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• A matrix factorization model is proposed to deal with skew noise.
• Our model can automatically learn the weight of outliers.
• Our model can capture local structureal information contained in some real images.
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ABSTRACT
Low-rank matrix factorization (LRMF) has received much popularity owing to its successful applica-
tions in both computer vision and data mining. By assuming noise to come from a Gaussian, Laplace
or mixture of Gaussian distributions, significant efforts have been made on optimizing the (weighted)
L1 or L2-norm loss between an observed matrix and its bilinear factorization. However, the type of
noise distribution is generally unknown in real applications and inappropriate assumptions will in-
evitably deteriorate the behavior of LRMF. On the other hand, real data are often corrupted by skew
rather than symmetric noise. To tackle this problem, this paper presents a novel LRMF model called
AQ-LRMF by modeling noise with a mixture of asymmetric Laplace distributions. An efficient algo-
rithm based on the expectation-maximization (EM) algorithm is also offered to estimate the param-
eters involved in AQ-LRMF. The AQ-LRMF model possesses the advantage that it can approximate
noise well no matter whether the real noise is symmetric or skew. The core idea of AQ-LRMF lies
in solving a weighted L1 problem with weights being learned from data. The experiments conducted
on synthetic and real datasets show that AQ-LRMF outperforms several state-of-the-art techniques.
Furthermore, AQ-LRMF also has the superiority over the other algorithms in terms of capturing local
structural information contained in real images.

1. Introduction
Researchers from machine learning [38], computer vi-

sion [29] and statistics [16] have paid increasing attention
to low-rank matrix factorization (LRMF) [19]. Generally
speaking, many real-world modeling tasks can be attributed
as the problems of LRMF. The tasks include but are not lim-
ited to recommender systems [34], subspace learning [28,
35, 9, 37], link prediction [32], computational biology [36,
33, 31] and image denoising [12, 10].

The key idea of LRMF is to approximate a given matrix
by the product of two low-rank matrices. Specifically, given
an observed matrix X ∈ ℝm×n, LRMF aims at solving the
optimization problem

min
U,V

||
⊙ (X − UVT)||, (1)

where U ∈ ℝm×r,V ∈ ℝn×r are two low-rank matrices (usu-
ally, r ≪ min(m, n)) and ⊙ denotes the Hadamard prod-
uct, that is, the element-wise product. The indicator matrix

 = (!ij)m×n implies whether some elements are missing,
where !ij = 1 if xij is non-missing and 0 otherwise. The
symbol || ⋅ || indicates a certain norm of a matrix, in which
the most prevalent one isL2 norm. It is well-known that sin-
gular value decomposition provides a closed-form solution
forL2-norm LRMFwithout missing entries. With respect to
the problems with X containing missing entries, researchers
have presented many fast algorithms such as damped New-
ton algorithm [3], Chen’s method [6], and Damped Wiberg
(DW) [25] to solve Eq. (1). In the literature of LRMF,
the most popular algorithm is DW proposed in [25]. The
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key idea of DW is to incorporate a damping factor into the
Wiberg method to solve the corresponding problem. Al-
though theL2-normLRMFgreatly facilitates theoretical anal-
ysis, it provides the best solution in the sense of maximum
likelihood principle only when noise is indeed sampled from
aGaussian distribution. If noise is from a heavy-tailed distri-
bution or data are corrupted by outliers, however, L2-normLRMFmay break down. Thereafter,L1-norm LRMF begins
to gain increasing interests of both theoretical researchers
and practitioners due to its robustness [14]. In fact,L1-normLRMF hypothesizes that noise is from a Laplace distribu-
tion. As is often the case with L2-norm LRMF, L1-normLRMFmay provide unexpected results as well if its assump-
tions are violated.

Because the noise in real data generally deviates far away
from aGaussian or Laplace distribution, analysts are no longer
satisfiedwithL1- orL2-normLRMF. To further improve the
robustness of LRMF, researchers attempt to directly model
unknown noise via a mixture of Gaussians (MoG) due to
its good property to universally approximate any continuous
distribution [23, 22]. Nevertheless, the technique cannot fit
real noise precisely in some complex cases. For example,
in theory, infinite Gaussian components are required to ap-
proximate a Laplace distribution. In practice, we only uti-
lize finite Gaussian components due to the characteristics of
MoG. On the other hand, Gaussian, Laplace and MoG dis-
tributions are all symmetric. In the situations with real noise
being skew, it is obviously inappropriate to assume a sym-
metric noise distribution.

As a matter of fact, there are no strictly symmetric noise
in real images. For instance, Figure 1 illustrates several ex-
amples in which the real noise is either skewed to the left
(e.g., (a-4) and (c-4)) or the right (e.g., (b-4)). In these situ-
ations, the symmetric distributions like Gaussian or Laplace
are inadequate to approximate the noise. In statistics, schol-
ars usually make use of quantile regression to deal with an
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(a) Poor light case

(b) Strong light case

(a-1) (a-2) (a-3) (a-4)

(b-1) (b-2) (b-3) (b-4)

=                      +

=                      +

(c-1) (c-2) (c-3) (c-4)

=                      +

(c) Hyperspectral Image

Figure 1: (a) and (b) illustrate two face images correspond-
ing to underexposure and overexposure cases, respectively. In
particular, (a-1) and (b-1) are face images captured with im-
proper light sources while (a-2) and (b-2) are face images ob-
tained with proper light sources. (a-3) and (b-3) are resid-
ual images in which the yellow (blue) locations indicate pos-
itive (negative) values. (a-4) and (b-4) illustrate the his-
tograms of the residual images as well as the PDF curves
fitted by ALD with �a = 115, �a = 0.71, �a = 0.05 and
�b = −9, �b = 0.44, �b = 0.11, respectively. The skewness of
the residual face in (a-3) is −0.72 whilst that for (b-3) is 0.69.
(c) shows a hyperspectral image. Similar to cases (a) and (b),
the images from (c-1) to (c-4) are original, de-noised, noise
images and the histogram of residuals, respectively. The skew-
ness of the noise image (c-3) is −0.55. In (c-4), the fitted ALD
is obtained with � = 33, � = 0.75 and � = 0.05. Obviously, the
distributions of noise shown here are all asymmetric.

asymmetric noise distribution [7]. Consider a simple case
that there is only one covariate X, the quantile regression
coefficient � can be obtained by

�̂� = arg min
�

n
∑

i=1
��(yi − xi�), (2)

where {(yi, xi)}ni=1 are n observations and � is a pre-defined
asymmetry parameter. Moreover, the quantile loss ��(⋅) isdefined as

��(�) = � [� − I(� < 0)]
= |�|[�I(� ≥ 0) + (1 − �)I(� < 0)]

(3)

with I(⋅) being the indicator function. Evidently, the quantile
loss with � = 1∕2 corresponds to the L1-norm loss. From
the Bayesian viewpoint, the estimate obtained by minimiz-
ing the quantile loss in (2) coincides with the result by as-
suming noise coming from an asymmetric Laplace distribu-
tion (ALD) [17, 39].

To overcome the shortcomings of existing LRMF meth-
ods that they assume a specific type of noise distribution,
we present in this paper an adaptive quantile LRMF (AQ-
LRMF) algorithm. The key idea of AQ-LRMF is to model
noise via amixture of asymmetric Laplace distributions (MoAL).
Due to the existence of some latent variables, the expecta-
tion maximization (EM) algorithm is employed to estimate
the parameters in AQ-LRMF under the maximum likelihood
framework. The novelty of AQ-LRMF and our main contri-
butions can be summarized as follows.
(1). TheM-step of the EMalgorithm corresponds to aweighted

L1-norm LRMF, where the weights encode the infor-
mation about skewness and outliers.

