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a b s t r a c t 

Finding geometric primitives in 3D point clouds is a fundamental task in many engineering applications 

such as robotics, autonomous-vehicles and automated industrial inspection. Among all solid shapes, cylin- 

ders are frequently found in a variety of scenes, comprising natural or man-made objects. Despite their 

ubiquitous presence, automated extraction and fitting can become challenging if performed ”in-the-wild”, 

when the number of primitives is unknown or the point cloud is noisy and not oriented. 

In this paper we pose the problem of extracting multiple cylinders in a scene by means of a Game- 

Theoretic inlier selection process exploiting the geometrical relations between pairs of axis candidates. 

First, we formulate the similarity between two possible cylinders considering the rigid motion aligning 

the two axes to the same line. This motion is represented with a unitary dual-quaternion so that the 

distance between two cylinders is induced by the length of the shortest geodesic path in SE(3). Then, a 

Game-Theoretical process exploits such similarity function to extract sets of primitives maximizing their 

inner mutual consensus. The outcome of the evolutionary process consists in a probability distribution 

over the sets of candidates (ie axes), which in turn is used to directly estimate the final cylinder param- 

eters. An extensive experimental section shows that the proposed algorithm offers a high resilience to 

noise, since the process inherently discards inconsistent data. Compared to other methods, it does not 

need point normals and does not require a fine tuning of multiple parameters. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The availability of depth data and their integration with classi-

al imaging techniques allows the fulfilment of several tasks which

ere challenging, or even infeasible, in the past. For this reason,

D data are widely employed in a variety of fields, ranging from

ultural heritage [1] to industrial inspection [2,3] . Many practical

pplications employing point cloud data require the extraction and

dentification of one or more well-known objects included in the

cene: some examples are human pose estimation [4] , object seg-

entation [5,6] and model fitting [7] . Despite the high quality of-

ered by modern acquisition devices, in some situations 3D data

aptured from a scene are far from being perfect. This can be due

o limitations of the working environment (light conditions, occlu-

ions, etc.) or to the nature of the scanned objects themselves. For

nstance, the scanning process of objects presenting shiny metallic
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reas could easily lead to an incomplete or noisy 3D surface [8] .

urthermore, many times the acquired scene is complex and con-

ains several elements which are to be filtered out as they are not

elevant for the subsequent analysis. For these reasons any practi-

al shape extraction algorithm must provide a reliable method ex-

luding outliers in addition to a good parameter estimation. 

The fitting and extraction of geometrical primitives (planes, cir-

les, spheres, cylinders, pyramids) is a widely covered topic in the

iterature [9–11] , being an essential task in several scenarios as

ndustrial automation and inspection [12,13] , reverse engineering

14] , scene segmentation [15] , marker detection [16] or camera cal-

bration [17] . In particular we are interested on cylindrical shapes,

ften found in many applications including natural landscape anal-

sis [18] , automated pipe-run reconstruction [19] , and industrial

uality inspection [20] . 

In general, when dealing with primitives identification, we can

istinguish two conceptually different tasks, namely fitting and ex-

raction , which differ in the type of problem and how it is ad-

ressed. In the case of fitting the point cloud has already been seg-

ented, so a subset of 3D points is associated to a possible cylin-

rical shape. So, the objective of a fitting algorithm is to compute

he best parameters according to the given data, typically mini-
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mizing the average error with respect to the theoretical surface.

On the other hand, the goal of extraction methods is to detect the

primitives included in a complex point cloud and then devise their

parameters. These approaches are often employed when the whole

scene is captured, making the task more challenging than a sim-

ple fitting since data could be incomplete, noisy or include clut-

ter. Usually there are no assumptions on the number of primitives

in the scene, neither on their orientations. Moreover, the presence

of point normals is not always ensured and their quality may de-

pend on the acquisition device or the used reconstruction algo-

rithm. Nevertheless, the majority of approaches in the literature

assume to either have point normals or to compute a good ap-

proximation of them using PCA. 

In this manuscript we propose a cylinder extraction technique

that does not require point normals and considers cylinder extrac-

tion as a clustering problem. We first formulate a cylinder simi-

larity function expressing the compatibility between two possible

candidates, and a simple yet effective candidate extraction tech-

nique based on geometrical properties of cylindrical primitives.

These two ingredients are combined in a clustering process based

on evolutionary game theory, that ensures the extraction of the

subset of candidates with best mutual support, exhibiting excellent

robustness to outliers. In particular, we extended our seminal work

described in [21] by: (i) formulating the approach as a clustering

problem and adding a more in-depth discussion of the cylinder

similarity function; (ii) proposing a new technique exploiting man-

ifold mean to provide a better parameter estimation after the in-

lier selection process, and (iii) expanding the experimental section

including an extensive study of the method’s performances with

different kinds of noise. 

Our approach offers three main advantages: first, it does not re-

quire point normals nor any prior knowledge of the scene. Second,

the game-theoretic inlier selection process exhibits high resilience

with respect to outliers without an initial tuning of several param-

eters. Third, we achieve good estimation accuracy even if most of

the cylindrical shapes are occluded or covered by clutter. For these

reasons, our method is suitable in applications for which the fit-

ting accuracy is at a paramount importance like robot grasping or

industrial quality inspection. 

2. Related work 

Cylindrical shapes are widely present in both man-made and

natural environments, therefore the literature counts a significant

number of specialised approaches to detect cylinders from 3D data

and reliably estimate their parameters. In this section we briefly

cover a number of state-of-the-art cylinder fitting and extraction

techniques pertinent with the proposed method. Among these so-

lutions we can distinguish two different approaches: the ones re-

quiring oriented point clouds (i.e. each point is associated with a

normal vector) and the ones which only uses 3D points locations.

While surface normals significantly reduce the parameter search

space and the problem complexity, their availability in acquired

data is not always ensured and the reliability of computed normals

strongly depends on the quality of the point cloud itself. We stress

that methods which do not use point normals are naturally more

stable, especially on noisy point clouds. As previously mentioned,

we can distinguish between two conceptually different tasks, that

are fitting and extraction. 

The aim of fitting methods is to compute the best set of pa-

rameters for a cylindrical model (axis, location and radius) to suit

the given point cloud. Usually this kind of task is performed after

the acquired data has been segmented, so that we can associate

a subset of 3D points with a geometrical primitive to be fitted.

The parameter estimation is usually carried out through a linear or

non-linear least-squares minimization of the points distance from
he fitted surface [22] . Since these techniques assume a Gaussian

istribution of noise, they exhibit high instability with respect to

utliers. Consequently, the approach works if the segmentation is

lmost exact (so there is no clutter) or when the scene includes

nly a single cylindrical shape acquired with a good degree of ac-

uracy. In [23] the authors propose a Maximum Likelihood Estima-

ion assuming a Gaussian mixture distribution for errors, and they

pply the method to a terrestrial laser scanning application. The al-

orithm proposed in [24] extracts a single cylinder from noisy and

ossibly incomplete data samples. It adopts robust Principal Com-

onent Analysis and regression to reliably compute the parameters

f a single cylinder. The approach described in [25] proposes al-

ebraic methods to efficiently compute cylinder parameters from

 minimal set of points, in both oriented and non-oriented cases.

n [26] a fitting method for laser scanner is proposed: an ellipse

s fitted for each line acquisition, then cylindrical parameters are

evised from the set of 3D ellipses. The method does not require

oint normals but it is designed to work on a scene containing a

ingle cylinder in a specific industrial scenario, therefore this ap-

roach can not be generalised to other contexts. 

