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Abstract

In this work, we introduce an anisotropic minimal path model based on a new

Riemannian tensor integrating the crossing-adaptive anisotropic radius-lifted

tensor field and the front freezing indicator by appearance and path features.

The non-local path feature only can be obtained during the geodesic distance

computation process by the fast marching method. The predefined criterion de-

rived from path feature is able to steer the front evolution by freezing the point

causing high bending of the geodesic to solve the shortcut problem. We per-

formed qualitative and quantitative experiments on synthetic and real images

(including retinal vessels, rivers and roads) and compare with the minimal path

models with classical anisotropic Riemannian metric and dynamic isotropic met-

ric, which demonstrated the proposed method can detect desired targets from

complex tubular tree structures.
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1. Introduction

Tubular structure extraction is a crucial task in many computer vision ap-

plications. Various tubular structure extraction algorithms and techniques have

been studied, which can be roughly divided into two categories: supervised and

unsupervised methods [1, 2]. Supervised approaches usually achieve better per-5

formance due to the prior information from the training components to decide

whether a pixel should belong to a vessel or not. These models construct feature

vectors in order to train the respective classifiers [3, 4] or apply the neural net-

work [5, 6] with the help of manual label. However, it is very time-consuming to

find discrimination features for constructing powerful models by training. Be-10

sides, the obtained models always meet for particular requirement. Those un-

supervised methods, without manual labeling information, usually have lower

computation complexity and more simple procedure [2], such as the pattern

recognition techniques [7, 8], model-based approaches [9, 10], tracking-based

algorithms [11, 12] and so on.15

The minimal path technique [13] has been adopted to detect tubular struc-

tures thanks to its efficiency and global optimality [14, 15, 16, 17]. It is often

taken as an interactive tool such that users are allowed to provide manual inter-

vention such as source points, which constrains the minimal path to delineate

the tubular structures. In essence, a geodesic path is a curve linking two points

derived by globally minimizing a weighted curve length [13]. It is defined by

integrating a geodesic metric P : Ω × R
d → R

+, where Ω ⊂ R
d stands for the

open and bounded domain and d is the dimension of Ω, along a regular path γ:

L(γ) =

∫ 1

0

P(γ(t), γ′(t))dt, (1)

where γ : [0, 1]→ Ω ⊂ R
d is a regular curve of Lipschitz continuity. The minimal

path models have been extensively exploited for tubular structure segmentation,

where both the centerline positions and thickness of the tubular structures are

required [15, 16, 17]. The isotropic tubular minimal path model [15] only makes

use of the curve position information, which may increase the risk of shortcuts.20
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More general anisotropic Riemannian metric [16, 18] is proposed to segment

tubular structures in conjunction of the pre-detected vessel anisotropy features.

However, this extended tubular minimal path model still has difficulties when

dealing with complicated situation such as extract a weak vessel from a tree

structure. Moreover, some researchers try to improve the classical tubular min-25

imal path models by reducing the user intervention [19, 20, 21]. For these

models, only one (or several) initial root point(s) is (are) necessary to extract

a tubular tree structure. Recently, the higher order properties of the geodesic

curves are exploited for shortest path estimation as well as tubular structure

segmentation. Specifically, Ulen et al. [22] proposed a curvature and torsion30

regularized shortest path model by computing the curvature and the torsion.

Based on the Eikonal equation framework, the curvature-penalized minimal path

models [23, 24, 25] are established over an orientation-lifted space such that the

orientation dimension can be used to represent the curve tangents.

Controlling the course of the fast marching front propagation is a solution for35

the above problem. Criterions are defined to make the front propagation stop in

undesired directions or promote in specific directions [26, 27]. In contrast to the

minimal path models using static geodesic metrics which are fixed during fast

marching front propagation, the dynamic minimal path models allow to update

the respective geodesic metrics in the course of geodesic distance estimation.40

In [28], the authors proposed a new fast marching front propagation scheme in

order to address the shortcut and short branches combination problems. The

basic idea is to freeze the front points of which the respective local path features

violate the pre-defined criteria. In this case the fast marching fronts will not pass

through the points corresponding to undesired geodesic paths. Chen et al. [29]45

proposed an adaptively Riemannian metric using a dynamic metric construction

way in order to penalize the appearance feature coherence property. In this

case the obtained geodesic paths favour to pass by the region of slow-varying

tubular features. Geoffrey et al. [30] created a connectivity metric to determine

the reasonable pathways of connection. Windheuser et al. [31] estimated the50

curvature information by computing the angles between each pair of adjacent
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(a) (b) (c) (d)

Figure 1: (a)The yellow and cyan dots incidate the source and end points. (b) The red dash line

indicates the target tubular structure centerline. (c) The geodesic path (blue line) obtained

by the anisotropic tubular minimal path model [16], where the short branches combination

problem occurs. (d) The geodesic path (blue line) derived from the proposed model. (Yellow

lines denote the vessel boundaries)

edges. Krueger et al. [32] incorporated the curvature estimation into a greedy

core algorithm to improve the efficiency. However, these models track geodesic

paths only in the spatial space where the vessel thickness information cannot

be extracted.55

In this paper, we focus on the dynamic minimal path-based tubular structure

segmentation, for which the geodesic metrics are established over a radius-lifted

space. The existing tubular minimal path models [15, 16, 17] often suffer from

the shortcut and short branches combination problems, especially for the case

that the target is weakly-defined and crosses or parallels with strong ones, see60

Fig. 1. In this figure, the target vessel has low gray level contrast, while its neigh-

bour vessels are strongly-defined (i.e., high gray level contrast). In Fig. 1(c),

we show the minimal path extraction result obtained by the anisotropic tubular

minimal path model [16]. One can observe short branches combination occur.

