
Reinterpreting CTC Training as Iterative Fitting

Hongzhu Lia, Weiqiang Wanga,∗

aUniversity of Chinese Academy of Sciences, Beijing, China

Abstract

The connectionist temporal classification (CTC) enables end-to-end sequence
learning by maximizing the probability of correctly recognizing sequences during
training. The outputs of a CTC-trained model tend to form a series of spikes
separated by strongly predicted blanks, know as the spiky problem. To figure out
the reason for it, we reinterpret the CTC training process as an iterative fitting
task that is based on frame-wise cross-entropy loss. It offers us an intuitive
way to compare target probabilities with model outputs for each iteration, and
explain how the model outputs gradually turns spiky. Inspired by it, we put
forward two ways to modify the CTC training. The experiments demonstrate
that our method can well solve the spiky problem and moreover, lead to faster
convergence over various training settings. Beside this, the reinterpretation of
CTC, as a brand new perspective, may be potentially useful in other situations.
The code is publicly available at https://github.com/hzli-ucas/caffe/tree/ctc.

Keywords: Connectionist Temporal Classification (CTC)

1. Introduction

The connectionist temporal classification (CTC) [1] is a method to solve
sequence-to-sequence learning, and is widely used in various sequence labeling
tasks, such as speech recognition [2, 3, 4], text recognition [5, 6, 7], dynamic
gesture recognition [8], sound event detection [9], action labeling [10] and lip
reading [11]. The basic idea of CTC is to interpret the network outputs, a
sequence of probability distributions over different labels, as a probability dis-
tribution over all possible label sequences. With an extra blank class, the output
at each timestep, or frame, of the sequence indicates either a specific label or no
label. The outputs over all timesteps consist a sequence of labels and blanks,
named as a path. A path is mapped to a label sequence by removing the re-
peated labels then the blanks in it, in this way a label sequence usually has more
than one corresponding path. The CTC training is to maximize the probability
of the ground-truth label sequence conditioned on the input, which is calculated
by summing up probabilities of all the corresponding paths.

∗Corresponding author
Email address: wqwang@ucas.ac.cn (Weiqiang Wang)

Preprint submitted to Journal of LATEX Templates July 8, 2020

ar
X

iv
:1

90
4.

10
61

9v
2

 [
cs

.C
V

]
 7

 J
ul

 2
02

0

Figure 1: Evolution of the network outputs and CTC error signal during training. Lines with
different colors denote different labels, and the dashed line is the blank class. [1]

Though there’s no explicit restriction on the ratio of labels to blanks during
training, the outputs of a CTC-trained model tend to form a series of label spikes
separated by strongly predicted blanks as in Figure 1 [1]. This phenomenon is
welcomed in some situation, for example, Wang and Metze [9] aims to predict
the begin/end of each sound event, where a spike signal is wanted. On the
other hand, the spiky distribution is not desirable when the model needs to
densely predict labels for consecutive frames, and may harm the model gener-
alization for its implying that non-blank labels is predicted in strict condition.
According to Liu et al. [12], the CTC training will concentrate on a dominant
path once it finds one, and dominant paths are often overwhelmed by blanks
as blanks are included in most of the feasible paths, thus leads to the spiky
problem. They propose a maximum entropy regularization for CTC (EnCTC),
which prevents the entropy of feasible paths from decreasing too fast, to enhance
exploration during training and get smoother and wider activation of non-blank
labels. Huang et al. [10] adopt CTC for action labelling in video, getting a
degenerated spiky path, which is dominated by a single non-blank label while
blank other labels appears as spikes. They utilize prior knowledge to super-
vise CTC training, re-weighting paths with frame-to-frame visual similarities
and ruling out infeasible paths with a few sparsely annotated frames, to get a
reasonable path. In order to speed up training, Sampled CTC [13] proposes to
sample only one path for optimization in each iteration to speed up training for
recurrent neural networks, it reduces the spikiness of CTC as a side-effect. All
these works consider the probability of correct labelling as the sum of proba-
bility of corresponding paths. This is certainly based on the definition of CTC,
but not visually intuitive to be connected with the spiky problem.

We put aside the path perspective and consider each frame as a unit. Based

2

on a pseudo GT (ground-truth), we replace the original loss function of the
CTC, the negative log probability of correct labelling the sequence, with the
sum of frame-wise cross entropy. Assuming the gradients of two loss functions
are equal, the pseudo GT can be derived from the original CTC update formula.
It should be noted that, for each frame within each sequence, the pseudo GT
is not a fixed value during the training process, and its value is determined
by the ground-truth label sequence and the current model outputs. Therefore,
compared with cross-entropy optimization based on true frame-wise labeling,
CTC training can be viewed as a heuristic iterative frame-wise fitting process.
The reinterpretion of CTC does not change the training process, but brings a
new perspective to understand and modify it.

From this perspective, we provide a tool to simulate and display the iterative
training process of CTC, and analyse why CTC training leads to spikes. A
very intuitive way is proposed to deal with the spikes, which is to directly
adjust the non-blank label proportion in pseudo GT. Observing that the models
convergence speed is mainly affected by key frames, which usually have large
error signals, we focus training on key frames to speed up the convergence
process.

The main contributions are summarized as follows: (1) We reinterpret the
CTC objective function as frame-wise cross entropy, to understand and im-
prove CTC from a new perspective; (2) Modify the pseudo GT to solve the
CTC spike problem, where we can simply use a hyper-parameter to specify
the label proportion in network outputs; (3) Accelerate network convergence by
frame reweighting, and experiments confirm its effectiveness at different training
settings; (4) We provide a visualization tool that simulates the CTC training
process, which can be used to observe the training process of CTC, as well as
peek the effects of further modifications on CTC to rule out the bad ones in
advance.

