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Abstract

Loss functions play a key role in training superior deep neural networks. In

convolutional neural networks (CNNs), the popular cross entropy loss together

with softmax does not explicitly guarantee minimization of intra-class variance

or maximization of inter-class variance. In the early studies, there is no theoret-

ical analysis and experiments explicitly indicating how to choose the number of

units in fully connected layer. To help CNNs learn features more fast and dis-

criminative, there are two contributions in this paper. First, we determine the

minimum number of units in FC layer by rigorous theoretical analysis and ex-

tensive experiment, which reduces CNNs’ parameter memory and training time.

Second, we propose a negative-focused weights-biased softmax (W-Softmax) loss

to help CNNs learn more discriminative features. The proposed W-Softmax loss

not only theoretically formulates the intra-class compactness and inter-class sep-

arability, but also can avoid overfitting by enlarging decision margins. Moreover,

the size of decision margins can be flexibly controlled by adjusting a hyperpa-

rameter α. Extensive experimental results on several benchmark datasets show

the superiority of W-Softmax in image classification tasks.
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1. Introduction

In the early studies about image classification based on the convolutional

neural networks (CNNs), there is no theoretical analysis and experiments ex-

plicitly indicating how to choose the number of units in FC layer. If the number

of units in FC layer is too big, continued training can result in overfitting of

the training data, increasing redundant parameter and training time, and if too

small, training can result in underfitting of the training data. FC layer is a

form of Artificial Neural Networks (ANN). Early works about determining the

number of hidden units for an ANN model[1, 2] mainly focus on the size of the

training set and the number of input variables, which does not provide theoret-

ical analysis. Without theoretical foundation in the number of nodes of CNNs’

FC layer, researchers tend to choose a larger number of nodes. In YOLO[3], the

number of units in FC layer is 1000 for dataset COCO[4] with 80 classes and

RCNN series[5, 6, 7] network have 4096 units for dataset PASCAL VOC07+12

with 20 classes and dataset COCO, where the number of units is up to 200 times

the number of classes. In this paper, we determine the minimum of FC layer

number of units by rigorous theoretical analysis and extensive experiments for

various classes tasks, which can reduce CNNs’ parameter memory and training

time.

In recent years, CNNs have been widely applied in many vision tasks like

object recognition and segmentation[8, 9, 10, 11], face verification[12] and hand-

writing character recognition[13]. In the CNNs, the convolution layers together

with pooling layers are generally used to extract discriminative feature rep-

resentations, then fully connected layers implement the regression map from

features to target labels, i.e., they involve two stages, features extraction and

classification, as shown in Fig.1.

In the aspect of feature representation learning, many effective techniques

have been presented during the past decade. For example, the deeper and wider

network architectures are built to improve the performances of CNNs[14][15];

different feature normalizations are adopted, like batch normalization[16], layer
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Figure 1: Classification task with CNNs. ’CELS’ denotes cross entropy loss with softmax.

normalization[17], instance normalization[18] and group normalization[19]; di-

verse non-linear activation functions are exploited, like PReLU[20]; weights reg-

ularization [21] and stochastic pooling [22] are also investigated. However, all

these techniques play a supporting role in extracting features fast and accurately,

since the training of network is driven by loss calculated in fully connected (FC)

layer. Now, overfitting is still a challenge to be addressed for CNNs.

In features classification subtask, FC layer with softmax loss is the main-

stream where softmax loss tends to makes CNNs early stop in training. Actually,

softmax function is sensitive to the size of input values, which is the main weak-

ness of softmax loss. For example, considering the binary classification(referring

to Fig.3 C = 2 case), the decision boundary of conventional Softmax loss is de-

picted as y1 = y2(y1 = ‖w1‖‖x‖ cos (θ1), y2 = ‖w2‖‖x‖ cos (θ2)), where w1 and

w2 denote the weight vectors of two classes, x denotes the feature representation

for a given instance, θ1 and θ2 are the angles between weight vectors and fea-

ture. Here we suppose ‖w1‖ = ‖w2‖ = 1, cos (θ1) = 0.05 and cos (θ2) = −0.05,

which means feature x is very close to the decision boundary. When we in-

crease the norm of feature x, e.g., let ‖x‖ equal 1, 10, 30, 50 respectively,

softmax([y1, y2])= [0.52, 0.48], [0.73, 0.27], [0.95, 0.05], [0.99, 0.01] correspond-

ingly. So, feature x with a large norm makes the Softmax loss decrease easily

to zero, even if θ1 is approximately equals to θ2. The distribution of features

makes CNNs train easily and perform poorly in testing and that is where the
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inertia of CNNs exists.