In other words, the obtained minimal path prefers to pass through strong seg-65

ments belonging to different vessels. In order to simultaneously obtain the cen-

terlines and thickness of tubular structures as well as to overcome the shortcut

and short branches combination problems, we proposed an anisotropic mini-

mal path model for tubular structure segmentation via a dynamic radius-lifted

anisotropic metric and state-of-the-art anisotropic fast marching method [33].70

The motivation of this work is that the anisotropic tubular minimal path model
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[16] cannot take into account path features for distance estimation. Using the

path features detected during the front propagation for minimal path compu-

tation is able to obtain desired results even in complicated situation. The main

contribution in this paper lies at the introduction of a dynamic anisotropic Rie-75

mannian metric in the radius-lifted space using back-tracked geodesic paths. In

Fig. 1(d), we present the result obtained by the proposed model. One can point

out that the blue line indeed correctly indicates the target.

The paper outline is shown as follows. In Section 2, we briefly introduce

the background for the anisotropic radius-lifted Riemannian metric. Section 380

describes the main contribution of this work including the proposed dynamic

Riemannian metric in a radius-lifted space and its numerical implementation in

conjunction with the fast marching method. Section 4 shows the experimental

results and the final section 5 gives the conclusion.

2. Minimal Paths for Tubular Structure Segmentation85

In this section, we give the background on anisotropic radius-lifted minimal

path model [16] for tubular structure segmentation.

2.1. Tubular Geometry Features Computation

In this section, we first consider the extraction of the local tubular geometry

features from the image I : Ω → R through the optimally oriented flux (OOF)

filter [34]. Note that the local geometry features can also be extracted using

other steerable filters such as [34, 35, 36]. The output of the OOF filter is estab-

lished in a multi-scale space defined as Ω̂ := Ω× [rmin, rmax], where [rmin, rmax]

is the radius space1. The output of the OOF filter at the position x and scale

r is a symmetric matrix of size d× d as follows:

F(x, r) =
1

r

(

(∂i,jGσ) ∗ I ∗ χSr

)

(x, r), (2)

1In the space Ω̂, a point x̂ ∈ Ω̂ is an ordered pair (x, r) where x ∈ Ω ⊂ R
2 and r ∈

[rmin, rmax].
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where (∂i,jGσ) is the Hessian matrix of the Gaussian kernel Gσ with variance

σ. χSr
is a characteristic function of a disk with radius r.90

The eigenvalues λi (i = 1, 2, · · · , d) extracted using the OOF filter are the

values of the oriented flux along the corresponding eigenvectors vi as following:

λi(x, r) = vT
i (x, r)F(x, r)vi(x, r). (3)

Without loss of generality, we assume that λ1(·) ≤ λ2(·) ≤ · · ·λd(·). In this

paper, we only consider the 2D tubular segmentation problem, which means

that d = 2. For the case that the tubular structures have lower gray levels

than background, the vector v1(x, r
∗) indicates the orientation of the tubular

structure at the point x inside the vessel structures, where r∗ is the optimal95

vessel scale of point x.

2.2. Radius-lifted Minimal Paths for Tubular Segmentation

We denote by S+d the set of symmetric positive definite matrices of size

d × d (d = 2, 3) and let Lip([0, 1], Ω̂) be the set of Lipchitz continuous curves

γ : [0, 1] → Ω̂. The radius-lifted minimal path model is proposed in [15] for100

tubularity segmentation. Benmannsour and Cohen [16] generalize this isotropic

model [15] to the anisotropic case. The basic idea for both models is to lift a

spatial geodesic to the radius-lifted space Ω̂ by adding one abstract dimension

to represent the vessel radii.

The path length L for such a radius-lifted curve γ ∈ Lip([0, 1], Ω̂) can be

measured through a Riemannian tensor fieldMscale : Ω̂→ S+
3 ,

L(γ) =

∫ 1

0

√

〈γ′(u),Mscale(γ(u))γ′(u)〉 du, (4)

where 〈·, ·〉 represents the Euclidean scalar product. The tensor fieldMscale is

constructed [16] by the eigenvalues λi and eigenvectors vi,

Mscale(x, r) =





Maniso(x, r) 0

0 Pscale(x, r)



 , (5)

where Maniso : Ω̂ → S+
2 is a tensor field associated to the spatial anisotropy

with size 2×2 and Pscale : Ω̂→ R
+ is a scalar function. Both can be constructed
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by combining the eigenvalues and eigenvectors of the OOF response F in Eq. (2)

as follows:

Maniso(x̂) = exp(αλ1(x̂))v2(x̂)v
T
2 (x̂) + exp(αλ2(x̂))v1(x̂)v

T
1 (x̂), (6)

Pscale(x̂) = β exp(αλ2(x̂)), (7)

where α ∈ R and β ∈ R
+ are two parameters which control the regularization105

of the spatial and radius dimensions, respectively. Note that the value of α is

negative for dark-vessel and bright-background case and α > 0, otherwise.

In the Riemannian minimal path model, once the metric tensor is given,

one can define the relevant geodesic distance Uŝ(x̂) as the minimal curve length

between x̂ and the fixed source point ŝ as follows

Uŝ(x̂) = inf
γ∈Lip([0,1],Ω̂)

{L(γ); γ(0) = ŝ, γ(1) = x̂}, (8)

where the values of Uŝ can be regarded as the arrival times of a front propagating

with oriented velocity related to the metric tensorM−1
scale. The geodesic distance

map Uŝ from the source point ŝ satisfies the anisotropic Riemannian Eikonal

equation

‖∇Uŝ(x̂)‖M−1

scale
(x̂) = 1, ∀x̂ ∈ Ω̂\{ŝ}, (9)

with boundary condition Uŝ(ŝ) = 0, where ‖u‖M =
√
uTMu for any matrix

M ∈ S+
3 .

