian

kernel. The new blur invariants are defined by means of non-linear projection90

operators and are able to handle much more general scenarios than any other

existing method, as we demonstrate by experiments. This brings immediate

practical benefits. When applying the earlier invariants, we should first check

whether or not the Gaussian blurring PSF is circularly symmetric, which is al-

most impossible to verify from the blurred image itself. If this constraint has95
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not been met, the method fails. The new invariants presented in this paper

can be applied directly and do not require any prior estimation of the blurring

PSF. The proposed combination with a rotation/affine invariance is based on

the Substitution Theorem, which crowns the paper.

The paper is structured as follows. After the literature survey given in the100

next Section, we introduce the mathematical background of Gaussian blur in

Section 3. Blur invariants in Fourier domain are proposed in Section 4 and their

counterparts in image domain, moment-based blur invariants, are presented in

Section 5. In Section 6, we formulate the Substitution Theorem, which allows to

construct combined blur-affine invariants. Section 7 presents several recognition105

experiments on real real images and video.

2. Related work

State-of-the-art methods, dealing with the model (1) and with Gaussian

blur, can be categorized into four main groups. In the sequel, we give a brief

overview of each of them.110

2.1. Restoration methods

Several image restoration methods specifically designed for Gaussian blur

have been published. They try to estimate the size (variance) of the blur and

perform a non-blind deconvolution. Honarvar et al. [2] proposed to perform

the deconvolution in the moment domain but that algorithm contains a time-115

consuming search in the parametric space and is sensitive to overestimation

of the Gaussian variance. The APEX method [3] estimated the blur variance

by fitting the image spectrum in the Fourier domain. There exist also sev-

eral local methods that estimate the blur size by investigating the response on

a point source or on an ideal edge [4, 5]. A common weakness of these meth-120

ods is their sensitivity to noise and the necessity of the prior knowledge where

an ideal point or edge is located. Xue and Blu [6] proposed to estimate the

blur variance by minimizing a proper functional and then to apply a non-blind
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Wiener filtering. As in the previous cases, the method is sensitive to the vari-

ance overestimation and relatively time consuming. Numerous other methods125

were developed specially for atmospheric turbulence restoration [7] and most of

the general blind-deconvolution algorithms (see, for instance, [8] for a survey

and further references) can be used for Gaussian blur restoration as well with

average results.

Restoration methods are not direct competitors of the proposed invariant-130

based technique. They were primarily designed to yield an estimation of the

ideal image for visual interpretation. When used for recognition purposes, they

serve as a pre-processing of the query image which is then described by some

standard features. Such approach is, however, slow and unstable due to the

restoration artifacts.135

2.2. Brute force and convolution neural networks

A brute-force approach to recognition of degraded images relies on high com-

putational power of current super-computers. To avoid both inversion of the

degradation model as well as the design of the invariants, the training set is

extended with all assumable degradations (using a proper sampling of the para-140

metric space) of the training images. This process is called data augmentation

and is popular especially in the connection with deep convolution neural net-

works (CNNs) where it may improve the recognition rate, see for instance [9].

Large-scale data augmentation is, however, time and memory consuming. In

our case, the augmentation would require to generate blurred and spatially145

deformed versions of each training image with Gaussian kernels and transfor-

mation parameters from a certain range, and a consequent massive training.

Since this would enlarge the training set by several orders, it is clear that this

is not a feasible solution for databases containing many classes. Without data

augmentation, even the state-of-the-art CNNs that perform excellently on clear150

images fail frequently when recognizing blurred inputs. As shown experimen-

tally in [10], their performance drops when they are used to recognize degraded

images while they have been trained on clear images only [10].
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2.3. Blur-invariant distances

The idea of blur-invariant distance was firstly proposed by Zhang et al. [11]155

and has found several successors. All algorithms of this kind try to define a dis-

tance between two images, which fulfills the constrain d(f1, f2) = d(f1 ∗ h, f2)

for any admissible h.

Zhang et al. [11, 12] assumed circular Gaussian blur, estimated the blur

level of the images to be compared (the authors took the integral of the image160

Laplacian as the blur estimator) and brought the images to the same blur level

by blurring of the one which was less blurred. The distance d(f1, f2) is then

defined either as a weighted L2-distance between the images of the same blur

level [11] or as a geodesic distance on the surface of the manifold which contains

the images of the same blur level [12]. The advantage of the Zhang’s method is165

its simplicity. It does not contain any deblurring, minimization and iterations.

However, the proposed estimation of the blur level is questionable for two images

with different amount of high-frequency information.

Gopalan et al. [13] derived another blur-invariant distance measure without

assuming the knowledge of the blur shape but they imposed a limitation on170

the blur support size. The authors showed that all blurred versions of the

given image create a linear subspace, which can be understood as a point on

Grassmann manifold. The blur-invariant distance between two images is then

defined as the Riemannian distance between two points on the manifold. At

the same time, this can be equivalently understood as measuring the angle175

between two subspaces. Although the Gopalan’s method does not explicitly use

the parametric shape of the blur, it performs well on Gaussian blur. However,

the method suffers from two major drawbacks – the absence of any constraints

imposed on the blur (except the support size) admits physically non-realistic

blurs with negative values and the calculation of the Riemannian distance is180

very time-consuming.