The weakness of CNNs that softmax loss does not rigorously encourage intra-

class compactness and inter-class separability is revealed by experiments. To

overcome this problem, many research works have been carried out[23, 24, 25,

26, 27, 28]. All these studies focus on encouraging better discriminating per-

formance: minimizing intra-class variance and maximizing inter-class variance.

Wen et al.[23] proposed the center loss and used Euclidean distance to mea-

sure the distance between two instances, in which the input must be a pair of

instances. It does not explicitly encourage the inter-class separability, which

still not gets rid of overfitting. Chen et al.[24] proposed contrastive loss and

set hyper-parameter margin to train Siamese network, in which the input pairs

should be careful selected ones from training sets. Similar to citeChen2014Deep,

Schroff et al.[25] proposed triplet loss to learn more discriminating representa-

tion in which the input triplets need to be designed too. Yang et al.[26] proposed

prototype learning to increase CNNs robustness, however, prototype learning to-

tally abandoned softmax layer. [27] and [28] proposed large-margin softmax (L-

Softmax) loss and angular softmax (A-Softmax) loss respectively, which transfer

Euclidean margin learning to angular margin learning. While both L-Softmax

and A-Softmax can be optimized by typical stochastic gradient descent, they

design complicated function ψ(θ) based on angle, resulting in increased diffi-

culty and time in training. The training difficulty and hyper-parameter m in

L-Softmax and A-Softmax are positive correlation.

We propose a new Softmax-like loss function, called the negative-focused

weights-biased softmax (W-Softmax) loss, which has no extra trainable param-

eters compared with the conventional Softmax loss. By increasing the proba-

bilities of all the negative classes in the softmax output, W-Softmax loss can

help CNNs learn more discriminative features. Generally, while training c-th

class instances in the multi-class classification, each wi(i 6= c) is replaced by

normalized αwc + wi so that the decision boundaries between any two classes

get separated and the decision margins are enlarged. Fig.2 illustrates the idea

via the example of two-class classification, where the decision margin increases
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(a) original softmax (b) α = 0.5

(c) α = 1.0 (d) α = 1.5

Figure 2: The comparison of original softmax loss and W-Softmax loss when training instances

with label 1. (a) is original softmax loss, where the decision boundary is coincident, and (b)-(d)

are W-Softmax loss, where the decision boundaries get separated and w′2 = αw1+w2
‖αw1+w2‖

.

when hyper-parameter α gets bigger. When training CNNs using the conven-

tional softmax loss, the decision boundary between any two classes is coinci-

dent, and it brings premature convergence of CNNs in training when features

distribute around the decision boundaries. However, by using the proposed the

W-Softmax loss, the problem can be addressed, since the loss of CNNs will be

enlarged if features locate around the original decision boundaries, separating

the decision boundaries and enlarging the decision margins.

The W-Softmax loss can force features to draw close to the weight vectors of

their corresponding class by increasing the value of α(α ≥ 0). A bigger α corre-

sponds to a larger decision boundary margin, and the strong constraint tends to

make intra-class variance decrease and inter-class variance increase. Compared

with other works [27, 28], the proposed loss function does not need to calculate
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the cosine values and use multiple-angle formula, thus it is computationally very

efficient in the training and optimization, just as the conventional Softmax loss.

In fact, the softmax loss is a special case of W-Softmax loss when α = 0. The

contributions of this work are summarized as follows:

1. We determine the minimum number of units in FC layer by rigorous theo-

retical analysis and extensive experiments for various classes tasks, which

reduces CNNs’ parameter memory and training time.

2. We present a new W-Softmax loss to make CNNs learn more discriminative

features, and it can effectively improve the classification performance by

avoiding premature convergence.

3. The size of decision margins can be optionally adjusted by a positive real-

value paremeter α. By increasing the value of α, CNNs can maximize

inter-class variance and minimize intra-class variance. Extensive experi-

ments on benchmark datasets show the effectiveness of W-Softmax loss

.