Extraction algorithms are applied when capturing more com-

lex scenes, including a number of primitives to be detected and

ther elements that must be automatically discarded. In the liter-

ture, the two major classes for extraction algorithms consist in

ANSAC and Hough-based. 

Thanks to their robustness, RANSAC-based methods [27,28] are

idely employed for primitive extraction and fitting [29] . They di-

ectly exploit acquired data to exclude outliers and devise a good

et of parameters. The work described in [30] splits the extraction

ask in two phases, both exploiting random sampling techniques.

irst, the set of points is filtered extracting a possible cylinder di-

ection from the Gaussian image of the whole point cloud, then its

ize and location are extracted in the same way. Note that the first

tep of this method highly relies on point normals to extract the

ylinder orientation. In [31] the authors propose a shape detection

lgorithm operating in unorganized point clouds where the point

ormals have been precomputed. They formulate a method which

orks on large point clouds, exploiting points spatial proximity

o devise their belonging to a shape, and then apply a hierarchi-

al sampling strategy. Despite the advantages offered by RANSAC-

ased approaches, their non-deterministic nature makes them im-

ractical when dealing with large-scale point clouds. Moreover,

ata exhibiting severe noise levels could be problematic for shape

etection also because the performances are highly influenced by

oint normal accuracy. 

Another class of approaches for primitive extraction is Hough-

ased methods. As in the well-known Hough transform [32] , the

eneralised method uses specifically designed voting spaces to ex-

ract the primitives in the scene. In the case of cylinders the

ve parameters needed translate in a 5-dimensional voting space,

esulting infeasible. To overcome this problem, the approach in

33] proposes a sequential Hough transform divided into two steps

n order to reduce the dimensionality of the parameter space. This

ethod first exploits normals in a 2-dimensional accumulator to

stimate the axis rotation, then it estimates radius and location in

 3D accumulator. 

Some works present variations of Hough-based technique for

ome specific applications. For example, the authors in [18] pro-

ose a fallen tree detection for terrestrial laser scanning. In

articular, they make some assumptions on the position of the

ylinders and apply some filtering to have an initial prior over

ata, then they propose a cylinder extraction based on [33] and

 final refinement to obtain single tree stems. Another popular

pplication is pipe-run reconstruction: in [34] the authors propose

 prior segmentation and an area-based adaptive Hough transform

o reduce time and space complexity. Hough-based methods are
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Fig. 1. Flowchart of the proposed method: first, the point cloud is sliced with virtual random planes, then all 2D ellipses are fitted: each of them produces two possible axis 

candidates for the cylinder. Finally, an inlier selection process based on replicator dynamic performs the primitive extraction. Multiple cylinders are extracteds by updating 

the payoff matrix and running replicator dynamics again. 
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sually time-consuming for large amount of data and the voting

pace discretization could lead to poor performances. Moreover,

n absence of point normals the parameter space dimensionality

akes the approach infeasible so surface normals are always

equired and their precision highly influences the final outcome. 

In addition to these two methods, several solutions combine

ANSAC, Hough and other approaches within a pipeline, or exploit

ome prior knowledge of the scene to get better results. The work

n [35] proposes a pipeline that detects connected components

nd circles to validate and extract multiple cylindrical shapes. In

36] the authors propose a cylinder detection algorithm for robot 

rasping applications. They assume the objects lying on a planar

urface and perform an initial image classification using a CNN,

hen they propose an extension of the two-step Hough transform

mploying a randomized sampling scheme and finally use surface

urvature to filter the results. Another cylinder fitting for robot

rasping is proposed in [37] , where the authors propose a sig-

ificant data preprocessing phase, followed by a RANSAC model

tting employing a custom validation and a Hough-based voting

cheme. The method proposed in [38] is composed by several

teps: first, they select points belonging to potential cylindrical sur-

ace by analysing the curvature values, then for each of them a fit-

ing procedure is run starting from its neighbourhood. The fitting

lgorithm is applied several times so that at each iteration addi-

ional inlier points are appended to the current cylindrical model;

oreover a validation procedure determines the reliability of the

xtracted cylinder. Finally the set of cylinders is obtained through

ean shift clustering. 

Many extraction algorithms are designed to solve specific tasks:

 widely described application in the literature is pipe-run recon-

truction from large-scale 3D scans of huge plants. In such scenar-

os cylinder extraction is often an initial task in a process finalised

n recovering connections, curves and junctions of the pipes to re-

onstruct the whole structure of the scanned plant. These cases are

sually more complex and solved with method comprising several

euristics and filtering steps. The method described in [39] does

ot need normals and employs a RANSAC-based approach and

CA to distinguish between straight and curves section of pipes,

hile the work presented in [40] proposes a normal-based region-

rowing approach to detect the position of different elements in

iping systems. Most of the times these approaches are based on

trong structural assumptions like a prior over the cylinder orienta-

ion and location. In [41] normals are not exploited but the authors

ssume to observe only horizontal or vertical pipes, so the cylin-

er orientations are significantly constrained. The approach pro-

osed in [20] exploits an initial registration of the CAD model to

he point cloud in order to have some prior information on the

cquired data. Another common assumption consists in observ-

ng only objects lying on a planar surface, like in robot grasping

36,37] . 

The majority of described methods require normal or curvature

re-computation, which can be very sensitive to noise and outliers.
 m  
oreover, they need a specific tuning step for several thresholds

nd parameters involved in the process. An accurate parameter cal-

bration is a time-consuming task, and could be an advantage if

orking with stable conditions, but could be a serious limitation

hen working with heterogeneous scenes and scanning devices. 

The extraction algorithm we present in this paper is partially

nspired by [26] , and improves the concept to extract multiple

ylinders from an unknown configuration with several sources

f noise. Fig. 1 displays a schematic representation of the basic

teps performed by the proposed algorithm. The method iteratively

lices the scene with randomly generated virtual planes to com-

ute a set of 2D ellipses, each of which generates two cylinder can-

idates. Then, a specifically designed cylinder similarity function is

mployed in a clustering process based on game theory, which en-

ures the selection of the subset with the best mutual consensus. 

. The proposed method 

Our goal is to extract cylindrical shapes from non-oriented

oint clouds. We simplify the operation by considering only cylin-

ers with an infinite extent along the axis, thus reducing their

arametrization to a 3D line in space, called axis , and a radius. In

ractice, this is not a limiting assumption since (i) co-axial cylin-

ers with different radii are rare in common scenes, and (ii) it is

imple to estimate the cylinder height once the 3D points associ-

ted with its shape are identified in the cloud. 

We parametrize a cylinder ζ with the triplet (p, � v , r) , in which

 p ∈ R 

3 , � v ∈ R 

3 ) and r ∈ R describe its axis and radius respectively.

e pose the additional constraints of ‖ v ‖ = 1 and 〈 p, � v 〉 = 0 , re-

ulting in only 5 degrees of freedom out of the 7 parameters used

or the parametrization. 