The Gopalan’s method was improved by Vageeswaran et al. [14], who in-

troduced the positivity and energy-preserving constraints into the Gopalan’s

method. Under these constraints, blur-equivalent images form a convex set in

8

                  



Figure 3: Illustration of three blur invariant distances: Zhang’s (Z) “image to image”,

Gopalan’s (G) “subspace to subspace” and Lébl’s and Vageeswaran’s (P) “image to a convex

set”.

the image space. The blur-invariant distance between the query image and the185

template is defined as the distance between the point, representing the query

image, and its projection onto the convex set containing all blurred versions of

the template. Most recently, essentially the same idea was independently pro-

posed by Lébl et al. [15] who also presented an efficient algorithm for distance

calculation by quadratic programming.190

Fig. 3 visualizes, in a simplified way, the differences between the above men-

tioned distance measures. All three measures are compared to the proposed

method in the experiments in Section 7.

2.4. Explicit blur invariants

Invariants w.r.t. blur were originally proposed in the work by Flusser et195

al. [16, 17]. The first blur invariants were invariant w.r.t. any centrosymmetric

PSF, without taking into account its parametric form. In 2015, Flusser et al.

proposed a general theory of linear projection operators [18], which allowed to

design specific blur invariants w.r.t. arbitrary N -fold symmetric blur, which

led to an increase of their discriminability. The literature on blur invariants200

is relatively rich. Below we review only those methods, that were designed

specifically for Gaussian blur. If a parametric Gaussian form of the blur kernel

is assumed, the general invariants from [18] and similar can be still used but do

not provide the optimal discrimination power.
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Liu and Zhang [19] realized that the complex moments of the image, one in-205

dex of which is zero, are invariant to Gaussian blur. Xiao [20] seemingly derived

invariants to Gaussian blur but in fact he only employed the symmetry of the

Gaussian rather than its parametric form. Höschl proposed invariants to Gaus-

sian convolution in 1D and applied them to image histograms [21]. Flusser et

al. [22] introduced a complete set of moment-based Gaussian blur invariants for210

the case that the Gaussian PSF is circularly symmetric. The experimental evalu-

ation in [22] shows that these invariants, thanks to their specificity, outperform

in template-matching experiments general methods such as cross-correlation,

local phase quantization (LPQ) [23] and centrosymmetric blur invariants [17].

They even performed better than the Zhang’s distance [12].215

Serious weakness of all above mentioned Gaussian-blur invariant methods is

that they assume circularly symmetric Gaussian blur only. Some of them, such

as [12] and [22], could be generalized to work with elongated Gaussian blur in

axial position (i.e. with a diagonal covariance matrix) but it is not possible to

go beyond this limitation. This is also the reason why these methods cannot220

combine the invariance to blur with the invariance to image rotation and/or

affine transformation, which is a critical limitation for practical usage.

Most recently, Kostková et al. [24] published the first paper ever on invariants

w.r.t. Gaussian blur with a non-diagonal covariance matrix. In this paper, we

adopt some preliminary results published in [24]. However, the idea of the225

combined invariants was not mentioned in [24].

3. Gaussian blur

In this section, we establish the necessary mathematical background which

will be later used for designing the invariants.

By d-dimensional image function (or just image for short) f(x) we under-230

stand any function from L1

(
Rd
)
, the integral of which is nonzero. For the sake

of generality, we do not constraint it to be non-negative. In this paper, we are

mostly dealing with 2D images, but many conclusions are valid or can be readily

10

                  



extended to arbitrary d.

By d-dimensional Gaussian GΣ we understand the function

GΣ(x) =
1

(2π)d/2
√
|Σ|

exp

(
−1

2
xT Σ−1x

)
, (2)

where x ≡ (x1, x2, . . . , xd)T and Σ is a d × d regular covariance matrix. Since235

the covariance matrix is positive definite, we have, for its determinant, |Σ| > 0.

We consider centralized Gaussians only (convolution with a non-centralized PSF

just introduces an extra shift of the image).

The covariance matrix determines the shape of the Gaussian. If it is a mul-

tiple of a unitary matrix, then we get a circularly symmetric function. If it240

is diagonal but not unitary, we obtain an “elongated” Gaussian with elliptical

contours in the axial position (in that case, d-dimensional Gaussian can be fac-

torized into a product of d one-dimensional Gaussians). Generally, the Gaussian

may be arbitrary oriented and elongated. The eigenvectors of Σ define the axes

of the Gaussian and the eigenvalues determine its elongation (see Fig. 4).245

Figure 4: 2D general Gaussian function with the principal eigenvector oriented in approx 30

degrees and with the eigenvalue ratio 6.

The set S of all Gaussian blurring kernels is

S = {aGΣ|a > 0,Σ positive definite} . (3)

Note that S is not a linear vector space because the sum of two different Gaus-

sians is not a Gaussian. For the sake of generality, we consider un-normalized

kernels to be able to model also a change of the image contrast. The basic

properties of the set S are listed below. The closure properties play the most

important role in deriving invariants.250
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Proposition 1 (Integrability). S ⊂ L1 since
∫
aGΣ = a.

