
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/135301                                      
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions. 
 
© 2020 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/. 
 

 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/135301
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk


Multi-focus image fusion based on non-negative sparse 1 

representation and patch-level consistency rectification 2 

Qiang Zhanga,b, Guanghe Lib, Yunfeng Caob, Jungong Hanc 3 

aKey Laboratory of Electronic Equipment Structure Design, Ministry of Education, Xidian University, Xi'an, Shaanxi 710071, 4 

China 5 

bCenter for Complex Systems, School of Mechano-electronic Engineering, Xidian University, Xi'an Shaanxi 710071,China 6 

cWMG Data Science, University of Warwick, Coventry CV4 AL7, U.K. 7 

 8 

Abstract Most existing sparse representation-based (SR) fusion methods consider the local information of each image patch 9 

independently during fusion. Some spatial artifacts are easily introduced to the fused image. A sliding window technology is often 10 

employed by these methods to overcome this issue. However, this comes at the cost of high computational complexity. Alternatively, 11 

we come up with a novel multi-focus image fusion method that takes full consideration of the strong correlations among spatially 12 

adjacent image patches with NO need for a sliding window. To this end, a non-negative SR model with local consistency constraint 13 

(CNNSR) on the representation coefficients is first constructed to encode each image patch. Then a patch-level consistency 14 

rectification strategy is presented to merge the input image patches, by which the spatial artifacts in the fused images are greatly 15 

reduced. As well, a compact non-negative dictionary is constructed for the CNNSR model. Experimental results demonstrate that 16 

the proposed fusion method outperforms some state-of-the art methods. Moreover, the proposed method is computationally 17 

efficient, thereby facilitating real-world applications. 18 

Keywords: Multi-focus image fusion, non-negative sparse representation, compact non-negative dictionary construction, patch-19 

level consistency rectification, high computational efficiency 20 

 21 

1. Introduction 22 

Multi-focus image fusion is a process of combining several images with different focus points into 23 

a composite image with full-focus [1]. So far, numerous multi-focus image fusion methods have been 24 

presented [1,2]. One of the critical components in these methods is to determine a decision map by using 25 
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some measure of focus (MOF). This decision map helps to select the focused regions in various input 26 

images and preserve those regions on the fused image. High computational efficiency is also desirable in 27 

many real-time applications. In this paper, we will address such issues by using a non-negative sparse 28 

representation (NNSR) model with some local spatial consistency priors. 29 

As a result of their successful applications in many computer vision and image processing tasks, 30 

spare representation (SR) [3] as well as its variants have been introduced to multi-sensor image fusion, 31 

including multi-focus image fusion, in recent years [1,2,4-9]. In these SR-based fusion methods, the 32 

traditional SR model [3] seems to be the most popular one used to achieve the sparse coding of the input 33 

image patches [10]. However, the traditional SR model just performs a sparsity constraint on the 34 

representation coefficients with the consequence that the representation coefficients for each image patch 35 

contain both positive and negative values. This apparently contradicts the non-negative property of image 36 

patches, i.e., the intensity of each pixel in an image patch is non-negative. Therefore, it is questionable if 37 

such representation coefficients are really meaningful and reasonable [11]. 38 

 39 

Fig. 1. Superiority of NNSR over SR when applied to multi-focus image fusion. (a) An image with focus on the right part; (b) 40 

Representation coefficients obtained by SR; (c) Representation coefficients obtained by NNSR. As shown in (b), the representation 41 

coefficients for the left part have high absolute values in addition to those for the right part. While, as shown in (c), only the 42 

representation coefficients for the right part have high values. This demonstrates that the representation coefficients obtained by 43 

NNSR can more accurately determine the focused and defocused regions in a multi-focus image than those obtained by SR. 44 

Different from the traditional SR model, the non-negative sparse representation (NNSR) jointly 45 

imposes the sparsity and non-negativity constraints on the representation coefficients. As discussed in 46 



[11], the source images can be efficiently encoded by using “few” components with the sparsity constraint. 47 

In addition, the representation for each image is purely additive because of the non-negativity constraint. 48 

When applied to multi-focus images, the non-negative representation coefficients obtained by using 49 

NNSR can better capture the focus information of the input image than the coefficients obtained by the 50 

traditional SR model. This is shown in Fig.1. Therefore, in this paper, we will employ NNSR in our 51 

proposed fusion method.  52 

It should be noted that the input images are needed to be divided into a set of patches in most SR-53 

based fusion methods prior to being sparsely coded and fused. As well, these image patches are 54 

independently considered during the fusion process. Some spatial artifacts are thus easily introduced to 55 

the fused image. In order to address such issue, the sliding window technology [4] is often used in these 56 

fusion methods. However, this greatly increases the computational complexity of a fusion method. In 57 

addition, some detailed information in the fused image may also be lost during the fusion process [12, 58 

13]. 59 

In fact, there exists strong correlations or spatial consistency among these spatially adjacent patches 60 

Specifically, these spatial adjacent image patches have similar focus pattern, i.e., they are either all in-61 

focus or all out-focus in most cases. In view of this, we will employ such spatial consistency prior among 62 

the image patches, instead of the sliding window, in our proposed fusion method to reduce the spatial 63 

artifacts in the fused image. Furthermore, it is desirable to improve the computational efficiency of the 64 

fusion method. 65 

To achieve this goal, we first present a new non-negative sparse representation model with local 66 

consistency constraint (CNNSR) that adds a Laplacian regularization term on the representation 67 

coefficient matrix, when encoding the input image patches. The intention of adding such a Laplacian 68 

regularization term is to enforce the spatially-adjacent patches with similar features to have similar 69 

representation coefficients and thus similar focus information. In the subsequent fusion process, we will 70 

present a patch-level consistency rectification strategy, further ensuring each input image patch to have 71 

similar focus information with most of its spatial neighbors. Apart from its simplicity, the proposed patch-72 

level consistency rectification strategy can significantly suppress the spatial artifacts in the fused image. 73 

In addition, it can also increase the computational efficiency of the fusion method due to: 1) The proposed 74 

patch-level consistency rectification strategy allows input images to be divided into a set of non-75 

overlapped patches, rather than a set of overlapped patches, during the fusion process; and 2) A compact 76 



non-negative dictionary is constructed for the CNNSR model when encoding the image patches, which 77 

will further reduce the computational complexity of the fusion method. Several sets of experimental 78 

results demonstrate the validity of the proposed fusion method. 79 

Our main contributions are summarized as follows: 80 

(1) We propose a non-negative sparse representation (CNNSR) model with local consistency constraint 81 

imposed onto the representation coefficients for multi-focus image fusion, taking advantage of the 82 

strong correlations among spatially-adjacent patches. 83 

(2) We present a compact non-negative dictionary learning (CNNDL) method for the proposed CNNSR 84 

model, which employs an orthogonality constraint as well as a non-negativity constraint to reduce 85 

the redundancy among dictionary atoms. 86 

(3) We propose a patch-level consistency rectification strategy during the fusion process, instead of the 87 

sliding window technology, to reduce the spatial artifacts in the fused images and increase the 88 

computational efficiency of the proposed method. 89 

The rest of the paper is organized as follows. Section 2 briefly reviews the related work. Section 3 90 

details the dictionary construction method for NNSR. Section 4 elaborates the proposed fusion method. 91 