A geodesic path Ĉx̂,ŝ linking x̂ to the source point ŝ can be tracked from the

point x̂ by solving the following ordinary differential equation (ODE) till the

source point ŝ is reached

C̃′
x̂,ŝ(s) = −

M−1
scale(C̃x̂,ŝ(s))∇Uŝ(C̃x̂,ŝ(s))

‖M−1
scale(C̃x̂,ŝ(s))∇Uŝ(C̃x̂,ŝ(s))‖

(10)

with C̃x̂,ŝ(0) = x̂. The geodesic C̃x̂,ŝ is parameterized by its arc-length. The110

final geodesic Cŝ,x̂ ∈ Lip([0, 1],Ω) joining from the source point ŝ to x̂ can be

obtained by reversing and reparameterizing C̃x̂,ŝ.
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3. The New Anisotropic Geodesic Metric with Nonlocal Information

in Radius-lifted Space

Overview. The main goal in this section is to establish a new anisotropic

geodesic metric in a radius-lifted space in order to avoid the shortcut and short

branches combination problems as shown in Fig. 1. In contrast to [16] for which

only the local geometry information are considered to establish the geodesic met-

rics, the front freezing-based minimal path model [28] constructs the geodesic

metrics by taking into account the nonlocal information such as the local path.

During the geodesic distance front propagation, the front points for which the

features do not satisfy the given criterion will be frozen, where the features for

each front point are extracted through two extra points. This scheme proposed

in [28] is able to avoid the shortcut problem in some extent. However, it is

restricted to the case of centerline detection and cannot take advantages of the

path orientation due to the isotropic nature of the used metrics in [28]. In this

section, we extend this front frozen scheme to a radius-lifted space through an

anisotropic Riemannian metric. This is done by constructing a new Riemannian

tensor field Mdyn : Ω̂ → S+
3 during the geodesic distance computation which

is actually carried out in a front advancing procedure. The invoked tensor field

Mdyn consists of two ingredients: the crossing-adaptive anisotropic radius-lifted

tensor field Madap : Ω̂ → S+
3 and the front freezing indicator δ : Ω̂ → {1,∞}.

It can be expressed by

Mdyn(x, r) =Madap(x, r)× δ(x, r), ∀(x, r) ∈ Ω̂. (11)

We will explain the construction details for the tensor fieldMadap in Section 3.1115

and the scalar indicator δ in Section 3.2, respectively.

3.1. Computation of the Crossing-Adaptive Tensor Field

By applying the OOF filter to an image involving vessel tree structures, one

can obtain an optimal direction v1(x, r) at each point (x, r) belonging to the
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(a) (b)

Figure 2: (a) A retina image with a crossing point denoted as cyan dot. (b) The red curves

illustrate the vessel direction passing through the crossing point. Yellow curve denotes the

vessel direction detected by the OOF filter.

tree structures through eigen-decomposition to the response of the filter OOF

F(x, r) =

2
∑

i=1

λi(x, r)vi(x, r), s. t. λ1(·) ≤ λ2(·) (12)

We suppose that inside the tubular structures the intensities are lower than

background, thus the corresponding eigenvalue λ2 can be used to characterize

the appearance feature of the vessels, by which we define a vesselness map

ζ : Ω→ R
+
0

ζ(x) = max
{

max
r

λ2(x, r), 0
}

. (13)

The value of ζ(x) is derived from λ2 at the optimal scale η(x) ∈ [rmin, rmax],

where the η : Ω→ [rmin, rmax] is a map defined by

η(x) = argmax
r∈[rmin,rmax]

{λ2(x, r)} . (14)

Based on the optimal scale map η and the eigenvectors v1, we can define the

tubular feature vector p : Ω → R
2 that indicates the orientation for a tubular

structure

p(x) = v1(x, η(x)). (15)

The tubular direction p(x) well describes the vessel orientation at non-crossing

point x. However, for crossing points, denoted by y, there will be at least

two vessels across one another. This means that the highly anisotropic tensors120

Maniso(y, ·) defined in Eq. (5) may lead to incorrect geodesic tangents at these
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Figure 3: (a) A crossing structure with two sampled points. Columns (b) and (c): The unit

balls for the proposed Madap with p = 1 and p = 7 at the single vessel point denoted as cyan

dot. Columns (d) and (e): The unit balls for the proposed Madap with p = 1 and p = 7 at

the crossing point displayed as a red dot.

crossing points y. An example is given in Fig. 2, where the red lines indicate

the true vessel directions through a crossing point denoted by a cyan dot. The

yellow line indicates the vessel direction detected by the OOF filter, however it

is incorrect. This may lead to the wrong vessel segmentation. A solution to this125

problem is to adaptively remove the anisotropy from the tensors Maniso(y, ·),
which can be done by invoking the orientation scores [2] or by structure ten-

sors [37]. In this section, we construct our crossing-adaptive radius-lifted tensor

field through the tool of structure tensor.

The shortcut and short branches combination problems usually occur where

the vessel crosses its neighbours, since the eigenvector of a crossing point usually

indicates the orientation of the vessel with strong appearance feature. So the

speed computed from the anisotropic geodesic metric is slower along the weak

vessel direction than along the strong one. To solve the shortcut and short

branches combination problems, we make use of a crossing-adaptive tensor field

Madap : Ω̂ → S+
3 established in the radius-lifted space Ω̂, the anisotropy of

which is kept at single-vessel region and removed or reduced at crossing points.
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It can be constructed by

Madap(x, r) = diag
(

exp(−αλ2(x, r))Tsmooth(x, r),Pscale(x, r)
)

, (16)

where α is a positive constant which has been used in Eqs. (6) and (7). The

tensor field Tsmooth : Ω̂ → S+
2 is computed via a Gaussian kernel Gp with

standard derivative p and the identity matrix Id of size 2× 2

Tsmooth(x, ·) =
( (Gp ∗ T )(x)
(Gp ∗ ~)(x)

+ ǫ Id

)−1

, T (x) = ~(x)p(x)pT (x), (17)

where ǫ ∈ R
+ is a sufficiently small constant to generate a regular matrix

Madap(·). Note that for any radius values r1, r2 ∈ [rmin, rmax] where r1 6=
r2, one always has Tsmooth(x, r1) = Tsmooth(x, r2). The scalar-valued function

~ : Ω→ R
+
0 is a weighted function over the image domain Ω. In this paper, we

propose three ways to compute the function ~, where the first way is to invoke

the vesselness map ζ (see Eq. (13)).