Proposition 2 (Convolution closure). S is closed under convolution as

a1GΣ1
∗ a2GΣ2

= a1a2GΣ1+Σ2
.

Proposition 3 (Multiplication closure). S is closed under point-wise multipli-

cation as

a1GΣ1
· a2GΣ2

= aGΣ ,

where

a =
a1a2

(2π)d/2
√
|Σ1 + Σ2|

and Σ = (Σ−1
1 + Σ−1

2 )−1.

Proposition 4 (Fourier transform closure). Fourier transform of a function

from S always exists, lies in S and is given by

F(aGΣ) =
a

(2π)d/2
√
|Σ|

GΣ1
,

where

Σ1 =
1

4π2
Σ−1 .

Proposition 5 (Coordinate transform closure). Let A be a regular d×d matrix

describing a linear transform of the coordinates. Then S turns to itself under

the transform x′ = Ax. This follows from the fact that

aGΣ(Ax) =
a

‖A‖GA−1ΣA−T (x) ,

where ‖A‖ means the absolute value of the determinant of A and A−T ≡
(AT )−1 = (A−1)T .

In the sequel, we use a slightly extended definition of S with Dirac δ-function

being incorporated

S = {aGΣ|a > 0,Σ positive definite} ∪ {aδ} . (4)

Proposition 2, along with the associativity of convolution, says that (S, ∗) is255

a semi-group (it is not a group since convolution is not invertible within S).

Hence, convolution with a function from S is a semi-group action on L1.
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The image space L1 is factorized into blur-equivalent classes by the following

relation. We say that the images f and g are Gaussian blur equivalent (f ∼ g),

if and only if there exist h1, h2 ∈ S such that h1 ∗ f = h2 ∗ g. Thanks to260

Proposition 2 and to the commutativity of convolution, this relation is transitive,

while symmetry and reflexivity are obvious. At the same time, the equivalence

classes of L1/∼ are related to the orbits of the above mentioned semi-group

action. An orbit, originating from image f , is the set of all images that can

be obtained from f as the result of the semi-group action. We will later show265

that the classes of L1/∼ are exactly the same as the orbits generated by certain

special images (this assertion will be formulated as Theorem 2 in Section 4).

The main idea of this paper is the following. We are going to find these

“origins” of the orbits (we will call them primordial images) and describe them

by means of properly chosen descriptors – invariants of the orbits. For instance,270

the set S itself forms an orbit with δ being its primordial image. The invariants

stay constant within each equivalence class, while should distinguish any two

images belonging to different classes. The invariance in question is in fact the

invariance w.r.t. arbitrary Gaussian blur. The main trick, which makes this

theory practically applicable, is that the invariants can be calculated from the275

given blurred image without explicitly constructing the primordial image.

In Section 4, we define a projection operator that “projects” each image

onto S. The primordial images and, consequently, Gaussian blur invariants are

constructed by means of this projection operator.

4. Projection operators and blur invariants280

In linear algebra, projection operators onto linear subspaces are a well-

established tool to decompose the given space into a direct sum of two sub-

spaces, which usually have distinct properties. The idea of projecting the image

space onto proper subspaces and then to define the image invariants in one of

them was originally proposed by Flusser et al. in [18], where the invariants285

w.r.t. convolution with a symmetric non-parametric kernel were proposed. The
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authors constructed the projection onto the kernel subspace and defined the

invariants in the complementary subspace.

In this paper, we face an analogous situation – we may try to construct the

image projection onto the set S, eliminate somehow this Gaussian component290

of the image and define the invariants in the complement. However, there is

a significant difference from the mathematical point of view. While in [18], linear

projections onto linear, mutually orthogonal, subspaces were sufficient to resolve

the problem, here we have to find a projection onto the set S of Gaussian kernels,

which is not a linear subspace. Clearly, the respective projection operator cannot295

be linear and must be constructed in a different way than the operators proposed

in [18].

Let us define the projection operator P such that it projects an image f

onto the nearest un-normalized Gaussian, where the term “nearest” means the

Gaussian having the same integral and covariance matrix as the image f itself.

So, for d = 2 we define

Pf = m00GC , (5)

where

C =
1

m00


 m20 m11

m11 m02


 ,

and mpq is the centralized image moment

mpq =

∫ ∫
(x− c1)p(y − c2)qf(x, y) dxdy (6)

with (c1, c2) being the image centroid.

Clearly, P is well defined for all “common” images1 and actually if Pf exists,

then always Pf ∈ S. Although P is not linear, it can still be called projection300

operator, because it is idempotent, i.e. P 2 = P . In particular, P (aGΣ) = aGΣ.

Pf can be understood as a Gaussian component of f . Note, that the Gaussian

1If m00 = 0 or if C is not positive definite or if some second-order moment(s) are infinite,

then Pf is undefined. Although such functions exist in L1, they do not describe real-life

images and we do not consider them in this paper.
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component depends both on the image content and on the Gaussian blur (if

any). Both factors contribute jointly to Pf . So, Pf is not an estimate of the

actual blur kernel.305

The key property of P , which will be later used for construction of the

invariants, is that it commutes with a convolution with a Gaussian kernel, as

shown in the following lemma.