Experimental results and conclusions are provided in Section 5 and Section 6, respectively.  92 

2. Related work 93 

So far, numerous fusion methods for multi-focus images have been presented, which may be simply 94 

categorized into two groups, i.e., transform-domain-based and spatial-domain-based. Among the former, 95 

most methods follow the idea of multi-scale transform-based (MST) fusion algorithm [14], including 96 

those based on wavelet transform [15], contourlet transform [16], neighbor distance [17], and so on.  97 

The earlier spatial-domain-based fusion methods are generally pixels or blocks based ones, which 98 

easily introduce spatial artifacts to the fused images. Recently, some advanced fusion methods based on 99 

image matting [18, 19], dense scale invariant transform (DSIFT) [20], and even convolutional neural 100 

network (CNN) [21, 22], are presented to suppress the spatial artifacts. 101 

In [4], the spare representation theory was first introduced to multi-sensor image fusion. Since then, 102 

varieties of multi-sensor image fusion, including multi-focus image fusion, were presented based on 103 

different SR models, such as robust SR (RSR) [1, 13], joint SR (JSR) [23], group SR (GSR) [24] and 104 

NNSR [11]. However, in most of these fusion methods, each input image patch is independently encoded 105 

and fused. This ignores the strong correlations (or spatial consistency) among spatially-adjacent patches 106 



and easily introduces some undesirable spatial artifacts to the fused images. 107 

Considering that, a multi-task RSR (MRSR) model [13] was proposed and applied to integrate multi-108 

focus images, where the focus information of each image patch was jointly determined by its spatial 109 

contextual information as well as its local information. Despite its desirable fusion performance, the 110 

MRSR-based fusion method is at the cost of high computational complexity. For that, an improved multi-111 

focus image fusion method based on RSR model was proposed in [1]. However, the computational 112 

complexity of the RSR-based fusion method in [1] is still high. 113 

In addition to SR models, the constructed over-complete dictionaries also play an important role in 114 

improving fusion performance and computational efficiency of a fusion method [10]. These dictionaries 115 

may be directly constructed from some fixed (e.g., Discrete Cosine Transform (DCT) or Wavelet) basis 116 

[4]. They can also be learned from a set of auxiliary images (called globally-trained ones) [25] or input 117 

images themselves (called adaptively-trained ones) [2] by using various learning methods, such as K-118 

Singular Value Decomposition (K-SVD) [26]. Generally, those learned dictionaries could achieve better 119 

fusion performance than those with a fixed basis.  120 

However, most of these dictionary learning methods focus on enhancing the representation 121 

capability of the dictionary, but ignore the correlations among the dictionary atoms. As a result of that, 122 

those learned dictionaries may have good representation capability while highly redundant. This will not 123 

only increase the computational complexity of the subsequent fusion method but degrade the fusion 124 

performance. A compact dictionary with a small number of atoms maintaining high representation 125 

capability is greatly desirable in image fusion [10]. 126 

3. Compact non-negative dictionary learning (CNDL) for NNSR 127 

As discussed in the previous Section 1, we will employ a NNSR model, more specifically the 128 

CNNSR model, to encode source image patches during the fusion process. For that, we will discuss how 129 

to construct a compact non-negative dictionary for the NNSR model in detail in this section. 130 

Suppose that  1 2, , , n N

N R 

 Y y y y  contains N  data samples of dimension n . Each column 131 

n

i Ry   in the matrix Y   represents a data vector. A non-negativity dictionary 132 

 1 2, ,..., n M

M R 

 D d d d   with M  dictionary atoms may be learned by [11, 27] 133 

 
2

1,

1
, arg min         . .  ,

2 F
s t    

D X
D X Y DX X D 0 X 0  .                      (1) 134 

Here, each column n

m Rd  in the matrix D  denotes a dictionary atom.  1 2, ,..., M N

N R 

 X x x x  is 135 



the representation coefficient matrix. Each column 
M

i Rx  ( 1,2,...,i N ) in the matrix X  denotes 136 

the representation coefficients for the data vector 
iy . 

F
  and 

1
 denote the Frobenius-norm and 

1l  137 

-norm of a matrix, respectively.    is a balance parameter. D 0   and X 0   mean that all the 138 

elements in D  and X  are non-negative. 139 

 However, as what discussed in the previous Section 2, Eq. (1) just pays attentions to the 140 

representation capability of the dictionary, and ignores the correlations among the dictionary atoms. In 141 

other words, the dictionary D  learned from Eq. (1) may have a large number of redundant atoms, which 142 

will decrease the fusion performance and computational efficiency of the proposed fusion method. 143 

 In [28], an orthogonal enforcement term was introduced to minimize the redundancy among the 144 

dictionary atoms during the non-negative matrix factorization. In [29], a concept of mutual incoherence 145 

was defined to measure the correlations across the dictionary atoms, and an orthogonal dictionary was 146 

learned for the traditional SR model in image restoration. Motivated by these works, we also add a simple 147 

yet effective penalty term in Eq. (1), as suggested in [28], to reduce the redundancy among the learned 148 

dictionary atoms. Accordingly, the proposed compact non-negative dictionary learning (CNDL) method 149 

for NNSR is mathematically formulated by 150 

   
22

1 21
,

1
, arg min +         . .  ,

2

T

i jF
i j

s t 


    
D X

D X Y DX X d d D 0 X 0  .          (2) 151 

By minimizing the last penalty term in Eq. (2), the atoms in the dictionary D  are enforced to be as 152 

orthogonal as possible. As a result of that, the redundancy among the atoms in the dictionary D  is 153 

greatly reduced. 154 

Eq. (2) can be solved by using an alternating way with two steps: sparse coding and dictionary updating. 155 

In the sparse coding step, D  is assumed to be fixed. Then Eq. (2) becomes 156 

2

1 1

1
arg min         . .  

2 F
s t   

X

X Y DX X X 0  ,                               (3) 157 

which is a convex optimization problem. Many methods can solve such problem. Here, we adopt the 158 

alternative direction multiplier method (ADMM) [30] because of its fast convergence rate. For that, Eq. 159 

(3) is first reformulated into Eq. (4) by introducing an auxiliary variable Z   and then solved by 160 

minimizing the augmented Lagrangian function in Eq. (5). 161 

2

1 1

1
arg min         . .  = , 

2 F
s t   

X

X Y DZ X X Z X 0 .                           (4) 162 



2 2

1 1
( , , , ) ,      . .,   

1

2 2F F
J s t


       Y DZ XX Z V V X Z X Z X 0  .        (5) 163 

In Eq. (5), the Lagrange multiplier V   and the penalty parameter    are introduced to remove the 164 

equality constraint in Eq. (4).   denotes the Euclidean inner product of two matrices. 165 

 Solving Eq. (5) consists of the following alternative iterations: 166 

 

 

( 1) ( ) ( ) ( )

( 1) ( 1) ( ) ( )

arg min , , ,

arg min , , ,         . .,      

t t t t

t t t t

J

J s t







 



 

Z

X

Z X Z V

X X Z V X 0
 ,                         (6) 167 

where t  is the iteration number. The two sub-optimization problems have the following closed-form 168 

solutions, i.e., 169 

( 1) ( ) 1 ( ) ( ) ( )( ) ( )t T t T t t t     Z D D I D Y X V  ,                               (7) 170 

( )
1

( )
( 1) ( 1)

( )/ t

t
t t

t
S
  

 



  
   

  

V
X Z   ,                                        (8) 171 

where [ ] max( ,0) A A , and the threshold function ( )S x
 is defined as [31] 172 

, if  

( ) , if  

0, otherwise

x x

S x x x

 

 

 


   



.                                              (9) 173 

 In the dictionary updating step, X  is assumed to be fixed, and the non-negative dictionary D  is 174 

updated by 175 

 
22

2

1
arg min +         . .  