2. Related Works

2.1. Units in Artificial Neural Networks

In image classification task based on convolutional neural networks (CNNs),

fully connected (FC) layer is a common method in feature classification. In the

early studies without CNNs, artificial neural networks (ANNs) are the focus in

artificial intelligence and pattern recognition, where FC layer is a form of ANNs.

Murata et al.[1] studied the relation between the training error and the general-

ization error in terms of the number of the training examples and the complexity

of a network which reduces to the number of parameters in the ordinary sta-

tistical theory of Akaike’s information criterion (AIC). The number of hidden

units is selected based on a given training set. Fletcher et al.[2] developed an al-

gorithm to optimize the number of hidden nodes in feedforward artificial neural

network by minimizing the mean square error over noisy training data, where

network minimized the number of training sessions necessary for optimization of
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the number of hidden nodes. All these works focused on optimizing the number

of hidden nodes of the whole ANNs. Differently, this paper is aimed at deter-

mining the number of units in FC layer for image classification task based on

CNNs. The minimum number of FC layer units is determined by rigorous the-

oretical analysis and extensive experiments, which shows the minimum number

varies from various classes in image classification.

2.2. Loss Functions

The design of loss functions plays a significant role in training deep networks.

Various loss functions have been presented and applied to learn discriminating

feature representations. Contrastive loss [24] and triplet loss[25] need to care-

fully select instance pairs and triplet instances as the input of network in the

train stage, since the performance of CNNs heavily depends on selected training

instances. Similar to contrastive loss and triplet loss in increasing the Euclidean

margin, Yang et al.[26] is a kind of k-nearest-neighbor (K-NN) method, which

totally abandons the softmax layer and increases the burden of storages space

and computation requirement. Center loss[23] together with softmax loss can

help CNNs reduce the intra-class variance and learn more discriminative fea-

tures. Liu et al.[27] proposed a large-margin softmax loss and designed an angle

function ψ(θ) related to m to decrease the probability of positive instances,

which improves the feature discrimination. Liu et al.[28] used A-Softmax loss

to encourage a large angular margin similar to L-Softmax. Differently, the

A-Softmax loss normalized the weights by L2-norm, which has demonstrated

its effectiveness on a series of open-set face recognition benchmarks. Both L-

Softmax loss and A-Softmax loss are positive-focused softmax loss since both

of them decrease the probability of positive class by enlarging the angle be-

tween features and weight vectors of positive class. However, when the integer

hyper-parameter m (m = 2, 3, 4...) is too big, the training of CNNs become very

difficult.

Compared with the L-Softmax and A-Softmax losses, the proposed W-

Softmax loss is a negative-focused softmax loss. We first remove the biases
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from the last FC layer and normalize weight vectors of all the classes by L2-

norm and then evaluate the weight vectors of each negative class by Eq.(1).

w′i =
αwc + wi
‖αwc + wi‖

, (i 6= c) (1)

where c is the index of positive classifier weight vector, i is the index of negative

classifier weight vector, wc is positive classifier weight vector and wi is negative

classifier weight vector. When training instance with label c, the weight matrix

in the last FC layer is transformed as W′ = [w′1, · · · ,w′c−1,wc,w′c+1, · · ·w′C ],

where only the positive weight vector with true label c is not transformed. After

the inner product between W′ and x, we get the output of the last FC layer

f = W′Tx. And then f is input into the softmax layer and the softmax loss is

calculated the same as original softmax loss. In testing time, we use original

classifier weight matrix W = [w1, · · · ,wc−1,wc,wc+1, · · ·wC ] instead. In this

case, we encourage the negative classes probabilities in softmax and increase

their loss, which makes CNNs more stricter with the positive class and learn

more discriminating features.