~(x) = ζ(x), ∀x ∈ Ω. (18)

Alternatively, the weighted function ~ can be computed as a binary-valued func-

tion, which depends on a threshold value Th ∈ R
+ and also on the vesselness

map ζ

~(x) =











1, if ζ(x) > Th

0, otherwise.

(19)

The last method utilizes the skeleton of the vessel mask. The function ~ is used130

in order to reduce the influence from the regions outside the vessel structures.

In other words, the information inside the vessel region dominates the tensor

field Tsmooth.

In Eq. (18), the function ~ is set to be the vesselness map which has small

values outside the vessel regions but large values inside, where an example can135

be found in the first row of column (a) of Fig. 3. This is an adaptive way for

the computation of the tensor field Tsmooth comparing to the other two ways

which set ~ as a binary-valued function. Considering the vessel segmentation
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has been studied for a long time, the vessel mask is easy to be computed by many

existing approaches and the skeleton can be obtained from the vessel mask. For140

the second method expressed in Eq. (19), a point x for which ~(x) = 1 implies

that x is located inside a vessel. An example is shown in the second row of

column (a) in Fig. 3. In the third method, ~(x) = 1 means that x is a centreline

point, see the third row of column (a) of Fig. 3 for an example. In this case, the

information on the centreline positions dominates the tensor field Tsmooth. For145

the crossing point, the tensor field Tsmooth is impacted greater by the vessel with

bigger radius. Note that the main difference between Tsmooth and the structure

tensor field used in [37] lies at the existence of the function ~. As discussed

above, it can reduce or avoid the effects derived from the non-vessel regions.

This means that we are able to make use of a Gaussian filter with more flexible150

variance values p.

We express the tensor filed T −1
smooth by

T −1
smooth(x, ·) =

∫

Ω

Gp(y)~(x− y)p(x− y)pT (x− y)dy

Gp(y)~(x− y)dy
+ ǫ Id . (20)

One can see that the Gaussian filtering is operated on the feature vectors p(y)

(indicating the vessel orientations) at the vicinity of a point x. If x is a vessel

segment point and the vectors p(y) change slowly, then the eigenvector of the

tensor (Gp∗T )(x), which corresponds to the largest eigenvalue, will approximate155

to the feature vector p(x). For the vessel points x nearby a crossing structure,

the feature vectors potentially vary fast, leading to the tensors (Gp∗T )(x) which
are nearly isotropic. As shown in Fig. 3, the anisotropy of the metric at point

(e.g. the red point) located on the crossing section is removed apparently by

the Gaussian filtering, however, the anisotropy of the metric of the single vessel160

point (e.g. cyan point) is contained adaptively.

3.2. Computation of the Front-Freezing Indicator

In this section, we construct the proposed front-freezing indicator δ with

non-local path features derived from the local truncated geodesic paths to solve

the shortcut and short branches combination problems. The non-local feature is165
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(a) (b) (c)

Figure 4: (a) The extra points q and m identified from the projected geodesic path G̃x,s. (b)

and (c) Projected path G̃x̂min,q
(red lines) with small and large bending measures, respectively.

The red dot in figure (b) (or figure (c)) indicates the spatial component xmin of the latest

Trial point x̂min = (xmin, rmin).

described by the bending measure of the local path computed through two extra

points located on it. Moreover, we first present the principle for the construction

of the indicator δ and the numerical implementation method based on the fast

marching method will be described in Section 3.3.

Here we give the method to identify the extra two points on a local geodesic

path linking a target point x̂ = (x, rx) to the source point ŝ = (s, rs). First of

all, the geodesic path can be computed by solving the gradient descent ODE (see

in Eq. (10)) on the obtained geodesic distance map Uŝ, which has already been

computed within the region where the front visited [28]. During the front prop-

agation, one can easily track a radius-lifted geodesic path C̃x̂,ŝ parameterized by

its arc-length by solving the corresponding gradient descent ODE (10). Since

C̃x̂,ŝ lies in the radius-lifted space, we have C̃x̂,ŝ = (G̃x,s, η) where G̃x,s(·) ∈ Ω is

the projected path and η(·) ∈ [rmin, rmax]. We first detect a point q̂ = (q, rq)

from C̃x̂,ŝ such that its projected path |Gx,q| = Γ, where |Gx,q| stands for the

Euclidean length of Gx,q and Γ is a positive constant. Note that q̂ is the first

extra point and the second one, referred to as m̂ = (m, rm), is defined as the

middle point of the part of the path C̃x̂,q̂. The process to search the two extra

points are shown in Fig. 4(a). The bending measure K is estimated by the angle

13



between two vectors related to the two extra points q, m ∈ Ω as follows [28]

K(x, r) = 〈m− q,x−m〉
‖m− q ‖ ‖ x−m ‖ , (21)

where 〈·, ·〉 denotes the scalar product and ||·|| represents the norm of the vector.170

The values of K are ranged at [−1, 1]. The estimation of K is done during the

fast marching front propagation, which will be described in Section 3.3. We

mention that a small value of K implies that the corresponding geodesic path

likely appears with a sharp turning.

Algorithm 1 Fast Marching Method with Dynamic Riemannian metric

Output: Minimal action map Uŝ.
Initialization: ∀x̂ = (x, r) ∈ Ω̂\ {ŝ}, set Uŝ(x̂)←∞, L(x̂)← Far; Uŝ(ŝ)← 0,

L(ŝ)← Trial ; F(x)← 0.

