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Abstract

Convolutional Neural Networks (CNNs) have performed extremely well on data
represented by regularly arranged grids such as images. However, directly lever-
aging the classic convolution kernels or parameter sharing mechanisms on sparse
3D point clouds is inefficient due to their irregular and unordered nature. We
propose a point attention network that learns rich local shape features and their
contextual correlations for 3D point cloud semantic segmentation. Since the ge-
ometric distribution of the neighboring points is invariant to the point ordering,
we propose a Local Attention-Edge Convolution (LAE-Conv) to construct a lo-
cal graph based on the neighborhood points searched in multi-directions. We
assign attention coefficients to each edge and then aggregate the point features as
a weighted sum of its neighbors. The learned LAE-Conv layer features are then
given to a point-wise spatial attention module to generate an interdependency ma-
trix of all points regardless of their distances, which captures long-range spatial
contextual features contributing to more precise semantic information. The pro-
posed point attention network consists of an encoder and decoder which, together
with the LAE-Conv layers and the point-wise spatial attention modules, make it
an end-to-end trainable network for predicting dense labels for 3D point cloud
segmentation. Experiments on challenging benchmarks of 3D point clouds show
that our algorithm can perform at par or better than the existing state of the art
methods.
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1. Introduction

With the widespread availability of 3D scanning devices and depth sensors [1],
3D geometric data is being increasingly used in many different application do-
mains such as robotics, autonomous driving, 3D scene understanding, city plan-
ning, infrastructure maintenance etc [2, 3, 4, 5]. Several representations of 3D
shape have been investigated, such as depth maps, voxels, multi-views, meshes
and point clouds [6]. However, point cloud is arguably the simplest format for 3D
data representation and has hence attracted increasing research interest. Similar
to the pixels in a 2D image, points in the three-dimensional coordinate system are
basic building units of point clouds, which naturally encode the geometric features
and their spatial distributions of a real 3D scene.

The extraction of meaningful information from 3D point clouds requires se-
mantic segmentation. Point cloud semantic segmentation has been a challenging
and active research topic for the last few years. Unlike pixels of 2D images which
have a rectangular grid-like structure with no missing bits, 3D point clouds are
sparse, irregular, unordered and with missing regions due to the limited range of
scanners and occlusions. While deep learning has been very successful in seman-
tic segmentation of 2D images, its use for 3D point clouds has not been fully ex-
ploited yet. Qi et al. [7] first proposed PointNet that learns point features directly
from unordered point sets. In PointNet, all 3D points are independently passed
through a set of multi-layer perceptions (MLP) and then aggregated to a global
feature using max-pooling. Recent research directions focus on extending the ba-
sic idea of PointNet to incorporate local geometric features for abstracting more
discriminative high level features [8, 9, 10]. Among these methods, Pointnet++
[8] exploited neighborhood points within a ball query radius, where each local
point is processed separately by a PointNet-based hierarchical network. However,
the relationships between local points are neglected. Recently dynamic graph
CNN [9] was proposed which considers neighborhood points as a local graph and
uses a filter generating network to assign edge labels. Since the edge-conditioned
network does not consider the order of local points, it does not have transforma-
tion invariance. Similar to dynamic graph CNN [9], dynamic edge conditioned
filters [10] were introduced as an edge function to encode local information by
combining the relative coordinates (raw features) between the center point and
its K-nearest neighbors (KNN). Although dynamic edge conditioned filters [10]
attempt to use a function designed to handle local points, it does not fully exploit
the geometrical correlations of the local neighborhood points.

To address the above short comings, we propose a local attention-edge convo-
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lution (LEA-Conv) layer that extends the ideas of [8, 9] and [10]. The LAE-Conv
layer constructs a local graph based on the neighborhood points searched along
multiple directions. Unlike KNN and ball query methods, we propose a multi-
directional search strategy that finds all neighborhood points from 16 directions
spread systematically within a ball query making the local geometric shape more
generalizable across space. After the search operation, LAE-Conv layer assigns
attention coefficients to each edge and then aggregates the central point features as
a weighted sum of its neighbors. Aggregating features from a group of points with
their contribution coefficients, rather than a single max-pooling operation, better
exploits the correlations between points to get accurate and robust local geometric
details. Moreover, LAE-Conv layer is invariant to the ordering of points and can
implicitly infer how the points contribute to the overall 3D shape.

Equipped with the LAE-Conv layer, we are able to design hierarchical deep
learning architectures on point clouds for semantic segmentation. Since each
LAE-Conv layer has a limited local receptive field, each unit of the output fea-
tures (at the initial layers) exploits correlations within its local scale only. How-
ever, later LAE-Conv layers have progressively larger receptive fields enabling
the network to learn hierarchical features. While existing networks [8, 11, 9] cap-
ture multi-scale shapes for high-level point feature learning, they do not leverage
the long-range contextual relationship among points belonging to the same cat-
egories, which is important for semantic segmentation. Superpoint graphs [12]
employed a recurrent neural network to exploit long-range dependencies based on
an unsupervised geometric partitioning. However, that method relies heavily on
the partitioning results. To address the above problems, in this paper, we propose
a point-wise spatial attention module, which captures long-range contextual in-
formation in the spatial dimension. Features obtained from LAE-Conv layer are
fed into the point-wise spatial attention module to generate a global dependency
matrix which models the correlations between any two points of the feature maps.
Through multiplying the dependency matrix with original features, the differences
between point features of the same category are reduced. Hence, any two points
with similar features can contribute mutual improvement regardless of their spatial
distance.