2

T

i jF
i j

s t


  
D

D Y DX d d D 0 .                         (10) 176 

Similar to that in [26], the sub-optimization problem in Eq. (10) can be solved in an iterated way. In each 177 

iterate, 1M   dictionary atoms in the dictionary D  are supposed to be fixed and only one atom 
md  178 

is updated, i.e.,  179 

 
2

2

2

1
arg min        . .,  0  

2m

T

m i i m m i m m

i m i mF

s t
 

     
d

d Y d x d x d d d  .               (11) 180 

Here 
mx  denotes the m-th row of the representation coefficient matrix X . The sub-optimization in Eq. 181 

(11) has the following closed-solution 182 

      
1

22
TT T

m m m n m m m m




 
  
 

d x x I D D E x ,                                (12) 183 



where 
1 1 1, ,[ ], , , Mm m m D d d d d  and 

m i i

i m

 E Y d x . 
nI  is an identity matrix of size n n . 184 

 Algorithm 1 summarizes the optimization of the proposed CNDL method. As shown in Eq. (12), a 185 

non-negative constraint is employed during the updating of the dictionary atoms, which may force some 186 

atoms in the constructed dictionary D   to be zero ones. Accordingly, these zero atoms should be 187 

removed from the constructed dictionary D  in Algorithm 1.  188 

Algorithm 1: Compact Non-negative Dictionary Learning (CNDL) 189 

Input: Observed data Y  and parameters 
1  and 

2   

     Initialization: 
0

D , 0.07  , 1.25 
10

max 10   , 0.005  , 0 0 X B 0 ,
3

max 1 10Oiter   ,
max 100Iiter   

Outer Loop: 1j   

while not converged do 

(1) Fix D  and update X  : 

      Inner Loop: 1t    

        while not converged do 

(1.1) Fix X  and update Z  via Eq. (7); 

(1.2) Fix Z  and update X  via Eq. (8); 

(1.3) Update the multiplier V : ( 1) ( ) ( ) ( 1) ( 1)( )t t t t t    V V X Z ; 

(1.4) Update  : 
( 1) ( )

maxmin( , )t t    ; 

(1.5) Update t  : 1t t   ; 

(1.6) Check the convergence condition: 

maxt Iiter , or 
( 1) ( )  tt 

 X X , or /
F F

Y DX Y . 

end while 

           (2) Fix X  and update D : 

                for m =1,2,...,M 

                    Update 
md  via Eq. (12); 

                end for 

           (3) Update j : 1j j  ; 

           (4) Check the convergence condition: 

                 
maxj Oiter  or ( 1) /t

FF
 Y DX Y  

        end while 

Output: Remove the zero columns in D and output the compact non-negative dictionary D . 



 190 

Fig. 2. Constructed dictionaries by using different methods. (a) Traditional dictionary learning method [27]; (b) Proposed CNDL. 191 

Fig.2 illustrates the constructed dictionaries by using the traditional non-negative dictionary 192 

learning method [27] (Fig.2(a)) and the proposed CNDL method (Fig.2(b)). The initial numbers of atoms 193 

in the two dictionaries are both set to 512. As shown in Fig. 2, the finally constructed dictionary in Fig. 194 

2 (a) still has 512 atoms, but the dictionary in Fig. 2(b) just consists of 288 atoms. This demonstrates that 195 

the dictionary constructed by using CNDL is more compact than the one constructed by using the 196 

traditional method. However, the compactness does not reduce and even improves the representation 197 

capability of the dictionary and the subsequent fusion performance of the fusion method, which will be 198 

verified in the latter experiment part (i.e., Section 5).  199 

4. NNSR model with local consistency constraint and its application to multi-focus image fusion 200 

In this section, we will first present a non-negative sparse representation model (CNNSR, for short) 201 

with a local consistency prior. Then we will discuss the proposed CNNSR-based fusion method in detail. 202 

4.1 NNSR model with local consistency constraint 203 

Given an over-complete non-negative dictionary n MR 

D , the traditional NNSR model can be 204 

computed by [11] 205 



2

1

1
argmin         . .  

2 F
s t   

X

X Y DX X X 0 ,                                  (13) 206 

where  1 2, , , n N

N R 

 Y y y y  denotes the observed data to be sparsely coded, i.e., the input image 207 

patches here. n

i Ry  in the matrix Y  denotes an input image patch. M NR 

X  is the representation 208 

coefficient matrix. 209 

 The traditional NNSR model may be directly adopt to fuse multi-focus images. However, as shown 210 

in Eq. (13), the image patches are independently coded by using NNSR without taking the local 211 

consistency among image patches into consideration, so that the representation coefficients for those 212 

spatial-adjacent image patches may look different even if these image patches have similar features. 213 

Subsequently, these image patches will be determined to have different focus information, which will 214 

introduce some obvious block artifacts to the fused image. 215 

 To address such problem, we present a new non-negative representation (CNNSR, for short) model 216 

by adding a Laplacian regularization term into the traditional NNSR model as 217 

2

1 21

1
argmin tr         .) .  

2
( T

F
s t     

X

XX Y DX LXX X 0 ,                  (14) 218 

where 
1  and 

2  are two positive trade-off parameters. The regularization term tr( )T
XLX  in Eq. (14) 219 

is defined by 220 

2

2
1 1

( )
1

tr
2

N N

ij i

T

j

i j


 

  xXLX x .                                          (15) 221 

The weight ,i j  indicates the similarity between two image patches and is simply defined by 222 

2

2

, exp
2

i j

i j

 
  
 
 

y y
.                                                  (16) 223 

The Laplacian matrix 
N NR L  is computed by  L Γ W  , where the affinity matrix N NR W   224 

and the diagonal matrix 
N NR Γ  are defined by ,( , ) i ji j W  and ,( , ) i jj

i i Γ , respectively 225 

[1]. 226 

 As shown in Eq. (16), a large value will be assigned to the weight ,i j   if 
iy   and jy   have 227 



similar features. Accordingly, 
iy  and 

jy will be enforced to have similar representation coefficients 228 

by minimizing Eq. (15). Subsequently, the two patches will be both determined to be in-focus (or out-229 

focus) during the fusion. 230 

4.2 Optimization of CNNSR model and its computational complexity 231 

Eq. (14) can be efficiently solved by jointly adopting ADMM [30] and a modified Sparse 232 

Reconstruction by Separable Approximation (SpaRSA)-based method [32]. For that, an auxiliary 233 

variable H  is first introduced to make the objective function in [13] separable, i.e., 234 

2

1 21
(

1
argmin tr         . .  ,

2
)T

F
s t      

X

XLX Y DH X X H XX 0              (17) 235 

In order to remove the equality constraint in Eq. (17), a Lagrangian multiplier S  is further introduced 236 

by 237 

2

1 21

2

1 21

2

2

( ) + ,
2

                    ( )
2

                

1
( , , , ) tr

2

1
 tr

2

                       . .  