2. Method

2.1. Connectionist Temporal Classification

The CTC [1] is proposed for labeling sequence data within a single network
architecture that doesn’t need pre-segmentation and post-processing. The basic
idea is to interpret the network outputs as a conditional probability distribution
over all possible output label sequences. Given this distribution, an objective
function can be derived that directly maximises the probabilities of the correct
label sequences.

At each timestep, the network outputs a probability distribution over the
label set L′ = L ∪ {blank}, where L contains all the labels in the task and
the extra blank represents ‘no label’. The activation ytk is interpreted as the
probability of observing label k of L′ at time t. Given the length T input
sequence x, we get the conditional probability p(π|x) of observing a particular

3

path π through the lattice of label observations:

p(π|x) =

T∏
t=1

ytπt
,∀π ∈ L′T , (1)

where πt is the label observed at time t along path π, and L′T is the set of
length T paths over L′.

Paths are mapped onto label sequences by an operation B that simply re-
moves the repeated labels then the blanks in a sequence. For a given label se-
quence l ∈ LU , U ≤ T , more than one π corresponds to it, e.g. B(aa−−ab−) =
B(−a − abb) = aab, where ‘−’ denotes the blank. We can evaluate the con-
ditional probability of l as the sum of probabilities of all the corresponding
paths:

p(l|x) =
∑

π∈B−1(l)

p(π|x). (2)

The calculation seems problematic, for the the number of corresponding paths
grows exponetially with U . It can be solved with a dynamic-programming al-
gorithm similar to the forward-backward algorithm for HMMs [14], by breaking
down the sum over paths corresponding to a labelling l into an iterative sum
over paths corresponding to prefixes of that labelling. To allow for blanks in the
output paths, we consider a modified label sequence l′ ∈ L2U+1, with blanks
added at the beginning and the end of l, and between every pair of consecu-
tive labels. In calculating the probabilities of prefixes of l′, transitions between
blank and non-blank labels, and between any pair of distinct non-blank labels
are allowed. Further calculation details can be found in [15].

The CTC loss function is defined as the negative log probability of correctly
labelling the sequence:

CTC(l,x) = −ln p(l|x). (3)

During training, to backpropagate the gradient through the output layer, we
need the derivatives of the loss function versus the outputs {atk|t ∈ [1, T], k ∈ L′}
before the activation function is applied. For the softmax activation function

ytk =
ea

t
k∑

k′ e
at
k′
, (4)

where k′ ranges over L′, the derivative with respect to atk is

∂CTC(l,x)

∂atk
= ytk −

1

p(l|x)

∑
π∈B−1(l):
πt=k

p(π|x), (5)

where
∑
π∈B−1(l):πt=k

p(π|x) is the sum of probabilities of all the paths corre-

sponding to l that go through the label k at time t. The Equation (5) is an
equivalent of Equation (7.34) in [15] by substituting Equation (7.25) into it.

4

When the network is used for prediction, the predictions over all timesteps
are converted into a label sequence. Since the computational complexity grows
exponentially with the length of the path, it is not practical to find the most
probable label sequence l̂. There are many approximate alternatives, and the
best path decoding is one of the most commonly used methods. It assumes
that the most probable output will correspond to l̂:

l̂ ≈ B(π∗)

where π∗ = arg max
π

p(π|x).
(6)

It is not guaranteed to find the most probable label sequence, but the solution
is good enough in most cases and the computation procedure is trivial.

2.2. Cross Entropy

The cross entropy (CE) is used to estimate the distance between two prob-
ability distributions. Given ground-truth y′ and network outputs y, the cross
entropy loss is defined as

CE(y′,y) = −
∑
k

y′kln(yk), (7)

where k ranges over all the classes, yk and y′k are the model’s estimated and
ground-truth probabilities for class k respectively. Let {ak} be the model’s out-
puts before the softmax activation function is applied, the loss function deriva-
tive with respect to ak can be found by

∂CE(y′,y)

∂ak
= yk − y′k. (8)

The cross-entropy objective function is usually used for classification prob-
lems, where y′ is a one-hot distribution. In our opinion, since the definition of
cross entropy does not restrict y′ to one-hot distribution, this objective func-
tion is also suitable for fitting a general probability distribution (not necessarily
one-hot) to update y toward it.

2.3. Reinterpretion of CTC

Given an input sequence x and its ground-truth label sequence l, the net-
work outputs probability distributions Y = {ytk|t ∈ [1, T], k ∈ L′} over the T
timesteps of the sequence. In the original CTC formula Equation (1), only the
input x id considered as a conditional parameter. But the caluculation is actu-
ally performed on Y, which is not only determined by the input, but also related
to the current network parameter W, which should not be ignored. According
to us, p(l|x) should be p(l|x,W) or p(l|Y). For more accurate expression in the
following, we will replace x in the formula with Y when necessary.

We define yt = {ytk|k ∈ L′} as the predicted probability distribution for the
sample of timestep t, and assume there is a corresponding ground-truth prob-
ability distribution y′t = {y′tk |k ∈ L′}. The cross entropy should be equivalent

5

to the original CTC loss, meaning that they behave the same during gradient
back-propagation, so there is

∂CTC(l,Y)

∂atk
=
∂
∑
t′ CE(y′t′ ,yt′)

∂atk
(9)

A feasible solution for y′t can be found by following the conditions below:
y′tk = 1

p(l|Y)

∑
π∈B−1(l):
πt=k

p(π|Y),

∂y′tk
∂yt
′

k′
= 0,∀t, t′ ∈ [1, T], k, k′ ∈ L′.