Using the proposed LAE-Conv layer and point-wise spatial attention model as
the main building blocks, we design a U-shape network to predict the dense labels
for semantic segmentation of 3D point clouds. The unorganized 3D points (raw
data) are input directly to our point attention network comprising an encoder and a
decoder. This is different from other approaches [8, 11, 9] since our method stacks
the point-wise attention module after the LAE-Conv layer at different stages of the
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network enabling it to learn more accurate local geometric features and long range
relationships.

To summarize, our contributions include: (1) A novel local attention-edge
convolution (LAE-Conv) layer to encode point features using a weighted sum of
its neighborhood points with edge attention coefficients. The proposed multi-
directional search strategy makes the local geometric shape more generalizable
across space. (2) A novel point-wise spatial attention module that learns the
long-range contextual information and significantly improves the segmentation
results by boosting the representation power of local features obtained from the
LAE-Conv layers. (3) Extending the U-shaped network to incorporate the pro-
posed LAE-Conv layer and point-wise spatial attention module. Experimental
results show that our method obtains on pair or better performance than exist-
ing state-of-the-art methods quantitatively and qualitatively on challenging bench-
mark datasets. Finally, we show that our proposed point attention block can gen-
eralize to other networks and improve their performance.

2. Related Work

A number of deep learning architectures have been recently proposed to learn
directly from 3D point cloud data or its derived representations for applications
such as semantic segmentation, object part segmentation and object categoriza-
tion. We provide a brief survey of these methods and divide them into three cate-
gories based on the underlying data representations they use.

2.1. Indirect methods
This category includes methods that transform the irregular 3D point cloud

data to a canonical form so that traditional convolutions can be applied [13, 14].
Volumetric representations [15, 6, 16, 17, 18] are the most common canonical
form used by these methods due to their simplicity. However, voxel represen-
tations have cubic complexity leading to dramatic increase in the memory con-
sumption and computing resources required to process even medium size point
clouds. To alleviate this problem, Octree-Net [19, 20] and Kd-Net [21] have been
proposed which skip representation and computations at empty spaces to save
memory and processing resources respectively [22]. Moreover, sparse convolu-
tional operations, where the activations are kept sparse in the convolution layers
[23, 24], have been introduced to process spatially-sparse 3D point clouds. Nev-
ertheless, the kernels are still dense and inefficient in their implementation. Multi-
view convolutional neural networks and their variants [25, 26, 27, 28] have also
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been proposed. These methods render the 3D shape from multiple pre-defined
views, which are then processed by conventional image-based convolution net-
works. The main drawback of the multi-view frameworks is that the 3D geometric
information is not always fully retained in the 2D projections.

The sparse lattice networks proposed by Hang et al. [29] project the input 3D
points onto a high dimensional lattice, perform standard spatial convolution on it
and then filter the features back to the input points. Matan et al. [30] extended the
function over point cloud to a volumetric function, where volumetric convolution
is applied and then a restriction operator is used to do the inverse action. Qiangui
et al. [31] used a slice pooling layer to project unordered point clouds into an
ordered format, making it feasible to apply traditional deep learning algorithms.
Fully convolutional networks [32] have been proposed that sample the input point
cloud uniformly and use PointNet as a low-level feature learner, followed by 3D
convolutions to learn features at multiple scales. Finally, tangent convolutions [33]
have also been proposed that operate directly on surface geometry in the tangent
space. Although the above methods have used deep learning techniques to realize
the 3D data analysis tasks, they have not used the 3D point clouds directly. We
believe that learning directly from raw 3D point cloud data can achieve higher
accuracy and efficiency as learning from raw data is the major strength of deep
learning.

2.2. Graph convolution methods
Graph convolutional methods combine the power of convolution operation

with graph representations of irregular data. Graph convolutional networks have
been designed to perform convolutions either in the spectral or spatial domain.
More recently, Joan et al. [34] proposed a generalization of convolution for graph
via the Laplacian operator. In that method, the spectral network can learn convo-
lutional layers with a number of parameters for low dimensional graphs. Wang et
al. [35] proposed a local spectral graph convolution to construct local graph from
a point’s neighborhood and aggregate information from nodes using their spec-
tral coordinates. The PointNet++ architecture is then applied along with the local
spectral graph convolution layers and graph pooling layers. The regularized graph
convolution network proposed by Gusi et al. [36] treats point cloud as a graph and
defines convolution operation over it. Moreover, a graph smoothness prior is used
in the loss function to regularize the learning process. Graph Laplacian based
methods have a number of drawbacks including the computational complexity of
Laplacian eigen-decomposition, the large number of parameters to express the
convolutional filters, and the lack of spatial localization. Different from these
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methods, Martin et al. [10] proposed a convolution-like operation on graph sig-
nals in the spatial domain and used an asymmetric edge function to describe the
relationships between local points. However, the edge labels are dynamically gen-
erated and hence, the irregular distribution of local points is not taken into account.
This method was improved by Wang et al. [9] through max pooling operation on
local features. However, max pooling operation is still unable to fully utilize the
correlations of local points. Our proposed method exploits local feature learning
using a completely different approach. We propose a local attention-edge convo-
lution layer that learns local relationships between points.

2.3. Point cloud methods
Many researchers have proposed deep learning architectures that learn directly

from point clouds. One of the earliest methods in this category is the PointNet [7]
that operates on point clouds using multi-layer perception (MLP). PointNet is ro-
bust to the global transformation of 3D shape because the spatial transformer net-
work [37] is used to learn the 3D alignment. The main limitation of PointNet is
that it only relies on the max-pooling layer to learn global features. Since PointNet
does not consider local relationships, Qi et al. [8] introduced an improved network
named PointNet++, which exploits local geometric features in point sets and ag-
gregates them for hierarchical inference. However, PointNet++ still treats points
within local regions individually and does not consider relationships between the
neighborhood points.