F

F

T

F

T

F

J

s t




 








   

  



  
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XLX X HX H S Y S X H

XL

DH X

S
Y D XH XX

X

H

0

 ,     (18) 238 

where   is a penalty parameter. Finally, the problem is minimized with respect to X , H  and S , 239 

respectively, by fixing the others. The optimization of CNNSR is summarized in Algorithm 2. Appendix 240 

A provides more details. 241 

Algorithm 2: Optimization of CNNSR 242 

Input: Observed data Y , over-compete dictionary D , and parameters 
1  and 

2  

     Initialization: 
0 0 X H 0 , 0.035  , 1.25  , 

10

max 10  , 0.005  , 3

max 10iter  , 1t   

     while not converged do 

         (1) Fix H  and update X  via Eq. (A4); 

         (2) Fix X  and update H  via Eq. (A6); 

         (3) Update the multiplier S : ( 1) ( ) ( ) ( 1) ( 1)( )t t t t t    S S X H ; 

         (4) Update  : 
( 1) ( )

maxmin( , )t t    ; 

         (5) Update t  : 1t t   ; 



         (6) Check the convergence condition: 

                
maxt Iiter  , or 

( 1) ( )  tt 

 X X , or ( 1) /t

FF
 Y DX Y . 

     end while 

Output: The representation coefficient matrix X . 

4.3 Proposed multi-focus image fusion method 243 

 In this subsection, we will present a multi-focus image fusion method based on CNNSR. 244 

Furthermore, we will employ a simple yet effective patch-level consistency rectification strategy to 245 

reduce the spatial block artifacts during the fusion process. By virtue of the proposed rectification strategy, 246 

each image patch and most of its spatial neighbors are simultaneously determined to be in-focus or out-247 

focus. Moreover, because of the proposed rectification strategy, the input images may be divided into a 248 

set of non-overlapped patches, rather than a set of overlapped ones, in the proposed fusion method. This 249 

makes the proposed fusion method have high computational efficiency.  250 

 251 

Fig. 3. Diagram of the proposed multi-focus image fusion method. 252 

 The diagram of the proposed multi-focus image fusion method is shown in Fig. 3. To simplify the 253 

discussion, we assume that the fused image is generated from a pair of well-registered images of size 254 

1 2N N , denoted by 
AI  and 

BI , respectively. The proposed fusion method consists of the following 255 

steps. 256 



(1). The input images 
AI  and 

BI  are divided into N  non-overlapped patches of size 
x yb b  from 257 

left-top to right-bottom, respectively. Two sets of image patches  | 1,2,...,A

iI i N   and 258 

 | 1,2,...,B

iI i N  are then obtained. Here, 
1 2N N N   , 1

1

1x

x

N b
N

b

  
   

 

 and 
2

2

1y

y

N b
N

b

  
   

  

. 259 

x    denotes the smallest integer that is greater than or equal to x . 260 

(2). Each image patch is transformed into a vector of dimension 
x yn b b   via lexicographic ordering. 261 

Two data matrices 1 2, ,...,A A A

A N
   Y y y y   and 1 2, ,...,B B B

B N
   Y y y y   are then constructed for the two 262 

input images, respectively. A

iy  (
B

iy ) corresponds to the i-th image patch A

iI  ( B

iI ) of image 
AI  (

BI ). 263 

(3). The two data matrices
AY   and 

BY   are encoded via CNNSR. Their representation coefficient 264 

matrices 1 2, ...,A A A

A N
   X x x x   and 1 2, ...,B B B

B N
   X x x x   are, respectively, obtained by using 265 

Algorithm 2. Here, a compact non-negative dictionary 
n MR 

D  is learned in advance from a set of 266 

training images with high resolution by using Algorithm 1. 267 

(4). A patch-level decision map (i.e., a matrix) patchΨ   of size 
1 2N N    is defined, whose elements 268 

( , )patch p qΨ  are determined by 269 

2 2
1, if

( , )
0, otherwise

A B

i i

patch p q
 

 


x x
Ψ

 
,                                    (19) 270 

where the relationship between ( , )p q  and i  is computed by 271 

1

1

,     
i

p q i p N
N

 
    
 

.                                          (20) 272 

(5). A refined patch-level decision map patch
Ψ  is obtained by performing consistency rectification on 273 

patchΨ , which is similar to that in [33]. However, each element in patchΨ  represents an image patch 274 

rather than a pixel. Therefore, this step can be seen as a patch-level consistency rectification strategy. 275 

Mathematically, patch
Ψ  is computed by 276 



1 01, if ( , ) ( , )
( , )

0, otherwise

patch patch

patch

C p q C p q
p q

 
  



ψ ψ
Ψ ,                           (21) 277 

where 1 ( , )
patch

C p q
ψ

  and 0 ( , )
patch

C p q
ψ

  denote the numbers of "1" and "0" in a region of size 3 3278 

centered the element ( , )p q  in the decision map 
patchΨ , respectively. 1 0( , ) ( , )

patch patch
C p q C p q
ψ ψ

means 279 

that most patches around the current ( , )p q -patch in image 
AI  are initially determined to be focused 280 

ones. Accordingly, the current ( , )p q -patch in image 
AI  will also be seen as to be focused one, and 281 

vice versa. By using Eq. (21), each image patch and most of its spatial neighbors will be simultaneously 282 

determined to be focused regions or defocused regions. 283 

(6). A pixel-level decision map pixelΨ  of size 
1 2N N  constructed by 284 

( , ) ( , ),    if   &  pixel patch

x y

x y
x y p q p q

b b

  
     

    

Ψ Ψ .                        (22) 285 

(7). The final pixel-level decision map Final

pixelΨ  is obtained by performing some further post-processing 286 

on pixelΨ . In spite of the validity of the proposed patch-level consistency rectification strategy in Eq. 287 

(21), some small regions may be still mistakenly marked. For that, a small region removal strategy as in 288 

in [1] is performed on pixelΨ   to obtain the final pixel-level decision map Final

pixelΨ   is obtained. 289 

Specifically, those connected regions in pixelΨ  whose numbers of entries are less than 5% of the total 290 

number of pixels in the input images are first taken as isolated regions 
isolatedΩ  . Then the element values 291 

within these isolated regions are re-assigned as 1 minus their original values, i.e.,  292 

1 ( , ) , ( , )
( , )