(10)

We can get the derivative of
∑
t CE(y′t,yt) versus atk

∂
∑
t′ CE(y′t′ ,yt′)

∂atk
= ytk − y′tk , (11)

which equals to the CTC loss function derivative as in Equation (5). See the
appendix for proof process.

It seems unreasonable that the derivative of y′tk versus yt
′

k′ equals to zero,
when y′tk depends on Y. We argue that the pseudo GT (ground-truth) Y′

is calculated on Y, but used as a constant during each iteration. It sounds
sophistical, but is acceptable if the CTC training process is understood as an
iterative fitting task as follows. For each iteration, given the current output Y
and label sequence l, the pseudo GT is calculated in a heuristic way as

y′tk =
1

p(l|Y)

∑
π∈B−1(l):
πt=k

p(π|Y) =
p(l, πt = k|Y)

p(l|Y)
= p(πt = k|l,Y), (12)

It is a posterior probability, that frame t takes category k, conditioned on that
the network output Y is correctly mapped to the ground-truth label sequence
l. Let Y′ be the target of the current iteration, and fit the network output Y
to it based on the cross-entropy loss.

Some examples of Y and the corresponding Y′ are illustrated in Figure 2
for an intuitive perception. It is easy to find that the pseudo GT is actually
the sum of the network output and the error signal in Figure 1. Note that the
reinterpretion in this section does not really change CTC, but aims to provide
a different perspective to understand CTC.

2.4. Analysis of Spiky Problem

In outputs of CTC-trained models, the non-blank label activations usually
appear in spiky shapes, and most frames are occupied by high-confidence blanks.
To find out the reason for it, we simulate and display the training process
of CTC with a simple tool, where we use a randomly initialized matrix as
network output, update it according to CTC, and draw the output probability
distributions and pseudo GT for each iteration. Observing the training process

6

prediction Y ground-truth Y'

Figure 2: Examples of predicted probability distributions Y and the corresponding ground-
truths Y′. This is the same sequence during different iterations. Lines with different colors
denote different labels, and the dashed line indicates blank.

presented in Fig. 4, we consider the spiky problem as a result of the following
two aspects.

On one hand, CTC takes sequence probability as the optimization objective,
so it prefers outputs that are correctly mapped to the label sequence with high
probabilities. We can get an intuitive perception from the probability distribu-
tions given in Figure 3, setting a as the label sequence. Sub figure (a) and (b)
respectively obtains a path, −−−a−−− and −aaaaa−, with 100% probability.
Both paths are mapped to a after removing of repeated labels then blanks, so
the probability of the correct label sequence is 100%. Sub figure (c) and (d)
both consist of multiple paths. For example, (c) contains path − − aaa − −,
−− aa−−−, −−−aa−−, and −−−a−−− with 25% probability each. All
the four paths are mapped to a, so the probability of correct labelling is still
100%. As for sub figure (e), the probability of the correct label sequence is only
81%, because it contains paths that are mapped to wrong label sequences, for
example B(−a − a − −−) = aa. Comparing the shapes of these distributions,
we find that the smoother the shape, the greater probability of wrong paths.
Therefore, the target probability distribution always tend to be steeper than
the current output, as can be viewed in Figure 4.

On the other hand, the outputs of randomly initialized networks usually have
uniform probability distributions, e.g. Figure 1(a), and it takes a while before
the outputs become steep enough. During this period, the model convergence
would be biased towards the dominant category, and we call this phase the
suppression phase. In CTC training, blank is usually the dominant class for
blanks consist more than half of the modified label sequence l′ as mentioned in
Section 2.1. The suppression by blank can be observed in Figure 4(b), which
is very obvious on the middle label. When the output is steep enough, it is
occupied by high-confidence blanks then, the probability of the label gradually

7

0.0

0.2

0.4

0.6

0.8

1.0

(a)

0.0

0.2

0.4

0.6

0.8

1.0

(b)

0.0

0.2

0.4

0.6

0.8

1.0

(c)

0.0

0.2

0.4

0.6

0.8

1.0

(d)

0.0

0.2

0.4

0.6

0.8

1.0

(e)

Figure 3: Examples of probability distribution along time-axis. The solid line indicates char-
acter ‘a’, and the dash line indicates blank. The dots on lines indicate the frame segmentation.

0.0

0.2

0.4

0.6

0.8

1.0

(a) iteration = 0

0.0

0.2

0.4

0.6

0.8

1.0

(b) iteration = 500

0.0

0.2

0.4

0.6

0.8

1.0

(c) iteration = 2000

0.0

0.2

0.4

0.6

0.8

1.0

(d) iteration = 4000

Figure 4: The convergence process simulation of CTC training. Lines with different colors
present the activations of different non-blank labels, where solid lines indicate the model
outputs and dash lines indicate the pseudo GT.

8

increases to form a spike like Figure 3(a) or (c) instead of Figure 3(b) or (d).
We call this process the peaking phase, and illustrate it in Figure 4(c) and
(d).

2.5. Setting the Non-blank Proportion

Observing the convergence process of CTC training, we find that the pro-
portion of labels decreases to zero during the suppression phase but cannot
increase too much after entering the peaking phase. Since the spikes lead to the
low proportion of non-blank category, maintaining the proportion at a reason-
able value seems useful to solve the spiky problem. We use a hyperparameter
α to specify the non-blank proportion in the sequence, and make sure the pro-
portion of non-blanks be α and the proportion of blanks be 1 − α during the
entire convergence process. The most direct way is to modify the pseudo GT
by scaling down categories that exceed the desired proportions and scaling up
categories that do not reach the proportion.