Lemma 1. Let P be the above-defined projector, f ∈ L1 be an image function

such that Pf exists and let GΣ ∈ S. Then it holds

P (f ∗GΣ) = Pf ∗GΣ . (7)

Proof. To prove this lemma, we first recall how the image central moments are

transformed under convolution. For arbitrary f and h we have

m
(f∗h)
00 = m

(f)
00 m

(h)
00 ,

m
(f∗h)
20 = m

(f)
20 m

(h)
00 +m

(f)
00 m

(h)
20 ,

m
(f∗h)
11 = m

(f)
11 m

(h)
00 +m

(f)
00 m

(h)
11 ,

m
(f∗h)
02 = m

(f)
02 m

(h)
00 +m

(f)
00 m

(h)
02 .

Considering the projection of f ∗ GΣ, it must have a form P (f ∗ GΣ) = aGK ,

where a = m
(f∗GΣ)
00 = m

(f)
00 and

K =
1

m00


 m20 +m00Σ20 m11 +m00Σ11

m11 +m00Σ11 m02 +m00Σ02


 .

All moments mpq in the above equation are related to f . Hence, K = C + Σ.

On the other hand, we have

Pf ∗GΣ = m00GC ∗GΣ = m00GC+Σ .

The last equality follows from Proposition 2.

Now we can formulate the Fundamental theorem on blur invariants.310
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Theorem 1. Let P be the above-defined projector and let f be an image function

such that Pf exists. Then

I(f) =
F(f)

F(Pf)
(8)

is an invariant to Gaussian blur, i.e. I(f) = I(f ∗ h) for any h ∈ S.

Proof. The proof follows immediately from Lemma 1.

I(f ∗ h) =
F(f ∗ h)

F(P (f ∗ h))
=
F(f)F(h)

F(Pf ∗ h)
=
F(f)F(h)

F(Pf)F(h)
=
F(f)

F(Pf)
= I(f)

Note that if Pf exists, then I(f) is well defined on all frequencies because

the denominator F(Pf) is a Gaussian and hence non-zero everywhere.

The following Theorem says that the invariant I(f) is complete, which means315

the equality I(f1) = I(f2) occurs if and only if f1 and f2 belong to the same

equivalence class.

Theorem 2. Let f1 and f2 be two image functions and I(f) be the invariant

defined in Theorem 1. Then I(f1) = I(f2) if and only if there exist h1, h2 ∈ S
such that h1 ∗ f1 = h2 ∗ f2.320

The proof is straightforward by setting h1 = Pf2 and h2 = Pf1. The com-

pleteness guarantees that I(f) discriminates between the images from different

equivalence classes, while stays constant inside each class due to the invariance

property. This assertion not only shows the limitations (the images belonging

to the same equivalence class can never be discriminated) but also explains why325

these invariants outperform general blur invariants if Gaussian blur is present

(equivalence classes w.r.t. a general blur are larger than those w.r.t. Gaussian

blur).

Invariant I(f) is a ratio of two Fourier transforms which may be interpreted

as a deconvolution in frequency domain. Having an image f , we seemingly

“deconvolve” it by the kernel Pf . This deconvolution always sends the Gaussian

component of f to δ-function. We call the result of this seeming deconvolution

the primordial image

fr = F−1(I(f)) .
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Hence, I(f) can be viewed as Fourier transform of fr. Note that fr is actually

the “maximally possible” deconvolved image f , which creates the origin of the330

respective orbit (see Fig. 5 for schematic illustration). Primordial image can

be also understood as a kind of normalization (or canonical form) of f w.r.t.

arbitrary Gaussian blurring.

It should be noted, that the primordial image is a useful theoretical concept

of blur invariants but it is not actually constructed in the implementation of335

the method. It may lie outside L1 or may even not exist but it does not matter

– the existence of its Fourier transform, the invariants are obtained from, is

guaranteed.

Figure 5: Visualization of the main idea: The image is projected onto a set of Gaussians and

this projection (i.e. the Gaussian part of the image) is used to “deconvolve” the image in

Fourier domain. Blur-invariant primordial image is obtained as the result of this operation.

Moments of the primordial image are blur invariants introduced in Eq. (15).

5. Invariants in the image domain

Although I(f) itself could serve as an image descriptor, its direct usage340

brings certain difficulties and disadvantages. On high frequencies, we divide by

small numbers which may lead to precision loss. This effect is even more severe

if f is noisy. This problem could be overcome by suppressing high frequencies by
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a low-pass filter, but such a procedure would introduce a user-defined parameter

(the cut-off frequency) which should be set up with respect to the particular345

noise level. Another disadvantage is that we would have to actually construct

F(Pf) in order to calculate I(f). That is why we prefer to work directly in

the image domain, where moment-based invariants equivalent to I(f) can be

constructed and evaluated without an explicit calculation of Pf .