3. Determining the Number of Units in FC Layer

For C-classes classification task, the feature vector extracted from convolu-

tional network is x with length M and classifier weight matrix without biased in

FC layer is WM×C = [w1,w2, ...,wC ] denoted as WC seen in Fig.3. Geometri-

cally, vector x and wi are the points in RM (i.e. x,wi ∈ RM ). Theoretically, the

distribution of weight vectors is optimal when the weight vectors are uniformly

distributed in space, which means the angle between any two weight vectors is

a constant value. To facilitate analysis, all the weight vectors are normalized by

L2. For i = 1, 2, · · · , C, wi = [w1i, w2i, ..., wMi]
T and ‖wi‖ = 1. In the feature

vector space RM, all the weight vectors are points on the hyper unit sphere and

for all index i, j and k (i 6= j, i 6= k, j 6= k), there exists d(wi,wj) = d(wi,wk),

where d(∗) is Euclidean distance function. So the solution is turned to how to
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Figure 3: The optimal weight vectors’ distribution in classification tasks with various classes,

where the angle between any two weight vectors is equal. C is the number of classes and M

is the length of feature vector x. WM×C is classifier weight matrix and column vector wi is

classifer weight vector for class i. yi(yi = wTi x) is the output of class i.

determine the range of variable M to ensure that the problem that the angle

between any two weight vectors is a constant value has a solution.

The problem is formulated by

wT2 w1 = wT3 w1 = ... = wTCw1

= wT3 w2 = ... = wTCw2 (2)

...

= wTC−1wC ,

The minimum value of M denoted as Mmin for C-classes task can be determined

by mathematical induction. For continuously increasing number C, the weight

matrix WC is constructed from a special solution W2 of Eq.2, which is

WC =



[
1 −1

]
1×2

C = 2

 √
(C−1)2−1
(C−1)2 WC−1 0

− 1
C-1 1


(C−1)×C

C > 2

(3)
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where each weight matrix WC satisfies the condition in Eq.2 and for all i,

‖wi‖ = 1, and there exists

wTi wj =

1 i = j,

− 1
C−1 i 6= j.

(4)

In Eq.3, the distribution of W2, W3 and W4 are the cases C = 2, 3, 4 respec-

tively shown in Fig.3. Because the special case W2(M = 1) in Eq.3 is the

simplest case and the size of weight matrix WC is M × C, we can determine

the minimum value of M as Mmin = C − 1, which means if M ≥ C − 1, the

Eq.2 has solution.

Next, we will prove that the C − 1 is the minimum value for M in construc-

tion. Reductio ad absurdum is adopted to prove the assumption.

Assumption 1. There is no unit vector wC+1(C > 2) with length C−1 making

new weight matrix W’C+1 = [WC ,wC+1] satisfy Eq.2, where WC is from Eq.3.

Proof. Suppose there is a unit vector wC+1 with length C − 1 making new

weight matrix W’C+1 = [WC ,wC+1] = [w1, · · · ,wC ,wC+1] satisfy Eq.2, de-

scribed as

wT1 wC+1 = wT2 wC+1 = · · · = wTC−1wC+1 = wTCwC+1. (5)

According the construction, the rank of weight matrix WC is C − 1, there exits

nonzero vector a = [a1, a2, · · · , aC−1] satisfying wC = a1w1 + a2w2 + · · · +

aC−1wC−1. The same as wC , there exits nonzero vector b = [b1, b2, · · · , bC−1]

satisfying

wC+1 = b1w1 + b2w2 + · · ·+ bC−1wC−1. (6)

Substituting Eq.6 into Eq.5 and then simplifying the equation by Eq.4, we gets

b1 −
1

C − 1
(b2 + b3 + · · ·+ bC−1) = b2 −

1

C − 1
(b1 + b3 + · · ·+ bC−1)

... (7)

= bC−1 −
1

C − 1
(b1 + b2 + · · ·+ bC−2)

= − 1

C − 1
(b1 + b2 + · · ·+ bC−1).

10



Because C > 2, Eq.7 has only one solution b1 = b2 = · · · = bC−1 = 0, which is

inconsistent with the assumption. Therefore, according to Reductio ad absur-

dum, assumption1 is correct, which means that the length of weight vector wC+1

is at least C. Under the condition of 2, the construction in Eq.3 ensures that

each weight vector wi in weight matrix WC has the minimum length(C− 1), in

other words Mmin = C − 1.

Extensive experiments on many benchmark datasets validate our conclusion.

4. Weights-biased Softmax Loss

4.1. Review of Conventional Softmax Loss

In this section, we review the conventional softmax loss. Suppose we have a

C-classes classification task. For a given instance with label c, its feature is x.