At first we calculate the total amount of each category in the sequence,

Vk =
∑
t

y′tk , (13)

and then calculate the proportion that this category should occupy

Nk =
∑
i

I(li = k) where k 6= blank, (14)

which is assumed to be the number of occurrences in the label sequence. I(·)
equals 1 when the condition is true, otherwise 0. The proportion of blank should
be the length of the tag sequence, which is elaborated in Section 2.1. Based on
hyperparameter α, we scale the values for different class of pseudo GT as

y′tk ←

{
y′tk (1− α)(

∑
k′ 6=blankNk′)/Vk if k = blank

y′tk αNk/Vk otherwise
(15)

For each frame, the sum of the values over different categories is normalized to
one to obtain a valid probability distribution

y′tk ←
y′tk∑
k′ y
′t
k′
. (16)

This is a highly simplified rescaling strategy, where different non-blank labels
are assumed to have the same proportion, the rescaling is performed within each
batch instead of sequence, and the non-blank proportion after normalization will
only be an approximation of α. We carry out a simulation experiment for this
method, and obtain the result in Figure 5, which is is satisfactory for solving the
spiky problem. Besides, the method also shows an effect of speeding up training,
for ideal outputs are obtained around iteration 2000, way ahead compared with
Fig. 4. It may have something to do with the absence of suppression phase.

9

0.0

0.2

0.4

0.6

0.8

1.0

(a) iteration = 0

0.0

0.2

0.4

0.6

0.8

1.0

(b) iteration = 200

0.0

0.2

0.4

0.6

0.8

1.0

(c) iteration = 500

0.0

0.2

0.4

0.6

0.8

1.0

(d) iteration = 2000

Figure 5: The convergence process simulation of the modified CTC training that maintains
the non-blank ratio of pseudo GT to be α = 0.5. Lines with different colors present the
activations of different non-blank labels, where solid lines indicate the model outputs and
dash lines indicate the pseudo GT.

2.6. Focusing on Key Frames

We find that different frames in a sequence are of different importance during
the CTC convergence. The most important ones are those that prevent the label
shapes being more steeper, i.e. the hillside frames during suppression phase and
the peak frames during peaking phase, named as key frames. The key frames
usually have a large probability increase in a certain category, which is blank in
the suppression phase, and non-blank in the peaking phase. Based on the ideas
of key frames, we reweight frames within each sequence to focus the training
on key frames, and use γ as the hyperparameter to adjust weighting degree.
Following GHM [16], which performs reweighting direclty on gradient rather
than on loss, we reweight the gradient as

∂CTCγ(l,Y)

∂atk
= wγt (ytk − y′tk), (17)

where the frame weight is calculated by

wt = max
k

(y′tk − ytk). (18)

Then within each sequence, the gradient is divided by the weights sum for
normalization. It is easy to notice that when the value of γ is 0, this modification
makes no difference.

The simulation experiment is shown in Figure 6, where this method lead to
faster convergence than basic CTC training as in Figure 4.

3. Experiments

To evaluate the effects of our proposed method, we compare them with the
CTC training according to the output distributions, convergence process, gener-
alization and final accuracy of the models. For all the experiments, the accuracy
refers to sequence accuracy, i.e. the percentage of testing images correctly rec-
ognized.

10

0.0

0.2

0.4

0.6

0.8

1.0

(a) iteration = 0

0.0

0.2

0.4

0.6

0.8

1.0

(b) iteration = 500

0.0

0.2

0.4

0.6

0.8

1.0

(c) iteration = 2000

0.0

0.2

0.4

0.6

0.8

1.0

(d) iteration = 4000

Figure 6: The convergence process simulation of the modified CTC training that focuses on
key frames with γ = 1. Lines with different colors present the activations of different non-
blank labels, where solid lines indicate the model outputs and dash lines indicate the pseudo
GT.

3.1. Datasets

For all the following experiments, we use the synthetic dataset (Synth90k)
released by Jaderberg et al. [17] as the training data. The dataset consists
of 8 million word images and their corresponding ground-truth words. All the
images are generated by a synthetic data engine using a 90k word dictionary,
and are of different sizes. This is the training set used in all of our experiments,
unless otherwise emphasized.

There are four popular benchmarks for scene text recognition used for model
performance evaluation, namely IIIT5k-word (IIIT5k), Street View Text (SVT),
ICDAR 2003 (IC03) and ICDAR 2013 (IC13). IIIT5k [18] contains 3,000
cropped word images collected from the Internet. SVT [19] contains 647 word
images cropped from 249 street-view images that are collected from Google
Street View. IC03 [20] contains 251 scene images, we discard words that either
contain non-alphanumeric characters or have less than three characters, and get
860 cropped word images. IC13 [21] contains 1,095 word images in total, we
discard words that contain non-alphanumeric characters, and get 1,015 word
images with ground-truths.

To further evaluate the model generalization performance, we conduct ex-
periments on a small dataset Synth5k [12], which consists of 5k training data
and 5k testing data randomly sampled from Synth90k.

3.2. Implementation Details

We use CRNN [22] as our baseline model, and follow their training settings
to train the network on Synth90k. During training, all word images are scaled
to size 32× 100 ignoring their aspect-ratios.

We implement the network architecture within the Caffe [23] framework,
with custom implementation for the input and loss layer. To obtain compre-
hensive results, we adopt different gradient decent optimization algorithms and
learning rates in our experiments, and the details will be presented in each
section. The batch-size is set to 100 in all the experiments.

For all the experiments, we get the recognition results by the lexicon-free
best path decoding [1].

11

Table 1: The additional time complexity and training time for the modification on CTC,
compared with the CTC training. Trn. Time(GPU) denotes training time spent for 100,000
iterations on a single Geforce Titan GPU.