(2). Theweights are automatically learned from data under
the framework of EM algorithm.

(3). Different from quantile regression, our method does
not need to pre-define the asymmetry parameter of
quantile loss, because it is adaptively determined by
data.

(4). Ourmodel can capture local structural information con-
tained in some real images, although we do not encode
it into our model.

Our conducted experiments show that AQ-LRMF can effec-
tively approximatemany different kinds of noise. If the noise
has a strong tendency to take a particular sign, AQ-LRMF
will produce better estimates than a method which assumes
a symmetric noise distribution. In comparison with sev-
eral state-of-the-art methods, the superiority of our method
is demonstrated in both synthetic and real-data experiments
such as image inpainting, face modeling, hyperspectral im-
age (HSI) construction and so on. The code of this paper is
available at https://xsxjtu.github.io/Projects/MoAL/main.html.

The rest of the paper is organized as follows. Section
2 presents related work of LRMF. In section 3, we propose
the AQ-LRMF model and also provide an efficient learning
algorithm for it. Section 4 includes experimental studies. At
last, some conclusions are drawn in section 5.

2. Related work
The study of robust LRMF has a long history. Srebro

and Jaakkola [27] suggested to use a weighted L2 loss to
improve LRMF’s robustness to noise and missing data. The
problem can be solved by a simple but efficient EM algo-
rithm. However, its capability strongly relies on the chosen
weights while it is not easy to automatically select proper
weights. Since then, the research community began to re-
place L2 loss with L1 loss. One of the earliest explorationsis made by Ke and Kanade [14]. They solved the L1-normLRMF by alternated linear or quadratic programming, but
the speed is slow. Thereafter, many researchers attempted to
develop some variants ofL1-normLRMF to enhance its run-
ning speed as well as performance. Roughly speaking, the
improvedL1-norm LRMF can be classified into two groups.

On the one hand, researchers strived to propose fast nu-
merical algorithms for L1-norm LRMF. Under this frame-
work, Eriksson and Hengel [11] developed the L1-Wiberg
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algorithm for calculating the low-rank factorization of a ma-
trix which minimizes theL1 norm in the presence of missing
data. Meng et al. [24] proposed a computationally efficient
algorithm, cyclic weighted median (CWM)method, by solv-
ing a sequence of scalar minimization sub-problems to ob-
tain the optimal solution. Recently, Kim et al. [15] used
alternating rectified gradient method to solve a large-scale
L1-norm LRMF.

On the other hand, researchers tried to improveL1-normLRMF’s performance by inserting a penalty into the objec-
tive function. Okutomi et al. [26] modified the objective
function of L1-Wiberg by adding the nuclear norm of V and
the orthogonality constraint on U. This method has been
shown to be effective in addressing structure frommotion is-
sue. Inspired by majorization-minimization technique, Lin
et al. [21] proposed LRMF-MM to solve an LRMF opti-
mization task with L1 loss plus the L2-norm penalty that is
placed on U and V. In each step, they upper bound the orig-
inal objective function by a strongly convex surrogate and
then minimize the surrogate. Li et al. [20] considered a sim-
ilar problem, but they replace the L2-norm penalty imposed
onUwithUTU = I. This model is solved by augmented La-
grange multiplier method. Furthermore, the authors of [20]
designed a heuristic rank estimator for their model. Even
though the above-mentioned approaches improved L1-normLRMF from a certain aspect, one has to notice that L1 lossactually corresponds to the Laplace-distributed noise. Put in
another way, these methods implicitly assume that the noise
comes from a Laplace distribution. When the real distribu-
tion of noise deviates too far from Laplace, the robustness of
L1 LRMF will be suspectable.

Recently, the research community began to focus on prob-
abilistic extensions of robust matrix factorizations. Gener-
ally speaking, it is assumed that X = UVT +E, where E is a
noise matrix. Lakshminarayanan et al. [18] replaced Gaus-
sian noise with Gaussian scale mixture noise. Nevertheless,
it may be ineffective when processing heavy-tailed (such as
Laplace-type) noise. Wang et al. [30] proposed a probabilis-
ticL1-norm LRMF, but they did not employ a fully Bayesian
inference process. Beyond Laplace noise, Meng and Torre
[23] presented a robust LRMF with unknown noise mod-
eled by anMoG. In essence, themethod iteratively optimizes
minU,V,� ||W(�)⊙ (X−UVT)||L2 , where � are the MoG pa-
rameters which are automatically updated during optimiza-
tion, andW(�) is the weight function of �. Due to the ben-
efit to adaptively assign small weights to corrupted entries,
MoG-LRMF has been reported to be fairly effective. More
recently, Cao et al. [5] presented a novel LRMFmodel by as-
suming noise as a mixture of exponential power (MoEP) dis-
tributions and offered both a generalized expectation maxi-
mization (GEM) algorithm and a variational GEM to infer
all parameters involved in their proposed model.

In addition, it is worth mentioning that robust principle
component analysis (robust PCA) [4] considers an issue sim-
ilar to LRMF, that is,

min
A,E

rank(A) + �||E||L0 s.t. X = A + E. (4)

The underlying assumption of robust PCA is that the original
data can be decomposed into the sum of a low-rank matrix
and a sparse outlier matrix (i.e., the number of non-zero el-
ements in E is small). Clearly, A plays the same role as the
product of U and VT. Since Eq. (4) involves a non-convex
objective function, [4] consider a tractable convex alterna-
tive, called principal component pursuit, to handle the cor-
responding problem, namely,

min
A,E

||A||∗ + �||E||L1 s.t. X = A + E, (5)

where || ⋅ ||∗ denotes the nuclear norm. Nevertheless, prin-
cipal component pursuit may sometimes fail to recover E
when the real observation is also corrupted by a dense in-
lier matrix. To overcome this shortcoming, Zhou et al. [40]
proposed the stable principal component pursuit (SPCP) by
solving

min
A,E

||A||∗ + �||E||L1 s.t. ||X − A − E||L2 ≤ ". (6)

Actually, the underlying assumption of SPCP isX = A+N+
E, where A is a low-rank component, E is a sparse matrix
representing the gross sparse errors (i.e., outliers) in the ob-
served dataX andN is the small-magnitude noise that can be
modeled by a Gaussian distribution. Both theoretical anal-
ysis and experiments have shown that SPCP guarantees the
stable recovery of E [40, 4].

Actually, our model AQ-LRMF (details are provided in
section 3) is a probabilistic extension of robust matrix fac-
torization. The differences between AQ-LRMF and existing
approaches can be summarized as follows. First, the noise
in AQ-LRMF is assumed to be asymmetric (i.e., the noise is
modeled with an MoAL), while the noise in existing meth-
ods is governed by a symmetric distribution, such as Gaus-
sian and Laplacian. Second, the parameters in AQ-LRMF
are inferred by an EM algorithm. In the M-step, the opti-
mization with regard to U and V is cast into a weighted L1-norm LRMF, where the weights are automatically learned
from data. Meanwhile, the weights embody the informa-
tion about outliers and skewness. In contrast, the M-step in
MoG-LRMF leads to a weighted L2-norm LRMF. Because
L1 norm is more robust to noise and outliers, AQ-LRMF
also inherits this good property to perform better than MoG-
LRMF in handling various kinds of noise.

3. Adaptive Quantile LRMF (AQ-LRMF)
3.1. Motivation

Generally speaking, researchers employ the L2 or L1loss function when solving a low-rank matrix factorization
problem. As argued in introduction, L2 orL1 loss implicitly
hypothesizes that the noise distribution is symmetric. Nev-
ertheless, the noise in real data is often asymmetric and Fig.
1 illustrates several examples.