1: while stopping criterion is not reached do

2: Find x̂min = (xmin, rmin), the Trial point which minimizes Uŝ;
3: Set L(x̂min)← Accepted;

4: if F(xmin) = 0 then

5: Backtrack the local geodesic path from x̂min;

6: Compute the bending measure K(xmin, rmin) via Eq. (21);

7: if K(xmin, rmin) ≤ K0 then

8: Set Uŝ(x̂min)←∞; ⊲ Front point freezing procedure.

9: Set F(xmin)← 1;

10: else ⊲ Regular fast marching scheme.

11: for all ŷ ∈ N∗(x̂min) and L(ŷ) 6= Accepted do

12: Set L(ŷ)← Trial and update Uŝ(ŷ);
13: end for

14: end if

15: else

16: Set Uŝ(x̂min)←∞; ⊲ Front point freezing procedure.

17: end if

18: end while

14



Now we give the computation method for the front-freezing indicator δ :

Ω̂ → {1,∞}, which takes into account the non-local feature to freeze the front

points causing a geodesic path of high values of K. The criterion is based on

the fact that the orientations of the tubular structure such as blood vessels

usually varies smoothly without sharp turning. The indicator δ is constructed

to determine the bending range of the local tubular structure:

δ(x̂) =











1 K(x̂) > K0,

+∞ otherwise

(22)

where K0 is a given threshold. The bending measure K(x̂) > K0 which yields δ =175

1 means the fast marching front is propagated as usual. By using the indicator

δ, the shortcut and short branches combination problems can be avoided as

shown in Fig. 1. Our method with an appropriated threshold is able to detect

the desired vessel although the neighbouring vessel has stronger appearance

feature.180

3.3. Fast Marching Implementation

The fast marching method estimates the geodesic distance map on a dis-

cretization orthogonal grid of the image domain Ω. The single-pass scheme of

the fast marching method makes it possible to estimate the indicator δ(x̂) in

the course of the geodesic distance computation for each point x̂ ∈ Ω̂.185

In the course of the fast marching front propagation, all the grid points are

labeled as three classes: Far, Trial and Accepted. The geodesic distance will be

estimated by solving the Hopf-Lax operator defined in [33]. The stencil N (x̂)

determines the neighbourhood for each point x̂, and its inverse neighbourhood

N∗(x̂) can be described as N∗(x̂) := {ŷ ∈ Z
3; x̂ ∈ N (ŷ)}. The fast marching190

front is comprised of all the grid points tagged as Trial. In each geodesic distance

updating step, we apply the method presented in Section 3.2 by setting that

x̂ := x̂min to compute the value of the indicator K for the latest Trial point2 x̂min

2the point of smallest geodesic distance value among all the Trial points
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(a) ArR (b) dArR (c) ArR (d) dArR

Figure 5: The first row shows the detected vessel centerlines (blue lines). The source and end

points are respectively denoted by red and cyan dots. The following rows display the course of

the fast marching fronts propagation. Columns (a) and (c): Geodesic distance maps derived

from the ArR metric [16]. Columns (b) and (d): Geodesic distance maps computed by the

proposed dArR metric.

using the projected path G̃xmin,q. In Figs. 4(b) and (c), we illustrate the spatial

component xmin of the latest Trial point x̂min = (xmin,q) and the corresponding195

projected path G̃xmin,q. Moreover, the path in Fig. 4(b) corresponds to a small

bending measure is given . If K(x̂min) ≤ K0 which yields δ(x̂) =∞ such that the

criterion is violated and the propagation at x̂min should be frozen, see Fig. 4(c)

for an example of the large bending measure.

The proposed Riemannian tensor fieldMdyn is updated during the geodesic200

distance computation which is actually carried out by computing the front-
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freezing indicator δ(x, r) in a front advancing procedure as described in Sec-

tion 3.2. Moreover, we can observe if the propagation should be frozen or

not is based on the indicator δ(x, r). In implementation, once a point (x, r)

is frozen, all the points at position x with different radius scale [rmin, rmax]205

are frozen and labeled as Accepted. This scheme is helpful to save calculation

consuming. It is achieved by defining a new flag map, i.e. a scalar-valued

function, F : Ω → {0, 1}, where F(x) = 1 denotes that the point at posi-

tion x is frozen. During fast marching fronts propagation, once the latest Trial

point x̂min = (xmin, rmin) on the front is chosen, the F(xmin) value can be210

checked. If F(xmin) = 1, the point should be frozen and labeled as Accepted ;

If F(xmin) = 0, the local geodesic path C̃x̂min,ŝ is tracked and the indicator

δ(x̂min) is computed. Then the tensor Mdyn(x̂min) can be constructed as in

Eq. (11) and the geodesic distance value can be estimated. According to the

front-freezing indicator δ(x̂min), if K ≤ K0, the value of F(xmin) is set to 1 which215

means the front propagation needs to be frozen at x̂min. The front propagation

scheme can be terminated till the end point has been tagged as Accepted or

all the grid points have been tagged as Accepted. The pseudo-code for our fast

marching-based implementation procedure can be found in Algorithm 1.

The fast marching front propagation process during the computation of the

geodesic distance map is displayed in Fig. 5. The geodesic distance map obtained

in the radius-lifted space is projected to the domain Ω by minimizing it along

radius dimension as follows:

Hs(x) = min
r∈[rmin,rmax]

Uŝ(x, r) (23)

The obtained geodesic map Hs(x) is shown on the original vessel images as in220

Fig. 5. Columns (b) and (d) illustrate the geodesic distance maps computed

by the our proposed dynamic metric with vesselness map as the scalar function

(dArR). The black points in columns (b) and (d) indicate the points which have

been frozen due to the violation of the criterion (i.e. δ(·) = ∞). The geodesic

distance maps obtained by the anisotropic tubular minimal path method with225

anisotropic radius-lifted Riemannian metric (ArR) [16] are shown in columns (a)
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and (c). One can point out that the minimal geodesic paths depict the vessels

of strong appearances and miss the target vessels. The minimal action maps

by the proposed model are shown in columns (b) and (d). Note that the points

causing the high bending measures are frozen and denoted by black dots. We230

can see that the paths obtained by the proposed model can correctly find the

target vessels.