Method Complexity-cpu Complexity-gpu Trn. Time(GPU)

CTC O(NTC) +O(NTU) O(C) +O(TU) +O(N) 197min

CTC with α O(NTC) +O(TU) O(C) +O(T) +O(U) +O(N) 199min
CTC with γ O(NTC) O(C) 194min

3.3. Complexity Analysis

We propose two different ways to modify the CTC training, and compare the
algorithm complexities of them to the original CTC training. Let L denote the
batch-size, T denote the length of input sequence, U denote the length of the la-
bel sequence l, and C denote the output class number |L′|. The back-propagated
gradient is based on ytk and y′tk , which are calculated as follows. First, a softmax
activation is applied to get the normalized network outputs {ytk}, whose time
complexity is O(NTC) for the cpu implementation and O(C) for the parallel
gpu implementation. Then a dynamic-programming algorithm is performed to
calculate {y′tk }, whose time complexity is O(NTU) for cpu and O(TU) for gpu
implementations. For basic CTC training, there is the final subtraction, whose
time complexity is O(NTC) for cpu and O(1) for gpu. Meanwhile, the proposed
methods need additional operations. We obtain the time complexity of CTC by
summing up the above terms, and list the time complexity of the additional op-
erations for each method in Table 1. It’s obvious that the additional operations
do not change the time complexity, so the modified training will not take much
more time than CTC training. This is also validated by experiments, where the
changes of training time are negligible.

The space complexity of CTC is O(NTC). Since the algorithm makes the
most of the original space, the γ modification needs no additional space, and the
additional space complexity of the α modification is only O(C), which doesn’t
change the original space complexity.

In one word, the proposed methods have the same time and space complexity
as the CTC training.

3.4. Adjustment of Non-Blank Proportion

When use α to adjust the label proportion in network outputs, we obtain
very ideal effects in the simulation experiment. We conduct experiments on real-
world data and get the results that are highly consistent with the simulation.
The output of models trained with different α are illustrated in Figure 7.

Compared with EnCTC [12] fixing the spiky problem with maximum entropy
regularization, our method has one more advantage: we can specify the ratio of
the labels according to actual needs, and freely adjust the width of the labels
on the time axis.

12

(a) input image

D - - - - - - - - R - I I - F - T - - E - - D - - -
0.0

0.5

1.0
(b) CTC without alpha

D - - - - - - - - R I I - F F - T - E E - DD - - -
0.0

0.5

1.0
(c) alpha = 0.5

- - - - DD - - R R I I I F F - T T E E - DD - - -
0.0

0.5

1.0
(d) alpha = 0.7

- - DDD - - R R I I I F F F T T E E E EDDD - -
0.0

0.5

1.0
(e) alpha = 0.9

Figure 7: Illustration of the prediction results of an example image. Lines with different colors
denote different labels, and the dashed line indicates blank. The labels under the horizontal
axis indicate the class with the maximum probability at each timestep.

13

Table 2: The accuracy on all testing images from IIIT5k, SVT, IC03, IC13. The models are
optimized by SGD with momentum 0.9.

(a) learning rate: 0.01

iter. CTC α = 0.5 γ = 1 α = 0.5, γ = 1

50k 66.8 70.6 71.5 72.0
100k 73.7 75.0 75.9 75.4
150k 74.8 77.4 74.3 78.9
200k 74.9 77.1 78.1 80.0
250k 76.0 76.6 76.9 79.7

(b) learning rate: 0.001

iter. CTC α = 0.5 γ = 1 α = 0.5, γ = 1

50k 69.9 72.0 74.3 74.9
100k 72.1 72.2 78.2 79.8
150k 75.4 76.7 79.0 81.0
200k 77.7 77.8 79.5 81.3
250k 77.3 78.3 80.0 82.5

(c) learning rate: 0.0001

iter. CTC α = 0.5 γ = 1 α = 0.5, γ = 1

50k 67.2 68.1 69.8 70.8
100k 70.5 71.7 72.5 75.5
150k 71.9 73.5 75.6 78.2
200k 72.9 73.8 76.0 80.1
250k 72.1 74.6 78.4 79.6

3.5. Facilitation of Convergence

We conduct control experiments to check if the proposed method is effective
for speeding up the training. In order to comprehensively validate the effec-
tiveness, we consider three different optimization algorithms, including SGD,
Adam, and AdaDelta. For SGD and AdaDelta, we give three control groups
at different learning rates, where larger or smaller learning rate has a negative
effect on the convergence speed. Therefore, we believe that the comparison
experiments are representative of various training settings and the results are
convincing. For optimization method Adam, CTC-trained model cannot stably
converge at a higher order learning rate 0.01, so we present two sets of controls.
For experiments in this section, the learning rate is fixed during training. Every
50k iterations, we test the models on all four test sets, and record the accuracies
in Table 2, 3, and 4.

The results show that at most training settings, α and γ accelerate the
convergence. The extent of acceleration is related to the optimization algorithm
and the learning rate. The convergence-facilitation is the most obvious with

14

Table 3: The accuracy on all testing images from IIIT5k, SVT, IC03, IC13. The models are
optimized by Adam.

(a) learning rate: 0.001

iter. CTC α = 0.5 γ = 1 α = 0.5, γ = 1

50k 74.1 77.0 77.9 78.3
100k 79.4 77.4 78.5 80.9
150k 79.1 78.4 80.2 81.7
200k 78.6 80.0 81.2 81.7
250k 80.1 80.8 81.5 82.2

(b) learning rate: 0.0001

iter. CTC α = 0.5 γ = 1 α = 0.5, γ = 1

50k 71.2 74.4 76.1 76.2
100k 73.3 77.3 79.5 79.3
150k 77.4 77.2 81.8 80.8
200k 78.8 79.2 82.1 81.0
250k 78.4 81.0 81.8 82.9

the basic optimization algorithm SGD, and the proposed methods may cause
instability when the learning rate is too large. The acceleration effect usually
brings a significant increase in accuracy during early training, but this advantage
may gradually diminish as the training continues and model converges.

