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Abstract13

Classifying and rendering volumes of structure are two essential goals of the vi-

sualization process. However, small holes or non-smooth patches in visualized

volumes are usually induced by the loss of some voxels. Beginning with the

classified volumes, we propose a modified Allen-Cahn equation, which has the

motion of mean curvature, to recover lost voxels and to fill holes. We obtain the

probability function, which indicates the probability of each voxel being a volume

voxel. Usually, the obtained probability function is smooth due to the motion of

the mean curvature flow. Therefore visualization quality of volumes can be signif-

icantly improved. Because of the unconditional stable operator splitting method,

we can use a large time step size. Our proposed numerical scheme is fast and can
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be straightforwardly applied to GPU-accelerated DCT implementation that per-

forms up to many times faster than CPU-only alternatives. Many experimental

results have been performed to demonstrate the efficient of the proposed method.

Keywords: Volume rendering, Volume repairing, Allen-Cahn equation, Mean14

curvature flow15

1. Introduction16

Volume rendering is an important visualization technique for exploring and17

visualizing volume data. In this technique, the transfer function (TF) assigns d-18

ifferent volumes (or volume voxels) with different opacities and assigns different19

structures with different colors. Then it can determine which structure is visible20

and estimate whether or not a structure can be well visualized [1].21

However rendered volume by the TF exhibits two drawbacks. One is that s-22

mall fragments, unexpected volume patches, or even other volumes are visualized23

together with volumes of interest. The reason is because that volumes of different24

structures with similar attribution will have the same region in the TF space [2].25

The other drawback is that small holes (or gaps) appear on the visualized volume,26

because a slightly smaller region is selected from the TF. For example, differen-27

t volumes are firstly separated from a volume data based on volume connectivity28

[3], and then are classified by segmenting the transfer function space into different29
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regions [4] or into different components [5]. In these methods, sometimes volume30

defects are generated. In order to generate a high-quality volume, it is necessary31

to overcome these two mentioned drawbacks. To our knowledge, the first men-32

tioned drawback has been studied recently in [3]. However, the volume repairing33

problem – refer to the problem to fill in small holes and improve rough patches of34

volume-rendered volumes, is rarely studied.35

In this paper, we will develop an effective method to improve the volume ren-36

dering quality. The reason why small holes (or gaps) or rough patches appear37

on the visualized volumes is because that some volume voxels are assigned with38

much low opacities. However, most labeled volume voxels, which have been39

assigned with high opacities, are rightly determined from the volume data. Begin-40

ning with these labeled volume voxels, we try to recover the lost volume voxels41

and fill the holes. Whenever lost volume voxels are well recovered (refer to as-42

sign them with high opacities as well), volume defects will be repaired in the43

volume rendering. Based on this idea, the volume repairing problem in this paper44

is modeled as a constrained diffusion. Such diffusion is described by a modified45

Allen-Cahn equation (AC) which has the motion of mean curvature [6]. In the dif-46

fusion processing, the modified Allen-Cahn equation will adaptively adjust opac-47

ities of those voxels that are around labeled volume voxels. Finally, a probability48
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function, which indicates the probability of each voxel being a volume voxel, is49

obtained. Usually, the obtained probability function is smooth without small holes50

due to the motion of the mean curvature flow (See Fig. 1). Our proposed method51

has several benefits. First, beginning with the labeled volume voxels by using the52

TF, our method is performed without depending on the TF. Therefore, volume53

repairing can be addressed without increasing the dimensionality of the TF. It al-54

lows us to incorporate our method into other processions or transfer functions, for55

example transfer function using L-H histograms [7] or curvature-based [8] trans-56

fer function. Secondly, our algorithm is simple to implement and is guaranteed to57

produce the good volume.58

(a) (b) (c)

Figure 1: (a) Original 2D sectional slice. (b) Labeled volume by TF space (red color). (c) Repaired
volume (red color). For the purposes of better visualization, the results are obtained in three
dimensional space and are shown in a slice image.

The remainder of this paper is organized as follows: Section 2 discusses pre-59

vious works related to our research. Section 3 introduces the proposed method60
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to improve the visualized volume. Several experimental results are performed in61

Section 4. Conclusions and future work are presented in Section 5.62

2. Related works63

Volume reconstruction methods include the deformable volume method [9],64

the method for detecting and reconstructing implicit volume from volume da-65

ta [10], the method based on marching cubes [11], the methods for reconstruct-66

ing 3D volume from 3D cloud points [12] or range images [13], polygon-based67

isosurface-extraction repairing method [14], and volume-based isosurface-extraction68

repairing method [15] etc. While volume-based isosurface-extraction method and69

deformable volume methods can generate the closed volume. Other volume re-70

construction methods usually generate the volume with small holes or fragments.71