First of all, we recall that geometric moments of an image are Taylor coeffi-

cients (up to a constant factor) of its Fourier transform2

F(f)(u) =
∑

p≥0

(−2πi)|p|

p!
m(f)

p up (9)

(for simplicity, and also to show the independence of the dimension d, we use350

the multi-index notation).

Theorem 1 can be rewritten as

F(Pf)(u) · I(f)(u) = F(f)(u) .

All these three Fourier transforms can be expanded similarly to (9) into abso-

lutely convergent Taylor series

∑

p≥0

(−2πi)|p|

p!
m(Pf)

p up ·
∑

p≥0

(−2πi)|p|

p!
Mpup =

∑

p≥0

(−2πi)|p|

p!
m(f)

p up , (10)

where by Mp we denote the Taylor coefficient of I(f) (we will show later that

Mp is in fact the moment of the primordial image).

Comparing the coefficients of the same powers of u we obtain, for any p,

∑

k≤p

(−2πi)|k|

k!

(−2πi)|p−k|

(p− k)!
m

(Pf)
k Mp−k =

(−2πi)|p|

p!
m(f)

p , (11)

which can be read as

∑

k≤p

(
p

k

)
m

(Pf)
k Mp−k = m(f)

p . (12)

2We assume that all moments are finite, which is guaranteed for all images with bounded

support.
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In 2D, Eq. (12) reads as

p∑

m=0

q∑

n=0

(
p

m

)(
q

n

)
m(Pf)

mn Mp−m,q−n = m(f)
pq . (13)

Since Pf = m
(f)
00 GC , where C is given by the second-order moments of f , we

can express its moments m
(Pf)
mn without actually constructing the projection Pf .

Clearly, m
(Pf)
mn = 0 for any odd m + n due to the centrosymmetry of GC . For

any even m+ n, m
(Pf)
mn can be expressed in terms of the moments of f as

m(Pf)
mn = m

(f)
00 m

(GC)
mn = m

(f)
00

bm2 c∑

i=0

i∑

j=0

j≥m−n
2

(−1)i−j
(
m

2i

)(
i

j

)
(m+ n− 2i− 1)!!·

·(2i− 1)!!

(
m11

m00

)m−2j (
m20

m00

)j (
m02

m00

)n−m
2 +j

.

(14)

The above expression was obtained by substituting our particular C into the

formula for moments of a 2D Gaussian. (The moment formula for a diagonal355

covariance matrix is well known. For a general covariance matrix, it is not

commonly cited in the literature. It can be either deduced from the papers pre-

senting general approaches to moment calculation [25, 26] or obtained directly

from the definition by integration.)

Now we can isolate Mpq on the left-hand side and obtain the recurrence

Mpq =
m

(f)
pq

m00
−

p∑

l=0

q∑

k=0
l+k 6=0,
l+k even

(
p

l

)(
q

k

) b k2 c∑

i=0

i∑

j=0

j≥ k−l
2

(−1)i−j
(
k

2i

)(
i

j

)
(l + k − 2i− 1)!!·

· (2i− 1)!!

(
m11

m00

)k−2j (
m20

m00

) l−k
2 +j (

m02

m00

)j

Mp−l,q−k . (15)

This recurrence formula defines Gaussian blur invariants in the image domain.360

Since I(f) has been proven to be invariant to Gaussian blur, all coefficients Mpq

must also be blur invariants. The Mpq’s can be understood as the moments

of the primordial image fr. The power of Eq. (15) lies in the fact that we

can calculate them directly from the moments of f , without constructing the

primordial image explicitly either in frequency or in the spatial domain and also365
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without any prior knowledge of the blurring kernel orientation. Thanks to the

uniqueness of Fourier transform, the set of all Mpq’s carries the same information

about the function f as I(f) itself, so the cumulative discrimination power of

all Mpq’s equals to that of I(f).

Some of the invariants (15) are always trivial. Regardless of f , we have370

M00 = 1, M10 = M01 = 0 because we work in centralized coordinates, and

M20 = M11 = M02 = 0 since these three moments were already used for the

definition of Pf . Note that the joint null-space of all Mpq’s except M00 equals

the set S, which is implied by the fact that P (aGΣ) = aGΣ and the correspond-

ing primordial image f
(S)
r = δ.375

Eq. (15) can be turned to an equivalent non-recursive form

Mpq =
1

m00

p∑

l=0

q∑

k=0
l+k even

(−1)
k+l
2

(
p

l

)(
q

k

) b k2 c∑

i=0

i∑

j=0

j≥ k−l
2

(−1)i−j
(
k

2i

)(
i

j

)
(l + k − 2i− 1)!!·

· (2i− 1)!!

(
m11

m00

)k−2j (
m20

m00

) l−k
2 +j (

m02

m00

)j

m
(f)
p−l,q−k . (16)

While the recursive formula is efficient if we want to calculate all invariants

up to a certain order, the non-recursive one is useful for calculating a single

invariant of higher order.

6. Combined invariants

One of the main benefits of the assumption that the covariance matrix is380

not constrained to be diagonal is the existence of combined invariants to blur

and affine transformation of the coordinates. If the blurring Gaussian kernel

was assumed in the axial position and hence C was constrained to be diagonal,

we could never combine blur with an affine transformation or rotation, because

it would violate the assumption. This is why the combined invariants have not385

been constructed yet (except a very special case of a unitary covariance matrix

and rotation, see [22]).