All in all, comprehensive control experiments demonstrate that our proposed
method do speed up convergence, which can be adopted at different training
parameters to obtain further acceleration effects.

3.6. Evaluation on Generalization

We follow the practice of EnCTC [12] to evaluate the generalization of mod-
els. They train models for 150 epochs on the training data of Synth5k, and
compare the generalization of the models with the accuracy on its validation
data. They increase the accuracy from 38% of CTC to 47% with their proposed
method.

However, we believe that their models suffer from under-fitting based on
our experimental results. After training our CTC model for 150 epochs, we get
similar accuracy as them, which is 41% in the upper left corner of Table 5(a).
But continuing to train for another 150 epochs, the accuracy of CTC reaches
50%, exceeding their best result. So we did not compare the results with them,
but still got inspiration from the comparison experiments.

Table 5(a) shows the accuracies of models after 150 epochs training. At
this time, due to insufficient training, the models suffer from underfitting. Our
modifications with α and γ facilitate the convergence process, thus lead to higher
accuracies. Table 5(b) shows the results after 300 epochs. At this time, CTC

15

Table 4: The accuracy on all testing images from IIIT5k, SVT, IC03, IC13. The models are
optimized by AdaDelta.

(a) learning rate: 10

iter. CTC α = 0.5 γ = 1 α = 0.5, γ = 1

50k 68.3 71.9 68.2 68.8
100k 70.0 69.7 67.2 69.3
150k 69.8 70.2 69.8 67.5
200k 68.0 68.6 66.2 68.2
250k 68.2 63.8 67.7 66.0

(b) learning rate: 1

iter. CTC α = 0.5 γ = 1 α = 0.5, γ = 1

50k 74.7 78.7 78.0 79.0
100k 77.1 80.8 79.8 81.3
150k 80.3 80.3 79.6 81.9
200k 81.5 79.9 81.5 81.4
250k 80.6 80.9 81.6 81.6

(c) learning rate: 0.1

iter. CTC α = 0.5 γ = 1 α = 0.5, γ = 1

50k 69.3 71.9 70.0 71.8
100k 73.1 74.4 74.7 75.7
150k 74.4 76.8 75.1 76.7
200k 74.3 78.9 77.5 79.5
250k 76.6 77.0 77.3 79.2

16

Table 5: The results of models trained with different hyperparameters on Synth5k. All the
models are optimized by AdaDelta with fixed learning rate 1. (a) The models are trained with
corresponding hyperparameters for 150 epoch. (b) Trained with different hyperparameters for
150 epoch on the basis of models in (a). (c) Trained with basic CTC for 150 epoch on the
basis of models in (a).

(a)

without α α = 0.5 α = 0.7 α = 0.9

without γ 41.0 43.9 43.9 42.2
γ = 0.5 45.1 45.9 42.6 44.7
γ = 1 35.1 47.1 45.2 38.6

(b)

without α α = 0.5 α = 0.7 α = 0.9

without γ 49.3 44.7 47.6 44.1
γ = 0.5 46.9 45.8 46.3 44.8
γ = 1 38.7 47.4 46.8 45.4

(c)

without α α = 0.5 α = 0.7 α = 0.9

without γ 49.3 50.3 50.5 49.6
γ = 0.5 50.8 51.6 52.1 50.5
γ = 1 42.1 51.9 52.1 50.8

model has converged to the optimal solution, but the proposed method could not
reach a stable convergence. The same effect can be found in some optimization
algorithms , for example Adam, which also accelerates training but cannot reach
the optimal solution due to the modification on magnitude and direction of the
gradient. We get the results in Table 5(c) by training the models from Table 5(a)
with basic CTC for amother 150 epochs. It can be seen that ‘first modified CTC
then naive CTC’ strategy obtains better results than using basic CTC only. We
believe that this is due to the proposed methods’ heading to better solution
space in the early training period, thus getting better generalization.

In addition, experiments on the Synth5k provide us with some experience in
choosing hyperparameter values. For example, γ = 1 benifits the convergence
process in the previous section, but instead hurts the model performance in
this experiment. This shows that even for the same task, the optimal value of
hyperparameters may be different for different scales of data, and should chosen
carefully. If you cannot be sure, a smaller γ for example 0.5 is always safer, may
be not very effective but at least no drawbacks.

17

Table 6: The results of models with CRNN architecture.

Method IIIT5k SVT IC03 IC13

CRNN [22] 78.2 80.8 89.4 86.7
EnCTC [12] 82.6 81.5 90.8 90.0
EsCTC [12] 81.7 81.5 92.6 87.4

EnEsCTC [12] 82.0 80.6 92.0 90.6

CTC 78.8 80.5 89.2 88.4
α = 0.5, γ = 1 81.1 82.2 91.2 87.7

3.7. Comparison on Accuracy

Convolutional recurrent neural network (CRNN) [22] is one of the most
popular methods in CTC-based text recognition, and it is used as the baseline
of our work. We compare our methods with CRNN and EnCTC [12] that use
the same network structure. Shi et al. [22] adopt basic CTC to train the model
for 250k, and Liu et al. [12] use improved loss function to train each model for
about 1200k iterations. We use AdaDelta as optimization algorithm, set initial
learning rate to 1, decrease it by a factor of 0.1 at iteration 200k, and end training
after 300k iterations. One model is trained with the proposed method, and the
other is trained with basic CTC as a control. The accuracies on test sets are
presented in Table 6. It is reasonable to obtain similar accuracies to CRNN with
the model trained with basic CTC, since both models are trained with the same
objective function for about the same iterations. The proposed method with
hyperparameter α = 0.5, γ = 1 achieves a slightly better performance, which is
comparable to EnCTC meanwhile spending much less time on training.