Volume-based isosurface-extraction repairing methods: Several isosurface-72

extraction volume repairing methods were studied. For example, beginning by73

constructing a signed distance function, Davis. et.al [15] applied a diffusion pro-74

cess to fill holes in complex surfaces. Their algorithm is simple to implement and75

is guaranteed to produce manifold non-interpenetrating surfaces. By combining76

information from the classifiers at the reconstruction stage, Lindholm. et.al [16]77

proposed an efficient approach to improve the classification of different material-78
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s. The volume-based methods generally patch the holes by first assigning signs79

to a set of 3D points (vertices of the polygonal volume) with a signed distance80

function. Then the point information in hole regions is completed in the volume81

representation. Finally, the repaired volume is given as an isosurface of the level82

set function. These volume-based methods can deal with topologically complex83

holes. However, they may miss some features of the original volume model when84

converting to and from a volume. Because the volume has been defined using the85

TF, it is not necessary to convert the volume for the initial processing. Therefore86

even with the volume-based method, these features can remain.87

Volume repairing methods during volume rendering: Some researchers stud-88

ied the improvement of volume rendering results of structures in a volume data.89

For example, defects of volume-rendered volumes were repaired by directly di-90

lating all known volume voxels with a given radius [3]. However, this method91

usually incorrectly marks those voxels that are not volume voxels as volume vox-92

els. In [17], some lost vessel structures in 3D MRA or CTA images were well93

enhanced by constructing a new vessel filter. However, this method cannot be94

applied to repair other structures. The method for filling-in holes by mathemat-95

ical morphology was studied [18]. In this method, a filtered Euclidean skeleton96

is firstly utilized to represent thickness of the input object. After that, the authors97
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transformed the closed thick object to the input one by using the dilation operator.98

However, this method cannot always obtain a smooth volume for topologically99

complex holes, because the operators of mathematical morphology cannot work100

well when the object is complex.101

In this paper, we intend to repair volume defects by suitably diffusing labeled102

volume voxels in the volume data. Logically, some volume-based repairing meth-103

ods based on the diffusion flow may be applied for such task. However, Allen–104

Cahn (AC) equation, which is a partial differential diffusing equation having the105

motion of mean curvature [6], has the following merits: (i) A fast and accurate106

hybrid numerical solver is available for the numerical computation of AC equa-107

tion [19]. This makes the AC equation to be simple to implement and efficient108

to run on large data sets. (ii) The AC equation removes small local oscillation-109

s, which results in repairing the missing volume. (iii) The AC equation can deal110

with topologically complex holes. The AC equation has been applied in 2D image111

segmentation [20], 2D image inpainting [21], binary volume reconstruction [22],112

and multiple volume reconstruction [23]. Note that the modified AC equation has113

also been used in 2D image inpainting problem, which is the process of filling114

in missing parts of damaged images based on information from the surrounding115

areas [21]. In this paper, we use this equation in the different contexts and appli-116
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cations. To our knowledge, the presented approach is the first algorithm using the117

motion of mean curvature for the volume repairing in the volume data.118

3. Methodology119

In this section, we will introduce the modified Allen-Cahn equation to repair120

the volume. An unconditional stable resulting method will be developed. To well121

render the volume, volume voxels are assigned with suitable opacities.122

3.1. A modified Allen-Cahn equation for volume repairing123

Let f (x) be a 3D image data in a domain Ω = (0,Lx)×(0,Ly)×(0,Lz), ∇ f (x)124

be the gradient function of f (x), where x =(x,y,z) ∈Ω. In the volume rendering,125

a volume in f (x) is determined by using the TF. By [3], the volume defect can be126

determined and denoted by a discrete function ψ(x), where ψ(x) = 1 if the voxel127

x is determined as a volume voxel, otherwise ψ(x) = 0. As mentioned in above128

section, ψ contains lots of good volume voxels and few lost volume voxels. We129

want to obtain a new discrete function φ(x), which approaches to the given ψ(x)130

and represents the volume without holes and rough patches.131

As described in [24], volumes with zero mean curvature indicate that they are132

smooth and without holes. Meanwhile, the mean curvature of the lost volume will133

be much larger than zero. Therefore, the lost volume voxels can be detected by134
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the mean curvature in the level set framework. Furthermore, keeping the mean135

curvature to be zero under a geometric evolution law will result in the removal136

of noises and repairing of the missing volume. Along this line, we assume the137

volume of the given volume data ψ(x) can be moved under the mean curvature138

flow, in which the normal velocity of a moving hypersurface equals the negative139

mean curvature:140

Vn =−κ,

where Vn is the normal velocity of geometric volume and κ is the mean curvature.141