Our method considers the cylinder extraction as a clustering

roblem. We suppose to have a set of cylinder candidates represent-

ng possible alternative cylindrical shapes observed in the scene.

e designed a robust Game-theoretic process so that candidates

oherent with a common cylindrical model are grouped together

nd weighted according to their mutual fitness. Therefore, by re-

eating this selection until all candidates are grouped, we robustly

xtract a sequence of cylinders ordered by their overall consis-

ency with the relative candidate cluster. To support this princi-

le, in Section 3.1 we formulate a distance function among pairs of

andidates that properly accounts for the 3D displacement of their

elative axes. Then, in Section 3.2 we propose a possible way to

enerate robust candidates and in 3.3 we discuss the details of the

ame-theoretical process. 

.1. Cylinder distance function 

Cylinder candidates are clustered together by maximizing a

imilarity among elements of the same cluster. The non-trivial as-

ect is that, a part from the relative radii, a well-defined function

ust deem the combined contribution of axes positions and orien-
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Fig. 2. The defined screw motion between lines l 1 and l 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

a  

p  

r  

s  

p  

t  

i  

w  

a

 

c  

t  

d

3

 

f  

d  

a  

d  

t  

n  

a  

a

 

t  

s  

N  

l

 

c  

s  

c  

�v  

L

 

c  

 

c  

2  

c  

w  

r  

s  

t  

a  

s  

i

 

r  

t  

d  

r  

t

2 In all our tests we fixed λ = 5 . 
tations. Therefore, defining a similarity between two cylinders boils

down in defining a distance between 3D lines (ie. axes) in space. 

Let l 1 = (c 1 , � v 1 ) and l 2 = (c 2 , � v 2 ) be two 3D lines defined re-

spectively by a point c and a unitary-norm direction 

�
 v . Following

[42] , we construct a rigid motion ( ̄R , T̄ ) mapping line l 1 to l 2 or,

more formally, the roto-translation such that ∀ p ∈ l 1 , ∃ k ∈ R . R̄ p +
T̄ = c 2 + k � v 2 . Since every rotation around 

�
 v and every translation

along � v transform a line in itself, there exist infinitely many ( ̄R , T̄ )

mapping l 1 in l 2 . Among those, we can express the one exhibit-

ing the shortest translation length and smaller rotation angle tak-

ing advantage of the kinematic notion of a screw. Chasles’ theo-

rem [43] states that every rigid motion can be described by means

of a translation along a unique line (called screw axis) followed

(or preceded) by a rotation about the same axis. The motion de-

scribed in the theorem is called screw and, since its discovery, is

one of the most convenient ways to describe spatial movements.

In our setting, we can directly describe ( ̄R , T̄ ) in terms of a screw

motion, as sketched in Fig. 2 . Let m 1 = c 1 + t 1 � v 1 (for some scalar

t 1 ) be the point lying on l 1 closest to the line l 2 . Similarly, let

m 2 = c 2 + t 2 � v 2 be the point of l 2 closest to line l 1 . By construc-

tion, the vector T = m 2 − m 1 is orthogonal to both l 1 and l 2 and

its length is the minimum distance between all the points of the

two lines. This implies that T has the same orientation (but possi-

bly different magnitude and sense) of the vector � v ⊥ = 

�
 v 1 × �

 v 2 . So,

the rotation with angle β = arcsin (‖ � v ⊥ ‖ ) around the axis defined

by point m 1 and vector � s = 

�
 v ⊥ / ‖ � v ⊥ ‖ will let l 1 be parallel to l 2 .

Since m 1 lies on the rotation axis, its position will not change after

the transformation, hence the distance between the two lines will

remain equal to ‖ T ‖ . Trivially, a final translation along T will let

l 1 coincide with l 2 . To summarize, the minimum screw motion be-

tween the two lines is the one with axis (m 1 , � s ) , translation length

‖ T ‖ and rotation angle β . 

This modelling is convenient for our purposes because we can

relate the parameters of a screw-motion with the scalar and vector

part of a unitary dual quaternion ˆ q (refer to Appendix A for more

details about dual quaternions). 

The distance is then defined as following 

d(l 1 , l 2 ) = min (‖ log ( ̂  q ) ‖ , ‖ log ( −ˆ q ) ‖ ) . (1)

Given such axes distance, we can easily derive a similarity

function between a couple of cylinders ζ1 = (p 1 , � v 1 , r 1 ) and ζ2 =
(p 2 , � v 2 , r 2 ) . 

π(ζ1 , ζ2 ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

e −
d 

(
(c 1 , � v 1 ) , (c 2 , � v 2 ) 

)
λ if Ad( ζ1 , ζ2 ) < r 1 + r 2 

∧ 

min (r 1 ,r 2 ) 
max (r 1 ,r 2 ) 

> p 

0 otherwise 

(2)
here Ad(ζ1 , ζ2 ) = ‖ T ‖ is the minimum distance between two

xes (c 1 , � v 1 ) and (c 2 , � v 2 ) as defined previously, and λ > 0 is a free

arameter 2 . The value p ∈ [0, 1] is the minimum ratio between the

adii r 1 and r 2 required for two primitives to be compatible. The

imilarity function takes values between 0 and 1 and is inversely

roportional to the axis distance defined in (1) , thanks to the nega-

ive exponential with factor λ. Note that a cylinder is fully compat-

ble with itself (the ray distance is equal to zero, so the similarity

ill be one) and not compatible at all if the axes relative position

nd the radii are not consistent with each other. 

We will employ such definition of similarity in a clustering pro-

ess based on Game-Theoretical framework, which allows the ex-

raction of the more coherent subset of primitives among all can-

idates. 

.2. Candidate extraction 

There are several ways to obtain possible cylinder candidates

rom a 3D point cloud. The choice is influenced by the acquisition

evice, that could introduce some limitations due to its functioning

nd level of accuracy. For example, data could not be uniformly

istributed in space and point normals may be available or not. In

his approach we do not assume points to have a specific structure,

either to have normals. In this way the problem is kept as general

s possible, and the method can be applied in a variety of practical

pplications. 

Our candidate extraction is based on random slicing planes over

he scene: we randomly generate N planes and compute the inter-

ection between them and the point cloud. In this way we obtain

 sets of 2-dimensional scattered points used to fit all possible el-

ipses, which in turn are used to compute the cylinder candidates. 

To simplify the discussion, let’s assume to have acquired a scene

ontaining one single cylindrical shape and many other points re-

ulting from other objects or noise. The intersection between a

ylinder ζ and a plane P (whose normal � n is not orthogonal with

  ) results in an ellipse E with the following properties (see Fig. 4 ,

eft): 

• the minor semi-axis b is equal to the cylinder’s radius r ; 
• the ellipse center c lies on the cylinder’s axis; 
• the ratio between the major semi-axis a and minor semi-axis b

is a function of the angle α between 

�
 v and 

�
 n , according to: 

os α = 

b 

a 
. (3)

If 3D data is dense enough, a subset S of points lying suffi-

iently close to the plane P can be extracted, generating a set of

D points. Fig. 3 shows a simple example of this extraction pro-

ess, starting with a point cloud and a slicing plane. According to

hat said before, some of these points will lie on the ellipse cor-

esponding to the intersection between plane and cylinder, while

ome others will be distributed without any particular pattern (ie.

hey are outliers with respect to the elliptical shape). Therefore,

ny sufficiently robust fitting operation that extracts the elliptical

hape E out of S will give clues on the unknown cylinder enclosed

n the scene. 