Later, Francis et al. [38] designed a multi-scale architecture to enlarge the re-
ceptive field over the 3D scene by incorporating larger-scale spatial grid blocks
into PointNet. Loic et al. [12] used an unsupervised method to cluster input points
into superpoint graphs, then fed the graphs to PointNet-based gated recurrent unit.
Li et al. [11] proposed X-Conv layer instead of MLP to permute unordered local
points into a latent potentially canonical order. A similar approach was proposed
in [39], where kernel correlation was introduced to incorporate local information
extracted from point cloud by PointNet. Wang et al. [40] introduced a similar-
ity group proposal network for point cloud instance segmentation, which use a
similarity matrix to produce a grouping proposal based features extracted from
PointNet. Different from these PointNet-based frameworks, Hua et al. [41] pre-
sented a point-wise convolution operator that can be applied to each point of the
point set. Recently, Zhao et al. [42] proposed PointWeb for point cloud process-
ing, which connects all points densely in a local neighborhood for better encoding
local geometric features. Wu et al. [43] introduced PointConv, a nonlinear func-
tion kernel for point cloud, which is used to learn the translation-invariant and
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Algorithm 1 LAE-Conv Operation
Input: Input local points h, central point pi; Number of selected pointsm in each

bin;
Output: Filtered central point piLAE

;
1: Search K neighbor points pj of pi in the point cloud h;
2: pj − pi: move points pj to local coordinate system of pi;
3: W (pj − pi): transform the input points into higher-level features ;
4: αij: compute normalized attention edge coefficients with softmax;
5: p′i: use graph attention aggregator to obtain updated feature at pi;
6: MLP(p′i): feature transformation operation;
7: return piLAE

;

permutation-invariant features in 3D space. Wang et al. [44] designed a graph
attention kernel to adapt to the local geometric, which is useful for fine-grained
segmentation.

A common limitation of all the aforementioned methods is that they are unable
to simultaneously exploit fine local details and long-range contextual information.
We fill this gap and propose a network that learns local geometrical features using
their edge attention coefficients and allows deep learning architectures to exploit
fine details as well as interactions over longer distances.

3. Proposed Approach

We first give details of the LAE-Conv layer that captures accurate local geo-
metric details. Next, we explain the point wise spatial attention module that ag-
gregates the long-range contextual information based on the output of LAE-Conv
layers. Finally, we present a general framework of our network.

3.1. Local Attention-Edge Convolution (LAE-Conv)
The Local Attention-Edge Convolution (LAE-Conv) layer forms the basic

component of our point attention network architecture for 3D point cloud semantic
segmentation. Inspired by DGCNN [9], ECC [10], GATs [45] and Non-local net-
work [46], we construct a multi-directional neighborhood graph and apply graph
attention mechanism to compute local edge features. Similar to traditional con-
volution in images, LAE-Conv explores local regions to leverage correlations be-
tween unordered points and exploits the local geometric structure of the points.
We summarize the LAE-Conv operator in Algorithm 1.
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Figure 1: (a) An illustration of our multi-directional search method. The ball space around the
center point within the search radius is divided into 16 uniform directions. The azimuth θ, radius
r and number m of selected points in one cube are hyperparameters. (b) When m = 1, 16
neighborhood points are considered along different directions. If all neighbors are projected onto
the xy coordinate plane, we can see that there are two points in each of the eight directions. The
thickness of the line connecting the center point to the neighbors represents different contributing
values.

3.1.1. Multi-directional Search
In image convolution operation, the local region of a pixel can be represented

in a grid-like structure given a convolution kernel size. However, the neighbor-
hood of a center point (in a point cloud) is defined by metric distance in a 3D
coordinate system where neighboring points are irregularly distributed. To ro-
bustly leverage local point correlations, we endeavour to explicitly capture ge-
ometric information in different orientations. Given an unordered point cloud
P = {p1, p2, . . . , pN} with pi ∈ RC , where N is the number of points, and C
is the feature dimension at each point. When each point is represented by its 3D
coordinates pi = (xi, yi, zi), then C = 3. We denote a central point in P as pi,
and its K neighbors in P as pj , j ∈ N (i). As shown in Figure 1(a), the space
around the reference point pi within a radius of r is split into 16 bins, where each
bin indicates a direction. Each bin has an azimuth angle θ = ∠45. Within the
spatial range represented by each bin, we select m nearest points of pi from all
the points that fall in that bin and use their features to represent the bin, i.e. when
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m = 1, 2, 3..., K = 16, 32, 48.... Since some points far away from pi are not
very useful to represent pi, we set the radius r empirically as a hyper-parameter
according to each layer. In case there are insufficient points inside a bin, point pi
is repeated. This is similar to self convolution.

Two common ways for range query are K-nearest neighbor (KNN) search and
ball query. KNN returns a fixed number of K neighboring points while ball query
returns all points that are within a radius. The local shape will not be well repre-
sented if all selected points, using either of the methods, are from a small region
or one direction. Different from KNN and ball query, our search method guar-
antees that neighborhood points are from different directions to ensure sufficient
expressive power of encoding the local geometric information. We compare the
effectiveness of our search method over ball query and KNN in the experiments
section.