Under the mean curvature flow, the volume in the repairing region will move faster142

than that in the non-repairing region because of its higher mean curvature value.143

Once the geometric volume is moved, the voxel near the volume will be filled by144

diffusing the information from the nearby region. While Eq. (1) is defined on145

the volume and will be difficultly performed as the volume moves. Allen-Cahn146

equation can be simply performed and has the motion of the mean curvature[6]:147

∂φ(x, t)
∂ t

= −F ′(φ(x, t))
ε2 +∆φ(x, t) (1)

Here φ(x, t) is also called as a phase-field function or probability distribution148
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function, which is close to 1 and 0 for the volume’s interior and exterior, respec-149

tively. ε is a constant and relates to the phase transition width. The function150

F(φ) = 0.25φ 2(φ − 1)2 is a nonlinear potential function. To keep the voxel val-151

ues outside of the repairing region be almost same as those in the original known152

volume, we should put a fitting term into the Allen-Cahn equation as:153

∂φ(x, t)
∂ t

= −F ′(φ(x, t))
ε2 +∆φ(x, t)+λ (x)(ψ(x)−φ(x, t)), x ∈Ω, (2)

φ(x,0) = ψ(x), (3)

∂φ(x, t)
∂n

= 0, x ∈ ∂Ω, (4)

where154

λ (x) =


0, if x ∈ΩD,

λ0, otherwise.
(5)

Here λ0 is a positive constant and ΩD is the repairing region, which is simply155

defined as ΩD = {ψ(x)|ψ = 0}. The useful information has been labeled as ψ =156

1 and less useful information is labeled as ψ = 0. We assume that φ satisfies157

Neumann volume conditions on ∂Ω as drawn in Eq. (4) and n is the outward158

normal vector. Eqs.(2)-(4) can be derived from a constrained gradient flow in the159
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L2 space of the free energy functional:160

E (φ) =
∫

Ω

(
F(φ)

ε2 +
|∇φ |2

2

)
dx+

∫
Ω

λ

2
(ψ(x)−φ)2dx.

The modified Allen-Cahn equation (Eq. (2)) keeps the total energy E (φ) decrease161

with time:162

d
dt

E (φ) =
∫

Ω

(F ′(φ)
ε2 φt +∇φ ·∇φt

)
dx−λ

∫
Ω

(ψ−φ)φtdx (6)

=
∫

Ω

(
− F ′(φ)

ε2 +∆φ +λ (ψ−φ)
)

φtdx+
∫

∂Ω

φtε
2n ·∇φds =−

∫
Ω

φ
2
t dx≤ 0.

It implies the solution of Eqs. (2)-(4) is uniqueness. Observing our modified163

Allen-Cahn equation, we can find that the voxel values in the repairing domain164

are obtained by curvature-driven diffusions due to the efficiency of Allen-Cahn165

equation. Because of the second term of Eq. (2), the voxel values outside of the166

repairing region will approach to those in the original volume data. Therefore167

the voxels can be well repaired. Furthermore, the final result φ can provide the168

probabilities of voxels belonging to the true volume (See Fig.(2)). For example,169

φ = 0.5 means that voxel has 50% probability belonging to the true volume.170

Figure 3(a) shows the synthetic image with noises. Figure 3(b-e) are the171

results obtained by AC equation(φt = −F ′(φ)/ε2 +∆φ ), our proposed method172
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Figure 2: Evolution of the repairing volume method. From left to right, they are results at 0, 3,
and 20 iterations. Red and blue lines denote the levels φ = 1 and φ = 0.5, respectively. Note that
we perform the computation in the three dimensional domain.

(φt = −F ′(φ)/ε2 + ∆φ + λ (ψ − φ)), modified level set method (φt = |∇φ |∇ ·173

(∇φ/|∇φ |)+λ (ψ−φ)), and Laplacian smoothing method (φt = ∆φ +λ (ψ−φ)),174

respectively. With the classical AC equation, the noises are perfectly removed175

with missing the detail information of original image as shown in Fig. 3(b). The176

tips of the star move inward, while the gaps between the tips move outward, be-177

cause the AC equation has the motion by mean curvature. On the other hand,178

our method smooths away noises while preserving the image detail as shown in179

Fig. 3(c). The modified level set method also works well as shown in Fig. 3(d).180

However in the level set framework, an explicit time integration scheme is a gen-181

eral choice for the mean curvature flow, which requires a small time step in order182

to ensure the numerical stability. In addition, the Laplacian smoothing method183

is simple and works well. But it leads to a over-smooth result compared to our184

proposed method.185
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(a) (b) (c) (d) (e)

Figure 3: Results obtained by several different methods. (a)Synthetic image with noises.
(b-e)Results obtained by AC equation(φt = −F ′(φ)/ε2 + ∆φ ), our proposed method (φt =
−F ′x(φ)/ε2 +∆φ +λ (ψ−φ)), modified level set method (φt = |∇φ |∇ · (∇φ/|∇φ |)+λ (ψ−φ)),
and Laplacian smoothing method (φt = ∆φ +λ (ψ−φ)), respectively.