The probability for every class can be evaluated by

pi =
exp (wTi x + bi)∑C
j=1 exp (wTj x + bj)

, (8)

where wi and bi denote the weights and biases of the last FC layer. In the

prediction stage, an instance is classified to label i if pi > pj (for all j and

j 6= i). It can be converted as wTi x + bi > wTj x + bj , i.e., ‖wi‖‖x‖ cos θi + bi >

‖wj‖‖x‖ cos θj + bj , where θi denotes the angle between wi and x, 0 ≤ θi ≤ π.

The decision boundary of two classes i and j is defined by ‖wi‖‖x‖ cos θi + bi =

‖wj‖‖x‖ cos θj + bj . If we let ‖wi‖ = 1 and remove the biases, the decision

boundaries become cos θi = cos θj , so the angle between weight vector wi of

each class and feature x is very important for classification.

The multi-class softmax loss for an instance x can be formulated by

L = − log pc = − log (
exp (wTc x + bc)
C∑
j=1

exp (wTj x + bj)

)

= − log (
exp (‖wc‖‖x‖ cos θc + bc)
C∑
j=1

exp (‖wj‖‖x‖ cos θj + bj)

),

(9)
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where c is the class label of instance x. The decision boundary for class c and

class i can be defined by ‖wc‖‖x‖ cos θc + bc = ‖wi‖‖x‖ cos θi + bi(i 6= c). Be-

cause the decision boundary between two classes is coincident, the conventional

softmax loss cannot make CNNs learn a more discriminative feature represen-

tation. To encourage the ability of feature representation, we propose a new

weights-biased softmax loss.

4.2. Weights-Biased Softmax Loss

Positive Probability and Negative Probabilities. To obtain a large

decision margin, we present a new loss called the weights-biased Softmax loss

(W-Softmax), which utilizes parameter α in Eq.(1) to control the size of ex-

pected decision margin. Fig.2 illustrates the basic principle of the proposed

loss via an example of two-class classification, and it is also true for the case

of multi-class classification. In our CNN network, we first remove the biases in

the last FC layer of CNN and normalize the corresponding weight vectors, i.e.,

let ‖wi‖ = 1. For a given class c corresponding to wc, other classes are called

negative class and each negative class i(i 6= c) has a corresponding weight w′i

evaluated by Eq.(1), which is specifically used for evaluating the loss of instance

x in class c. It should be noted that, for two vectors p, q with angle θ ∈ [0, π]

between them, if α > 0 and z = αp + q, then vector must fall into angle θ, and

vector z will get closer to vector p as α gets larger. So, w′i must fall into the

included angle of wc and wi. Further, the angular bisector of wc and w′i forms a

new decision boundary, which makes instances from class c become closer to wc

and far away from wi in training. In C-classes classification, for input feature

x to the last FC layer with label c, the positive probability pc and negative

probabilities pi(i 6= c) are evaluated by

pc =
exp (‖x‖ cos θc)

exp (‖x‖ cos θc) +
C∑
j 6=c

exp (‖x‖ cos θ′j)

,

pi =
exp (‖x‖ cos θ′i)

exp (‖x‖ cos θc) +
C∑
j 6=c

exp (‖x‖ cos θ′j)

,

(10)
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where θc and θ′i denote the angles between weight vector wc and feature x, as

well as w′i and x, respectively.

Decision Boundaries for Class c. In the training phase of learning fea-

tures, for instance in class c, we use W′ = [w′1, · · · ,w′c−1,wc,w′c+1, · · ·w′C ]

to characterize the boundaries between class c and other classes. Concretely,

let pc = pi(i 6= c), we can easily derive θc = θ′i, which means the deci-

sion boundary between class c and class i is the angular bisector of angle

between wc and w′i. In testing phase, W′ is replaced by original weights

W = [w1,w2, ...,wc, ...,wC−1,wC ]. Fig.2 illustrates the decision boundaries

for two classes, where the class 1 is considered as the positive class. In the

conventional Softmax loss, the decision boundary margin is zero, so learned

features from two classes likely distribute very close on both sides of their com-

mon decision boundary. In W-Softmax loss, the decision margins are magni-

fied by parameter α in Eq.1. It is clear that there exists θ2 = θ′2 + θw′
2,w2

,

where θw′
2,w2

is the angle between weight vector w′2 and w2. Only if α = 0,

θw′
2,w2

= 0 and if α > 0, θw′
2,w2

> 0. The following discussion is based

on α > 0. If the instance with label 1 is classified correctly, there exists

‖w1‖‖x‖ cos θ1 > ‖w′2‖‖x‖ cos θ′2, equivalent to cos θ1 > cos θ′2. Because of

θ2 = θ′2 + θw′
2,w2

> θ′2, it is satisfied that cos θ′2 > cos θ2. Hence, in testing

phase, it’s satisfied that cos θ1 > cos θ′2 > cos θ2 by a large angular margin. As

a result, there are two decision boundaries between any two classes with a large

margin.