In particular, we already observed that the minor axis of E cor-

esponds to the radius of the cylinder, while the center c defines

he position of the axis. The ratio between semi-axes a and b will

etermine the axis direction 

�
 v up to two equally-possible configu-

ations (see Fig. 4 , Right). Due to this intrinsic ambiguity, at least

wo plane slices are needed to fully recover a cylinder. 
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Fig. 3. Left: an example of point cloud containing two cylinders and a random slicing plane. Right: scattered points lying on the planar slice and the corresponding fitted 

ellipses. Each ellipse will be associated with two possible axes so this plane will generate four cylinder candidates. 

Fig. 4. Left: Intersection between a cylinder ζ and a plane P . Right: The two possible cylinders deriving from an ellipse in 3D space. They have radius and center point in 

common but differ in the axis direction (denoted as � v 1 and � v 2 ). 
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3 Matrix R is obtained by the Rodrigues’ formula. The symbol [.] × denotes the 

skew-symmetric matrix of the cross-product. 
In [26] the authors propose to use multiple slices to collect

nly the centers (c 1 . . . c n ) and the minor axes (b 1 . . . b n ) of each

tted ellipses. With this method, the cylinder radius is recovered

y averaging each b 1 . . . b n and the axis (p, � v ) b y fitting a 3D line

o c 1 . . . c n in a least-squares sense. The approach has three draw-

acks. First, it totally discards information given by each ellipse re-

arding the possible orientation of cylinder axis (due to the already

entioned ambiguity). Second, it can only handle a single cylinder

n the data. Third, it can badly suffer from unlucky plane slices

like areas with few scene content), since all values are averaged

ithout weighting their reliability. This aspect is partially relevant

hough, since the subsequent non-linear optimization may still be

ble to recover the correct shape. 

Our approach follows a similar strategy: we slice the scene with

 different random planes. From each 2D scattered point set ob-

ained from the i -th slice, we robustly extract all the j = 1 . . . N i 

ossible ellipses using RANSAC and the ellipse model estimation

ethod described in [44] . When considered in 3D space, each ex-

racted ellipse E i,j is defined by its major and minor semi-axes vec-

ors � a i, j ∈ R 

3 and 

�
 b i, j ∈ R 

3 and its center c i, j ∈ R 

3 . By construction,

  i, j and 

�
 b i, j are both defined up to a sign and orthogonal to the

ormal � n i of the i -th plane. 

From each E i,j , we compute the two possible cylinder candidates

s the tuples (r, c, � v = R 

�
 n i ) i, j and (r, c, � v = R 

T �
 n i ) i, j , where: 

r = ‖ 

→ 

b i, j ‖ 

c = c i, j 
 = I + 

√ √ √ √ 1 − ‖ 

→ 

b i, j ‖ 

2 

‖ 

→ 

a i, j ‖ 

2 

[ → 

b i, j 

‖ 

→ 

b i, j ‖ 

] 

×

+ 

( 

1 − ‖ 

→ 

b i, j ‖ 

‖ 

→ 

a i, j ‖ 

) [ → 

b i, j 

‖ 

→ 

b i, j ‖ 

] 2 

×

. (4) 

In the tuples, r and c denote the cylinder radius and axis point

hared by the two candidates and R 

�
 n i , R 

T �
 n i are two possible axis

rientations obtained by rotating the plane normal � n i around the

inor-axis of the ellipse E i,j with an angle of ± arccos 
‖ � b i, j ‖ 
‖ � a i, j ‖ 

3 . 

Note that we can extract several ellipses from a single plane

lice (each one originating two possible axes), but all cylinder can-

idates ξ = (r, c, � v ) i, j generated from slice i are not compatible by

onstruction and hence should be assigned to different clusters. In-

eed, it is simple to observe that distinct coplanar ellipses can only

e generated by distinct cylinders and the two axes coming from

he same ellipse are mutually exclusive. 

Thanks to this property we can reformulate the similarity func-

ion, taking into account the plane which generated each candi-

ate. Therefore, the new similarity between two candidates ξ =
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(r 1 , c 1 , � v k 1 
) i 1 , j 1 

and ξ2 = (r 2 , c 2 , � v h 2 
) i 2 , j 2 

is the following 

π ′ ( ξ1 , ξ2 ) = 

⎧ ⎨ 

⎩ 

1 if ξ1 = ξ2 

π( ξ1 , ξ2 ) if i 1 
 = i 2 

0 otherwise 

(5)

where π ( ξ 1 , ξ 2 ) is the cylinder similarity function as defined in

(2) . The additional condition is added in order to explicitly exclude

primitives generated from coplanar ellipses: in this way all pairs of

candidates coming from the same slicing plane will have zero sim-

ilarity. This formulation is particularly convenient in the clustering

approach explained in the next section since the evolutionary pro-

cess used to extract sets of coherent observations will inherently

exclude incompatible candidates from the final result. 

3.3. Inlier selection process 

In the proposed approach the extraction of a subset of candi-

dates containing elements with a high mutual support is carried

out in the context of Evolutionary Game Theory [45] . We consider

a scenario in which we have an initial population of candidates,

where each distinct couple of individuals play a game one versus

the other on the basis of pre-programmed strategies. Then, a se-

lection process brings some elements which match well together

to thrive, while driving the ”unfitting” ones to extinction. 

In our specific case, we consider all the M = 

∑ n 
i =1 N i cylin-

der candidates ξ1 . . . ξM 

as the individuals, that we call hypotheses .

Rather than the singular characteristics of each of them, we are in-

terested in expressing how well two hypotheses play together. In

other words, we need to define their behaviour when they are put

together in the final population. We define such fitness through

a payoff-function , which in our case is formulated as in (5) . This

function can be conveniently represented as an M × M symmetric

matrix � in which an element at row i and column j is defined as

follows: 

�(i, j) = π ′ (ξi , ξ j ) . (6)

We then consider a discrete probability distribution x =
(x 1 , x 2 , . . . , x M 

) over the set of hypotheses (the entire population).

The problem of finding a coherent set of candidates can be defined

formally as finding a particular distribution in the standard simplex

x ∈ 	M maximizing the average payoff x T �x . 

One possible solution to the problem employs an evolution-

ary process starting from a uniform distribution x (0) and making

it evolve through the well-known discrete-time replicator dynamic

[46] 

x (t+1) 
i 

= x (t) 
i 

(�x 

(t) ) i 

x 

(t) T �x 

(t) 
. (7)

Eq. (7) belongs to a class of evolutionary dynamics called

Payoff-Monotonic Dynamics that are guaranteed to converge to a

solution ˆ x in which the set of hypotheses with associated prob-

ability greater than 0 (namely the support of a population) cannot

include any strategy with mutual payoff equal to 0. In other words,

the candidates with associated non-zero probability in ˆ x will only

be the ones generated from different planes and with the distance

between the two axes greater than the sum of the two radii. As a

result, only the most consistent cylindrical model will emerge from

the whole set of candidates after the inlier selection process. 