3.1.2. Aggregation
For a set of local points h = {pi, pj1 , pj2 , · · · pjK}, h ∈ RC , where pi is the

central point and others are its K neighbors, we consider a graph G = (V,E),
where V is a finite set of points with |V | = K + 1 and E ⊆ V × V is a set
of directed edges {(pi, pj1), (pi, pj2) · · · (pi, pjK )}. We define the attention edge
coefficients as eij , which represent the importance of neighbors pj to the central
point pi, computed by an attention mechanism a.

eij = a(Whi,Whj) (1)

WhereW ∈ RC×C′ is a learnable weight matrix that transforms the input point
set to higher-level features, hi and hj represent the central point and its neighbors
respectively and the mechanism a is a single layer MLP, parametrized by a weight
vector ~a ∈ RC′ . To make the edge coefficients easily comparable across different
points, we use the softmax function to normalize them across all neighbors of the
reference point pi:

α = softmax(eij) =
exp (eij)∑

j∈N (i) exp (eij)
. (2)

The final edge coefficients computed by the attention mechanism may then be
expressed as:

αij =
exp (a(W (pj − pi)))∑

j∈N (i) exp (a(W (pj − pi)))
, (3)
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Where the neighbor points of the central point are transformed to local coordinate
systems by (pi − pj) and then the local coordinates of each point are lifted to
higher-order features by W .

Once obtained, the normalized edge coefficients αij are used to assign at-
tributes to each edge. Our approach computes the filtered feature at point pi as a
weighted sum of points in its neighborhood. The proposed commutative aggre-
gation method not only solves the problem of undefined point ordering, but also
smoothes out the structural information. The local graph attention aggregator is
defined as

p′i =
∑
j∈Npi

αijWpj, (4)

where p′i is the updated features of central point pi.

3.1.3. Transformation
Now we have an aggregated representation for the central point pi. It is natural

to add a feature transformation function f to incorporate additional non-linearity
and increase the learning capacity of the model. The transformation can be re-
alized by MLP with a non-linear activation function. The output of the transfor-
mation function is piLAE

: 1 × C ′. The proposed LAE-Conv layer is described in
Algorithm 1.

3.2. Point-wise Spatial Attention Block
The output point cloud PLAE: N × C ′ of the LAE-Conv layer have rich rep-

resentation power for local geometric features. However, since each LAE-Conv
layer have a local receptive field, individual units of the filtered features are unable
to exploit contextual information outside of their local regions. In PLAE , features
corresponding to the points with the same label are significantly different when
the points are far apart. These differences affect the point wise segmentation ac-
curacy of the scene as a whole. To address this issue, we focus on the global
spatial relationships to boost the representation power of the LAE-Conv layer. We
design a point-wise spatial attention module that captures the global dependencies
by building associations among features within the point set. We demonstrate that
by stacking these blocks after LAE-Conv layers, we can construct local-global
architectures that adaptively encode long-range contextual information, thus im-
proving the semantic segmentation accuracy of 3D point clouds that cover large
areas. Next, we introduce a process to adaptively aggregate point-wise spatial
contexts.
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Figure 2: The proposed point-wise spatial attention module. The feature maps are represented
by the shape of their tensors, e.g., N × F1 where N denotes the number of points and F1 denotes
the feature dimension. For simplicity, we set the batch size to 1. ⊗ denotes matrix multiplication,
and⊕ denotes point-wise sum. The green, yellow and blue boxes denote MLP layers. Long-range
correlations are learned once the input features pass through this module.

Inspired by the position attention operation [47], we define a point-wise spatial
attention module for 3D point clouds. As illustrated in Figure 2, two MLP layers
are used to transform the local feature PLAE into two new representations A and
B respectively, where A,B ∈ RF1 . We compute relationships between different
points based on the transpose of A and B. Unlike [47], we calculate the spatial
correlations of all points directly from the transpose ofA andB without reshaping
the matrices, hence, maintaining the original space distribution. Softmax is then
applied to normalize relationship map to get the point-wise spatial attention map
S with size N ×N :

sij = softmax

(
exp(Ai ·Bj)∑N
i=1 exp(Ai ·Bj)

)
, (5)

where i and j denote the point positions in A and B respectively, sij is the ith

point’s impact on the jth point, and · denotes matrix multiplication. We show that
two points have a strong correlation when their features have similar semantic
information.

At the same time, the local feature PLAE is transformed to a new feature D ∈
RF2 by an MLP layer. This is followed by a matrix multiplication between S
and D. Finally, the output is multiplied by a scale parameter α and element-
wise summation is performed with the features PLAE to obtain the final output
Pfinal ∈ RN×C′′ as follows:

Pfinal = S ·D + PLAE, (6)
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Figure 3: Illustration of the proposed point attention network for point cloud segmentation. The
encoder and decoder parts are based on the LAE-Conv layer and point-wise spatial attention mod-
ule. B, Ni and Ci denote the batch size, point number and point feature dimension respectively.
The downsampling and upsampling processes are followed by [8]. The encoder and decoder parts
are linked by three skip connections.

where · denotes matrix multiplication. Here, the resulting feature Pfinal contains a
long-range contextual information and selectively aggregates contexts according
to the point-wise spatial attention map S. This module improves the feature repre-
sentation power and is more accurate for 3D point cloud semantic segmentation.