In Fig. 1, there are two face images and a hyperspectral
image. Fig. 1 (a) displays a face image that is captured with
a poor light source. There are cast shadows in a large area,
while there exists an overexposure phenomenon in a small
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area. As a result, the noise is negative skew. By contrast, Fig.
1 (b) illustrates a face image which is captured under a strong
light source. Because of the camera range settings, there are
saturated pixels, especially on the forehead. Under this cir-
cumstance, the noise is positive skew. Fig. 1 (c) shows a
hyperspectral image that is mainly corrupted by stripe and
Gaussian noise. Its residual image indicates that the signs of
the noise are unbalanced, i.e., more pixels are corrupted by
noise with negative values. Actually, the skewness values of
three residual (noise) images are −0.72, 0.69 and −0.55, re-
spectively. Note that a symmetric distribution has skewness
0, the noise contained in these real data sets is thus asym-
metric.

As a matter of fact, the noise in real data can hardly
be governed by a strictly symmetric probability distribution.
Therefore, it is natural to utilize an asymmetric distribution
to model realistic noise. In statistics, researchers usually
make use of a quantile loss function defined in (3) to address
this issue. It has been shown that quantile loss function cor-
responds to the situation that noise is from an asymmetric
Laplace distribution [17, 39]. In order to further improve
the performance of LRMF, we attempt to use a mixture of
asymmetric Laplacian distributions (MoAL) to approximate
noise.
3.2. Asymmetric Laplace distribution

In what follows, we use AL(�|�, �, �) to denote an ALD
with location, scale and asymmetric parameters �, � > 0 and
0 < � < 1, respectively. Its probability distribution function
(PDF) [39] is

p(x; �, �, �)

=��(1 − �)

{

exp (�(1 − �)(x − �)) , if x < �;
exp (−��(x − �)) , if x ≥ �;

=��(1 − �) exp (−|x − �|�[�I(x − � ≥ 0)
+(1 − �)I(x − � < 0)]) .

(7)

Obviously, the location parameter � is exactly themode of an
ALD. In Fig. 2, we demonstrate the PDF curves for several
ALDs with different parameters. In general, the skewness
of an ALD, say, skALD, takes value in the interval (−2, 2)
and it is controlled by the asymmetry parameter �. An ALD
is positive skew if 0 < � < 0.5, and is negative skew if
0.5 < � < 1. If � = 0.5, the ALD becomes a Laplace
distribution. The smaller the scale parameter � is, the more
heavy-tailed an ALD is.

It is worthwhile that skew Gaussian distributions [2] are
also prevailing in both theory and applications. However,
it is not ideal for the analysis of LRMF. On the one hand,
the PDF of a skew Gaussian distribution is complex. On
the other hand, its skewness lies in (−1, 1) which is only a
subset of the range of skALD. Due to this fact, the fitting
capability of an ALD is greater than that of a skew Gaussian
distribution.
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=0.2

=0.8

Figure 2: The PDF curves of ALDs. The location parameter
is � = 0. Left: � = 0.5; right: � = 1.

3.3. AQ-LRMF model
To enhance the robustness of LRMF in situations with

skew and heavy-tailed noise, we propose an adaptive quan-
tile LRMF (AQ-LRMF) by modeling unknown noise as an
MoAL. In particular, we consider a generative model of the
observed matrix X ∈ ℝm×n. For each entry xij , suppose thatthere is

xij = uivTj + �ij , (8)
where ui is the ith row of U, vj is the jth row of V, and �ijis the noise. In AQ-LRMF, we assume that �ij is distributedas an MoAL, namely,

p(�ij) =
S
∑

s=1
�sALs(�ij|0, �s, �s), (9)

in which ALs(�ij|0, �s, �s) stands for an asymmetric distri-
bution with parameters � = 0, � = �s and � = �s. Mean-
while, �s indicates the mixing proportion with �s ≥ 0 and
∑S
s=1 �s = 1, and S means the number of mixture compo-

nents.
To facilitate the estimation of unknown parameters, we

introduce some latent binary variables zij1, zij2,⋯, zijS where
zijs ∈ {0, 1} and ∑S

s=1 zijs = 1. To ease presentation, let
each noise �ij be equipped with an indicator vector zij =
(zij1, zij2,⋯ , zijS )T. Here, zijs = 1 indicates that the noise
�ij is drawn from the sth AL distribution. Evidently, zij fol-lows a multinomial distribution, i.e., zij ∼ (�1,⋯ , �S ).Under these assumptions, we can have

p(�ij) =
S
∏

s=1

[

�sALs(�ij|0, �s, �s)
]zijs . (10)

Now, it is easy to obtain the probability of xij as

p(xij|ui, vj ,�,K,�) =
S
∏

s=1

[

�sALs(xij|uivTj , �s, �s)
]zijs

,

(11)
where � = {�1, �2,⋯ , �S}, K = {�1, �2,⋯ , �S} and � =
{�1, �2,⋯ , �S} are unknown parameters. To estimate U,V
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as well as �,K,�, we employ the maximum likelihood prin-
ciple. Consequently, the goal is tomaximize the log-likelihood
function of complete data shown below, namely,
l(U,V,�,K,�)

=
∑

(i,j)∈Ω

S
∑

s=1
zijs

[

logALs(xij|uivTj , �s, �s) + log�s
]

,
(12)

where Ω denotes the index set of the non-missing entries of
data. Subsequently, we will discuss how to maximize the
log-likelihood function l(U,V,�,K,�) to get our interested
items.
3.4. Learning of AQ-LRMF

Since each xij associates with an indicator vector zij =
(zij1, zij2,⋯ , zijS )T in which zijk’s (k = 1,⋯ , S) are la-
tent variables, the EM algorithm [8] is utilized to train the
AQ-LRMFmodel. Particularly, the algorithm needs to itera-
tively implement the following two steps (i.e., E-step andM-
step) to maximize the likelihood of the corresponding prob-
lem until the algorithm converges. For ease of exposition,
we let eij = xij − uivTj and abbreviate ALs(eij|0, �s, �s) as
ALs(eij) in the following discussions.
E-step: Compute the conditional expectation of the latent
variable zijs as


ijs = E(zijs|xij) =
�sALs(eij)

∑S
a=1 �aALa(eij)

. (13)

In order to attain the updating rules of other parameters,
we need to compute theQ-function. According to the work-
ing mechanism of EM algorithm, the Q-function can be ob-
tained by taking expectation of the log-likelihood function
shown in (12) with regard to the conditional distribution of
the latent variables zij1, zij2,⋯ , zijS . Specifically, it can bederived as
Q = EZ∣X[l(U,V,�,K,�)]

= EZ∣X{
∑

(i,j)∈Ω

S
∑

s=1
zijs

[

logALs(eij|0, �s, �s) + log�s
]

}

=
∑

(i,j)∈Ω

S
∑

s=1

ijs

[

logALs(eij|0, �s, �s) + log�s
]

=
∑

(i,j)∈Ω

S
∑

s=1

ijs{log�s + log �s�s(1 − �s)

− |eij|�s
[

(1 − �s)I(eij < 0) + �sI(eij ≥ 0)
]

}

≡
∑

(i,j)∈Ω

S
∑

s=1

ijs

[

log �s(1 − �s)�s�s − �s�ijs|eij|
]

,

(14)
where

�ijs =
[

(1 − �s)I(eij < 0) + �sI(eij ≥ 0)
]

. (15)
M-step: Maximize theQ-function by iteratively updating its
parameters as follows.

(1). Update �s: To attain the update for �s, we need to
solve the following constrained optimization problem

max
�s

∑

(i,j)∈Ω

S
∑

s=1

ijs log�s, s.t.