( , ) ,otherwise

pixel isolatedFinal

pixel

pixel

x y x y
x y

x y

 
 


Ψ Ω
Ψ

Ψ
.                            (23) 293 

(8). The fused image 
FI  is finally constructed by using the decision map Final

pixelΨ , i.e., 294 

 ( , ) ( , ) ( , ) 1 ( , ) ( , )Final Final

F pixel A pixel BI x y x y I x y x y I x y  Ψ Ψ .                      (24) 295 

 Fig.4 illustrates the validity of fusion strategies in the proposed method. As shown in Fig. 4(d), 296 

some isolated regions are in the decision map, while they are greatly reduced in Fig. 4(e) when the patch-297 



level rectification consistency strategy is performed. As shown in Fig. 4(f), these isolated regions are 298 

further reduced by using the small region removal strategy, and the final decision map is more close to 299 

the ‘ideal’ one. Accordingly, some spatial artifacts will be greatly reduced in the fused image. 300 

 301 

Fig. 4. Illustration of the validity of fusion strategies in the proposed method. (a) and (b) A pair of multi-focus images with focus 302 

on the right part and on the left part, respectively; (c) ‘Ideal’ decision map; (d) Decision map 
patchΨ  without patch consistency 303 

rectification; (e) Decision map 
patch
Ψ  with patch consistency rectification; (f) Decision map Final

pixelΨ  with small region removal. 304 

It should be noted that the patch-based decision maps in (d) and (e) have been transformed to pixel-based ones for better displaying. 305 

 It should be noted that the computational complexity of the proposed fusion method is mainly 306 

depended on the employed CNNSR model, whose major computation is the product of three matrices 307 

when updating H  in Eq. (A6) and is about 
2( )O nNM . Further considering the number of iterations 308 

r  needed for convergence when encoding the input image patches, the proposed fusion method thus has 309 

a computational complexity of about 2( )O rnNM . As well, because of the non-overlapping division of 310 

input images in the proposed fusion method, N (i.e., the number of image patches) is much smaller than 311 

that in the traditional SR-based fusion method. For example, N  is 1200 for an input image of size 312 

(a) (b) (c)

(f)(e)(d)



240 320   in the proposed method. However, N   is about 76800 for the same input image of size 313 

240 320 in the traditional SR-based fusion methods. Moreover, as discussed in the previous Section 3, 314 

the compact non-negative dictionary employed by the proposed fusion method usually has a smaller 315 

number of dictionary atoms (e.g., 288M   ) than the traditional non-negative dictionary (e.g., 316 

512M  ) under the same initial condition. These make the proposed fusion method have much high 317 

computational efficiency in the real applications, which will be verified in the following experimental 318 

parts. 319 

5. Experiments and analysis 320 

 We perform several sets of experiments to validate the proposed fusion method in this section. First, 321 

we discuss the parameter settings for the proposed compact dictionary learning method (CNDL, for short) 322 

and the proposed fusion method; Secondly, we illustrate the effectiveness of the constructed compact 323 

non-negative dictionary as well as the proposed CNNSR model for multi-focus image fusion. Thirdly, 324 

we employ several pairs of multi-focus images to show the validity of the proposed fusion method. 325 

Finally, we extend our proposed method to multi-focus color image fusion. Before that, as suggested in 326 

[10], we also set the sizes of image patches to 8 8  in all of the following experiments for better fusion. 327 

 As well, some metrics are employed to evaluate different fusion methods subjectively, including 328 

mean square error (MSE), difference coefficient (DC), normalized mutual information (
MIQ   ) [34], 329 

gradient-based metric 
GQ   [35], structure similarity-based metric 

YQ   [36] and human perception-330 

based metric 
CBQ  [37]. 331 

The metrics MSE and DC reflect the errors between the fused image 
FI and the ‘ideal’ fused image 332 

IFI , and are computed by 333 

 
2

,
1 2

1
( , )= ( , ) ( , )F IF F IFx y

MSE I I I x y I x y
N N




 ,                               (25) 334 



,
1 2

( , ) ( , )1
( , )=

( , )

F IF

F IF x y
IF

I x y I x y
DC I I

N N I x y




 .                                (26) 335 

Here, 
1 2N N  denotes the total number of pixels in the fused or ‘ideal’ fused image. ( , )FI x y   and 336 

( , )IFI x y  are the intensity values of pixels at the position  ,x y  in 
FI  and 

IFI , respectively. Smaller 337 

MSE and DC values indicate better fusion performance and are more desirable. 338 

 The metrics 
MIQ ,

GQ ,
YQ  and 

CBQ  evaluate the amount of different types of information that has 339 

been transferred from the input images to the fused image via a fusion method. Higher values of these 340 

metrics indicate better fusion performance and are more desirable.  341 

Specifically, 
MIQ   measures the transferred information from source images 

AI  , 
BI   into the 342 

fused image 
FI , and is defined by [34] 343 

 
   , ,

, , 2
( ) ( ) ( ) ( )

A F B F

MI A B F

A F B F

CE I I CE I I
Q I I I

E I E I E I E I

 
  

  
,                          (27) 344 

where  ,A FCE I I  and  ,B FCE I I denote the cross entropy between the source images and the fused 345 

image. ( )AE I , ( )BE I , and ( )FE I  denote the entropy of an image. 346 

GQ  evaluates the amount of edge information that has been transferred from input images to the 347 

fused image and is computed by [35] 348 

 

 
( , )

( , )

( , ) ( , ) ( , ) ( , )
( , , )

( , ) ( , y)

AF A BF B

G G G Gx y

G A B F A B

G Gx y

Q x y x y Q x y x y
Q I I I

x y x

 

 









.                   (28) 349 

Here, ( , )AF

GQ x y  and ( , )BF

GQ x y  are the edge information preservation values between the input images 350 

and the fused image. ( , )A

G x y   and ( , )B

G x y  are the edge strength-dependent weights for the input 351 

images. 352 

YQ  estimates how much information from the source images is preserved in the fused image and 353 

is computed by [36] 354 

 
1

( , , ) , , |Y A B F A B Fw W
Q I I I Q I I I w

W 
                                        (29) 355 



where  , , |A B FQ I I I w  denotes the quality measure in the local region w  and is computed by 356 

 
 

( ) ( , | ) (1 ( )) ( , | ) , ( , | ) 0.75
, , |

max ( , | ), ( , | ) , ( , | ) 0.75

A F B F A B

A B F

A F B F A B

w SSIM I I w w SSIM I I w SSIM I I w
Q I I I w

SSIM I I w SSIM I I w SSIM I I w

   
 


. (30) 357 

Here, ( , | )A FSSIM I I w   and ( , | )B FSSIM I I w   are the structural similarities between the source 358 

images and the fused image under the local region w . ( )w  is the local weight and W  denotes the 359 

family of all sliding windows. 360 

Finally, 
CBQ  is a perceptual quality measure based on contrast preservation calculation for image 361 

fusion, which is motivated by the process of human vision modeling and is computed by [37] 362 