The key idea of designing the combined invariants follows from the observa-

tion how the primordial image is transformed if the original image has undergone
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an affine transformation f ′(x) = f(Ax). By means of Propositions 3–5, it is

easy to show that

I (f ′) (u) = I(f)
(
A−Tu

)
.

Applying inverse Fourier transform, we get

f ′r(x) = ‖A‖fr(Ax) ,

where f ′r is the primordial image of f ′. This relation tells us that the primordial

image is transformed by the same coordinate transformation as the original

image.390

Since the invariants Mpq in Eq. (15) are in a fact moments of fr, we can

simply substitute them into any affine or rotation moment invariant (we only

should avoid those containing second-order moments because they would lead

to trivial invariants) and we end up with the combined invariant. The theory of

both affine and rotation moment invariants has been well elaborated and several395

complete and independent invariant sets are available, see for instance [1, 27, 28,

29, 30, 31]. Since blur invariants Mpq also form a complete and independent set

(see Theorem 2), we get in this way a complete and independent set of combined

invariants. This strong result is summarized in the following Theorem.

Theorem 3 (Substitution Theorem). Let f be an image function and let Mpq

be invariants w.r.t. Gaussian blur defined by Eq. (15). Let f ′(x) = f(Ax), A

being a regular 2× 2 matrix. Let J(mpq|p, q = 0, . . . , r) be an absolute invariant

of image moments w.r.t. A, i.e. J(m′pq|p, q = 0, . . . , r) = J(mpq|p, q = 0, . . . , r).

Then J(Mpq|p, q = 0, . . . , r) is a relative invariant w.r.t. both A and Gaussian

blur as

‖A‖wJ(M ′pq| p, q = 0, . . . , r) = J(Mpq|p, q = 0, . . . , r) ,

where w is the weight3 of invariant J(mpq|p, q = 0, . . . , r).400

3 The term weight of an invariant has been commonly used in the theory of algebraic

invariants, see for instance [29, 1] for the definition. For any given invariant, its weight is

known and follows from the way how the invariant has been constructed.
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Proof. Since f ′r(x) = ‖A‖fr(Ax), the moments M ′pq of f ′r(x) are related to the

moments M̃pq of fr(Ax) as M ′pq = ‖A‖M̃pq for any p and q. In the theory of

affine moment invariants [29, 1], it is well known that any absolute invariant

J(mpq| p, q = 0, . . . , r) must have a form of a finite sum, where all terms are

products of K moments (K is called the degree of the invariant) divided by405

(K+w)-th power of m00. The statement of Theorem 3 follows immediately from

this fact. Note that the invariance of J(Mpq| p, q = 0, . . . , r) w.r.t. Gaussian

blur is obvious and does not depend on the order in which the blurring and the

coordinate transformation A have been applied. They are commutative in the

sense that (f ∗h)′ = 1/‖A‖(f ′ ∗h′) and still h′ ∈ S thanks to Proposition 5.410

Since A is usually unknown in practice, absolute invariants are more conve-

nient image descriptors than the relative ones. An absolute combined invariant

can be obtained as a ratio of two relative invariants of the same weight or, more

generally, as a ratio of any two products of various relative invariants such that

the factor ‖A‖ is cancelled.415

7. Experiments

Numerical experiments presented in this section aim to illustrate the prop-

erties of the proposed invariants, namely to evaluate the invariance w.r.t. ar-

bitrary Gaussian blur, the recognition power and the robustness to additive

noise. First, we prove the invariance on static images and also on a real video,420

where the Gaussian blur model is not exactly valid. As sample applications, we

show how the blur invariants can be used for object tracking in a video and for

recognition of blurred faces. A comparison to other state-of-the-art methods is

given. Finally, we show the performance of the combined affine-blur invariants

in digit recognition.425

7.1. Invariance verification on public datasets

This basic experiment is a verification of the invariance of functionals Mpq

from Eq. (15). We used two public-domain image databases, which contain
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series of Gaussian-blurred images (see Fig. 6 for two examples). We used 30 se-

Figure 6: Two examples of the Gaussian-blurred image series from the CSIQ database.

ries (original and five blurred instances of various extent of the blur) from the430

CID:IQ dataset [32] and 23 series from the CSIQ dataset [33]. For each of

them, we calculated the invariants up to the 9th order. The relative error of

all invariants on each image series was always between 10−4 and 10−3, which

illustrates a perfect invariance. The fluctuation within a single series is so small

that in no way diminishes the ability to discriminate two different originals, as435

is illustrated in Fig. 7.

Figure 7: The values of a single invariant calculated over 23 series (from left to right) consisting

of six blurred instances of the originals (from front to back). The value is always almost

constant within each individual series while significantly different for distinct images.

7.2. Verification on a real video

In this experiment, we used publicly accessible video4 from [7] showing

a static scene (front side of a building) captured intentionally through a turbu-

4http://alumni.soe.ucsc.edu/∼xzhu/doc/turbulence.html
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lent hot air. Due to the turbulence, the video is degraded by a time-varying440

blur, which is, according to [7], expected to be approximately Gaussian. Four

sample frames of the sequence are shown in Fig. 8.