S
∑

s=1
�s = 1, (16)

via the Lagrangianmultipliermethod. By some deriva-
tions, we have

�s =
Ns
N
, where Ns =

∑

(i,j)∈Ω

ijs, (17)

in whichN stands for the cardinality of Ω.
(2). Update �s: Compute the gradient )Q

)�s
and let it be

zero. Consequently, the update of �s can be obtained
as

�s =
Ns

∑

(i,j)∈Ω �ijs
ijs|eij|
. (18)

(3). Update �s: Compute the gradient )Q
)�s

and let it be
zero, we can have

�s�
2
s − (2Ns + �s)�s +Ns = 0, (19)

where the coefficients �s = �s
∑

(i,j)∈Ω 
ijseij . Evi-
dently, Eq. (19) is a two-order equation with regard to
�s and it has a unique root satisfying 0 < �s < 1, thatis,

�s =
2Ns + �s −

√

4N2
s + �2s

2�s
. (20)

(4). Update U,V: By omitting some constants, the objec-
tive function to optimize U,V can be rewritten as

max−
∑

(i,j)∈Ω

S
∑

s=1
�s
ijs�ijs|xij − uivTj |

⇔min
m
∑

i=1

n
∑

j=1
wij|xij − uivTj |

⇔min ||W⊙ (X − UVT)||L1 ,

(21)

where the (i, j)th entry of W is

wij =

{

∑S
s=1 �s
ijs�ijs, if (i, j) ∈ Ω,

0, if (i, j) ∉ Ω.
(22)

Hence, the optimization problem in Eq. (21) is equivalent
to the weighted L1-LRMF, which can be solved by a fast
off-the-shelf algorithm. In this paper, the cyclic weighted
median filter (CWM) [24] is employed to solve Eq. (21) and
the detailed derivations will be introduced in the next sub-
section.
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Figure 3: In a synthetic experiment, how the likelihood value
varies as the number of iterations increases.

Here, it is interesting that the M-step in AQ-LRMF is
the same as that of MoG-LRMF [23], except that the lat-
ter one minimizes a weighted L2 loss. Due to this feature,
AQ-LRMF is more robust than MoG-LRMF. On the other
hand, each weight of MoG-LRMF embodies the informa-
tion about whether the corresponding entry is an outlier. For
each weight of AQ-LRMF, it actually contains additional in-
formation about the sign of bias. In particular, �s is the scaleparameter and the entries with smaller �s correspond to out-liers. According to the definition of �ijs in Eq. (15), we
know that �ijs is a function of the skewness parameter �s.If the residual eij ≥ 0, �ijs = �s and �ijs = 1 − �s oth-erwise. Hence, the weights assigned to two different points
still differ if two residuals with the same absolute value have
different signs. In conclusion, AQ-LRMF has more capacity
to process heavy-tailed skew data.

Based on the above analysis, we summarize the main
steps to learn the parameters involved inAQ-LRMF as shown
inAlgorithm 1. We nowdiscuss the computational complex-
ity of Algorithm 1. The complexity of updating 
 isO(mnS)
and that of updating � and � is the same. As for the complex-
ity to update �, it is O(S). At last, the complexity to update
U,V will be O(mnS) if Eq. (21) is solved by CWM. Thus,
the total time complexity of Algorithm 1 isO(T (mnS+S)),
where T is the number of iterations for the algorithm to reach
convergence. Note that Algorithm 1 is derived by EM al-
gorithm, it can thus converge to a local optimum within fi-
nite iterations since the likelihood does not decrease in each
step. As an example, Fig. 3 depicts how the likelihood value
varies as the number of iteration increases in a synthetic ex-
periment (please see the detailed settings in subsection 4.1).
It is shown that the likelihood value increases quickly in the
first few iterations, and then it gradually levels off. Finally,
the algorithm converges at the 35th iteration.

Algorithm 1 Learning algorithm of AQ-LRMF
Input:

The observed matrix X of order m × n; the index set Ω
of non-missing entries of X; number of components S
in MoAL.

Output:
U,V.

1: Initialize U,V,�,K,�.
2: (Initial E-step): Evaluate 
ijs by Eq. (13), i =
1, ..., m; j = 1, ..., n; s = 1,⋯ , S.

3: while the convergence criterion does not satisfy do
4: (M-step 1): Update �s, �s, �s (s = 1,⋯ , S) with Eqs.

(17), (18) and (20), respectively.
5: (E-step 1): Evaluate 
ijs by Eq. (13), i = 1, ..., m; j =

1, ..., n; s = 1,⋯ , S.
6: (M-step 2): Update U,V by solving Eq. (21) with the

CWM method.
7: (E-step 2): Evaluate 
ijs by Eq. (13), i = 1, ..., m; j =

1, ..., n; s = 1,⋯ , S.
8: (Tune S): For each pair (i, j) ∈ Ω, compute its noise

component index C(i, j) = argmaxs 
ijs. Remove
any ALD components which are not in C. Let S be
the current number of ALD components.

9: end while

3.5. Solution of the weighted L1-LRMF
As stated in the last subsection, the learning ofAQ-LRMF

can be cast into a weightedL1-LRMF problem. Nowwewill
provide more details about how to solve it (i.e., how to up-
date U,V by Eq. (21)) with the CWM method [24].

Essentially, CWMminimizes the objective via solving a
series of scalarminimization subproblems. LetU = (ũ1, ũ2,⋯ , ũr) ∈
ℝm×r and V = (ṽ1, ṽ2,⋯ , ṽr) ∈ ℝn×r, respectively. To
update vji (j = 1,⋯ , n; i = 1,⋯ , r), we assume that the
other parameters have been estimated. As a result, the orig-
inal problem can be rewritten as the optimization problem
regarding vji, i.e.,

||W⊙ (X − UVT )||L1 = ||W⊙ (X −
r
∑

j=1
ũj ṽTj )||L1

= ||W⊙ (Ei − ũiṽTi )||L1 = ||w̃j ⊙ (ẽij − ũivji)||L1 + c,
(23)

where Ei = X −∑

j≠i ũj ṽTj , and w̃j and ẽij are jth column
ofW and Ei, respectively. In Eq. (23), c denotes a constant
term that does not depend on vji. In this way, the optimal
vji, say v∗ji, can be easily attained by the weighted median
filter. Specifically, let e = w̃j ⊙ ẽij and u = w̃j ⊙ ũi, we canreformulate Eq. (23) as

||w̃j ⊙ (ẽij − ũivji)||L1 = ||e − uvji||L1

=
m
∑

l=1
|el − ulvji| =

m
∑

l=1
|ul| ⋅ |vji −

el
ul
|.

(24)
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Hence, the optimal v∗ji can be obtained as
v∗ji = argminvji ||w̃j ⊙ (ẽij − ũivji)||L1

= argminvji

m
∑

l=1
|ul| ⋅ |vji −

el
ul
|.

(25)

From Eq. (25), it can be seen that v∗ji coincides with the
weightedmedian of the sequence { elul }

m
l=1 underweights {|ul|}ml=1.

By adopting the similar derivation process, u∗ji (j = 1,⋯ , m, i =
1,⋯ , r), the optimal value for each element uji of U, can beexpressed as

u∗ji = argminuji ||wj ⊙ (eij − ṽ
T
i uji)||L1 , (26)

where wj and eij represent the jth row of W and Ei, respec-tively. In short, the optimal U,V can be obtained by employ-
ing CWM to repeatedly update vji(j = 1,⋯ , n; i = 1,⋯ , r)
and uji(j = 1,⋯ , m; i = 1,⋯ , r) until the algorithm con-
verges. To facilitate the understanding, the following Algo-
rithm 2 lists the main steps to attain the optimal solution of
Eq. (21). Note that Algorithm 2 corresponds to step 6 in
Algorithm 1.
Algorithm 2 Solving Eq. (21) by the CWM method.
Input:

The observed matrix X ∈ ℝm×n; the index set Ω; �s, �sand 
ijs (i = 1,⋯ , m, j = 1,⋯ , n, s = 1,⋯ , S); initial
value of U,V.