3.4. Discussion

The proposed method in essence constructs the geodesic metric in a dynamic

way and we discuss the differences between our method and two state-of-the-art235

dynamic minimal path approaches [28, 29].

• In work [28], authors utilize the dynamic isotropic metric established only

in the image domain. They introduced a new front freezing fast march-

ing scheme based on the path features which can be detected through

the appearance feature of the path or the geometric feature such as the240

bending measure of the paths. However, This dynamic minimal path ap-

proach only invokes isotropic geodesic metrics established in the spatial

domain (the image domain), so it cannot benefit from the vessel anisotropy

information and also can only detect the vessel centerlines. In order to

address the issues mentioned above, we propose a dynamic anisotropic and245

crossing-adaptive Riemannian metric a in radius-lifted domain based on

the geometric features of the local path. As a consequence, the proposed

model is able to take advantages of the vessel anisotropy information and

also to detect the vessel centerlines and boundaries simultaneously.

• In the work [29], the authors proposed a minimal path model associated250

with an adaptively Riemannian metric embedded with an appearance fea-

ture coherence penalty. The key differences between the model [29] and

the proposed model are mainly described as three aspects. Firstly, the

method [29] penalizes the geodesic metric by a weighted scalar-valued

function derived from the coherence property of the appearance features,255
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(a) (b)

Figure 6: (a) Segmentation accuracy R and (b) Running time corresponding to the local

geodesic length Γ and the bending threshold K0.

instead of freezing the front points. Sometimes one needs to carefully con-

trol the importance between the tubular confidence information and the

coherence penalization. Secondly, the dynamic metric in [29] is still built

in the spatial domain 3 while our method can detect both centerlines and

thickness in one step. Finally, we analyze the implementation difference260

on the adaptive establishment. In [29], the authors build the dynamic

metric using a reference point form a truncated geodesic path vector to

distinguish the correct vessel direction in crossing points. In contrast, the

basic idea in the the proposed work for the considered crossing-adaptive

anisotropy is to reduce or remove the anisotropy property at the crossing265

points and to keep the anisotropy property at the single vessel points,

done by the tool of structure tensor.

4. Experimental Results and Discussion

In this section, we conduct the numerical experiments on qualitative and

quantitive comparison between state-of-the-art minimal path models and the270

3Indeed, the authors [29] proposed to use one more step to obtain the vessel thickness

with a region-constrained minimal path technique.
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Table 1: Quantitative comparison results on synthetic images.

Method
Noise level δ

0.01 0.03 0.05 0.07 0.09

ArR Metric 0.828 0.836 0.843 0.834 0.842

dArR Metric 0.875 0.861 0.863 0.860 0.867

proposed dynamic metrics.

Basic Setting. The front-freezing indicator δ in Eq. (22) is computed based

on the bending measure operator in Eq. (21) of the local truncated geodesic. In

numerical implementation, the local geodesic length Γ and the bending threshold

K0 should be given. In this work, we conduct an experiment to study the275

sensitivity of the segmented results to the two crucial parameters Γ and K0

on synthetic images, the dataset of which will be described detailed in Section

4.1. The segmentation accuracy and running time are shown in Fig. 6. We set

Γ = 8 and K0 = 0.9 which are reasonable choice for the experiment, since the

segmentation accuracy is high and running time is relative small. Besides, the280

parameter ǫ = 0.05 in Eq. (17) is used to determine the anisotropic property

of the structure tensor. The parameter α = 5 in Eq. (16) is related to the

influence of the appearance features. The parameter β = 0.5 controls the radius

speed. The experiments are performed on a standard Intel Core i5 of 2.7GHz

architecture with 8Gb RAM.285

For the proposed dynamic minimal path model, we consider three types of

the scalar functions to construct the crossing-adaptive anisotropic radius-lifted

Riemannian metrics, respectively relying on the vesselness map (dArR), ves-

sel mask (dArR-M) and vessel skeleton (dArR-S), see Section 3.1. In order to

show the advantages of the proposed model in tubular structure extraction, we290

compare with the ArR metric [16], the variant of the isotropic dynamic mini-

mal path model (dIsoM) [28] and the appearance feature coherence-penalized

Riemannian metric with adaptively anisotropy (AFC) [29]. Note that for the
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sake of fair comparison, the dIsoM metric-driven minimal paths are extracted

by submitting the scalar-valued function Pscale defined in Eq. (7) to the geodesic295

distance propagation scheme with front freezing procedure as depicted in Algo-

rithm 1.

Evaluation Score. In order to evaluate the proposed dynamic minimal path

models quantitatively, we consider an accuracy measurement to validate the seg-

mentation results. Let S represent the segmentation region from the considered

models and G denotes the region from ground truth data. In addition, #‖ · ‖ be
the number of grid points within the set. Thus the measurement is defined as

R =
#‖S ∩ G‖
#‖S‖ . (24)

One can point out that the measurement R is ranged within the interval [0, 1],

where R = 1 means that the vessel segmentation is exactly identical to the

ground truth. When the measurement R is used in the vessel centerlines com-300

parison, the ground truth region G is the dilated centerline from the ground

truth by a disk of radius 2 (in grid points) and S represents the set of grid

points located in the detected centerlines.

4.1. Experiments on Synthetic Images

In this section, we compare the proposed dArR metric to the ArR met-305

ric [16]. The crossing-adaptive tensor field for this dArR metric is computed

by the associated vesselness map. The experiments are conducted on synthetic

images in order to study the robustness of the dArR metric. These synthetic

images include high curvature lines and crossing lines. All images are blurred

by Gaussian noise with 5 different standard deviation levels ranging from 0.01310

to 0.09 to evaluate the robustness against noise. Each level of the noise is added

independently 3 times. The ground truth is a binary segmentation of all pixels

corresponding to the structures.