3.2. Opacity setting of the repaired volumes186

In practice, some incorrectly voxels are partially reduced by assigning certain187

weights to their opacity values. xThe solution of Eqs.(2)-(4), φ(x), provides the188

probability of the voxel belonging to the true volume. Note that we regard the189

solution φ(x) as the steady state solution, if the relative error ∂φ(x, t)/∂ t is less190

than a tolerance tol. We determine the voxels with high probabilities such as191

φ(x) > α be the repaired volume voxels. Here α ∈ (0,1] is a constant. We will192

design the transfer function based on the obtained solution φ(x) and the given193

volume data ψ(x). Every voxel in the volume is assigned with an opacity value by194

its probability value. Generally, higher the probability value of a voxel, larger the195

opacity of the voxel. However, some voxels, which are not volume voxels, may196

be assigned with high probabilities. Then we will modify their opacity values197

by assigning them with particular weights computed based on their gray values198
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f (x). Usually, those voxels have similar gray values in their neighbor regions. If199

a recovered volume voxel has a gray value among its distribution, then it will be200

assigned with a large weight, otherwise it will be assigned with a small weight.201

Larger the distance, smaller the weight. In this paper, we use the following opacity202

setting:203

Opa(x) =


wφ(x), if φ(x)> α,

0, otherwise,
(7)

where204

w =


1, if ψ(x) = 1,

β , if ψ(x) = 0 and x ∈K8,

γ, otherwise.

(8)

Here β ∈ (0,1), γ ∈ (0,1), and β > γ . ψ(x) = 1 implies that the voxel x is in205

the given volume region. x ∈K8 means the scalar value of 3D image at x satisfies206

| f (x)− fmax| ≤ 8 or | f (x)− fmin| ≤ 8. Here fmax and fmin are the maximum and207

minimum scalar values of 3D image, respectively. All through the paper, we set208

α = 0.3, β = 0.7, and γ = 0.3. It implies that we only consider the voxel, whose209

property is larger than 0.3. If the considered voxel has been already labeled in the210
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given volume, we will set w = 1 and make the voxel be completely transparen-211

t. Otherwise, we will set w = β = 0.7, if its gray value is much similar with its212

neighbor region in the 3D image. If the considered voxel has not been labeled in213

the given volume and its gray value is much different compared with its neigh-214

borhood in the 3D image, we will set w = γ = 0.3 to make its volume with a low215

opacity. Note that α , β , and γ are chosen based on the experience of user. In216

summary, the flowchart of the framework for improving the visualized volume is217

drawn in Fig. 4.

3D Image

Rendered volume 

Labeled volume Repaired volume

TF space

Modified 

AC Equation

Opacity setting

Figure 4: The flowchart of the framework for improving the visualized volume.
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3.3. Numerical computation219

Let xi = ihx, y j = jhy, zk = khz, 1≤ i≤Nx, 1≤ j≤Ny, and 1≤ k≤Nz, where220

Nx, Ny, and Nz are positive integers and hx, hy, hz are the uniform mesh spaces. Let221

xi jk = (xi,y j,zk) and φ n
i jk be an approximation of φ(xi jk,n∆t), where ∆t is the time222

step. To obtain an unconditional stable scheme, we split the original problem (2)223

into a sequence of simpler problems by using the operator splitting-based hybrid224

numerical method:225


∂

∂ t φ1(x, t) = λ (x)(ψ(x)−φ1(x, t)), (n−1)∆t < t ≤ n∆t,

φ1(x,(n−1)∆t) = φ(x,(n−1)∆t),
(9)


∂

∂ t φ2(x, t) = ∆φ2(x, t), (n−1)∆t < t ≤ n∆t,

φ2(x,(n−1)∆t) = φ1(x,n∆t),
(10)

and226


∂

∂ t φ3(x, t) =−F ′(φ3)
ε2 , (n−1)∆t < t ≤ n∆t,

φ3(x,(n−1)∆t) = φ2(x,n∆t).
(11)
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Here φ1, φ2, and φ3 can represent the solutions for the subproblems (9), (10), and227

(11), respectively. Then the split solution at time t = n∆t is defined as φ(x,n∆t) =228

φ3(x,n∆t). For a fixed x, Eq. (9) is a separable ordinary differential equation, i.e.,229