3.3. Network Architecture
For dense point label prediction, the output resolution is high. Moreover, there

are multiple objects with different scales in one scene. Selecting the most repre-
sentative scale for each kind of object is important for semantic segmentation.
Following the hierarchical structure of PointNet++ [8], our network consists of
encoder and decoder parts. As shown in Figure 3, our point attention network
comprises the LAE-Conv layers and point-wise spatial attention modules. At the
encoder part, the input point set is processed by three LAE-Conv layers, which
transform it into fewer representation points but with richer features. The input
point cloud is represented by its 3D coordinates and sometimes with the RGB
color values as well. The point-wise spatial attention modules are stacked after
the third and fourth LAE-Conv layers to aggregate long range point-wise contex-
tual information from output of the previous LAE-Conv layer. The long-range
contextual features along with the local features from LAE-Conv layers together
achieve robust and accurate 3D point cloud semantic segmentation.

At the decoder part, three skip connections are used to combine features from
the encoders. The point-wise spatial attention module is also inserted after the
fifth LAE-Conv layer at the decoder part. In our hierarchical architecture, we
use three steps of down-sampling operations and tree steps of up-sampling opera-
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tions which are followed by set abstraction and feature propagation modules as in
PointNet++ [8]. Finally, all the features in the last decoder layer go through fully
connected layer and convert to class probabilities.

4. Comparison with Existing Methods

Our point attention network is a more generalized form of the classic approach
PointNet++ [8]. We explain how PointNet++ is a special case of our network.
PointNet++ is an extension of [7] with considers local point structure. Given a
reference point pi, ball query search K local points with data size Nl ×K × Cl,
PointNet processes the local region points individually and then max pools them to
get the most representative point feature as the output Nl×C ′l of the local region.
Different from PointNet++, the LAE-Conv layer constructs the local graph for
the K neighbors and central point pi. We compute attention edge coefficients
eij = ei1, ei2, · · · eiK to indicate different contributions of each neighbor to the
central point. When eij = {ei1 = 1|ei2, ei2, · · · eiK = 0}, p1 features are selected
to represent the local region. We can observe that the basic convolution layer of
PointNet++ is an instance of our LAE-Conv layer.

DGCNN [9] uses KNN to establish local point shape and proposes an aggrega-
tion operation max(MLP (pi, pj − pi)). In that operation, the neighbor points are
moved to the local coordinate system first and then stacked with the central point.
All the neighbors have equal contribution to the central point, which is equivalent
to our operator when all edge coefficients are equal to 1. Since DGCNN is based
on PointNet, the receptive field remains constant (K) at different layers, which
is a disadvantage when encoding point clouds with different spatial distribution
densities.

Similar to PointNet++, PointCNN [11] follows the encoder-decoder architec-
ture and learns a X transformation to lift the input irregular points into an un-
known canonical format, then applying a typical convolution on the transformed
point cloud. In PointCNN, the dilated convolution process from image convolu-
tion networks is employed to expand the local receptive field of different layers.
The local receptive field changes the number of neighborhood pointsK by adjust-
ing the dilation ratio. Different from the grid structure of local pixels, points are
disordered in a three-dimensional coordinate system and the density distribution
is not uniform. Although KNN searches for neighborhood points which is con-
trolled by the dilation ratio proportionally, the global geometric features learned
by the change of receptive field is limited. To address this issue, our point atten-
tion network inserts a point-wise attention module in the high level feature layer.
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A crucial difference between these two operations is that the latter assumes a long
range dependency, which reduces the gap between features corresponding to the
points with the same label encoding more accurate global information. The more
similar are the feature representations of the two points, the greater is the correla-
tion between them.

5. Experiments and Discussion

We evaluate the performance of the proposed network on the ShapeNet [48]
3D part segmentation dataset and the two largest point cloud segmentation bench-
marks, ScanNet [49] and Stanford Large-Scale 3D Indoor Spaces (S3DIS) [50].
While ShapeNet is synthetic data, ScanNet and S3DIS are real point clouds ob-
tained with a scanner. We perform ablation studies of different design choices
and network variations as well as compare the performance of our network with
existing state of the art.

5.1. ScanNet
ScanNet [49] contains 1513 scans annotated with semantic voxel labels from

21 categories (bed, refrigerator, floor, table etc. plus other furniture). ScanNet
is divided into 1201 training and 312 test samples. Similar to [8], we split the
ScanNet training scenes into 2m by 2m by 3m blocks, with 0.5m padding in each
direction (x,y,z) and sample 8192 points randomly from each block on the fly. To
predict semantic label of every point of the test scene, we similarly split it into
similar cubes using a sliding window strategy along the xy plane with different
stride sizes. If the same point gets different predictions in the overlap regions, we
choose the one with highest confidence.

Although ScanNet also contains RGB values for each point, we only use
the xyz coordinates as point features for a fair comparison with other methods.
Hence, the input data size for the network is 8192× 3. As shown in Figure 3, we
use downsampling and upsampling operations from PointNet++ [8] for both the
encoder and decoder parts. The output point numbers and feature dimensions of
different LAE-Conv layers are (N1 = 8192, C1 = 64), (N2 = 2048, C2 = 128),
(N3 = 512, C3 = 256), (N4 = 128, C4 = 512), (N5 = 512, C5 = 256), (N6 =
2048, C6 = 256) and (N7 = 8192, C7 = 128) respectively. The fully connected
layer with size (Nfc = 8192, Cfc = 21) converts the final features into class prob-
abilities. We set (m = 1, K = 16) for the neighborhood search. For the three
point-wise attention block, the output point numbers and feature dimensions are
(Np1 = 512, Cp1 = 256), (Np2 = 128, Cp2 = 512) and (Np3 = 512, Cp3 = 256)
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Table 1: 3D point cloud semantic segmentation results on ScanNet scenes. The metrics are mean
per-class Intersection over Union (mIoU,%) and per voxel overall accuracy (OA, %).