3.4. Averaging the winning candidates 

At convergence, a probability distribution over the candidates

ξ1 . . . ξM 

is obtained, but we are still left with the problem of esti-

mating the resulting cylinder parameters out of it. If we just con-

sider the support of the population, we might use the same ap-

proach of [26] to just fit the cylinder axis line to the centers of the
inning candidates. However, we now have the chance to produce

 better estimation by weighting the contribution of each candi-

ate considering the probability distribution ˆ x . 

The estimation of the final cylinder ζ = (p, � v , r) is divided in

wo parts. The radius r is estimated as the weighted average of the

andidate radii (8) 

 = 

M ∑ 

i =1 

ˆ x i r i (8)

here r i is the radius of ξ i . Then, the axis (p, � v ) is averaged using

he same approach of [42] , posing the problem of 3D lines inter-

olation in terms of rigid motions blending. The general approach

s as following: 

1. An initial axis estimate (p ′ , � v ′ ) is computed by linearly in-

terpolating the axis point p ′ and direction 

�
 v ′ independently,

according to the weights given in ˆ x 

2. All the screw motions between (p ′ , � v ′ ) and the cylinder can-

didates ξ1 . . . ξM 

are computed according to (A.2) 

3. The screw motions are averaged using the Dual-quatertions

Iterative Blending [47] to obtain an average motion q 

∗
4. q 

∗ is applied to (p ′ , � v ′ ) to get the final cylinder axis. 

.5. Extracting multiple cylinders 

The process described so far can extract only one cylinder at a

ime. To extract multiple cylinders, the two operations are simply

epeated by ensuring that the candidates resulting from one run of

he game theoretical process cannot be selected anymore. Specifi-

ally, after the extraction of each cylinder, we manually modify the

ayoff matrix � according to the current population support. 

Let k 1 , k 2 , . . . , k h be the set of indices corresponding to the win-

ing strategies. This means that they are non-zero elements in the

nal distribution ˆ x (ie. ˆ x K 
 = 0 ∀ K ∈ k 1 . . . k h ). The payoff matrix �

s then modified so that all rows and columns at indices k 1 . . . k h 
re set to zero (they are considered fully incompatible with any

ther candidate in the population). After that, the initial popula-

ion x 0 is reset to the uniform distribution and the inlier selection

rocess (7) is run again until convergence. Since we are using a

ayoff-monotonic dynamic, all the previous candidates indexed by

 1 . . . k h cannot be present again in the next set of winning can-

idates. The whole process is repeated until all cylinders are ex-

racted from the scene. 

. Experimental evaluation 

In this section we present a set of experiments to assess the

orrectness and robustness of the proposed technique in several

ituations. Since this approach is designed to work with data com-

ng from real scans, we tested it against both synthetic and real-

orld data. The synthetic setup allows us to estimate the be-

aviour of our cylinder fitting algorithm while adjusting some ex-

ernal factors such as noise levels, outlier quantity and occlusions.

oreover, we used such controlled environment to compare the

roposed technique with other fitting approaches. Finally, at the

nd of this section, we use real-world data to test the extraction

bility in some real-world situations. 

Synthetic generated data consist in a point cloud lying on a

nitary-radius cylinder, centred at the origin and with its axis par-

llel to the z-axis. Such points are perturbed with two different

ypes of noise: zero-mean Gaussian additive noise and salt and

epper noise. The former is controlled by its standard deviation σ ,

hile the latter is regulated by p , that is the probability of a point

o be an outlier, with σ o (such that σ o > σ ) being the outliers’

tandard deviation. We also introduced an additional parameter

, denoting the angle underlying the portion of observed surface
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when θ = 360 ◦ the cylinder surface is complete). This parameter

s used to simulate a range-map acquisition, since auto-occlusions

sually limit the reconstruction to a portion of the cylinder surface.

e measured the algorithm precision in terms of three quantities,

hat are: radius relative error (in percentage), the angle and rela-

ive distance between the fitted axis and the ground truth. 

.1. Sensitivity analysis 

One of the strengths of our approach is that it only depends on

he number of slicing planes used to generate axis candidates. In

act, other possible parameters (like RANSAC thresholds for ellipse

tting) depend only on the scale and on the density of data and

re fixed at the beginning of the process. The number of random

lanes has a direct impact on the algorithm’s performances, so in

he first group of experiments we evaluated our fitting approach

arying the nature of the slicing planes against different kinds of

ata. In particular, we are interested in analysing the effects of two

actors: the number of planes involved and their inclination with

espect to the actual cylinder’s axis. 

In the first experiment we generated N planes with random

nclination and position, and run our algorithm on the same

andomly-perturbed data increasing the value N from 10 to 90. We

sed synthetically generated data as described before, testing sev-

ral coverage angles θ and simulating different outlier conditions.

n Fig. 5 the error values are plotted against the increasing number

f slicing planes (on x-axis, from 10 to 90), each curve denotes a

ifferent surface coverage angle. We measured the axis angle error

in degrees, first row), the axis translation error (second row) and

he radius relative error (third row). The columns show two setups

ith different amounts of inliers, while keeping the same level of

dditive Gaussian noise. Each configuration was tested 100 times

nd the error bars display the mean standard error. 

As expected, a higher coverage angle implies a better ellipse fit-

ing, producing a set of more reliable axis candidates. For this rea-

on, in the few outliers case, the fitting precision increases for an-

les greater than 90 ◦ and become essentially the same for angles

arger than 135 ◦, where the curves overlap. Adding more outliers

2nd column) basically produces the same behaviour: for greater

alues of θ we observe a very good cylinder fitting, that is com-

arable to the low-noise scenario. For smaller angles (50 ◦ and 90 ◦)

he fitting can be improved by adding more planes, but still the

xis inclination error results the most critical parameter to resolve.

verall, we observe a slight improvement when we slice the scene

ith a higher number of planes, but the choice of this parameter

s not so critical in terms of fitting precision. The number of planes

ffects the robustness of the proposed algorithm, and thus should

e adjusted depending on the features of the acquired scene. In

he case of low or medium amount of outliers we can safely set

he parameter N from 30 to 60 to obtain acceptable outcomes. The

esults obtained on partially occluded surfaces are a good indica-

ion that, with a suitable number of planes, the algorithm offers

ood results with typical scanner range data. Of course, this pa-

ameter depends on the kind of application: if the point cloud con-

ains several cylindrical primitives the number of planes should be

ept relatively high in order to capture all the elements to extract.

In the previous experiments we generated several planes with

 random center and normal in order to test the general case in

hich locations and orientations of the primitives to be extracted

re unknown. Nevertheless, there are scenarios in which an ap-

roximate orientation of the objects to be detected is known. In

uch cases, it makes sense to exploit such prior information to ex-

ract better candidates. 