λdt + 1
φ−ψ

dφ = 0. With the initial condition φ n
i jk, we have the following solution230

after ∆t:231

φ
n+1
1,i jk = e−λ∆t

φ
n
i jk +(1− e−λ∆t)ψi jk. (12)

Next, we solve Eq. (10) by applying an implicit method with φ
n+1
1 and homo-232

geneous Neumann volume condition, that is,233

φ
n+1
2,i jk−φ

n+1
1,i jk

∆t
= ∆φ

n+1
2,i jk. (13)

The resulting discrete equations is solved by a fast solver such as fast discrete234

cosine transform. Then, for a fixed x, Eq. (11) is a separable ordinary differential235

equation, i.e.,236

0 =
dt
ε2 +

dφ

F ′(φ)
=

dt
ε2 +

−2dφ

φ
+

4dφ

φ −0.5
+

2dφ

1−φ
. (14)
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With the initial condition φ
n+1
2,i jk, the solution can be obtained as237

φ
n+1
i jk = φ

n+1
3,i jk =

1
2
+

φ
n+1
2,i jk−0.5√

e
−∆t
2ε2 +(2φ

n+1
2,i jk−1)2(1− e

−∆t
2ε2 )

. (15)

φ n

φt = λ (ψ−φ)

Analytical solution
(
Eq. (12)

)
��

// φ n+1

φ
n+1
1 φt = ∆φ

Discrete cosine transform

// φ n+1
2

φt = F ′(φ)/ε2

Analytical solution
(
Eq.(15)

)
OO

Figure 5: A hybrid numerical method for the original problem (2).

The proposed operator splitting algorithm is shown schematically in Fig. 5.238

The procedure of improving volume repairing is simple and summarized here.239

Beginning with the volume ψ from a 3D image using the TF method, we perform240

Eqs. (12)-(15), until ‖φ n+1− φ n‖2
2/‖φ n‖2

2 < tol. Then we set opacity by using241

Eqs. (7)-(8) and render the repaired volume. Our proposed numerical scheme has242

a merit that it can be straightforwardly applied to GPU-accelerated DCT imple-243

mentation that performs up to many times faster than CPU-only alternatives.244
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3.4. Unconditional stability of our numerical method245

In this section, we will prove the unconditional stability of our proposed scheme.246

For Eq. (12), since φ n and ψ are assumed as in [0,1], we get247

0≤ φ
n+1
1 ≤ e−λ∆t +(1− e−λ∆t) = 1. (16)

Since Eq. (13) is a heat equation, its implicit numerical scheme is unconditionally248

stable and the inequality inf(φ n+1
1 ) ≤ φ

n+1
2 ≤ sup(φ n+1

1 ) is satisfied by the dis-249

crete minimum and maximum principles [25]. Therefore, φ
n+1
2 ∈ [0,1] because250

φ
n+1
1 ∈ [0,1]. Secondly, for Eq. (15), we get251

φ
n+1 =



1 if φ
n+1
2 = 1,

1
2 +

1

2
√

1+
(
(2φ

n+1
2 −1)−2−1

)
e
−∆t
2ε2

≤ 1 if φ
n+1
2 ∈ (0.5, 1),

1
2 if φ

n+1
2 = 0.5,

1
2 −

1

2
√

1+
(
(2φ

n+1
2 −1)−2−1

)
e
−∆t
2ε2

≥ 0 if φ
n+1
2 ∈ (0, 0.5),

0 if φ
n+1
2 = 0.

(17)

Thus if φ
n+1
2 ∈ [0,1], then φ n+1 ∈ [0,1]. Therefore our proposed scheme, Eqs. (12-252

15), is unconditionally stable for any time step, because any numerical solution φ253
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is bounded and is always in [0,1].254

4. Experimental results255

In this section, we use the following parameters: ∆t = 0.5, hx = hy = 1, tol =256

1e−4, and λ0 = 5. hz is set according to the inter-slice spacing in CT images. ε257

is defined as ε = εm = hm/[4
√

2tanh−1(0.9)] and m = 12 is chosen in this paper.258

We apply our method to improve the quality of volumes for several CT data sets.259

Figure 6 and Figure 7 show the repaired volumes by the proposed method. It can260

be observed that the original volume defects are well repaired.261

Figure 6: Repaired volumes by the proposed method. The first and second rows are the original
and repaired volumes, respectively.