Method mean IoU Overall Accuracy (OA)

PointNet [7] - 73.9
PointNet++ [8] - 84.5
RSNet [31] 39.35 -
TCDP [33] 40.9 80.9
FCPN [32] - 82.6
3DRCNN [51] 76.5
PointCNN [11] - 85.1

Ours 42.1 86.7

Table 2: Model size and inference time comparison, where ”M” means million and ”s” denotes
second. We use the model file (.cptk) size obtained by the training using tensorflow to represent
the complexity of different methods. The entire scenes was tested 5 times and the average time
was recorded.

Methods Size (M) Time (s)

PointNet [7] 321.9 2.16
PointNet++(msg) [8] 177.3 3.8
DGCNN [9] 180.1 3.94
SpiderCNN(3-layers) [14] 349.5 4.3

Ours 183 3.97

respectively. The initial learning rate is 0.001, batch size is 22 and the momentum
is 0.9. We set the decay rate of 0.7 and stop training after 1000 epochs.

Table 1 shows quantitative comparison of our proposed point attention net-
work with PointNet++ [8], PointCNN [11] on the ScanNet dataset. This com-
parison is done using two metrics, namely the mean per-class IoU (mIoU, %)
and per voxel overall accuracy (OA, %). For a fair comparison, Table 1 shows
results of baseline methods reported in the original papers since the trained mod-
els are not available for testing. Compared to the baseline methods, our network
achieves the highest accuracy on both metrics. Table 2 reports the model size
and average inference time of a few representative methods [7], [8], [9], [14],
where the released source codes are easy to use. Experiments are conducted by
a single NVIDIA GTX TitanX GPU with tensorflow and an Intel i7-9700K@3.6
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Figure 4: Qualitative comparison on three scenes from ScanNet. (a) Input point cloud with only
xyz coordinate features. Semantic segmentation by (b) PointNet++ [8], (c) PointCNN [11] and (d)
our method. (e) Ground truth Semantic labels. Colors denote different categories. These scenes
contain only 13 categories out of 21. The areas marked by the boxes are some examples where
our method performed significantly better than others.

16



GHZ 8 cores CPU. Compared with these methods, we can see that our proposed
architecture improves segmentation results with only marginal extra computation
cost.

Figure 4 qualitatively compares the semantic segmentation obtained by Point-
Net++, PointCNN and our method. We use boxes to highlight some examples
where our method performed significantly better than the competitors. In the first
scene, the window and the door are embedded in the wall whereas the picture
is hung on the wall making the semantic segmentation a real challenge. Our
method’s output is more regular than that of PointNet++ and PointCNN. The
table in the lower left corner is incomplete with a mere skeleton. Hence, seg-
mentation methods like PointNet++ and PointCNN get worse results compared
to our method. In the second scene, all the methods get incorrect predictions on
the chair that is close to the floor as well as the irregularly shaped desks. This
is because the per class samples in ScanNet dataset are unbalanced [49] making
existing segmentation methods fail on the rare categories. In the third scene, our
method performs better on bookshelves than others. In addition, the un-annotated
object in the center of scene is misidentified as table by PointCNN and our method
because its shape is more like a table than an ordinary chair.

To better understand the influence of various design choices made in our net-
work, we analysis them on ScanNet.

5.1.1. Ablation study on parameters of LAE-Conv layer
As mentioned in Sec 3.1, there are three options (KNN, ball query and our

multi-direction searching method) for searching the neighbors of the central point.
We use ScanNet as a test benchmark to compare these options. We also set dif-
ferent point numbers at each cube for our proposed search method. In Table 3,
we can see that our method is more efficient for selecting local point shapes.
When (m = 2, K = 32) and (m = 3, K = 48), the segmentation accuracy is
greatly reduced. This is because the parameters of LAE-Conv layer will increase
as the number of neighbors increase. Too many neighbors bring information re-
dundancy, which reduces the efficiency and accuracy of the LAE-Conv layer.

5.1.2. Ablation study on point-wise spatial attention block
To take full advantage of the point-wise spatial attention block, we show the

segmentation results with more attention blocks in the network architecture. We
add 7 attention blocks (after LAE-Conv layer 1 − 7 ), 5 attention blocks (after
LAE-Conv layer 2− 6) and 3 attention blocks (after LAE-Conv layer 3− 6). As
shown in the first part of Table 4, more point-wise spatial attention blocks do not
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Table 3: Ablation analysis on ScanNet with different search methods and numbers. All results
are based on our LAE-Conv layer while other settings are kept constant.

Neighborhood Search Method Overall Accuracy (OA %)
KNN (K=16) 85.0
Ball query (K=16) 85.3
Proposed Multi-direction (m=1,K=16) 86.7
Proposed Multi-direction (m=2,K=32) 85.9
Proposed Multi-direction (m=3,K=48) 84.4

lead to an improvement in performance. One explanation is that more attention
blocks massively increase the number of parameters and the network can not find
a local optimal solution within the specified training steps on ScanNet. The sec-
ond part of Table 4 compares same number of attention blocks added to different
stages of network. The attention block is added to the right, after the LAE-Conv
layer (2,4,6) and (1,4,7) respectively. We can see that the results deteriorate when
the attention blocks are added to layers with lower feature dimensions. A pos-
sible explanation is that the point features do not contain enough representative
semantic information when their dimensions are low, the features of the points
with the same labels are significantly different, and the number of parameters of
attention block will also increase from (2,4,6) to (1,4,7). Under this condition, the
effectiveness of attention block is limited. Finally, we choose to add three atten-
tion blocks to the right after LAE-Conv layers (3,4,5) in Figure 3. We also tested
adding three attention blocks to vanilla PointNet++ (without MSG and DP [8])
at the corresponding stages as in our network. As shown in the third part of Ta-
ble 4, the performance of baseline network (vanilla PointNet++ [8]) is improved
by 3.4%. This shows that our proposed point attention block is generic and is able
to improve the performance of any network architecture.