For this reason we analysed the performances of our algorithm

arying planes inclinations with respect to the cylinder axis. We

xed the number of slicing planes to 20, and σo = 0 . 05 , with
p = . 1 ; then we performed two sets of experiments, for low ( σ =
 . 001 ) and very high ( σ = 0 . 1 ) levels of additive Gaussian noise.

fter generating a randomly perturbed cylinder, we run the fit-

ing algorithm using planes with a random orientation which have

een restricted to a small interval (from 0 ◦ to 10 ◦, from 10 ◦ to

0 ◦ and so on). The experiment was repeated 100 times for each

onfiguration. In Fig. 6 we show the three measured errors (one

or each row) as boxplots for each different plane orientation in-

erval. The first column displays results in the low noise setup,

hile the second column the results for very high noisy condi-

ions. Note that the angle values of intervals refer to the relative

ngle between the plane normal vector and the cylinder’s axis, so a

mall angle implies the plane to be almost orthogonal to the cylin-

er’s axis. In practical terms, a larger plane angle stretches out the

llipses to be fitted, increasing their eccentricity, while an angle

lose to zero implies more circular sections. Results show that in

oth cases (low and high noise) a larger angle improves the cylin-

er fitting precision, especially in terms of axis localization (rota-

ion and translation). This happens because the ellipse fitting be-

omes less ambiguous in the case of higher eccentricity of sampled

ata, therefore the computation of major and minor axes is more

ccurate. In fact, if we sample noisy points from a circle, a lot of el-

ipses with small eccentricity are equally acceptable results, but in

ractice they make the axis fitting more unstable. Conversely, the

ylinder’s radius is less affected by the planes inclination, but still

e can observe small improvements for higher angles. This obser-

ation should be considered especially when extracting cylinders

rom a scene where some prior on their position is known and a

igh precision is required, even with noisy point clouds. 

.2. Comparisons 

In the following set of experiments we focused on the perfor-

ances of the proposed algorithm when compared to other cylin-

er fitting techniques for different noise conditions. We generated

he usual synthetic scene containing a unitary-radius cylinder to

e fitted, and we applied our method GT against MSAC [28] , Line

t [26] , Tran et al. [38] and Jin et al. [39] . 

The MSAC approach consists in a sample consensus technique

equiring point normals to estimate the best cylinder fitting from

he given point cloud. If vertex normals are not present, they are

stimated by locally fitting a plane in each point’s neighbourhood.

e run the algorithm setting the maximum number of iterations

qual to 50 0 0; moreover, after some preliminary tests, we set the

aximum inlier distance to 0.03 (which is 3% of the radius), so

hat MSAC approach works well with our data. Line fit does not

eed point normals and exploits the fitted ellipses as cylinder sec-

ions: the cylinder’s axis is computed fitting a line through the

entres and the final radius is the average of all radii values. Af-

er that, the cylinder is refined by fitting through a non-linear op-

imization. To have fair comparisons, we used the same extracted

llipses as input to both our and the described techniques. Tran

t al. method proposes a cylinder fitting algorithm using a grow-

ng approach. In each iteration it exploits points normals to esti-

ate the axis direction, then fits a circle to the points projected

n the orthogonal plane to devise radius and axis location. After

his process, the collected cylindrical shapes are validated and clus-

ered via mean shift algorithm. In all the experiments we fixed the

lgorithm parameters as suggested in the original paper, namely:

= 50 , β = 0 . 95 , with 10 iterations. Point normals were computed

s described in [48] , choosing 50 neighbours. The method pro-

osed by Jin et al. [39] requires no normals for cylinder estima-

ion: it starts from small neighbourhoods of points to fit a sphere

n each group, then all fitted spheres are used to devise axis and

adius of the detected cylinder. The work in [39] is specifically

esigned to detect pipes in 3D scans of large-scale plants, and
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Fig. 5. Angle, center and radius errors varying the number of randomly generated planes. Each curve corresponds to a different surface coverage (the angle θ ). Results are 

shown for low (1st column) and high (2nd column) outlier presence. 
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includes additional methods to compute the cylinder length and

recognise curved regions. Despite the target application is different

from ours, we chose to compare this technique because it is one

of the few methods not requiring point normals and that can be

adapted in a cylinder extraction context, ignoring the pipe routing

aspect. 

In the first test we gradually increased the standard deviation

of additive Gaussian noise (from 0.001 to 0.05) and run all the fit-

ting algorithms on perturbed data using 20 slicing planes. The out-

lier level was set to a medium level of σo = 0 . 04 and p = . 3 . Fig. 7

shows in different curves the average of error values for each fit-

ting technique, increasing the level of noise (on x-axis). As usual,

the bars denote standard error values and each experiment has

been repeated 100 times to compute the average. Each plot dis-

plays a different measured error, namely: (from left to right) axis

angle, centre displacement and percentage of radius error. Note

that a logarithmic scale has been applied to y-axis to improve the

visualization. In the case of axis angle error, GT offers more sta-

ble results and a better axis orientation precision with respect to
ther approaches. In particular, our method and line fit exhibit a

imilar behaviour, but line fit is characterized with slightly higher

rrors and variability. Tran et al. shows significant instability and

oor results in most of the cases, especially in the axis parameter

stimation. Its performances for angle and radius errors are close

o our technique for σ larger than 0.03. MSAC algorithm is unsta-

le in all the scenarios and in general it exhibits higher errors. The

rrors observed for Jin et al. method show invariance with respect

o increasing Gaussian noise, but its overall precision can be com-

ared with MSAC (for angle and radius) and line fit (for the axis

enter). In general, our method exhibits more accurate results in

he case of Gaussian additive noise. 

In the following set of experiments we compared the fitting

erformances for different outlier cases. Fig. 8 shows the behaviour

f the five methods increasing the outliers frequency (left col-

mn) and magnitude (right column). We fixed Gaussian noise to

= 0 . 001 and 20 random slicing planes to measure the different

tting errors as in the previous test (from top to bottom: axis an-

le, axis distance and radius error). We also changed Tran et al.
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Fig. 6. Fitting performances using planes at different inclinations, in the case of low or high noise levels (respectively 1st and 2nd column). The error is splitted into axis 

angle, center displacement and radius error. Each boxplot represents an orientation interval in terms of angle between the cylinder axis and plane normals. 

Fig. 7. Angle, center and radius error means (displayed in logarithmic scale) increasing the standard deviation of additive, zero-mean Gaussian noise. We tested five different 

cylinder fitting techniques, each one denoted by a curve. 
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arameters to adapt to the noisy acquisition: we used 100 points

or normal computation and 200 neighbourhood points at the be-

inning of the fitting algorithm. Data were perturbed 100 times

or each configuration to compute the mean and standard errors,

hown as error bars. The leftmost column displays the results with

 fixed σo = 0 . 1 , increasing the value of p (ie. the probability of a

oint to be an outlier). In the rightmost plots (shown in logarith-

ic scale) we fixed the outlier probability p = . 4 and gradually in-

reased the outliers standard deviation σ o from 0.05 to 0.2. In both

ases GT exhibits more accurate and stable results with respect

o other techniques, even with a severe outlier component. Both
he techniques requiring point normals ( MSAC and Tran et al.) dis-

lay unstable results characterized by higher error values caused

y wrong normal estimations introduced by outlier data. In par-

icular, Tran et al. and MSAC have large variability and error when

ompared to GT and line fit . The technique proposed by Jin et al. is

ot altered by outlier changes but exhibits higher errors, especially

n radius estimation. 