Weights-biased Softmax Loss. Based on previous discussion, for an in-

stance x from class c, we evaluate its W-Softmax loss by

L = − log
exp (wTc x)

exp (wTc x) +
∑C
j 6=c exp (w′Tj x)

= − log
exp (wTc x)

exp (wTc x) +
∑C
j 6=c exp (

αwT
c +wT

j

‖αwc+wj‖x)
,

(11)

and it can be simplified as

L = − log
exp (wTc x)∑C

j=1 exp (
αwT

c +wT
j

‖αwc+wj‖x)
. (12)
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Further, for a set of instances {xk, k = 1, 2, · · · , N}, we can evaluate their

average W-Softmax loss by

L =
1

N

∑
k

− log
exp (wTckxk)∑

j exp (
αwT

ck
+wT

j

‖αwck
+wj‖xk)

, (13)

where ck denotes the label of instance xk. Algorithm.1 summarizes the inference

algorithm of CNNs training with W-Softmax loss in one batch input case, where

CELS denotes cross entropy loss with softmax.

Algorithm 1 CNNs training with W-Softmax loss in one batch input case.

Input: Training images I with batch size B, labels y = [y1, ..., yB ];

1: Gets extraction network Nextr and feature classification network Ncls where

classifier weight matrix W = [w1, · · · ,wC ];

2: Extracting features X = Nextr(I) as X = [x1, ...,xB ];

3: Initialize total loss L← 0;

4: for i = 1→ B do

5: Transform classifier weight matrix, gets Wi as

Wi = [w’1, · · · ,w’yi−1,wyi ,w’yi+1, · · · ,w’C ];

6: Calculate instance loss Li ← CELS(WT
i xi, yi);

7: Add up instance loss L← L+ Li;

8: end for

9: Update all weights in CNNs, w ← w − learning rate ∗ ∂L∂w .

4.3. Discussion of Hyperparameter α

In the proposed W-Softmax loss, parameter α plays an important role in reg-

ulating the decision angular margin. As shown in Fig.2, the decision margin will

be zero when α = 0, and in this case, W-Softmax loss becomes the conventional

softmax loss. As the value of α increases, the decision margin also increases

and the decision boundaries among different classes become more separated. It

should be noted that, for L-Softmax loss and A-Softmax loss, hyper-parameter

m is an integer, i.e., m = 2, 3, 4..., while hyper-parameter α in our W-Softmax

loss is a positive real number (α ≥ 0). Although a big value of α can make
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learned features more discriminative, it also increases the difficulty of training

convergence, because it imposes a stronger constraint on the spatial distribution

of learned features.

5. Experiments and Results

5.1. Experimental Setting

Datasets. We carry out the experiments on several standard benchmark

datasets, MNIST [13],CIFAR10 [29], CIFAR100 [29] and LFW dataset[30]. MNIST

dataset consists of 60000 binary training images and 10000 binary testing im-

ages, and the size of images is 28×28. Each of datasets CIFAR10 and CIFAR100

consists of 50000 color training images and 10000 color testing images with im-

age size 32×32. LFW dataset is mainly for face recognition and face verification.

In this paper, we focus on face verification part. LFW dataset has 13233 train-

ing images covering 5749 people, only 1680 people with two or more images and

6,000 pair images for testing.

CNN Setup. In order to compare expediently with the conventional origi-

nal softmax loss and other existing losses, we use the CNN architecture presented

by [27] as the backbone. Our experiments are carried with a Quadro P5000 GPU

on TensorFlow. In convolution layers, the stride is 1 and PReLU[20] is chosen

as the activation function. Momentum optimizer is used in training and the

momentum is set to 0.9. We set the initial learning rate as 0.01 for MNIST and

CIFAR10/CIFAR100, its exponential decay rate is 0.9 and the decay step is

6000. The weights are initialized by xavier initializer and the weight parameter

of weights regularization is 0.0005. Batch normalization is used after PReLU

and the dropout is not adopted for the sake of fair comparison.