Output:
The optimal U,V.

1: Calculate each element wij of W by Eq. (22).
2: while the convergence criterion does not satisfy do
3: Cyclicly apply the weighted median filter to update

each entry vji (j = 1,⋯ , n, i = 1,⋯ , r) of V with all
the other elements of U,V fixed by solving Eq. (25).

4: Cyclicly apply the weighted median filter to update
each entry uji (j = 1,⋯ , m, i = 1,⋯ , r) of U with all
the other elements of U,V fixed by solving Eq. (26).

5: end while

3.6. Some details of Algorithm 1
Tuning the number of components S in MoAL: Too large
S violates Occam Razor’s principle, while too small S leads
to poor performance. In consequence, as described in step
8 of Algorithm 1, we employ an effective method to tune
S. To begin with, we initialize S to be a relatively small
number such as 4, 5,⋯ , 8. After each iteration, we compute
the cluster that xij belongs to, by C(i, j) = argmaxs 
ijs.If there is no entry belonging to cluster s, we remove the
corresponding ALD component.
Initialization: In Algorithm 1, the entries in U and V can
be initialized by using a procedure analogous to that used in
[23]. Particularly, the (i, j)th entry uij of U was initialized
in our experiments as 2�ijc − c, where �ij denotes a ran-
dom number sampled from the standard Gaussian distribu-
tion  (0, 1). In addition, c = √

x̄∕r where x̄ is the median

of all entries in X and r indicates the rank of U and V. Due
to the characteristics of U and V, each entry of V was ini-
tialized similarly. Moreover, the elements in �,K and � was
randomly sampled from the uniform distribution on [0, 1].
After initializing �1,⋯ , �S , they were normalized so that
their sum equals to 1.
Convergence condition: By following the common prac-
tice of EM algorithm, we terminate the iteration if the change
of ||U|| is smaller than a pre-defined value or the maximum
iteration number is reached.

4. Experimental Studies
We carried out experiments in this section to examine

the performance of AQ-LRMF model. Several state-of-the-
art methods were considered, including four robust LRMF
methods (namely, MoG [23] 1, CWM [24], Damped Wiberg
(DW) 2 [25], RegL1ALM 3 [26]) and a robust PCA method
(SPCP solved by quasi Newton method) 4 [1]. We wrote
the programming code for CWM with Matlab software. For
the other compared algorithms, the codes provided by the
corresponding authors were available. Since SPCP does not
work in presence of missing entries, it was thus excluded
from some experiments which involve missing data. Notice
that DW is only considered in section 4.1 because it meets
the “out of memory” problem for large-scale datasets. In
the meantime, we assigned the same rank to all the consid-
ered algorithms except for SPCP since it can automatically
determine the rank. To make the comparison more fair, all
algorithms were initialized with the same values. Each al-
gorithm was terminated when either 100 iterative steps are
reached or the change of ||U|| is less than 1 × 10−50. In or-
der to simplify notations, our proposed method AQ-LRMF
was denoted as AQ in later discussions. All the experiments
were conducted with Matlab R2015b and run on a computer
with Intel Core CPU 2.30GHz, 4.00 GBRAMandWindows
7(64-bit) system.

The remainder of this section has the following struc-
ture. Section 4.1 studies the performance of each algorithm
on synthetic data in the presence of various kinds of noise as
well as missing values. Because LRMF has been applied
in many fields, we also examined the performance of the
compared algorithms on several real-world tasks. Sections
4.2 and 4.3 employ some inpainted and multispectral images
to investigate how the compared algorithms behave on real
images which contain missing values and various kinds of
noise, respectively. Finally, sections 4.4 and 4.5 examine
the performance of all algorithms on face modeling and hy-
perspectral image processing tasks. Table 1 summarizes the
basic information of real-world data sets.

1http://www.gr.xjtu.edu.cn/c/document_library/get_file?folderId=
1816179&name=DLFE-32163.rar

2http://www.vision.is.tohoku.ac.jp/us/download/
3https://sites.google.com/site/yinqiangzheng/
4https://github.com/stephenbeckr/fastRPCA
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Table 1
The basic information of the used real-world data sets.

Data set Type of task Size subsection

CAVE image denoising 262144 × 31 4.3
Extended Yale B face modeling 32256 × 64 4.4
Urban hyperspectral image reconstruction 94249 × 210 4.5
Terrain hyperspectral image reconstruction 153500 × 210 4.5

4.1. Synthetic experiments
First, we compared the behavior of each method with

synthetic data containing different kinds of noise. Similar
to [5], we randomly generated 30 low rank matrices X =
UVT of size 40 × 20 for each case, where U ∈ ℝ40×r and
V ∈ ℝ20×r were sampled from the standard Gaussian distri-
bution  (0, 1). In particular, we considered the situations
with r = 4 and r = 8. In the experiment, we stochastically
set 20% entries of X as missing data and corrupted the non-
missing entries with the following three groups of noise, re-
spectively. (i) The first group include 4 kinds of heavy-tailed
noise, i.e., Lap(0, 1.5) (Laplace noise with scale parameter
b = 1.5 and location parameter � = 0), Gaussian noise with
� = 0, � = 5 and Student’s t noise with degrees of freedom 1
and 2, respectively. (ii) Two kinds of skew noise are included
in the second group, i.e., asymmetric Laplace noise with � =
1, � = 0.7 and skew normal noise with � = 3, � = 0.7. (iii)
Two kinds of mixture noise are included in the last group.
The first one is 0.5 (0, 1)+0.3Lap(0, 1)+0.2Lap(0, 2) and
another one is 0.5 (0, 1)+0.3Lap(0, 1)+0.2AL(0, 1, 0.8).
It is worthwhile to mention that the two mixture noises sim-
ulate the noise contained in real data, where most entries are
corrupted by standard Gaussian noise and the rest entries are
corrupted by heavy-tailed or skew noise. To evaluate the per-
formance of each method, we employed the average L1 and
L2 errors which are defined as 1

mn
∑m
i=1

∑n
j=1 |xij − uiv

T
j |

and
√

1
mn

∑m
i=1

∑n
j=1(xij − uiv

T
j )2, respectively.

In our experiments, the value for the parameter r in all al-
gorithms but SPCP was set as the true rank r that was used to
generate synthetic data. For each compared algorithm, Ta-
bles 2 and 3 summarize the L1 and L2 errors averaged over
30 randomly generated matrices when r = 4 and r = 8, re-
spectively. In the last two rows of Tables 2 and 3, we list the
mean and median of the L1 errors as well as the L2 errorsof all cases. In the situation with r = 4, it is quite obvi-
ous that our method reaches the minimum L1 and L2 errorsfor each type of noise, while MoG and CWM almost take
the second place. And the approaches RegL1ALM and DW
can hardly deal with the heavy-tailed and skew noise well.
Note that two critical techniques are employed in AQ, that
is, asymmetric noise modeling by an MoAL and solving the
weighted L1-norm LRMF by CWM. Based on the superior-
ity of AQ over CWM as demonstrated in Tables 2 and 3, we
can conclude that asymmetric noise modeling indeed plays
an important role in AQ for it achieving better performance.
From the results corresponding to r = 8, similar conclusions
can be drawn. However, CWM evidently outperforms MoG
under this circumstance, which indicates that MoG may be
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Figure 4: The scatter gram of the L1 errors versus the running
times of each algorithm on synthetic data.

instable when the real rank in observed data is high. In addi-
tion, the running speed of AQ is fairly competitive, as shown
in Table 4. To compare the algorithms in a clearer man-
ner, we also demonstrate two scattergrams of the L1 errorsversus the running times of each algorithm in Figure 4. It
can be seen that AQ strikes a quite good balance between
the reconstruction accuracy and time complexity. Although
the L1 errors of MoG are comparable with those of AQ and
CWM, it costs more time. Moreover, CWM is observed to
have almost the same time complexity with AQ, but it is out-
performed by AQ in terms of reconstruction.