5.2. S3DIS
The Stanford Large-Scale 3D Indoor Spaces (S3DIS) dataset [50] contains

3D scans obtained with the Matterport scanners in 6 areas from three different
buildings, divided into 271 individual rooms. Each point in the scene is annotated
with one label from 13 categories (ceiling, wall, beam, chair, column etc. and
clutter), and is represented by its 3D coordinates, RGB features and normalized
location. The S3DIS is a highly unbalanced dataset [50], floor, wall, chair and
other common furniture items being the dominant classes in the dataset while
bookcase, window and beam etc. being the rare classes. To prepare the training
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Table 4: Ablation analysis on ScanNet comparing 3, 5 and 7 point-wise spatial attention modules
added to our network and comparing the results when 3 point-wise spatial attention modules are
added to different stages of our network. We also test adding three attention blocks to standard
PointNet++[8].

Block Position Overall Accuracy (OA %)
LAE-Conv layer (1-7) 84.9
LAE-Conv layer (2,3,4,5,6) 85.7
LAE-Conv layer (3,4,5) 86.7
LAE-Conv layer (2,4,6) 86.0
LAE-Conv layer (1,4,7) 85.5
PointNet++[8] (vanilla) baseline 83.3
PointNet++[8] (vanilla, 3-5) 84.7

data, rooms in S3DIS are split into blocks of 2m×2m, with 0.5m padding on each
direction (x,y). We randomly sample 4096 points from each block during training
while all points are used at test time. Similar to PointNet [7], we follow the same
6-fold cross validation strategy across 6 areas. To obtain the overall segmentation
accuracy, we evaluate 6 models on their corresponding test areas and report the
average results.

For comparison, we use xyz coordinates and RGB information as the point
features. Therefore, the input data size to the network is 4096 × 6. As shown in
Figure 3, we use downsampling and upsampling operations from PointNet++ [8]
for both encoder and decoder parts. The output point numbers and feature dimen-
sions of different LAE-Conv layers are (N1 = 4096, C1 = 64), (N2 = 1024, C2 =
128), (N3 = 512, C3 = 256), (N4 = 128, C4 = 512), (N5 = 512, C5 = 256),
(N6 = 1024, C6 = 256) and (N7 = 4096, C7 = 128) respectively. The fully
connected layer with size (Nfc = 4096, Cfc = 13) converts the final features into
probability of each class. We set (m = 1, K = 16) during the neighbors search
process. For the three point-wise attention modules, the output point numbers and
feature dimensions are (Np1 = 512, Cp1 = 256), (Np2 = 128, Cp2 = 512) and
(Np3 = 512, Cp3 = 256) respectively. We set the initial learning rate to 0.001,
batch size to 32 and momentum to 0.9. We set the decay rate to 0.7 and stop the
training process after 1000 epochs.

Table 5 summerizes the quantitative results where our proposed method out-
performs the baseline methods PointNet [7], SPGraph [12], RSNet [31], 3DR-
CNN [51] and PointCNN [11]. It is worth noting that our method achieves higher
accuracy for some rare class objects, such as beam, column, window, board and
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Figure 5: Qualitative comparison on three scenes of S3DIS. (a) Input point cloud with xyz coor-
dinates and RGB features. Semantic segmentation results by (b) PointNet [7], (c) PointCNN [11]
and (d) our method. (e) Ground truth Semantic labels. Different colors denote different categories.
These scenes contain 13 categories. Boxes highlight some examples where our method performs
better than others.
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Table 5: Quantitative comparison using overall accuracy (OA,%) and mean IoU (mIoU,%) on
S3DIS.

mIoU OA celling floor wall beam column window door chair table bookcase sofa board clutter

PointNet [7] 47.6 78.5 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2
SPGraph [12] 62.1 85.5 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.70 52.9
RSNet [31] 56.47 - 92.48 92.83 78.56 32.75 34.37 51.62 68.11 60.13 59.72 50.22 16.42 44.85 52.03
3DRCNN [51] 53.4 85.7 95.2 98.6 77.4 0.80 9.83 52.7 27.9 78.3 76.8 27.4 58.6 39.1 51.0
PointCNN [11] 65.39 88.14 94.78 97.3 75.82 63.25 51.71 58.38 57.18 71.63 69.12 39.08 61.15 52.19 58.59

Ours 66.3 88.95 94.3 97.0 76.02 64.66 53.7 59.17 58.8 72.4 69.2 42.63 60.83 54.14 59.05

clutter because our method is able to capture more global information of points
that are far apart.

In Figure 5, we compare our method with PointNet [7] and PointCNN [11]
qualitatively. It is not surprising that chairs are correctly segmented more often
by the three baseline methods because their shapes are more consistent, they are
small and not easily confused with other objects. We can see that objects such as
the whiteboard hung on the wall, column and window embedded in the wall, clut-
ter next to the table and irregular bookcases are quite difficult to segment. We also
use boxes to mark some examples where our method outperformed the baseline
methods. In the first scene, our method obtains more regular segmentation of the
painting on the wall than PointNet [7] and PointCNN [11]. Our final segmentation
result preserves the full shapes of column and bookcase next to wall while other
methods mistake them for wall or clutter. We also obtain a smoother prediction
for chair in the front row than the other methods. In the second scene, the board
on the wall is more accurately estimated by our method compared to PointNet
and PointCNN. Our method makes fewer mistakes in predicting the bookshelves,
beam and clutter which are up and below the table compared to other approaches.
Notably, our method can predict the clutter on the left wall, even though it is
not marked by ground truth. In the third scene, our method also outputs fewer
incorrect predictions for bookcase, table, chair and beam compared to other ap-
proaches.