Table 1 provides the information of the iteration number and the CPU time.262

The CPU times (seconds) of our calculations, which are performed in MAT LAB,263
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Figure 7: Repaired volumes by the proposed method. The first and second rows are the original
and repaired volumes, respectively.

are measured on a desktop computer with 3.6 GHz with 16 G of RAM. As can be264

observed that the proposed method can achieve fast convergence after a few itera-265

tions, as expected from the unconditionally stable discrete scheme. Observing the266

elapsed CPU time, we can see that our method is fast, since our algorithm consists267

of two explicit evaluations of the closed-form solutions and one implicit heat e-268

quation solver. For the two linear equations, their computational complexities are269

O(N), where N is the size of the mesh grid. For the heat equation solver, we apply270

a GPU-accelerated fast discrete cosine transform method with a computational271

complexity of O(NlogN). Therefore our method is fast and simple.272
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Table 1: Performance of our proposed method.

Case Mesh size hx : hy : hz Iterations CPU time (s)

Fig.6(a) 112×120×104 1 : 1 : 1.5 14 0.280
Fig.6(b) 192×192×128 1 : 1 : 1.0 20 1.516
Fig.6(c) 256×256×80 1 : 1 : 2.5 33 3.954
Fig.6(d) 512×512×100 1 : 1 : 3.4 26 8.614
Fig.7(a) 448×328×272 1 : 1 : 1.5 33 18.65
Fig.7(b) 168×152×128 1 : 1 : 1.0 15 0.740
Fig.7(c) 312×232×168 1 : 1 : 1.5 19 3.495
Fig.7(d) 168×152×40 1 : 1 : 3.8 18 0.312

4.1. Comparisons with related works and accuracy test273

In [3], volume defects were repaired by directly dilating given volume voxels274

with a radius in 3D images. However, due to the dilation operation, the volumes275

repaired in [3] are usually thicker than the real volumes, as shown Fig. 8(b).276

Unlike the method in [3], the repaired volumes using our proposed method are in277

quality agreement with the real volumes, as illustrated in Fig. 8(a). Figure 8(c)278

and (d) are the two dimensional results of Fig. 8 (a) and (b), respectively. Here279

the original CT image is overlapped with the labeled volume. It implies that our280

proposed method is more appropriate for repairing volumes than one in [3].281

Figure 9 shows the original volume over some CT slices of a kidney and re-282

paired volume by using our proposed method. It can be seen that, the repaired283

volume without holes is in good agreement with the real volume in CT images.284
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Figure 8: Comparison between our proposed model (a) and Lan et. al’s model [3](b) in the CT
slice. (c) and (d) are the two dimensional results of (a) and (b), respectively. Here the original CT
image is overlapped with the marked voxel.

Figure 9: From top to bottom are 2D sectional slices with known volume and 2D sectional slices
with repaired volume, respectively. From left to rights are the slices at 10, 30, 50, 70, and 90,
respectively.
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In Fig. 10, we compare the visualized results of volumes repaired by our pro-285

posed method with the ground-truth results (i.e., organs such as CT Liver, Aorta,286

Left Kidney, Right Kidney, and Spleen manually labeled from the CT image by287

experts). As can be seen that the agreement between the repaired volume and the288

ground-truth is obvious.289

Figure 10: Comparison between ground-truth (left) and our proposed model (right).

We evaluate the quality of the volume based on the ground truth of multi-atlas290

of some abdominal CT images. To get an accurate evaluation of the proposed291

method, the criteria of Recall, Precision and DSC are employed. Precision is292

defined as the ratio of classified positive volumes to the total number classified293

volumes. Recall is defined as the ratio of the number of classified positive vol-294

umes to the total number of positive volumes in the ground-truth. DSC is dice295
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coefficient. The definition of the performance measures are given below:296

Recall =
T P

T P+FN
, Precision =

T P
T P+FP

, and DSC =
2T P

2T P+FP+FN
.

(18)

Where, TP (true positives) is the total number of organ voxels which are correctly297

classified, FN (false negatives) accounts for the number of organ volumes which298

are incorrectly classified, and FP (false positives) is the total number of those299

volumes that are incorrectly classified as organ volumes. Laplacian smoothing300

method can smooth a volume data and fill the holes by using the following gov-301

erning equation: ∂φ(x,t)
∂ t = ∆φ(x, t)+λ (x)(ψ(x)− φ(x, t)). Note that as ε → ∞,302

our method will become the Laplacian smoothing method. To compare with the303

results obtained by using the previous method [3] and the Laplacian smoothing304

method, we put them together. Table 2 shows the accurate evaluations of the three305

mentioned methods. We can see that the Precision values of the three methods are306

qualitatively in good agreement with the theoretical values. Because the previous307

method [3] directly dilates all known volumes with a given radius as shown in308

Fig. 8(a) and (c), almost all correctly classified volumes can be marked. Hence,309

the number of incorrectly classified volumes as organ volumes approximates to310

zero. As a result, its precision values are much higher. However, because the311
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previous method [3] usually incorrectly marks those volumes that are not positive312

volumes as positive volumes, its Recall and DSC values are generally not good.313