It has been discussed in section 3.5, as the model converges, the improvement
on accuracy brought by accelerated convergence may no longer be obvious.
According to section 3.6, when the model got near the optimal solution, the
modified training may bring risks or benefits, depending on the specific usage.
When the scale of the training set changes, the effective values of α and γ
are different, and we need to conduct more experiments to find them. Tuning
parameters on such a large-scale training set takes a lot of efforts, and for now we
have not found an “optimal hyperparameter” that is effective in all situations,
which we think as a problem worth further research.

4. Conclusion

In this paper, we utilize frame-wise cross-entropy as the loss function, and
reinterpret CTC training as a heuristic algorithm, which minimizes its loss
through iterative fitting for frame-wise probability distribution. From this per-
spective, we modify the CTC training in two ways: (1) Modify the target prob-
ability to be fitted, which is called pseudo GT here. (2) Reweight the frames
within each sequence. Experimental results show that the proposed method

18

can well solve the spiky problem of CTC and facilitate model convergence un-
der different training settings. We also evaluate the effects of our methods on
generalization and accuracy of models, but more efforts are needed to find the
optimal hyperparameter values.

We provide a tool that simulates and visualizes the training process of CTC,
on which we can perform modification and peek its effects on training. For our
proposed methods, the simulation results and practical experimental results are
quite similar. Though the situation is more complicated in practical training,
the simulation experiments can be used as a reference to exclude some useless
modifications in advance, which saves us lots of time.

In addition to the two proposed ways, there are more possibilities in mod-
ifying CTC from the iterative-fitting perspective. For example, ECTC[10] use
sparsely annotated frames to exclude invalid paths in CTC training, which we
can perform in a much easier way, by overwriting the model outputs with an-
notated frames before calculating the pseudo GT. Feng et al [24] combine focal
loss [25] with CTC, making the model attend to difficult sequences within each
batch, to handle unbalanced datasets. Instead we propose to focus training on
difficult frames, which can further deal with imbalance that happens within each
sequence. All these are based on the reinterpretation of CTC training, which
we believe is potentially useful in more situations.

5. Acknowledgement

This work is supported by National Key R&D Program of China under con-
tract No. 2017YFB1002203, NSFC projects under Grant 61976201, NSFC Key
Projects of International (Regional) Cooperation and Exchanges under Grant
61860206004, and Ningbo 2025 Key Project of Science and Technology Innova-
tion with No. 2018B10071.

References

[1] A. Graves, F. Gomez, Connectionist temporal classification: labelling un-
segmented sequence data with recurrent neural networks, in: International
Conference on Machine Learning, 2006, pp. 369–376.

[2] A. Graves, N. Jaitly, Towards end-to-end speech recognition with recurrent
neural networks, in: E. P. Xing, T. Jebara (Eds.), Proceedings of the 31st
International Conference on Machine Learning, Vol. 32 of Proceedings of
Machine Learning Research, PMLR, Bejing, China, 2014, pp. 1764–1772.

[3] Y. Miao, M. Gowayyed, F. Metze, Eesen: End-to-end speech recognition
using deep rnn models and wfst-based decoding, in: Automatic Speech
Recognition & Understanding, 2016.

[4] S. Kim, T. Hori, S. Watanabe, Joint ctc-attention based end-to-end speech
recognition using multi-task learning, in: 2017 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 2017, pp.
4835–4839.

19

[5] G. Alex, L. Marcus, F. Santiago, B. Roman, B. Horst, S. Jurgen, A novel
connectionist system for unconstrained handwriting recognition, IEEE
Transactions on Pattern Analysis & Machine Intelligence 31 (5) (2009)
855–868.

[6] P. He, W. Huang, Y. Qiao, C. L. Chen, X. Tang, Reading scene text in
deep convolutional sequences, in: Thirtieth AAAI Conference on Artificial
Intelligence, 2016, pp. 3501–3508.

[7] F. Borisyuk, A. Gordo, V. Sivakumar, Rosetta: Large scale system for
text detection and recognition in images, in: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Min-
ing, 2018, pp. 71–79.

[8] P. Molchanov, X. Yang, S. Gupta, K. Kim, S. Tyree, J. Kautz, Online
detection and classification of dynamic hand gestures with recurrent 3d
convolutional neural network, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 4207–4215.

[9] Y. Wang, F. Metze, Connectionist Temporal Localization for Sound Event
Detection with Sequential Labeling, in: ICASSP 2019-2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP),
IEEE, 2019, pp. 745–749.

[10] D.-A. Huang, L. Fei-Fei, J. C. Niebles, Connectionist temporal modeling for
weakly supervised action labeling, in: European Conference on Computer
Vision (ECCV), Springer, 2016, pp. 137–153.

[11] F. Cheng, S.-L. Wang, A. W.-C. Liew, Visual speaker authentication with
random prompt texts by a dual-task CNN framework, Pattern Recognition
83 (2018) 340–352.

[12] H. Liu, S. Jin, C. Zhang, Connectionist temporal classification with max-
imum entropy regularization, in: 32nd Conference on Neural Information
Processing Systems (NeurIPS 2018), 2018.

[13] E. Variani, T. Bagby, K. Lahouel, E. McDermott, M. Bacchiani, Sampled
connectionist temporal classification, in: 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp.
4959–4963.

[14] L. Rabiner, A tutorial on hidden markov models and selected applications
in speech recognition, Proceedings of The IEEE - PIEEE 77.