Aiming at investigating the behavior of each algorithm
more extensively, we also did experiments by varying noise
level under a specific type of noise. As an example, we used
Laplace noise to generate data with different levels of noise.
The scale parameter b was varied from 0.9 to 2.1 with incre-
ment 0.2. Under each situation, the experiment was carried
out similarly to the previous synthetic experiments. In Fig.
5, theL1 errors of each algorithm are plotted as a function of
the parameter b. It can be observed from Fig. 5 that AQ al-
most always outperforms the other counterparts at each noise
level. In summary, the simulation results presented in this
subsection strongly indicate that AQ is a very competitive
LRMF tool to cope with the tasks involving different kinds
of noise.

To delve into the difference between AQ and MoG, we
further compared the distributions of the residuals correspond-
ing to AQ and MoG. Here, the PDFs for real nosie were uti-
lized the groundtruth. Specifically, two symmetric and two
asymmetric cases are illustrated in Figure 6. Here, the shown
PDFs fitted by AQ and MoG correspond to those reach the
maximum likelihood over 30 random experiments. It is ob-
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Table 2
The average L1 and L2 errors for each algorithm on synthetic data with rank 4. The best
and second best results are highlighted in bold and italic typeface, respectively.

r = 4
L1 error L2 error

AQ MoG CWM RegL1ALM DW AQ MoG CWM RegL1ALM DW
Laplace Noise (b=1.5) 1.22 1.24 1.38 1.63 1.51 1.82 1.88 1.92 4.60 4.61
Gaussian Noise (� = 5) 2.97 3.31 3.15 4.62 4.03 4.66 5.94 4.14 13.29 13.94
Student’s t Noise (df = 1) 1.52 2.53 1.99 22.66 598.22 3.41 13.51 4.79 239.27 11952.61
Student’s t Noise (df = 2) 0.98 1.32 1.14 2.18 8.24 1.56 3.59 1.63 11.38 153.04
AL Noise (� = 1, � = 0.7) 1.93 2.68 2.40 3.76 4.83 2.90 6.93 3.36 13.18 42.23
SN Noise (� = 3, � = 0.7) 1.89 2.02 2.08 2.62 2.04 2.65 3.16 2.75 6.41 2.99
Mixture Noise 1 0.85 0.91 1.00 1.10 1.08 1.23 1.47 1.43 3.25 3.45
Mixture Noise 2 0.98 1.40 1.24 3.15 21.23 1.62 3.95 1.94 18.70 483.78

mean 1.54 1.93 1.80 5.22 80.15 2.48 5.05 2.74 38.76 1582.08
median 1.37 1.71 1.68 2.88 4.43 2.24 3.77 2.35 12.28 28.08

Table 3
The average L1 and L2 errors for each algorithm on synthetic data with rank 8. The best
and second best results are highlighted in bold and italic typeface, respectively.

r = 8
L1 error L2 error

AQ MoG CWM RegL1ALM DW AQ MoG CWM RegL1ALM DW

Laplace Noise (b=1.5) 1.82 2.18 1.92 3.03 4.98 2.86 4.49 2.81 8.88 42.57
Gaussian Noise (� = 5) 4.17 4.86 4.04 7.60 10.74 6.18 8.26 5.39 20.64 82.87
Student’s t Noise (df = 1) 2.87 4.36 3.41 15.33 450.20 8.79 18.56 11.87 77.32 8917.25
Student’s t Noise (df = 2) 1.60 2.24 1.80 3.44 22.36 2.61 5.93 2.82 13.08 397.99
AL Noise (� = 1, � = 0.7) 2.88 3.88 3.04 5.87 16.09 4.48 9.28 4.35 17.70 227.67
SN Noise (� = 3, � = 0.7) 2.59 3.00 2.70 4.44 5.37 3.67 5.00 3.66 11.92 35.97
Mixture Noise 1 1.34 1.59 1.59 2.15 2.98 2.09 3.34 2.40 6.32 23.29
Mixture Noise 2 1.69 2.43 1.92 4.30 18.33 2.88 5.94 3.09 16.19 203.50

mean 2.37 3.07 2.55 5.77 66.38 4.19 7.60 4.55 21.51 1241.39
median 2.21 2.72 2.31 4.37 13.41 3.27 5.94 3.38 14.64 143.19

vious that AQ does a much better job to approximate the real
noise than MoG. Particularly, AQ almost provides a dupli-
cate of real noise. In contrast, MoG is able to fit the tails,
while, at the same time, it results in bad approximation to
peaks. Hence, AQ has stronger power in fitting complex
noise than MoG.
4.2. Image inpainting experiments

Image inpainting is a typical image processing task. In
real applications, some parts of an image may be deterio-
rated so that the corresponding information is lost. To fa-
cilitate the understanding of the image, some sophisticated
technique need to be adopted to recover its corrupted parts.
This is exactly the objective of image inpainting. There is
evidence that many images are low-rank matrices so that the

single image inpainting can be done by matrix completion
[13]. In image inpainting, the corrupted pixels are viewed
as missing values and then the image can be recovered by an
LRMF algorithm. In this paper, three typical RGB images 5
of size 300 × 300 × 3 were employed. In our experiments,
each image was reshaped to 300 × 900. By following the
common practice in the research of image inpainting, we ar-
tificially corrupted the given images by putting some masks
onto them. In doing so, it is convenient to examine how well
each method performs to restore the original images. Here,
three kinds of masks were considered, namely, randommask
where 20% pixels were stochastically removed, text masks
with big and small fonts, respectively. Some evidence [13]

5https://sites.google.com/site/zjuyaohu/

Table 4
The running time (in seconds) of each algorithm on synthetic data.

r = 4 r = 8
AQ MoG CWM RegL1ALM DW AQ MoG CWM RegL1ALM DW

Laplace Noise (b=1.5) 0.02501 0.04044 0.02502 0.81899 0.07907 0.07898 0.13455 0.07900 1.33627 0.26134
Gaussian Noise (� = 5) 0.02490 0.01330 0.02490 0.80570 0.12140 0.07972 0.06740 0.07974 1.35875 0.42626
Student’s t Noise (df = 1) 0.03080 0.12480 0.03080 0.86030 0.17470 0.08268 0.21673 0.08268 1.26710 0.28241
Student’s t Noise (df = 2) 0.02560 0.13690 0.02560 0.81970 0.10020 0.06157 0.22075 0.06157 1.25522 0.27744
AL Noise (� = 1, � = 0.7) 0.01885 0.01619 0.01887 0.84787 0.10406 0.07640 0.12882 0.07640 1.30657 0.29866
SN Noise (� = 3, � = 0.7) 0.02399 0.04659 0.02399 0.75145 0.08879 0.07675 0.07408 0.07675 1.23501 0.25752
Mixture Noise 1 0.02189 0.05013 0.02189 0.76148 0.07082 0.07168 0.15263 0.07169 1.21608 0.24865
Mixture Noise 2 0.02133 0.07331 0.02134 0.81955 0.10586 0.07214 0.17796 0.07214 1.31874 0.31770

mean 0.02404 0.06271 0.02405 0.81063 0.10561 0.07499 0.14661 0.07500 1.28672 0.29625
median 0.02444 0.04836 0.02444 0.81927 0.10213 0.07657 0.14359 0.07658 1.28684 0.27993
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Table 5
The average L1 and L2 errors of each method on image inpainting experiments. The best
and second best results are highlighted in bold and italic typeface, respectively.