It should be noted that we should evaluate the performance of the model by con-314

sidering generally various performance indexes. On the other hand, our proposed315

method can obtain much higher Recall and DSC values than those the previous316

method [3] and Laplacian smoothing method. Combining the vision results in Fig.317

8 and the quantitative results in Table 2, we can see that our proposed method is318

more efficient compared with the previous method [3] and Laplacian smoothing319

method.320

Table 2: Accurate evaluation of the proposed method. Laplacian smoothing method can be devel-
oped by using the following equation: φt = ∆φ +λ (ψ − φ). Note that as ε → +∞, our method
will become the Laplacian smoothing method.

Case Our proposed method Previous method [3] Laplacian smoothing method
Recall Precision DSC Recall Precision DSC Recall Precision DSC

Spleen 0.91 0.98 0.86 0.78 0.99 0.62 0.88 0.96 0.75
Kidney(R) 0.92 0.98 0.87 0.76 0.99 0.64 0.87 0.96 0.82
Kidney(L) 0.89 0.99 0.81 0.78 0.99 0.64 0.83 0.97 0.75
Liver 0.94 0.96 0.96 0.89 0.98 0.81 0.89 0.94 0.90
Aorta 0.93 0.97 0.91 0.79 0.99 0.67 0.85 0.93 0.84
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(a)
(b) (c)

Figure 11: (a) 0.9 level of repaired volume, (b) 0.1 level of repaired volume, (c) show the cut view
of repaired volume. To compared with the original volume, we put them together. Gray regions
represent the original volume. Red, green, and blue lines denote 0.9, 0.5, and 0.1 levels of repaired
volume, respectively.

4.2. Results with different levels of φ321

Our proposed method has a merit that it can straightforwardly obtain the differ-322

ent probability distributions from the known volume ψ(x). Figure 11 (a) and (b)323

show 0.9 and 0.1 levels of repaired volume (isosurface) from the original volume324

ψ(x), respectively. These isosurfaces can be considered as the volumes, which325

have the 90% and 10% probabilities of repaired volume, respectively. Figure 11326

(c) shows the cut view of repaired volume. To compare with the original volume,327

we put them together. Gray regions represent the original volume. Red, green,328

and blue lines denote 0.9, 0.5, and 0.1 levels of repaired volume, respectively. As329

can be seen, 0.9 level of φ is in good agreement with the real volume, which im-330
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plies our model can remain the topology of volume. And other levels of repaired331

volume can provide the volume rendering information for users.332

Figure 12: Volume repairing in removal of noises. From left to right, they are the known volume
and repaired volume, respectively.

4.3. Removing noise points in the repairing333

In practice, there are outliers or conflicting points in a given volume. Our pro-334

posed method can obtain a smooth volume, due to the mean curvature motion of335

Allen-Cahn equation. Figure 12 shows the volume repairing in removal of noises.336

From left to right, they are the given volume and repaired volume, respectively.337

As can be observed, our proposed method can obtain a clear result.338

4.4. Parameter sensitivity analysis339

In this section, we will perform parameter sensitivity analysis for the model340

parameters λ0 and ε . The last term in Eq.(2) is the fidelity term that enforces341

28



new version (φ ) to be the known volume (ψ). λ0 balances the motion by the342

mean curvature flow and the fidelity term. If λ0 = 0, our proposed method in Eq.343

(2) becomes the classical Allen-Cahn equation. With the classical Allen-Cahn344

equation, the noises are perfectly removed with missing the detail information of345

Aneurism as shown in Fig. 13(a). On the other hand, with a suitable large λ0,346

our method (Eq. (2)) smooths away noises while preserving volume detail and347

sharp features as shown in Fig. 13(b). If the original volume is with high noises348

(10% Salt-and-pepper noise), λ0 should be small to make the motion by the mean349

curvature flow be dominant. Thus the noises from the original volume can be350

removed (see Fig. 13(c)). Otherwise the fitting term is dominant and the restored351

volume tends to become the original one with noises (see Fig. 13(d)).352

λ0 is an importance parameter. However, how to choose a suitable value λ0 is a353

question. Our proposed method can straightforwardly show the restriction of used354

λ0. Observing Eq.(12), we can find that if λ0 is larger than 10/∆t, then e−λ0∆t ≈ 0355

and φ̌ n+1 ≈ ψ for any time, which implies that the noise will remain (see Fig.356

13(d)). We also can find that if λ0 < 0.1/∆t, then φ n+1 ≈ 0.9φ n + 0.1ψ will be357

much different with ψ . In this case, the results obtained by our proposed method358

will not be able to hold the original topological shape (see Fig. 13(a)). Therefore,359

we suggest to use 0.1/∆t < λ0 < 10/∆t. The role of ε is interface thickness of a360
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(a) (b) (c) (d)