5.3. ShapeNet
We also extend our network architecture to perform part segmentation on the

ShapeNet dataset [52], which consists of 16881 shape models from 16 object cat-
egories. Each object in ShapeNet is annotated with 2 to 5 parts. We follow the
settings from [48] to divide the ShapeNet dataset for training, validation and test-
ing. During training, we randomly sample 2048 points from each 3D shape while
all points from each 3D shape are used during the test stage.
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Table 6: Quantitative comparison on ShapeNet part dataset [52]. The values show part-averaged
IoU (pIoU%), mean per-category pIoU (mpIoU%) and per-category IoU (%) scores.

pIoU mpIoU
air
plane bag cap car chair

ear
phone guitar knife lamp laptop motor mug pistol rocket

skate
board table

shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

PointNet [7] 83.7 80.4 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ [8] 85.1 81.9 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
DGCNN [9] 85.1 82.3 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.0 93.3 82.6 59.7 75.5 82.0
RSNet [31] 84.9 81.4 82.7 86.4 84.1 78.2 90.4 69.3 91.4 87.0 83.5 95.4 66.0 92.6 81.8 56.1 75.8 82.2
SGPN [40] 85.8 82.8 80.4 78.6 78.8 71.5 88.6 78.0 90.9 83.0 78.8 95.8 77.8 93.8 87.4 60.1 92.3 89.4
ASCNet [53] 84.6 81.78 83.8 80.8 83.5 79.3 90.5 69.8 91.7 86.5 82.9 96.0 69.2 93.8 82.5 62.9 74.4 80.8
PCNNet [30] 85.1 81.8 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8
PGrid [13] 86.4 82.23 85.7 82.5 81.8 77.9 92.1 82.4 92.7 85.8 84.2 95.3 65.2 93.4 81.7 56.9 73.5 84.6
SPLATNet [29] 85.4 83.69 83.2 84.3 89.1 80.3 90.7 75.5 92.1 87.1 83.9 96.3 75.6 95.8 83.8 64.0 75.5 81.8
KCGP [39] 84.7 82.21 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.2 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3
SpiderCNN [14] 85.3 81.7 83.5 81 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8
SONet [54] 84.9 81.0 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0
SSCN [23] 85.98 83.3 84.1 83.0 84.0 80.8 91.4 78.2 91.6 89.1 85.0 95.8 73.7 95.2 84.0 58.5 76.0 82.7
PointCNN [11] 86.1 84.6 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0
Ours 85.9 84.10 83.3 86.1 85.7 80.3 90.5 82.7 91.5 88.1 85.5 95.9 77.9 95.1 84.0 64.3 77.6 82.8

For a fair comparison, we only use the xyz coordinates as the point features.
The size of input data for the network is 2048 × 3. The network architecture is
illustrated in Figure 3, we adjust the network parameters to suit ShapeNet. The
output point numbers and feature dimensions of different LAE-Conv layers are
(N1 = 2048, C1 = 64), (N2 = 1024, C2 = 128), (N3 = 256, C3 = 256),
(N4 = 128, C4 = 512), (N5 = 256, C5 = 256), (N6 = 1024, C6 = 256)
and (N7 = 2048, C7 = 128) respectively. A fully connected layer with size
(Nfc = 128, Cfc = 16) is used at the end to convert the point features into part
predictions. We set (m = 1, K = 16) for the neighborhood search. For the three
point-wise attention block, the output point numbers and feature dimensions are
(Np1 = 256, Cp1 = 256), (Np2 = 128, Cp2 = 512) and (Np3 = 256, Cp3 = 256)
respectively. We set the initial learning rate to 0.003, batch size to 16, momentum
to 0.9, decay rate to 0.7 and stop the training after 500 epochs.

We use the same evaluation metric (mean IoU) on points as PointNet [7] to
compare our method with others methods [7, 8, 9, 31, 40, 53, 30, 13, 29, 39, 14,
54, 23, 11]. We report the part-averaged IoU (pIoU%), mean per-category pIoU
(mpIoU%) and per-category IoU (%) scores in Table 6. Our method achieves on
par performance with most methods in the metrics pIoU and mpIoU. In individual
categories, we rank the best in ear phone, lamp, motor and rocket. As we can see,
our method performs better when there are fewer data points as in the case of ear
phone, motor and rocket.
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6. Conclusion

We proposed a point attention network for 3D point cloud semantic segmen-
tation. Our network adaptively integrates local point features and long-range
contextual information. We introduced a novel local attention-edge convolution
(LAE-Conv) layer which exploits attention mechanism on a local graph con-
structed by the central point and its neighborhood to capture accurate and ro-
bust geometric details. To refine the output local features of LAE-Conv layer, we
proposed a point-wise spatial attention module and showed that this module can
generalize to other networks to improve their accuracy. Finally, we adapted the U-
shaped network to combine the LAE-Conv layer and point-wise spatial attention
modules. Experiments on challenging benchmark datasets show that our method
quantitatively and qualitatively obtains on pair or better performance than existing
state-of-the-art in 3D point cloud semantic segmentation.
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