Training Detail. To make the network converge quickly in training, we

first train the CNNs using the conventional softmax loss, and refine the network

using the proposed W-Softmax loss. For LFW dataset, there is an alignment

process before training. In our experiment, the faces cropped from all the images

are set to 160x160 and the alignment algorithm is adopted from MTCNN[31].
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(c) (d)

Figure 4: Accuracy vs. the number of units M on different datasets with original softmax loss

and W-Softmax loss (subfigures (a)-(c)). Subfigure (d) is the parameter memory in FC layer

with various number of units. Mmin is the theoretical minimum proved in previous section.

5.2. Effect of Units’ Number M in FC Layer

Fig.4(a), 4(b) and 4(c) illustrate the relation between the number of units in

FC layer and classification accuracy on various datasets with different classes.

Fig.4(d) is the comparison of the parameter memory in FC layer with different

number of units. To visualize the relation detailedly, the scale on the horizontal

axis is uneven. The value Mmin is 9 for MNIST dataset and CIFAR10 dataset

and 99 for CIFAR100. Experimental results in Fig.4 show that when M <

Mmin, the accuracies increase with the increase of M and when M ≥ Mmin,

accuracies reach its maximum and fluctuate slightly around it, however, the

parameter memory rapidly increases when M gets bigger. Notably, when M =

Mmin, accuracies are close to or even maximum. In MNIST dataset, if M
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gets to 10x∼30x Mmin, overfitting arises and accuracies with original softmax

loss decline, while the accuracies in CNNs with W-Softmax loss remain almost

unchanged, which distinctly eliminate effectively the overfitting.

5.3. Experiments and Analysis on MNIST

In the experiments on MNIST, the batch size is set to 50. Table 1 lists the

best results of different methods on MNIST. The results in Table 1 and Fig.4(a)

show the proposed W-Softmax loss has better performance than the conven-

tional Softmax loss based on the same network architecture and can achieve the

state-of-the-art performance compared with the other methods. The larger α in

the W-Softmax loss can bring the higher accuracy to the trained CNN network.

Table 1: Test accuracy(%) of different methods on MNIST, where * denotes our proposed

method.

Method test accuracy(%)

CNN[32] 99.47

DropConnect[21] 99.43

FitNet[33] 99.49

NiN[34] 99.53

Maxout[35] 99.55

DSN[36] 99.61

R-CNN[37] 99.69

GenPool[38] 99.69

Hinge Loss 99.53

original softmax 99.58

L-Softmax[27] 99.69

W-Softmax(α=0.5)* 99.64

W-Softmax(α=1)* 99.67

W-Softmax(α=1.5)* 99.69

17



Figure 5: Learned features comparison between original softmax loss and W-Softmax loss on

MNIST dataset. The value in vertical axis is the mean angle θi between w i and all x i for

class label i. The left figure is the result on training dataset and the right one is on testing

dataset.

Learned Features Comparison. We calculate the angles between learned

features and the weight vectors of classifiers corresponding to their true cate-

gories, and then get the mean of these angles, i.e.,

θi =
1

Ni

Ni∑
j=1

arccos
wT
i x

(j)
i

‖w i‖‖x (j)
i ‖

,∀i = 1, 2, · · · , C (14)

where C is the number of classes in dataset, Ni is the number of instances with

label i, x
(j)
i denotes the j-th instance of class i, w i is the weight vector of

classifier responsible for class i and θi denotes the mean of angles between w i

and all x
(j)
i . The statistical results are shown in Fig.5, where lower mean angle

corresponds to the compactness of intra-class. We can see that the mean angle

of each class with original softmax loss is larger than those in W-Softmax loss

with different α, which denotes conventional softmax loss can not encourage

the intra-class compactness. It’s conspicuous that the mean angle gets smaller

when α increases. The mean angle of training dataset is slightly less than the

one of testing dataset for each class, and larger α in the W-Softmax loss can

encourage the intra-class compactness and inter-class separability.
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5.4. Experiments on CIFAR10 and CIFAR100

Both CIFAR10 and CIFAR100 have 50000 training instances and 10000 test-

ing instances. But, CIFAR10 has 5000 training instances for each class, and

CIFAR100 only has 500. In the training, batch size is 256 for CIFAR10 and

CIFAR100. The experimental results in Table 2 show that the W-Softmax loss

achieves 2%-3% improvement on CIFAR10 and improves more than 4% accuracy

on CIFAR100 compared with the conventional softmax loss.