Figure 8: Four sample frames of a video blurred due to the hot air turbulence.

Similarly to the previous experiment, we calculated the blur invariants Mpq

from Eq. (15) up to the 8th order for each frame. The graph in Fig. 9 summarizes

the results. It is worth noting that the invariants exhibit a perfect stability even445

if the real blur is probably not exactly Gaussian.

Figure 9: The values of the invariants up to the 8th order calculated over 99 frames of a video

corrupted by a real turbulence blur. The value of each invariant is always almost constant on

all frames.

7.3. Tracking in a video

The proposed blur invariants can be used also for tracking objects in a blurred

video. We took an indoor video that starts with a clear frame. Then the video

becomes more and more blurred. The blur is Gaussian with a time-varying450
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covariance matrix. In the first frame, we chose the template of interest that we

track by invariant template matching in the rest of the video.

To show the strength of the method, each frame was processed independently

(in reality, the motion information could be used to speed up and stabilize

the tracking but here we wanted to demonstrate solely the performance of the455

invariants). We can evaluate visually that the tracking is reasonably stable and

accurate and actually follows the real motion of the template. Sample frames

with the detected template are shown in Fig. 10.5

Figure 10: Tracking in a blurred video. The initial clear image with the template (top left),

sample frames of the blurred video with the template detected.

7.4. Recognition of blurred faces

Figure 11: Sample face images used in the experiments: clear database faces (images 1–3),

blurred (images 4–6) and noisy (images 7–9) query images.

5The full video is available at

http://zoi.utia.cas.cz/files/Tracking changing blur 5th order.gif
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In this experiment we show the performance of the proposed invariants in460

face recognition applied on blurred photographs. We compare the proposed

method with the blur-invariant distances proposed by Gopalan et al. [13], Zhang

et al. [11], and Lébl et al. [15] (see Section 2.3 for a brief description of these

competitors). We calculated also the standard `2-distance, which does not take

the blur into account at all, but it expectedly failed completely so we did not465

include it in the tables.

We used 38 distinct human faces from the Extended Yale Face Database

B [34] (the same database was used in [13]). This database contains clear faces

only, so we created the blurred and noisy query images artificially (see Fig. 11

for some examples). In all tests, moment invariants up to the 9th order were470

used.

First, we tested the recognition rate as a function of the blur size. The

blurred, noise-free query image was always classified against the clear 38-image

database. While moment invariants and the Lébl’s method are 100% success-

ful even for relatively large blurs, the Gopalan’s method surprisingly does not475

reach comparable results. Its success rate drops very rapidly with the increas-

ing blur size, even if we provided the correct blur size as the input parameter

of the algorithm. The Zhang’s method performs well for small blurs (see Ta-

ble 1). It should be pointed out, that the reported 100% success rate of the

invariants was achieved thanks to a controlled noise-free environment, where480

the Gaussian convolution model held perfectly. In the next two experiments,

these ideal conditions will be relaxed and we will monitor the impact on the

method performance.

If we apply a significantly non-Gaussian blur (we used a directional motion

blur in this experiment), we observe a drop of the performance of the invari-485

ants, while the other methods perform more or less the same as in the case of

Gaussian blur (see Table 2). This is not surprising, because the derivation of

the invariants was inherently based on the assumption of a Gaussian blur while

the Gopalan’s and Lébl’s methods assume only the knowledge of the blur size,

which was fulfilled in this experiment. The invariants are relatively sensitive to490
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the violation of the Gaussian blur shape.

Then, we tested the noise robustness of all methods. We corrupted the query

images with an additive white normally distributed noise of SNR from 20 dB

to 0 dB. The success rate of the invariants as well as of the Lébl’s method

remains very high even for heavy noise, while the other two methods appear to495

be vulnerable. Table 3 summarizes the results. High robustness of the invariants

can be explained by the fact that the moments, being integral features, average-

out the noise.

Many papers on moments have shown experimentally that orthogonal (OG)

moments are more robust to numerical errors and also to noise. This is due to500

the fact that OG moments can be calculated indirectly using recurrent formulas,

which avoids working with very high and very low numbers. For this reason,

various OG moments have been implemented in moment invariants, where they

replace traditional geometric moments (see [1], Chapter 7, for a survey of OG

moments). In the context of blur invariants (but not to Gaussian blur), this505

approach was applied for instance in [35, 36, 37, 38, 39, 40, 41].6 We tested

the use of Legendre moments in the proposed Gaussian blur invariants. We

expressed geometric moments as functions of Legendre moments, substituted

these functions into (15) and obtained in this way blur invariants in terms

of Legendre moments. We applied these invariants on the same noisy facial510

images as above. The results are shown in the rightmost column of Table 3.

The recognition rate is the same as for the invariants from geometric moments

except SNR = 0 dB, where a slightly better robustness of OG moments appears.

Finally, we compared the speed of all methods. We evaluated it as a function

of the image size. The results are shown in Fig. 12. The time refers to a single515

query and does not comprise any pre-calculations on the database images.