Image A Image B Image C

AQ MoG CWM RegL1 AQ MoG CWM RegL1 AQ MoG CWM RegL1

L1 error
Small 2.59 2.32 2.91 2.33 5.60 7.43 6.90 8.08 5.13 5.83 6.30 6.97
Large 5.59 9.25 7.84 8.77 6.88 20.16 8.78 19.11 6.84 7.15 7.67 17.70
Random 2.81 2.18 3.06 2.45 5.91 5.75 6.65 6.79 5.61 6.74 6.77 5.07

L2 error
Small 5.05 10.65 6.62 17.91 10.11 31.13 14.85 43.26 8.67 9.64 10.50 28.29
Large 17.95 49.06 29.23 47.04 13.98 79.97 17.95 75.74 12.77 12.65 13.93 63.09
Random 5.33 10.97 6.80 26.52 9.86 16.90 11.47 34.06 9.18 10.50 11.07 11.60

1 1.2 1.4 1.6 1.8 2

b

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

AQ
MoG
CWM
RegL1ALM
DW

1 1.2 1.4 1.6 1.8 2

b

1

2

3

4

5

6

7

8

9

AQ
MoG
CWM
RegL1ALM
DW

Figure 5: The performance of each algorithm on synthetic data
with different levels of noise.

has shown that the information of a single image will be lost
if the rank is set to a relatively low value. Thus, the rank was
set to 80 in this experiment for all algorithms.

Figure 7 displays the original, masked and reconstructed
images, and Table 5 reports the average L1 and L2 errors
of each algorithm. It is obvious that removing a random
mask is the easiest task. In this situation, there is no signif-
icantly visible difference among the reconstructed images.
AQ and MoG are the best performers. In contrast, the re-
sults shown in Figure 7 and Table 5 indicate that text mask
removal ismore difficult, especiallywhen the images are cor-
rupted with big fonts. The main reason lies in that the text
mask is spatially correlated while it is difficult for any LRMF
algorithm to effectively utilize this type of information. Un-
der these circumstances, it can be observed in Figure 7 and
Table 5 that AQ outperforms the other methods to remove
the text masks in terms of both reconstruction error and vi-
sualization. RegL1ALM and MoG perform badly and the
clear text can often be seen in their reconstructed images. Al-
though CWM produces slightly better results, its average L1error is still higher than that of AQ. In a word, AQ possesses
the superiority over the other algorithms in our investigated
image inpainting tasks. In particular, AQ achieves the small-
est average L1 error in 5 cases and the second smallest one
in 3 cases. When evaluating all algorithms with L2 error,
the superiority of AQ is more significant.

4.3. Multispectral image experiments
In this subsection, we study the behavior of all algo-

rithms in image denoising tasks. The Columbia Multispec-
tral Image database, CAVE, 6 was employed, where every
scene contains 31 bands with size 512 × 512. To achieve
our purpose, seven scenes out of them (i.e., Balloon, Clay,
Feathers, Flowers, Hairs, Paints and Pompoms) were uti-
lized to test the effectiveness of our methods. The used im-
ages were resized by half and the pixels were rescaled to
[0,1]. Analogous to the strategy used in image inpainting
experiments, some noise was artificially added to the orig-
inal images. Then, each LRMF algorithm was applied to
remove the noise so that the corrupted images can be re-
stored as accurate as possible. In the experiments, three dif-
ferent kinds of noise were considered, that is, Laplace noise
with scale parameter b = 10, asymmetric Laplace noise with
� = 10, � = 0.7 and mixture noise, i.e., 0.5 (0, 0.5) +
0.3AL(0, 8, 0.9) + 0.2AL(0, 8, 0.7). The rank was set to 4
for all algorithms.

Table 6 reports the average L1 and L2 errors of each
method. Evidently, AQ behaves best in most cases. For
Laplace noise, RegL1ALM sometimes outperforms AQ to
attain the best results. The success of RegL1ALM can be at-
tributed to the special format of its objective function, namely,
L1 norm loss plus two penalties on U and V. On the one
hand, the L1 norm loss is exactly compatible with Laplace
noise. On the other hand, there is empirical evidence show-
ing that its used penalties can lead to better performance on
image datasets. For asymmetric Laplace and mixture noise,
it is not surprising that AQ outperforms all the other meth-
ods. Under some circumstances, SPCP reaches the second
lowest reconstruction error, while the other ones perform
badly. The reason for the good behavior of SPCP may be
that it does not rely on the assumption of noise distribution,
while the other approaches implicitly assume that the noise
distribution is not skew.
4.4. Face modeling experiments

Here, we applied the LRMF techniques to address the
face modeling task. The Extended Yale B database 7 con-
sisting of 64 images with size 192×168 of each subject was
considered. Therefore, it leads to a 32256 × 64 matrix for
each subject. Particularly, we used the face images of the

6http://www1.cs.columbia.edu/CAVE/databases/multispectral
7http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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Figure 6: The comparison of the PDFs for real noise and the ones fitted by AQ and MoG in the synthetic experiments.

Table 6
The average L1 and L2 errors of each method on multispectral image experiments. The
best and second best results are highlighted in bold and italic typeface, respectively. AL
refers to asymmetric Lapalce.

Scene Type of Noise
L1 error L2 error

AQ MoG CWM RegL1ALM SPCP AQ MoG CWM RegL1ALM SPCP

Balloon
Laplace 0.0074 0.0348 0.0398 0.0343 0.0487 0.0140 0.0494 0.0553 0.0487 0.0693

AL 0.0804 0.1964 0.1501 0.1379 0.1280 0.1053 0.2310 0.1882 0.1836 0.1510
Mixture 0.1974 0.2514 0.2453 0.2422 0.2026 0.2555 0.3620 0.3221 0.3879 0.2374

Clay
Laplace 0.0335 0.0402 0.0362 0.0344 0.0596 0.0454 0.0518 0.0522 0.0492 0.1131

AL 0.0778 0.1787 0.1385 0.1342 0.1380 0.1266 0.2110 0.1828 0.1830 0.1789
Mixture 0.1569 0.2169 0.2403 0.2453 0.2097 0.2491 0.3372 0.3362 0.3714 0.2548

Feathers
Laplace 0.0392 0.0390 0.0417 0.0373 0.0470 0.0520 0.0543 0.0588 0.0522 0.0805

AL 0.0911 0.1526 0.1487 0.1396 0.1303 0.1217 0.1918 0.1876 0.1832 0.1566
Mixture 0.1946 0.2575 0.2455 0.2425 0.2046 0.2506 0.3955 0.3272 0.3911 0.2414

Flowers
Laplace 0.0362 0.0395 0.0371 0.0343 0.0437 0.0486 0.0513 0.0530 0.0526 0.0794

AL 0.0761 0.1708 0.1450 0.1374 0.1289 0.1113 0.2054 0.1861 0.1826 0.1569
Mixture 0.1709 0.2339 0.2393 0.2437 0.2025 0.2718 0.3799 0.3307 0.3679 0.2404

Hairs
Laplace 0.0321 0.0380 0.0358 0.0292 0.0253 0.0426 0.0514 0.0511 0.0517 0.0377