The segmentation results in terms of the accuracy measurementR are shown

in Table. 1. The extracted centerlines and boundaries are demonstrated in315

Fig. 7. From both the qualitative results in Fig. 7 and the quantitative results
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(a) Origin (b) δ = 0.05 (c) δ = 0.09 (d) δ = 0.05 (e) δ = 0.09

Figure 7: Boundaries (red lines) and centerlines (blue lines) detected from synthetic images.

Source and end points are indicated by red and cyan dots, respectively. (a) Original im-

ages. (b) and (c): Segmentation results by the proposed dArR metric. (d) and (e): The

segmentation results form the ArR metric.

as described in Table. 1, one can point out that the proposed dArR metric-driven

minimal paths are indeed in sensitive to the effects from noise. The minimal

paths from the dArR metric can benefit from the use of the front freezing scheme

thus can improve the accuracy and robustness of the anisotropic fast marching320

propagation, leading to favourable centerline and boundary extraction results.

In Fig. 8, we show the minimal paths driven by the dArR metric as well as

the AFC metric. In this figure, there are two crossing structures with almost

identical gray levels, where the target is longer than another one in the sense of

Euclidean curve length [29]. The geodesic path derived using the AFC metric325

fails to detect the target as shown in Fig. 8(b), since similar gray levels generate

similar tubular appearance features. While the minimal paths driven by the

dArR metric with bending constraint can freeze the front points which lead

to paths of high bending measures, thus the resulting geodesic paths can avoid

sharp turning, as shown in Figs. 8(c) to (e). For the AFC metric, a crucial point330

is that the appearance features of the target vessel should be different to its

neighboring ones. Such a requirement may lead to a failure when the situations

do not satisfy such a prior. In contrast, the proposed dArR metric rely on the

property from the geodesic paths themselves, instead of the appearance features
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(a) (b) (c) (d) (e)

Figure 8: The minimal paths on synthetic images. (a) The origial images with prescribed

points. (b) The minimal path by AFC metric. (c-e): The minimal paths detected by the

proposed metric with three different weight function including Vesselness map,Vessel Mask

and Vessel Skeleton.

from the image data. Thus in case the target vessels are smooth (without sharp335

turning), the dArR metric can obtain desired minimal paths.

4.2. Experiments on Retinal Images

In this section, we validate the proposed minimal path model on 40 retinal

patches obtained from the DRIVE dataset [38] and 40 retinal patches from the

IOSTAR dataset [2]. Each patch includes a retinal artery vessel which is near340

a stronger retinal vein vessel or crosses with it. The average size of the patches

from the DRIVE and the IOSTAR is 160×277 and 223×326, respectively. Our

goal is to extract an artery vessel between two given points. In order to show

the advantages of using the crossing-adaptive tensor field, we directly apply the

radius-lifted tensor fieldMadap defined in Eq. (16) for minimal path extraction345

under a regular anisotropic fast marching algorithm. For simplicity, we refer to

Madap as caArR in the remaining of this paper.

In Fig. 9, we illustrate the effect of the caArR metric for which the anisotropy

is reduced at the crossing points. In column (a), the yellow lines indicate the

anisotropy feature vectors of the tubular structures detected by the OOF filter.350

We can observe that the anisotropy feature vectors located at the cross section

are approximately collinear to the directions of the vessel of strong appearance

feature. This may lead to incorrect geodesic tangents on these crossing points
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(a) (b) (c)

Figure 9: Qualitative comparison between the ArR and caArR metrics. The geodesic paths

are indicated by yellow lines. The source and end points are indicated by red and cyan dots.

Column (a): Vessel anisotropy feature vector filed indicated by lines. Columns (b) and (c):

Geodesic paths extracted by the ArR and caArR metrics, respectively. The pictures in row 2

respectively illustrate the details in the regions within the red rectangles of Row 1.

when extract the weak vessel as shown in column (b), where the geodesic path

derived by the ArR metric has a bulge in the cross section. Compared with the355

ArR metric, the minimal path shown in column (c) is smoothed by the caArR

metric which has the ability to reduce the anisotropy of the cross section.

In Fig. 10, we compare the caArR metric and the ArR metric on retinal

image patches, where the results are shown in columns (b) and (c) respectively.

In column (b), we can see that the short branches combination problem occurs.360

The minimal paths prefer to combine vessel segments with strong appearance

features. While in the column (c), the paths obtained from the caArR metric

can get the target vessels correctly. Finally, the segmented vessels by the caArR

metric are illustrated in column (d).

In Fig. 11, we show the comparison results of the proposed dArR to the365

ArR metric. The first two rows of Fig. 11 illustrate the minimal path extraction
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(a) (b) (c) (d)

Figure 10: Qualitative comparison results between the ArR and caArR metrics on retinal

image patches. Blue lines represent the centerlines. Yellow and cyan dots represent the source

and end points. (a) Patches from retinal images. (b) and (c): Geodesic paths extracted by

the ArR and caArR metrics. (d) The segmented vessel regions.

results from the long vessel crossing or near with strong ones. The third row

shows the detect results from the image with long and tortuosity vessels. The

last two rows denote detected geodesics of vessel regions with strong tortuosity.

We observe that the classical ArR metric suffered from short combination prob-370

lem. In the last two columns, the proposed dArR metric can detect the desired

vessel regions by the front frozen scheme.

We quantitatively compare the proposed dynamic models including the dArR,

dArR-M and dArR-S metrics, to the existing ArR, dIsoM and AFC metrics on

those patches of retina images. The quantitative evaluation is computed with375

the A-V ground truth by the accuracy measurement R. The segmentation accu-
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(a) (b) (c) (d)

Figure 11: Qualitative comparison results between the ArR and dArR metrics on retinal

images. Blue line represent the centerline. Blue lines represent the centerline. Yellow and

cyan dots represent the source and end points. (a) Patches from retinal images. (b) and (c):

Geodesic paths extracted by the ArR and dArR metrics. (d) The segmented vessel regions.

racy results for the vessel regions with respect to different metrics are shown in

Table. 2. The detection accuracy of the vessel centerlines is shown in Table. 3.