Figure 13: Parameter sensitivity analysis for λ0. From left to right, the first two results are repaired
volumes for the volume without noises. The second two ones are for the volume with 10% Salt-
and-pepper noises. (a) λ0 = 0, (b) λ0 = 5, (c) λ0 = 0.5, and (d) λ0 = 5.

transition layer of the separated region which represents two different states. We361

take the same initial condition except for different interface parameter values ε5362

and ε20. From the results shown in Fig. 14, we can observe that when ε is too363

small, interfacial transition is too sharp. On the other hand, if it is too large, the364

volume will become thicker. It should be noted that we can see from Fig. 14 that365

whenever ε is larger or smaller used, our model can fill the small holes and remain366

the topology of the known volume.367

Eqs. (2)-(4) keep the total energy E (φ) decrease with time, which implies368

the solution of our proposed method is uniqueness. Therefore, we can stop the369
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(a) (b)

Figure 14: Parameter sensitivity analysis for ε . (a) ε = ε5, (b) ε = ε20. Top row: whole view of
repairing volume. Bottom row: vertical section of repaired volume. Gray regions represent the
known volume. Red, green, and blue lines denote 0.9, 0.5, and 0.1 levels of repaired volume,
respectively. When ε is too small, interfacial transition is too sharp. On the other hand, if is too
large, the volume of volume will become thicker (See the circle region).
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(a) (b)

Figure 15: Parameter sensitivity analysis for the stop condition. (a) tol = 1e−2. (b) tol = 1e−6.

evolution and regard the numerical result as the steady state solution, when the370

relative error ‖φ n+1− φ n‖2
2/‖φ n‖2

2 is less than a tolerance tol. Figure 15(a) and371

(b) show the repaired volume with tol = 1e− 2 and tol = 1e− 6, respectively.372

The used iterations are 6 and 98 for tol = 1e−2 and tol = 1e−6, respectively. As373

can be seen, the two results are much similar. Although the volume obtained by374

using tol = 1e−6 seems slightly smooth than that using tol = 1e−2, a larger tol375

requires much more iterations, until the relative error for the numerical solution is376

less than the given tol. The good stopping condition is important for the efficiency377

of our PDE based method. In this paper, we suggest to use tol = 1e−4.378
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Figure 16: Repair defects over a specific patch. From left to right, they are initial volume and
repaired volume, respectively. Here the blue region is the marked region.

4.5. Repair defects over a specific patch379

In practice, we may want to repair defects over a specifically marked patch of380

the visualized volume but not over the whole visualized ψ . As shown in the left381

figure of Fig. 16, we only want to repair the Kidney over a specific patch which382

is marked as blue region, but not over the whole domain, because other regions383

are smooth without holes. Here we will modify our method to repair defects384

over a specific patch of the visualized volume, which is particularly marked by385

users. Assume ΩM be the marked domain, which contains specific patch of the386
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visualized volume, we introduce a control function g(x), which is defined as387

g(x) =


1 if x ∈ΩM,

0 otherwise.
(19)

Then the extension of our proposed model can be defined as388

∂φ

∂ t
= g

(
−F ′(φ)

ε2 +∆φ +λ (ψ−φ)

)
. (20)

Observing Eq. (20), we can find that if x locates in ΩM, we will perform our pro-389

posed method to repair defect. Otherwise, there will be no computations, which390

replies that the information in that regions will remain. A numerical test for CT391

aneurism image is performed and the numerical result is shown in Fig. 16. As can392

be seen, the volume repairing is successfully done.393

5. Conclusion and future work394

In this paper, we discussed volume repairing problem to generate high quality395

rendering results. By the constrained diffusion, we can adaptively adjust opacities396

of the voxels around known volume voxels, and well recover lost volume voxel-397

s. Consequently, visualization quality of volumes can be greatly improved in the398

volume rendering. Our method can be addressed without increasing the dimen-399
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sionality of the TF. It allows us to incorporate our method into other processing or400

transfer functions. One limitation of our present implementation is that, since our401

method begins with the labeled volume voxels and is performed without depend-402

ing on the TF, we can recover other lost volume voxels and remove the noises403

from volume data. But our method may fail to remove noises for the incorrect404

labeled volume voxels, since we do not have the corresponding sampling volume405

voxels in the hole regions. In the future, we will repair the volume by combining406

the 3D image gray values f (x) and the labeled volume data. In practice, multiple407

volumes with defects need to be volume rendered from a volumetric data. We will408

extern our binary method into multiple method in future.409
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