We also simulated a typical scenario with a partially occluded

bject. Indeed, this situation is common in many applications since

ost of the times the acquired data is a range-map or a laser scan

ine. We run the algorithms increasing the cylinder’s surface cov-
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Fig. 8. Angle, center and radius error means varying the salt and pepper noise parameters. In the first column we increased the outlier probability p and keep σo = 0 . 1 . In 

the second column (plotted with log scale) the outliers standard deviation σ o was gradually increased, keeping p = . 4 . We tested five different cylinder fitting techniques, 

each one denoted by a curve. 
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erage angle θ , plotting the resulting errors in Fig. 9 . Note that we

displayed only our technique and the line fitting approach because

MSAC, Tran et al. and Jin et al. errors were so high to hinder a good

visualization of the first two. The additive Gaussian noise standard

deviation was set to σ = 0 . 005 , while the salt and pepper noise

was characterized by a standard deviation σo = 0 . 01 and an outlier

probability p = . 1 . We also increased the number of slicing planes

(40, with any random inclination) to have more stable results. As

we already noticed, the cylinder’s axis angle is the most critical pa-

rameter to be computed: the leftmost plot of Fig. 9 shows that the

proposed algorithm offers a better axis estimation with respect to

the simple line fitting technique. In terms of axis dislocation and

radius error, the proposed method and line fitting offer similar re-

sults. 

Finally, we tested the execution time of the different techniques

against data changes. We generated the usual synthetic scene and

increased both additive Gaussian noise and outlier ratio: Fig. 10

displays the results. The leftmost plot shows execution time in-
reasing the standard deviation σ with a fixed outlier amount ( p =
 1 , σo = 0 . 05 ), while in the rightmost plot we increased the outlier

robability p and kept fixed σ = 0 . 01 and σo = 0 . 05 . Note that we

id not compare the execution time varying the cylinder coverage

ngle θ since the other methods are not viable in such scenarios,

s previously discussed (see Fig. 9 description). Execution times of

ur technique and line fit only differ in the game-theoretical inlier

election, since line fit approach exploits the same fitted ellipses

o get cylinder parameters. Other approaches employ a constant

mount of time, depending on the number of input data points. 

In conclusion, we observed that our method gives more stable

esults and lower error in terms of both axis and radius estima-

ion. The accuracy is similar to line fit for some cases, becoming

ore significant in presence of a large amount of outliers where

he performance is improved. We also observed that the axis an-

le is the most critical element to be estimated, and our approach

llows for the best candidates selection to have an accurate esti-

ation and filter out outlier data. 
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Fig. 9. Angle, center and radius error means increasing the cylinder coverage angle θ . Note that the other fitting techniques were excluded from the plot because of their 

high values. 

Fig. 10. Execution time of different fitting methods increasing Gaussian noise and outlier probability. 

Fig. 11. Left: an example of the generated scene with two scans of tomato soup object. Red cylinders have been fitted by our method. Center and right: relative angle means 

of the two fitted axes from the scene. Bars represent the standard error. 
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4 We empirically determined that this value gives good results without being too 
.3. Real-world experiments 

In this experimental section we tested the multiple cylinder ex-

raction capability of our algorithm employing real scan data to

valuate the performances in real-world scenarios. We adopted a

ell-known model dataset containing everyday items, that is the

ale-CMU-Berkeley Object and Model Set [49] ; specifically we used

d scan data presented in [50] . Such dataset includes scans of the

bjects from the Model Set, each one consisting in coloured 3d ver-

ices with no orientation. We selected a subset of cylindrical items

nd composed them in several scenes from which some cylindrical

rimitives are to be extracted. 

In the first experiment we analysed the repeatability and ac-

uracy of our method when applied to real-world point clouds.

e compared the proposed algorithm against the other techniques

hat we already described in the previous section. The line fitting

ethod [12] was excluded because it is designed to work with

 single cylindrical shape to be fitted, therefore its application in

uch scenario has no sense. Since MSAC and Tran et al. approaches

equire vertex normals, we computed them for each point by lo-

s

ally fitting a plane on its 80 neighbours 4 To extract multiple cylin-

ers with MSAC approach, we iteratively removed all points falling

nside the region delimited by ± 5% of the estimated radius. Note

hat, while MSAC approach needs to run each time the input is

odified, our algorithm performs the ellipses fitting just once at

he beginning, then the extraction is performed by dynamically run

he game-theoretical selection with a modified payoff matrix (as

xplained in 3.5 ). 

We choose one single object ( ”tomato soup”), with radius equal

o 33 mm and height equal to 101 mm. The point cloud contains

73,205 vertices; it has no outlier points but the surface is quite

hick, probably due to scanner rangemap registration errors. We

enerated a simple scene containing two instances of the object,

eparated with a known random translation. In Fig. 11 an example

f such scene is displayed, together with the cylinders extracted by

ur algorithm (in red). Since the exact axis of the scanned object

s not known, we evaluated the accuracy of the algorithms mea-
low in processing. 



12 F. Bergamasco, M. Pistellato and A. Albarelli et al. / Pattern Recognition 107 (2020) 107443 

Fig. 12. Execution time for our method, MSAC and Jin et al. methods when extract- 

ing five cylinders (real-scanned data) from a point cloud with an increasing number 

of points. 
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suring the relative angle between the two estimated axes from the

scene. Ideally, since the object was transformed with a pure trans-

lation, such angle should be almost zero. Plots in Fig. 11 display

the relative angle values between the couple of extracted primi-

tives for each technique. In the leftmost plot we simulated various

point cloud densities (from 30% to 100%) starting from the origi-

nal scan; we plot the relative angle value against the percentage

of randomly sampled points (in x-axis). In this case we used 40

slicing planes and we performed 40 0 0 MSAC iterations, with min-

imum inlier distance equal to 2mm. The experiment was repeated

100 times and the same uniformly sampled data was used as in-

put for both methods. In the rightmost plot of Fig. 11 we simulated

a partial scene acquisition (as in a range-map), varying the mini-

mum angle between a fixed point of view and vertices normals.

For this tests we removed all the points for which the relative an-

gle between the normal and a fixed direction vector is below an

increasing threshold (displayed on x-axis, note that min angle = 0

is the whole point cloud) and computed the relative angle between

the two axes. In this setup we used 50 planes and increased MSAC

iterations up to 50 0 0. The view vector was (0, 1, 0) T and each

test was performed 20 times with a random subsampling equal to

0.8. For both experiments we observed that our algorithm gave a

more stable angle value ranging between 2 and 5 degrees. More-

over, the proposed approach is not influenced by variations in data

density. In general the other approaches exhibited a more unstable

behaviour and a greater standard error. 

In the following experiment we compared the extraction speed

of several approaches in a real-case scenario. We generated a scene

including five cylinders (instances of ”tomato soup”) and additional

objects to be ignored by the extraction algorithm. Then, we ran-
Fig. 13. Qualitative examples obtained in different ki
omly subsampled each scene to a fixed number of points (from

0 0K to 10 0 0K). Fig. 12 displays the execution times for our ap-

roach, MSAC, Tran et al. and Jin et al., where x-axis shows the

otal number of data points. Each test have been repeated 100

imes to obtain different samplings. For a fair comparison, we used

0 slicing planes and chose specific plane angles to always in-

ersect all the cylinders in the scene. This is the worst scenario

or our method since the size of the similarity matrix depends

n the number of ellipses extracted in each slicing plane and not

he number of points. Thus, the execution time of our algorithm

trongly depends on the number of cylinders to be extracted, since

t basically increases the number of RANSAC executions to estimate

ultiple ellipses. Consequently, as long as the average inlier/outlier

atio is kept constant in the scene, the amount of processed points

as a very weak influence on the performances of our technique

indeed GT time curve is almost constant). On the other hand,

SAC and other approaches relying on normals exhibit longer ex-

cution times as the number of points increases. The approaches

roposed by Tran et al. and Jin et al. depend on the number of

oints, so their execution time grows linearly with the point cloud

ize. 