[15] A. Graves, Connectionist temporal classification, in: Supervised Sequence
Labelling with Recurrent Neural Networks, Springer, 2012, pp. 61–93.

[16] B. Li, Y. Liu, X. Wang, Gradient Harmonized Single-stage Detector,
AAAIarXiv:1811.05181.

20

http://arxiv.org/abs/1811.05181

[17] M. Jaderberg, K. Simonyan, A. Vedaldi, A. Zisserman, Synthetic data and
artificial neural networks for natural scene text recognition, in: Workshop
on Deep Learning, NIPS, 2014.

[18] A. Mishra, K. Alahari, C. V. Jawahar, Scene text recognition using higher
order language priors.

[19] W. Kai, B. Babenko, S. Belongie, End-to-end scene text recognition, in:
IEEE International Conference on Computer Vision, 2012.

[20] S. M. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, R. Young, Icdar
2003 robust reading competitions, Proc of the Icdar 7 (2-3) (2003) 105–122.

[21] D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, L. G. I. Bigorda, S. R.
Mestre, J. Mas, D. F. Mota, J. A. Almazan, L. P. D. L. Heras, Icdar
2013 robust reading competition, in: International Conference on Docu-
ment Analysis & Recognition, 2013.

[22] B. Shi, X. Bai, C. Yao, An end-to-end trainable neural network for image-
based sequence recognition and its application to scene text recognition.,
IEEE Transactions on Pattern Analysis & Machine Intelligence 39 (11)
(2017) 2298.

[23] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, Caffe: Convolu-
tional architecture for fast feature embedding, Eprint Arxiv (2014) 675–678.

[24] X. Feng, H. Yao, S. Zhang, Focal CTC Loss for Chinese Optical Character
Recognition on Unbalanced Datasets, Complexity 2019 (2019) 11. doi:

10.1155/2019/9345861.

[25] T. Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, Focal loss for dense object
detection, IEEE Transactions on Pattern Analysis & Machine Intelligence
PP (99) (2017) 2999–3007.

21

http://dx.doi.org/10.1155/2019/9345861
http://dx.doi.org/10.1155/2019/9345861

Appendix A. Cross Entropy Loss for CTC

In the paper, we define a pseudo ground-truth y′t = {y′tk |k ∈ L′}, where
y′tk = 1

p(l|Y)

∑
π∈B−1(l):
πt=k

p(π|Y),

∂y′tk
∂yt
′

k′
= 0,∀t, t′ ∈ [1, T], k, k′ ∈ L′,

(A.1)

to substitute the CTC loss with the sum of cross entropy losses. To this end,
we need to prove that y′t is a feasible solution of

∂CTC(l,Y)

∂atk
=
∂
∑
t′ CE(y′t′ ,yt′)

∂atk
(A.2)

It means given the definition of y′t, Equ. (A.2) holds.
Having {atk|t ∈ [1, T], k ∈ L′} denote the unnormalized network outputs, we

normalize them with the softmax activation,

ytk = softmax(atk) =
ea

t
k∑

k′ e
at
k′
. (A.3)

It’s easy to know

∂yt
′

k′

∂atk
=

0 if t′ 6= t

ytk(1− ytk) if t′ = t, k′ = k

−ytkytk′ if t′ = t, k′ 6= k.

(A.4)

The derivation of cross entropy formatted CTC versus ytk can be calculated as

∂CTC(l,Y)

∂ytk
=
∂
∑
t′ CE(y′t′ ,yt′)

∂ytk

=−
∂
∑
t′,k′ y

′t′
k′ ln(yt

′

k′)

∂ytk

=− ∂y′tk ln(ytk)

∂ytk

=− y′tk
∂ln(ytk)

∂ytk
+ ln(ytk)

∂y′tk
∂ytk

=− y′tk
ytk
,

(A.5)

22

and its derivation with respect to atk can be calculated as

∂CTC(l,Y)

∂atk
=
∂
∑
t′ CE(y′t′ ,yt′)

∂atk

=
∑
t′′,k′

∂
∑
t′ CE(y′t′ ,yt′′)

∂yt
′
k′

∂yt
′′

k′

∂atk

=
∑
k′

∂
∑
t′ CE(y′t′ ,yt′)

∂ytk′

∂ytk′

∂atk

=
∂
∑
t′ CE(y′t′ ,yt′)

∂ytk

∂ytk
∂atk

+
∑
k′ 6=k

∂
∑
t′ CE(y′t′ ,yt′)

∂ytk′

∂ytk′

∂atk

=(−y
′t
k

ytk
)ytk(1− ytk) +

∑
k′ 6=k

(−y
′t
k′

ytk′
)(−ytkytk′)

=y′tk y
t
k − y′tk +

∑
k′ 6=k

y′tk′y
t
k

=ytk
∑
k′

y′tk′ − y′tk

=ytk
1

p(l|Y)

∑
π∈B−1(l)

p(π|x)− y′tk

=ytk − y′tk .

(A.6)

It is equal to the derivative of CTC given in the paper, so Equ.(A.2) holds.

23

	1 Introduction
	2 Method
	2.1 Connectionist Temporal Classification
	2.2 Cross Entropy
	2.3 Reinterpretion of CTC
	2.4 Analysis of Spiky Problem
	2.5 Setting the Non-blank Proportion
	2.6 Focusing on Key Frames

	3 Experiments
	3.1 Datasets
	3.2 Implementation Details
	3.3 Complexity Analysis
	3.4 Adjustment of Non-Blank Proportion
	3.5 Facilitation of Convergence
	3.6 Evaluation on Generalization
	3.7 Comparison on Accuracy

	4 Conclusion
	5 Acknowledgement
	Appendix A Cross Entropy Loss for CTC