Table 2: Test accuracy(%) of different methods on CIFAR10 and CIFAR100, where N/A

means the lack of comparative results.

Method CIFAR10(%) CIFAR100(%)

DropConnect[21] 90.59 N/A

FitNet[33] N/A 64.96

NiN[34] 89.53 64.32

Maxout[35] 88.32 61.43

DSN[36] 90.31 65.43

All-CNN[39] 90.92 66.29

R-CNN[37] 91.31 68.25

GenPool[38] 92.38 67.63

Hinge Loss 90.09 67.10

original softmax 90.95 67.26

L-Softmax[27] 92.42 70.47

W-Softmax(α=0.5)* 92.47 69.53

W-Softmax(α=1)* 92.84 70.62

W-Softmax(α=1.5)* 93.28 71.38

5.5. Experiments on LFW Dataset

The faces in LFW dataset are detected and aligned by MTCNN[31] and then

cropped to 160x160. Before training and testing, each face image is normalized

to [−1, 1] by subtracting 127.5 and then dividing by 128. The feature extraction
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network is trained on a small training dataset that is the publicly available

CASIA-WebFace[40] dataset containing 0.49M face images from 10,575 subjects.

When training feature extraction network, batch size is set to 128 and the

learning rate is initially 0.1 and divided by 10 for every 10k iterations, and

training is stopped at 30k iterations. The cosine distance of features is adopted

as the similarity score. The result is shown in Tabel 3. Compared with the

original softmax loss, the accuracy of W-SoftMax loss is greatly improved, which

proves that encouraging intra-class compactness and inter-class separability is

more conducive to improving the accuracy of face verification.

Table 3: Face verification (%) on the LFW dataset, where * denotes the outside data is private

(not publicly available).

Method Outside Data Accuracy(%)

FaceNet[25] 200M* 99.65

Deep FR[41] 2.6M 98.95

DeepID2+[42] 300K* 98.97

L-Softmax[27] WebFace 98.71

original softmax WebFace 96.53

W-Softmax(α=0.5) WebFace 97.98

W-Softmax(α=1) WebFace 98.86

W-Softmax(α=1.5) WebFace 98.91

5.6. Experiments with Multi-class

To explore the effect of W-Softmax when the number of classes increases,

we design the experiments on MNIST and CIFAR10. Concretely, we randomly

select k classes from 10 classes. Since the accuracy on MNIST almost reaches

100% when k = 2, we choose k from 5 to 10, and specially select the first k classes

from 10 classes and set α = 1 in our experiments. The experimental results in

Table 4 show that (1) the classification accuracy decreases as k increases; (2)

when k is small, the advantage of W-Softmax loss over conventional Softmax is
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not obvious, and when k is big enough for a specific dataset, a big gain can be

obtained.

Table 4: Effect of W-Softmax to multi-class number on MNIST and CIFAR10. The ’softmax’

in table denotes original softmax loss.

class

number

MNIST CIFAR10

softmax W-Softmax softmax W-Softmax

k=5 99.92 99.93 94.35 95.23

k=6 99.83 99.88 91.55 93.08

k=7 99.67 99.78 91.26 92.65

k=8 99.67 99.76 91.27 92.73

k=9 99.63 99.73 91.24 92.72

k=10 99.58 99.69 90.95 92.44

6. Conclusion

In this paper, we theoretically determine the minimum number of nodes of

classifier weight and verify this by experiments, which reduces the CNNs’ param-

eter and training time. We present a new weights-biased Softmax(W-Softmax)

loss, which is useful to build high-performance CNNs by learning highly discrim-

inative features. By applying it, the decision margin can be flexibly adjusted by

parameter α. The preliminary experiments show W-Softmax loss can achieve

obvious improvement over conventional Softmax loss and obtain comparable or

better classification accuracy in CNNs training compared with state-of-the-art

loss functions.
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