Finally, we performed some qualitative tests in various con-

itions to show the output of our algorithm in a general clut-

ered scene. Fig. 13 displays a selection of generated point clouds

ith the extracted cylindrical shapes. We composed the leftmost

cene with objects of different radius and size: ”tomato soup” (ra-

ius 33 mm), ”Master Chef” (radius 51 mm) and ”c cup” (radius

2.5 mm). We used 50 random planes to extract the three cylin-

ers and displayed the computed radii. Other configurations in-

lude objects with random rotations and a scene with several

ylindrical objects to be extracted ( Fig. 13 , centre and right respec-

ively). In particular, for the latter we employed 60 planes and run

 times the game-theoretical inlier selection. 

We also generated some scenes adding non-cylindrical, generic

bjects to be excluded by the extraction algorithm. Fig. 14 shows

wo examples of such scenes. We employed the cylindrical objects

tomato soup”, ”Master Chef” and ”Chips Can” and other everyday

bjects of various shape and size. The displayed point clouds count

n total 6,132,681 (left) and 5,283,187 (right) 3D points. We sliced

oth scenes with 60 planes (of all possible random inclinations and

ocations) to extract the cylindrical primitives. The displayed cylin-

ers (in red and blue) are direct outputs of the proposed algorithm,

ith no further refinement. The primary objective of this experi-

ent was to test the ability of our method in detecting cylindrical

bjects in the presence of clutter. Indeed, such scenario is realis-

ic in a number of robotic grasping applications, where the need

f identifying a target object is fundamental. Experimental results

btained with these real-world data show the effectiveness of our

ylinder extraction method in different cluster conditions, effec-

ively excluding other elements in the input point cloud. 
nds of scenes, generated using real scans data. 
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Fig. 14. Cylindrical primitives extracted ”in the wild” from two difference scenes. 
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. Conclusions 

In this paper we proposed a novel technique to extract multi-

le cylindrical primitives from generic, non-oriented point clouds.

he method combines two crucial elements: the definition of an

ffective similarity function between couples of candidate cylinders

ased on dual quaternion algebra, and a candidate extraction based

n geometrical properties of the scene. The game theoretical in-

ier selection exploits a specially designed payoff-function among

ylinder candidates and allows the method to be general enough

o be used without prior knowledge of the scene. Our approach

s designed to exhibit a high robustness with respect to outliers,

hat makes it perfect to be applied in practical scenarios where

 noisy point cloud is acquired without normal vectors. However,

his limits its usage on massive point clouds where several cylin-

rical patches are simultaneously present (like in pipe-routing re-

erse engineering) or when the spatial resolution is low (for exam-

le, in some Lidar-acquired data). 

Nevertheless, qualitative experiments show that the proposed

xtraction method offers high flexibility in very heterogeneous and

omplex scenes typically faced in robotics and industrial applica-

ions. 

ppendix A. Dual quaternions and rigid motions 

In this appendix we give a minimal introduction to dual quater-

ions to understand the proposed distance function, suggesting the

eader to [51,52] for more information on dual numbers and dual

uaternion algebra for geometrical applications. 

Dual quaternions are mathematical objects defined by a compo-

ition of quaternions and dual numbers. The former are common

or researchers and practitioners working with rotations, since it

s well known that rotations around the origin can be efficiently

epresented by unitary quaternions. The latter is less known, but

imple in practice. A dual number can be written as ˆ a = a 0 + εa ε
here ε is called dual unit . The algebra is similar to complex

umbers, except that ε2 = 0 . Indeed, the dual conjugate is analog

o complex conjugate ¯̂
 a = a 0 − εa ε and the multiplication is given

y the formula (a 0 + εa ε )(b 0 + εb ε ) = a 0 b 0 + ε(a 0 b ε + a εb 0 ) . The

quare root of a dual number with non zero scalar part a 0 is given

y the formula 

 

a 0 + εa ε = 

√ 

a 0 + ε
a ε

2 

√ 

a 0 
. (A.1) 
Interestingly, the Taylor series of a function with dual argument

s limited to the first order because higher powers of ε are zero.

herefore, sine and cosine of a dual number are easily defined as: 

sin (a 0 + εa ε ) = sin (a 0 ) + εa ε cos (a 0 ) 

os (a 0 + εa ε ) = cos (a 0 ) + εa ε sin (a 0 ) . 

Since the dual unit commutes with quaternion units (ie i ε = εi ),

 dual quaternion ˆ q can be written as an ordinary quaternion of

ual numbers ˆ q = ˆ w + i ̂ x + j ̂  y + k ̂ z (where i = (i, j, k ) ) or as a dual

umber in which the scalar and dual part are ordinary quater-

ions ˆ q = q 0 + εq ε . The norm of a dual quaternion is defined as

 ̂  q ‖ = 

√ 

ˆ q 

∗ ˆ q , where ˆ q 

∗ denotes the classical quaternion conjuga-

ion 

ˆ q 

∗ = q 

∗ + εq 

∗
ε . The set of dual quaternions for which ‖ ̂  q ‖ = 1

re called unitary . It can be demonstrated that every rigid transfor-

ation can be represented by a unitary dual quaternion, and con-

ersely, every unitary dual quaternion represents a rigid transfor-

ation. Finally, for the so-called antipodal property of dual quater-

ions, ˆ q and −ˆ q represent the same transformation but with two

ifferent trajectories. 

nitary Dual Quaternion Manifold 

The screw motion between l 1 and l 2 can be related to the scalar

nd vector part of a unit dual quaternion ˆ q according to the follow-

ng formula: 

ˆ q = cos 
ˆ θ

2 

+ ̂  s sin 

ˆ θ

2 

ˆ = 2 β + ε2 ‖ T ‖ 

ˆ s = i � s + εi (m 1 × �
 s ) (A.2) 

here ˆ s is a dual quaternion (with zero scalar part) describing the

otation axis and 

ˆ θ is the dual angle expressing the angle of rota-

ion and the amount of translation. 

The set of unit dual quaternions can be seen as 6-dimensional

anifold embedded an 8-dimensional Euclidean space [53] . The

orresponding log map can be defined in closed form as: 

og( ̂  q ) = ̂  s 
ˆ θ

2 

. (A.3) 

uch log map allow us to define a distance function between two

ines l 1 and l 2 induced by the length of the geodesic path in SE(3)

rom the origin (ie. the identity motion) to ˆ q . Let ˆ q be the screw

otion described in 3.1 , we define such function as: 

(l 1 , l 2 ) = min (‖ log ( ̂  q ) ‖ , ‖ log ( −ˆ q ) ‖ ) . (A.4)
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In fact, it represents the length of the shortest geodesic path of

the two trajectories described by ˆ q due to the antipodal property. 

Operatively, the distance between two axes l 1 and l 2 in our ap-

plication is computed as follows: 

1. Determining the points m 1 and m 2 , and the distance vector

T = m 2 − m 1 

2. Computing the axis vector � s 

3. Computing the dual quaternion ˆ q as in (A.2) 

4. Computing the length of the geodesic path as in (A.4) 
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