( , )
1 2

1
( , , ) ( , ) ( , ) ( , ) ( , )AF BF

CB A B F A CB B CBx y
Q I I I x y Q x y x y Q x y

N N
  


 ,               (31) 363 

where ( , )AF

CBQ x y  and ( , )BF

CBQ x y  calculate the contrast information preservation between the source 364 

images and the fused image on the spatial position ( , )x y  . ( , )A x y   and ( , )B x y   are the contrast 365 

based weights for the input images. 
1 2N N  denotes the total number of pixels in the input or fused 366 

image. More details about these metrics are seen in [34], [35], [36], and [37], respectively. 367 

5.1 Parameter settings 368 

 In this subsection, we will first discuss how to set the parameters 
1  and 

2  in Eq. (2) when 369 

constructing the dictionary. Then we will discuss how to set the parameters 
1  and 

2  in Eq. (17) for 370 

the proposed fusion method.  371 

 372 

Fig. 5. Three natural images with high spatial resolution that are used to train the dictionary, which are downloaded from 373 

http://r0k.us/graphics/kodak. These images have been transformed from color images to gray-scale ones when constructing a 374 

dictionary for the fusion of gray-scale multi-focus images. 375 

http://r0k.us/graphics/kodak


 When constructing the dictionary, we first select three natural images with high spatial resolution, 376 

which are shown Fig. 51. Then we divide the three images into a set of (more than 1000,000)) patches of 377 

size 8 8 and select those patches (about 20,000) with high local variance (larger than 0.05 in this paper) 378 

as the training samples. Finally, we construct two sets of dictionaries by using CNDL with the same 379 

initial number of atoms (i.e., 512). In the first set of dictionaries, 
2   is set to the same value, i.e., 380 

4

2 10  , and 
1  is set to 0.0001, 0.001, 0.02, 0.025, 0.03, 0.035, 0.04, and 0.05, respectively. In the 381 

second set of dictionaries, 
1  is set to the same value, i.e., 1 0.04  , and 

2  is set to 10-6, 10-5, 10-4, 382 

10-3 and 10-2, respectively. Finally, we show the fusion performance of these dictionaries for the multi-383 

focus input images in Fig. 6(a) and Fig. 6(b).  384 

 385 

Fig. 6. A pair of multi-focus images that are used to test the impacts of different parameters on the fusion performance in the 386 

proposed dictionary learning method and the proposed fusion method. (a) Focus on the left part; (b) Focus on the right part; (c)387 

‘Ideal’ fused image. 388 

 Here, we employ the metrics MSE and DC to subjectively evaluate the fusion performance of these 389 

dictionaries. For that, the focused regions are manually selected from the input images in Fig.6(a) and 390 

Fig. 6(b) to construct the ‘ideal’ fused image in advance. Table 1 and Table 2 provide the fusion 391 

performance of the proposed method with the two sets of dictionaries mentioned above, respectively. 392 

Table 1 shows that the fusion performance achieves the best when 
1  is within the range of [0.03,0.04] . 393 

                                                        
1 We also construct several dictionaries by using different numbers of training images and by using some training images with 
different visual qualities. We find that the quality of the training images seems more influential on the fusion performance of the 

proposed fusion method than the number of training images does. Mode details are seen in Supplementary materials.   



Differently, Table 2 indicates that the proposed CNDL method is insensitive to the parameter 
2  until 394 

it achieves 310 . In this paper, we set 
1  and 

2 to 0.04 and 410  in the proposed CNDL method, 395 

respectively. 396 

Table 1. Fusion performance with the first set of dictionaries constructed by using different values of 
1 . The best scores are 397 

marked with bold in the table. As well, the final number of dictionary atoms M obtained by using different values of 
1  are also 398 

provided in the table, which indicates that M obviously varies with 
1 . 399 

Dictionary 
1 0.0001D 

 
1 0.001D 

 
1 0.02D 

 
1 0.025D 

 
1 0.03D 

 
1 0.035D 

 
1 0.04D 

 
1 0.05D 

 

MSE 2.4988 2.3609 2.3960 2.3960 2.3667 2.3667 2.3667 2.3694 

DC 0.0136 0.0128 0.0127 0.0127 0.0126 0.0126 0.0126 0.0126 

M 512 510 486 432 392 339 288 266 

Table 2. Fusion performance with the second set of dictionaries constructed by using different values of 
2 . The best scores are 400 

marked with bold in the table. Similarly, the final number of dictionary atoms M obtained by using different values of 
2  are 401 

also provided in the table, which indicates that M keeps unchanged with 
2 . 402 

Dictionary 6
2 10

D
 

 5
2 10

D
 

 4
2 10

D
 

 3
2 10

D
 

 2
2 10

D
 

 

MSE 2.3667 2.3667 2.3667 2.3667 2.3960 

DC 0.0126 0. 0126 0. 0126 0. 0127 0. 0128 

M 288 288 288 288 288 

As discussed in the earlier Section 3, owing to the non-negativity and orthogonal constraints, the 403 

final number of dictionary atoms M   will be smaller than the initial number of atoms (i.e., 512). 404 

Therefore, in addition to MSE and DC, the atom numbers of dictionaries constructed by using different 405 

parameters are also provided in Table 1 and Table 2, which demonstrate that 
1  has a greater impact on 406 

the number of dictionary atoms than 
2 . The number of dictionary atoms increases with the decrease of 407 



1 . As shown in Table 1 and Table 2, given the 512 initial dictionary atoms, the constructed dictionary 408 

with 
1 0.04   and 4

2 10  finally ends up with 288 atoms in this paper. And the dictionary, denoted 409 

by 
288D , will be employed in the following experiments. 410 

Similarly, parameters 
1  and 

2  in Eq. (17) are also set according to the fusion performance 411 

(i.e., MSE and DC values) of the proposed fusion method on the input images in Fig. 6(a) and Fig. 6(b). 412 

The fusion performance is shown to remain nearly unchanged when 
1  and 

2  are both in the range 413 

of  [ 910  , 410  ]. However, the fusion performance is shown to reduce greatly when 
1   or 

2   is 414 

larger than 410 . In the following experiments, 
1  and 

2  are both set to 610 . 415 

5.2 Validity of the constructed dictionary and the proposed CNNSR model 416 

 Here, we will first illustrate the superiority of the compact non-negative dictionary 
288D  417 

constructed by using CNDL over some dictionaries with 512 atoms, including a dictionary 
512

DCTD  with 418 

fixed cosine basis, a non-negative dictionary 
512

GlobalD  globally learned from a set of natural images by 419 

using the method in [27] and a non-negative dictionary 512

AdaptiveD   adaptively learned from the input 420 

images by using the method in [38]. The superiority of CNNSR over NNSR [11] is also illustrated in this 421 

subsection.  422 

 For that, four fusion methods (CNNSR_ 512

DCTD , CNNSR_ 512

GlobalD , CNNSR_ 512

AdaptiveD , and CNNSR_423 

288D , for short, respectively) with the same CNNSR model but different dictionaries are first performed 424 

on the input images in Fig. 7(a) and Fig. 7(b). Then a fusion method (NNSR_
288D , for short) with the 425 

traditional NNSR model and the dictionary 
288D  is also performed on the input images in Fig. 7(a) and 426 