The proposed invariants work with a highly-compressed image representation

6It should be noted that the use of OG moments in blur invariants is solely because of

their favorable numerical properties. As proved by Kautsky [42], blur invariants in any two

distinct polynomial bases are theoretically equivalent.
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Blur size (Gaussian) Invariants Zhang Lébl Gopalan

7× 7 100 100 100 74

11× 11 100 86 100 25

15× 15 100 48 100 5

Table 1: The recognition rate [%] of the tested methods for Gaussian blur of various size.

Blur size (motion) Invariants Zhang Lébl Gopalan

7× 7 87 100 100 99

11× 11 71 72 100 76

15× 15 45 17 100 40

Table 2: The recognition rate [%] of the tested methods for a motion blur of various size.

(only the moments up to the 9th order were used). All other methods use

a complete pixel-wise representation, however with various time-efficiency. The

Lébl’s method is the most efficient for small images. As the image size increases,520

moment invariants become more time efficient. They outperform the Lébl’s

method for images larger than approximately 600 × 600 pixels. It should be

noted, that the complexity of calculation of the invariants is determined solely

by the complexity of moment computation. For a graylevel N ×N image, this

is typically O
(
N2
)

and does not depend on the actual blur size (unlike the525

Zhang’s and Gopalan’s methods). Although some faster algorithms exist for

moment computation [43], we did not use them here because they are efficient

for special types of images only.

7.5. Recognition of blurred and affinely deformed objects

In the last experiment, we demonstrate the power of the combined affine-530

blur invariants proposed in Section 6. For this test, we used the popular MNIST

dataset of handwritten digits [44]. For each digit 0, 1, . . . , 9 we randomly gener-

ated 100 blurred and affinely deformed samples (see Fig. 13 showing the test set

of the digit 4) and classified them against the original dataset. The affine-blur
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SNR [dB] Invariants Zhang Lébl Gopalan OG Invariants

20 100 100 100 76 100

10 100 55 100 51 100

5 99 44 99 37 99

2 97 37 87 27 97

0 92 32 79 26 95

Table 3: Noise robustness test: The recognition rate [%] achieved for various SNR.

Figure 12: Time [s] needed to compare a query image to a single database image as a function

of the image size. The blur size was fixed at 15 × 15 pixels. The time axis is shown in

a logarithmic scale.

invariants used in this test were constructed according to the Substitution The-535

orem (Theorem 3), where we used the well-established Affine moment invariants

(AMIs) [29] as J(mpq).

To illustrate the advantage of the combined invariants, we compared them

both to “pure” AMIs [29] and to “pure” Gaussian blur invariants (15). The

combined invariants yielded the overall recognition rate 98.5 %, while the AMIs540

only 20 % and the blur invariants performed even worse yielding 15.6 % success

rate. This clearly shows that the Substitution Theorem brings invariants of

a new quality.

The comparison to the Gopalan’s, Zhang’s, and Lébl’s invariant distances as

in the face recognition experiment does not make sense here because all those545
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Figure 13: 100 randomly blurred and affinely deformed pictures of digit 4.

methods require the images to be precisely geometrically aligned and collapse

completely in case of spatial misalignment.

8. Conclusion

Blur invariants w.r.t. blur kernels which are defined by certain generic prop-

erties rather than by their parametric form were already discovered for cen-550

trosymmetric [17], radial [45], N -fold rotational symmetric [18, 46], and N -fold

dihedral [47] blurs, respectively. In this paper, we focused on parametric ker-

nels since they allow to derive more specific invariants which yields a better

discrimination power. We proposed new invariants w.r.t. Gaussian blur. Unlike

all earlier works on Gaussian blur, our method does not require the Gaussian555

blurring kernel to be circularly symmetric and works with arbitrary Gaussians.

We found a non-linear projection operator by means of which the invariants

are defined in the Fourier domain. Equivalently, the invariants can be cal-
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culated directly in the image domain, without an explicit construction of the

projections. We showed that the new invariants can be made invariant also to560

a linear transformation of the coordinates thanks to the Substitution Theorem,

which was not possible in case of earlier Gaussian-blur invariants. Experimental

evaluation and comparison to alternative approaches (namely to various blur-

invariant distances) showed a superior performance in most scenarios in terms

of the recognition rate and speed.565

In a future work, it would be interesting to couple the proposed blur-invariant

representation with the CNNs in order to make the CNNs blur-invariant without

any data augmentation. CNNs probably cannot be fed directly with the moment

invariant (15). Instead, we envisage to use the Fourier-domain invariants (8)

for this purpose. However, since the distinctive patterns in spectral domain are570

totally different from those in the image domain, one probably cannot use any

publicly available pre-trained network and will have to train (and maybe also

to design) the network by himself.
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nition of images degraded by Gaussian blur, IEEE Transactions on Image

Processing 25 (2) (2016) 790–806.640

33
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[46] M. Pedone, J. Flusser, J. Heikkilä, Blur invariant translational image regis-

tration for N -fold symmetric blurs, IEEE Transactions on Image Processing

22 (9) (2013) 3676–3689.
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