From these quantitive results, we can see that the proposed metrics indeed over-

comes the shortcuts and short branches combination problems and outperform380

all the other compared metrics.

The dIsoM4 and dArR metrics (also including the dArR-M and dArR-S

metrics) are able to take into account the curve bending measure to freeze front

points so as to avoid shortcuts and short branches combination problems. From

Tables. 2 and 3, we can see that these metrics achieve better vessel segmenta-385

4As mentioned above, dIsoM metric is a variant of the one proposed in [28].
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(a) (b) (c)

Figure 12: Qualitative comparison results for the AFC and dArR metrics on retinal images.

The blue lines represent the extracted geodesic paths. The blue and cyan dots represent the

source and end points. (a): Patches from retina images. (b) and (c): Geodesic paths from

the AFC [29] and dArR metrics, respectively.

tion results than the static ones on those retinal image patches. However, the

proposed metrics differ to dIsoM by encompassing the vessel anisotropy fea-

tures to build an anisotropic (radius-lifted) Riemannian metric. During the fast

marching front propagation and within the vessel regions, the vessel anisotropy

features can greatly help the fast marching fronts to propagate faster along the390

direction of the vessel. As a consequence, in conjunction with the crossing-

adaptive tensor filed, the performance of the proposed method in the vessel

tracking tasks can be improved by the anisotropy enhancement.

In Fig. 12, we show the minimal paths obtained respectively using the AFC

metric and the dArR metric. The experimental results are conducted on retina395

image patches, showing that our proposed dArR metric can detect the correct

vessels even if its neighboring or crossing vessels have similar appearance fea-

tures.

Finally, in Fig. 13, a failure example of vessel extraction for the proposed

metric is given, in which parts of the vessel region are mistaken and the vessel400

centerline is not correct. The vessel directions detected by the OOF do not
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(a) (b) (c) (d)

Figure 13: (a) Ground truth. (b) Image patch with two given points (yellow and cyan dots).

(c) The extracted vessel centerline and boundary by the proposed metric. (d) The segmented

vessel region.

Table 2: Quantitative comparison results of vessel region segmentation on retinal images from

the DRIVE and IOSTAR datasets.

Dataset ArR caArR dArR dArR-M dArR-S

DRIVE 0.365 0.580 0.861 0.864 0.862

IOSTAR 0.790 0.815 0.881 0.887 0.890

agree with the real ones, induced by center reflection. Since the proposed dArR

metric is constructed relying on the vessel anisotropy features, the segmentation

results in such case fail to get proper results.

We analyze the computation time of each component of the proposed method.405

There are mainly three steps in the proposed method including the vesselness

computation, the crossing-adaptive anisotropic radius-lifted tensor field con-

struction and the fast marching front propagation. The front-freezing indicator

is computed during the fast marching front propagation. The results are shown

in Table. 4.410

4.3. Experiments on Satellite Images

In this section, we conduct the experiments on satellite images with rivers,

bridges and streets from Google Earth to evaluate the proposed metric.
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Table 3: Quantitative comparison results of vessel centerlines detection on retinal images from

the DRIVE and IOSTAR datasets.

Dataset ArR caArR dIsoM dArR dArR-M dArR-S

DRIVE 0.425 0.557 0.803 0.849 0.842 0.850

IOSTAR 0.683 0.730 0.832 0.862 0.859 0.865

Table 4: Computation time (in seconds) of each part of the proposed method on retinal images

from the DRIVE and IOSTAR datasets.

Dataset Vesselness Metric FM

DRIVE 1.977s 0.118s 2.080s

IOSTAR 3.322s 0.231s 3.146s

In Fig. 14, we illustrate the qualitative comparison for the ArR metric, the

caArR metric and the dArR metric, which are shown from the second to the415

fourth columns. The first row shows the segmentation results from the image

with river crossing several bridges whose intensities are similar to these in the

background region. The ArR and caArR metrics-driven minimal paths miss the

river direction from the middle located bridge, where the bending of the geodesic

path varies strongly. The bending constraint is able to effectively handle this420

problem. The second row illustrates the segmentation results of a satellite image

with two neighbouring rivers and complex background. We aim to detect the

smaller one by given two points. We observe that the correct river region cannot

be recognized by the ArR metric. The dArR-based minimal paths are capable

of tracking the favourable river correctly without being effected by the stronger425

river.
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(a) (b) (c) (d)

Figure 14: Qualitative comparison results between the ArR and dArR metrics on satellite

images. The Red region describes the detected road or river and the blue line represents the

target centerline. The yellow and cyan dots represent the source and end points. (a) Image

patches. (b) to (d): The segmentation results derived from the ArR, caArR and dArR metrics,

respectively.

5. Conclusion

In this paper, there are mainly three contributions of the proposed method

to overcome the shortcut and short branches combination problems in tubular

structure detection. Firstly, we propose a crossing-adaptive anisotropic tensor430

field in the radius-lifted space, which is used to reduce the in favourable effects

from the incorrect vessel anisotropy features at the crossing points. This is done

by reducing the anisotropy in the crossing points adaptively and simultaneously

keeping the high anisotropy in the single vessel points. Secondly, we propose a

new way to reduce the influence from the region outside the vessel structure.435

Finally, we show a way for exploiting front freezing scheme for the fast marching

algorithm in a radius-lifted space. We show the practical application of the

proposed dynamic minimal path model on synthetic images, retinal images and

satellite images. The results demonstrate that our method indeed outperforms

classical minimal path methods with static geodesic metrics and the dynamic440

isotropic metric. In the future work, the proposed method will be extended

to 3D tubular structure detection application and try to reduce the manually

intervention.
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