Fig. 7(b). For simplification, the input images are divided by a non-overlapping way and a simple 
2l -427 

norm of representation coefficients based ‘maximum-selecting’ fusion rule [10] is employed in these 428 

fusion methods. Finally, the proposed fusion method (CNNSR_Pro, for short) is performed on the same 429 



pairs of input images, where the fusion rules described in Section 4.3 are employed. 430 

Here, the four metrics 
MIQ , 

GQ , 
YQ  and 

CBQ  are employed to evaluate these fusion methods 431 

subjectively, which are provided in Table 3. In addition, the computing time T of different methods are 432 

also provided in Table 3. From Table 3, it can be easily found that the fusion methods with those 433 

dictionaries learned from the natural images or input images significantly outperform the fusion method 434 

with the dictionary of fixed basis. Moreover, CNNSR_
288D  performs better than CNNSR_

512

GlobalD  and 435 

CNNSR_ 512

AdaptiveD   do, although 
288D   has smaller number of atoms than 

512

GlobalD   and 512

AdaptiveD  . This 436 

indicates that the compactness of the constructed dictionary does not reduce the representation capability 437 

nor the subsequent fusion performance of a fusion method. In addition, as shown in Table 3, the 438 

compactness also makes CNNSR_
288D  have higher computational efficiency than CNNSR_

512

GlobalD and 439 

CNNSR_ 512

AdaptiveD .  440 

Table 3. Fusion performance obtained by different sparse representation models and dictionaries. The best and second scores 441 

obtained by different methods are marked by red and blue colors with bold in the table, respectively. 442 

Method MIQ  
GQ  

YQ  
CBQ  T (in Seconds) 

CNNSR_
512

DCTD  1.1930 0.6832 0.9471 0.7023 4.0099 

CNNSR_
512

GlobalD  1.2075 0.7553 0.9675 0.7398 3.2053 

CNNSR_
512

AdaptiveD  1.2073 0.7562 0.9681 0.7394 4.2856 

CNNSR_
288D  1.2122 0.7564 0.9717 0.7447 2.2693 

NNSR_
288D  1.1976 0.7539 0.9584 0.7304 2.9140 

CNNSR_Pro 1.2217 0.7608 0.9834 0.7548 2.0344 

From the experimental data in Table 3, it can also be found that CNNSR_
288D   significantly 443 

outperforms NNSR_
288D . This demonstrates the superiority of CNNSR over NNSR when applied to the 444 



fusion of multi-focus images. The comparison between the performance obtained by CNNSR_
288D  and 445 

CNNSR_Pro further demonstrates the superiority of the fusion rules in our proposed fusion method.  446 

In order to better demonstrate the validity of our proposed CNNSR model and fusion rules, the 447 

decision maps and fused images on Fig. 7(a) and Fig. 7(b) obtained by NNSR_
288D , CNNSR_

288D  and 448 

CNNSR_Pro are illustrated in Fig. 7. By comprising Fig. 7(c) and Fig. 7(d), it can be easily found that 449 

the isolated patches in the decision map obtained by using CNNSR_
288D  are much fewer than those in 450 

the decision map obtained by using NNSR_
288D  . This demonstrates the superiority of the proposed 451 

CCNSR model over the traditional NNSR model in the reduction of spatial artifacts again. The isolated 452 

patches are further reduced and even eliminated by using CNNSR_Pro, as shown in Fig. 7(e). This owes 453 

to the fusion rules employed in CNNSR_Pro. 454 

 455 

Fig. 7. Illustration of the validity of the proposed CNNSR model and fusion rules. (a) and (b) A pair of multi-focus images with 456 

the focus on the left part and the right part, respectively; (c), (d) and (e) The decision maps obtained by using NNSR_
288D , 457 



CNNSR_
288D  and CNNSR_Pro, respectively; (f), (g) and (h) The fused images obtained by using NNSR_

288D , CNNSR_
288D  458 

and CNNSR_Pro, respectively. 459 

5.3 Validity of the proposed fusion method 460 

 In order to thoroughly demonstrate the validity of the proposed fusion method, the multi-focus 461 

images, mentioned in Fig. 6 and Fig. 7 previously, and another several pairs of multi-focus images are 462 

employed in this subsection. These images are shown in Fig. 82 . In addition to the proposed fusion 463 

method (CNNSR_Pro, for short), some more fusion methods, including DSIFT [20], MF [39], DCNN 464 

[22], SR [4], MRSR [13], RSR_LR [1] and SRCF [2], are performed on these input images for 465 

comparisons. Specifically, DCNN is a deep convolutional neural network based fusion method. 466 

 467 

Fig. 8. 10 pairs of multi-focus input images. The input images in the top row focus on the left parts, and the corresponding input 468 

images in the bottom row focus on the right parts.  469 

 470 

Fig. 9. Fusion images of Fig. 8(a1) and (b1) obtained by different fusion methods. (a) DSIFT; (b) MF; (c) SR; (d) MRSR; (e) 471 

RSR_LR; (f) DCNN; (g) SRCF; (h) CNNSR_Pro.  472 

                                                        
2 These images are downloaded from http://home.ustc.edu.cn/~liuyu1. For better displaying, the input images in Fig. 6 and Fig. 7 

are also shown in Fig. 8. 

http://home.ustc.edu.cn/~liuyu1


 473 

Fig. 10. Decision maps for the input images in Fig. 8(a1) and Fig. (b1) obtained by different fusion methods. (a) DSIFT; (b) MF; 474 

(c) MRSR; (d) RSR_LR; (e) DCNN; (f) SRCF; (g) CNNSR_Pro; (h) ‘Ideal’. The ‘white’ (‘black’) regions in these decision maps 475 

denote that these regions in the fused images are directly selected from the input image in Fig. 8(a1) (Fig. 8(b1)), and the ‘gray’ 476 

regions denote that the regions in the fused images are the weighted average of the input images in Fig.8(a1) and Fig. 8(b1).  477 

 The fused images of Fig. 8(a1) and Fig. 8(b1) obtained by using different methods are illustrated in 478 

Fig. 93. The decision maps obtained by different fusion methods are also provided in Fig. 104 for better 479 

visual comparisons. All of these methods mentioned here are shown to perform well for Fig. 8(a1) and 480 

(b1) from the fused images in Fig. 9. However, a more careful observation on Fig. 10 indicates that 481 

CNNSR_Pro performs the best among these fusion methods. It can be easily found that the decision map 482 

in Fig. 10(g) obtained by CNNSR_Pro is the closest to the ‘ideal’ one in Fig. 10(h). As shown in the 483 

right-top parts in Fig. 10 (a), (b), (e) and (f), some regions have been mistakenly determined to be in-484 

focus. Owing to the use of spatial contextual information in MRSR, RSR_LR and CNNSR_Pro, those 485 

mistakenly determined regions are greatly reduced. Especially, there are few isolated patches in the 486 

decision maps obtained by using RSR_LR and CNNSR_Pro.  487 

 The quantitative results of different fusion methods in Table 4 coincide with the visual results 488 

                                                        
3 The visual results of different fusion methods on the rest of input images in Fig. 8 are provided in Supplementary materials. 
4 Owing to the over-lapping division of input images, the decision map could not be obtained by using the SR fusion method. 