AL 0.0681 0.1969 0.1373 0.1346 0.1201 0.1112 0.2288 0.1736 0.1825 0.1370
Mixture 0.1412 0.2172 0.2305 0.2387 0.1979 0.2595 0.3684 0.3288 0.3847 0.2291

Paints
Laplace 0.0424 0.0370 0.0431 0.0354 0.0396 0.0554 0.0497 0.0648 0.0501 0.0636

AL 0.1009 0.1910 0.1432 0.1402 0.1259 0.1329 0.2244 0.1815 0.1831 0.1474
Mixture 0.2119 0.2311 0.2460 0.2399 0.2018 0.3070 0.3777 0.3433 0.3861 0.2356

Pompoms
Laplace 0.0493 0.0420 0.0414 0.0379 0.0824 0.0641 0.0542 0.0548 0.0527 0.1211

AL 0.1002 0.1937 0.1508 0.1422 0.1472 0.1311 0.2268 0.1928 0.1847 0.1850
Mixture 0.1630 0.4121 0.2489 0.2323 0.2153 0.2210 0.5119 0.3281 0.3887 0.2595

mean
Laplace 0.0300 0.0338 0.0344 0.0304 0.0433 0.0403 0.0453 0.0488 0.0447 0.0706

AL 0.0743 0.1600 0.1267 0.1208 0.1148 0.1050 0.1899 0.1616 0.1603 0.1391
Mixture 0.1545 0.2275 0.2120 0.2106 0.1793 0.2268 0.3416 0.2895 0.3347 0.2123

third and fifth subjects. The first column of Figure 8 demon-
strates some typical faces for illustration. We set the rank
to 4 for all methods except for SPCP which determines the
rank automatically. The second to sixth columns of Figure 8
display the faces reconstructed by the compared LRMF al-
gorithms.

From Figure 8, we can observe that that all methods are

able to remove the cast shadows, saturations and camera noise.
However, the performance of SPCP seems to be worse in
comparison with other algorithms. Evidently, AQ always
outperforms the other methods due to its pretty reconstruc-
tion. As shown in Figure 1, there is an asymmetric distri-
bution in the face with a large dark region. Because of this,
the techniques MoG, CWM, RegL1ALM and SPCP which
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Figure 7: The original, masked and inpainting images.
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Figure 8: The original faces and the reconstructed ones.

utilize the symmetric loss function lead to bad results, while
AQ with the quantile loss function produces the best recon-
structed images.

4.5. Hyperspectral image experiments
In this subsection, we employed two HSI datasets, Urban

and Terrain 8, to investigate the behavior of all algorithms.
There are 210 bands, each of which is of size 307 × 307 for
Urban and 500×307 for Terrain. Thus, the data matrix is of
size 94249 × 210 for Urban and 153500 × 210 for Terrain.
Here, we utilized the same experimental settings as those
used in subsection 4.4. DW was still unavailable in this ex-
periment due to the computational problem. As show in the
first column of Figure 9, some parts of bands are seriously
polluted by the atmosphere and water absorption.

The reconstructed images of bands 106 and 207 in the
Terrain data set and the band 104 in the Urban data set are
shown in Figure 9 (a), (c) and (e), respectively. Their resid-
ual images (i.e., X − ÛV̂T) are also demonstrated below the
reconstructed ones. Obviously, the band 106 in Terrain is
seriously polluted. Nevertheless, our proposed AQ method
still effectively reconstructs a clean and smooth one. Al-
though MoG, CWM and RegL1ALM remove most parts of
noise, they miss a part of local information, that is, the line
from upper left corner to bottom right hand side (i.e., the
white parallelogram marked in the original image). As for
SPCP, it only removes few parts of noise. The residual im-
ages also reveal that AQ behaves better to deal with the de-
tailed information. Note that the band 207 in Terrain and
the band 104 in Urban are mainly corrupted by the stripe
and Guassian-like noise. Under these circumstances, AQ
still outperforms the others because the latter fails to remove
the stripe noise. In particular, for the interested areas that
are marked by rectangles and amplified areas, the bands re-
constructed byMoG, CWM, RegL1ALM and SPCP contain
evident stripes. As far as the reconstructed images produced
by AQ are concerned, however, this phenomenon does not
exist.

We conjectured that the main reason for the different be-
havior of these algorithms lies in their used loss function.
For CWM, RegL1ALM and SPCP, too simple loss func-
tion lead them to work not well when encountering com-
plicated noise. In contrast, AQ and MoG perform better be-
cause they use multiple distribution components to model
noise. It is very interesting to study the difference between
AQ and MoG. For these two algorithms, we found that they
both approximate the noise in our considered three bands
with two components. For AQ (MoG), we denoted them as
AQ1 and AQ2 (MoG1 and MoG2), respectively. In Figure
10, we presented de-noised images and residual images pro-
duced by each component. Take the de-noised image in the
column AQ1 as an example, it corresponds to ÛV̂T + AQ2
and the residual image shown below it corresponds to AQ1
(i.e., X− ÛV̂T−AQ2). The other images can be understood
similarly. In doing so, we can further figure out the role that
each component in AQ or MoG plays. When dealing with
the band 106 in Terrain, the first AQ component is seen to de-
noise the center parts, while the second one targets at the left

8http://www.erdc.usace.army.mil/Media/Fact-Sheets/
Fact-Sheet-Article-View/Article/610433/hypercube/
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Figure 9: The reconstructed and residual images. Note that
the white frame and red box are markers used to emphasize
the local patch.

and right edges. For the band 207 in Terrain, two AQ com-
ponents de-noise the bottom and the rest parts, respectively.
Regarding the band 104 in Urban, they focus on the right up-
per and center parts, respectively. By inspecting the results
generated by MoG, however, we cannot discover some regu-
lar patterns for the role that two components play. Therefore,
it can be concluded that AQ can capture the local structural
information of real images, although we do not encode it into
our model. The reason may be that the pixels with the same
skewness in real images tend to cluster. In this aspect, AQ
also possesses superiority over MoG.

5. Conclusions and future work
Aiming at enhancing the performance of existing LRMF

methods to cope with complicated noise in real applications,
we propose in this work a new low-rank matrix factorization
method AQ-LRMF to recover subspaces. The core idea of
AQ-LRMF is to directly model unknown noise by a mix-
ture of asymmetric Laplace distributions. We also present
an efficient procedure based on the EM algorithm to estimate
the parameters in AQ-LRMF. Actually, the objective func-
tion of AQ-LRMF corresponds to the adaptive quantile loss
like those used in quantile regression. Nevertheless, AQ-
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Figure 10: The de-noised and residual images produced by the
two components of AQ (i.e., columns marked with AQ1 and
AQ2) and MoG (i.e., columns marked with MoG1 and MoG2).
For example, the image lies in the first row and second column
is the de-noised image which is obtained by removing the first
AQ component from the original image.

LRMF does not need to pre-define the asymmetry parameter
of quantile loss whereas quantile regression needs a user to
specify its corresponding parameter in advance. Thus, AQ-
LRMF has an advantage over quantile regression in this as-
pect. Based on the experimental results on synthetic and real
data, the novel AQ-LRMF model is seen to always outper-
form several other state-of-the-art counterparts. In addition,
AQ-LRMF also has the superiority to capture local struc-
tural information in real images. Therefore, AQ-LRMF can
be deemed as a competitive tool to cope with complex real
problems.

The future work are twofold. Firstly, this paper mainly
investigates skew noise for images. It is very interesting to
studywhether skew noise is valid for other fields, such as rec-
ommender system and link prediction. Secondly, the idea of
skew noise modeling can be extended to related problems,
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including non-negative LRMF and low-rank tensor factor-
ization.
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