Therefore, in Fig. 10, we don't provide the decision map obtained by SR. 



mentioned above, which also demonstrates that CNNSR_Pro performs the best, compared to the fusion 489 

methods mentioned here. Table 4 also indicates that CNNSR_Pro has high computational efficiency. The 490 

average computational time T  of CNNSR_Pro is about half that of RSR_LR and SRCF, and is about 491 

one twentieth that of MRSR and DCNN. 492 

Table 4. Performance of different methods on Fig. 8. Scores for the 10 pairs of input images in Fig.8 are averaged. The best and 493 

second scores obtained by different methods are marked by red and blue colors with bold in the table, respectively. 494 

Method MIQ  
GQ  

YQ  
CBQ  T (in Seconds) 

DSIFT 1.2636 0.8077 0.9712 0.8133 1.0650 

MF 1.2522 0.8074 0.9639 0.8009 1.6771 

SR 1.1846 0.8052 0.9453 0.7863 16.5240 

MRSR 1.2646 0.7964 0.9759 0.8096 29.0351 

RSR_LR 1.2569 0.8092 0.9778 0.8152 3.5394 

DCNN 1.2584 0.8090 0.9772 0.8167 40.7280 

SRCF 1.2923 0.8076 0.9800 0.8149 3.0519 

CNNSR_Pro 1.2985 0.8079 0.9815 0.8223 1.6466 

5.4 Fusion of multi-focus color images  495 

 The proposed method can also be extended to the fusion of multi-focus color images. Similar to 496 

that in [2], the intensity component of input images is first obtained by simply averaging their Red (R), 497 

Green (G), and Blue (B) channels, respectively. Then a focus decision map is obtained by performing the 498 

proposed CNNSR_Pro method on the intensity component of input images. By using the decision map, 499 

the R, G, and B channels of the fused image are obtained, respectively, and the finally fused color image 500 

is constructed. 501 



 To demonstrate the validity of CNNSR_Pro on the fusion of multi-focus color images, a set of multi-502 

focus color images are employed here, which are shown in Fig. 11 5 . In addition to the proposed 503 

CNNSR_Pro method, some fusion methods, including IMF [19], GFF [40], MWG [41], RSR_LR [1], 504 

DCNN [22] and SRCF [2], are performed on these images for comparisons.  505 

Fig. 126 illustrates the fusion results of different methods on the input images in Fig. 11(a1) and 506 

Fig. 11(b1). Table 5 provides the averaging scores of different fusion methods on the 20 pairs of input 507 

images. The visual fusion results and the quantitative data in Table 5 indicate that the proposed 508 

CNNSR_Pro performs competitively with SRCF, DCNN and better than the other methods on the multi-509 

focus color images in Fig. 11. Although CNNSR_Pro performs competitively with SRCF and DCNN, it 510 

has much higher computational efficiency than SRCF and DCNN. The average computational time T  511 

of CNNSR_Pro is about one seventh that of SRCF and DCNN for the test images in Fig. 11. 512 

 513 

Fig. 11. 20 pairs of multi-focus color images. The first top row contains the first 10 input images with the focus on the front part, 514 

and the second row contains the corresponding input images with the focus on the back part. The third row contains the remaining 515 

10 input images with the focus on the front part, and the bottom row contains the corresponding input images with the focus on the 516 

back part. 517 

                                                        
5 These images are downloaded from https://www.researchgate.net/publication/291522937_Lytro_Multi-focus_Image_Dataset.  
6 The visual results of different fusion methods on the rest of input images in Fig. 11 are provided in Supplementary files.  

https://www.researchgate.net/publication/291522937_Lytro_Multi-focus_Image_Dataset


 518 

Fig. 12. Illustration of the fused results of different methods on Fig. 11(a1) and (b1). (a1)~(a6) Decision maps obtained by using 519 

IFM, GFF, MWG, DCNN, SRCF, and CNNSR_Pro, respectively. (b1)~(b6) Fused images obtained by using IFM, GFF, MWG, 520 

DCNN, SRCF, and CNNSR_Pro, respectively.  521 

Table 5. Performance of different methods on Fig. 11. Scores for the 20 pairs of input images in Fig.11 are averaged. The best 522 

and second scores obtained by different methods are marked by red and blue colors with bold in the table, respectively. 523 

Methods MIQ  
GQ  

YQ  
CBQ  T (in Seconds) 

IFM 1.1334 0.7845 0.9688 0.7861 2.3747 

GFF 1.0980 0.7918 0.9821 0.7975 0.5500 

MWG 1.1278 0.7819 0.9873 0.7974 7.5662 

DCNN 1.1512 0.7921 0.9877 0.8084 167.0715 

SRCF 1.1929 0.7925 0.9890 0.8093 132.0764 

CNNSR_Pro 1.1918 0.7878 0.9891 0.8103 20.8199 

6.  Conclusions 524 

 We presented a non-negative sparse representation based multi-focus image fusion method, where 525 

the strong correlations among spatially adjacent image patches are fully considered. For that, we first 526 

construct a new NNSR model with a consistency constraint (CNNSR) on the representation coefficients 527 

for the fusion method. Then we present a patch-level consistency rectification strategy during the fusion 528 

process. The CNNSR model and patch-level consistency rectification make the proposed fusion method 529 



introduce very few spatial artifacts into the fused image. Moreover, owing to the patch-level consistency 530 

rectification, the input images may be divided into a set of non-overlapped patches, rather than a set of 531 

overlapped ones. This also makes the proposed fusion method have much computational efficiency in 532 

real applications. Additionally, we have constructed a compact non-negative dictionary for the CNNSR 533 

model. This further improves the fusion performance and the computational efficiency of the proposed 534 

fusion method to some extent. Finally, the proposed fusion method can be extended to the fusion of color 535 

images by some simple modifications. The proposed fusion method is experimentally shown to 536 

outperform some advanced SR-based fusion methods, such as MRSR, RSR_LR and SRCF. As well, it 537 

has the highest computational efficiency among these SR-based fusion methods. 538 

 Finally, it should be noted that the proposed fusion strategy is implemented in a patch-level way - 539 

the pixels in one patch will be determined to be all in-focus or all out-of-focus -. This is reasonable for 540 

most image patches. However, for those patches near the boundaries between the focused and defocused 541 

regions, the pixels in the same patch may belong to different classes, i.e., some pixels may be in-focus 542 

and some pixels may be out-of-focus. This is an inherent problem in the patch-based fusion methods. 543 

How to address such problem is of interest. We leave this for our future work.  544 
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Appendix A 549 

 Appendix A details the description of the update scheme for solving Eq. (18) in the body. 550 

(1) Update X  : 551 
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Eq. (A2) thus has the following solution [31]: 558 
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(2) Update H : 560 
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Its solution is computed by: 562 
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Here, 
MI  is an identity matrix of size M M . 564 
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