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Abstract

Low-rank quaternion tensor completion method, a novel approach to recovery color videos

and images is proposed in this paper. We respectively reconstruct a color image and a color

video as a quaternion matrix (second-order tensor) and a third-order quaternion tensor by

encoding the red, green, and blue channel pixel values on the three imaginary parts of a

quaternion. Different from some traditional models which treat color pixel as a scalar and

represent color channels separately, whereas, during the quaternion-based reconstruction,

it is significant that the inherent color structures of color images and color videos can be

completely preserved. Under the definition of Tucker rank, the global low-rank prior to

quaternion tensor is encoded as the nuclear norm of unfolding quaternion matrices. Then,

by applying the ADMM framework, we provide the tensor completion algorithm for any order

(≥ 2) quaternion tensors, which theoretically can be well used to recover missing entries of

any multidimensional data with color structures. Simulation results for color videos and

color images recovery show the superior performance and efficiency of the proposed method
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over some state-of-the-art existing ones.
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1. Introduction

A color video or color image contains red, blue, and green channels. In most cases,

some data of the acquired videos or images are missed during acquisition and transmission,

which poses great challenges to further processing of them. Hence, a well-performed recov-

ery technology is important and necessary to recover complete videos or images from their

incomplete observations. The core of the missing value estimation lies on how to exactly

build a proper low-rank regularizer to measure the global structure of the underlying video

or image data according to the fact that the data inherently possess a low-rank structure [1].

In the past few decades, the low-rank matrix completion problem has been widely studied

and proven very useful in the application of images and even videos recovery [2, 3]. Com-

monly, the method is to stack all the image or video pixels as column vectors of a matrix,

and recovery theories and algorithms are adopted to the resulting matrix which is low-rank

or approximately low-rank. However, these image and video recovery models are usually

developed for grey-level pixels. For color videos and color images processing, traditional

matrix-based methods usually ignore the mutual connection among channels, because these

recovery methods are applied to red, green, and blue channels separately, which is likely to

result in color distortion during the recovery process [4].

On the other hand, with the success of low-rank matrix completion, low-rank tensor com-

pletion is an extension to process the multidimensional data [5–7]. A color image with red,

blue, and green channels can be naturally regarded as a third-order tensor. Each frontal slice
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of this third-order tensor corresponds to a channel of the color image. Analogously, a video

comprised of color images is a fourth-order tensor with an additional index for a temporal

variable [7]. Nevertheless, there are still some underlying restrictions on tensor-based com-

pletion algorithms, especially for color video recovery problems. For example there are plenty

of completion algorithms using tensor singular value decomposition (t-SVD) and the tubal

rank [6, 8], etc., can not be well applied to color video recovery problem, since the t-SVD and

the tubal rank theories [9] they are based on are defined for third-order tensors. Therefore,

for grey scalar videos (third-order tensors), they can obtain well performance, however, for

color videos (fourth-order tensors), they may ignore the inherent color structures, and then

can not offer a satisfying recovery result. In addition, there are some factorization based

approaches for tensor completion, such as CANDECOMP/PARAFAC (CP) and Tucker fac-

torizations based approaches [10, 11], tensor unfolding based approaches [12, 13], etc.. These

methods can deal with color videos directly, however, the factorization or matricization op-

eration may destroy color pixel structure and lead to color distortion during the recovery

process [14].

Different from conventional matrix and tensor based models, in this paper, we make use

of quaternion tensors to represent color videos and color images1, and study the problem of

quaternion tensors completion to estimate missing data of them. Actually, the quaternion

has achieved excellent results in color image processing problems including histopathological

image analysis [15], color image denoising and representation [16, 17], color object recognition

1Color images are represented by second-order quaternion tensors, we also call them quaternion matrices
in the paper.
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[18, 19], and so on. The quaternion based method is to encode the red, green, and blue

channel pixel values on the three imaginary parts of a quaternion [18]. That is

ṫ = 0 + tri+ tgj + tbk, (1)

where ṫ denotes a color pixel, tr, tg and tb are, respectively, the red, green and blue channel

pixel values, and i, j and k are the three imaginary units2. The graphical of a pure quaternion

representing a color pixel can be seen in Figure.1. By using (1), an M ×N × 3 color image,

Figure 1: The graphical of a pure quaternion representing a color pixel. i, j and k correspond to three
channels (R, G and B) of the color pixel.

and an M × N × 3 × T (image row × image column × RGB × frame) color video are

respectively described by a second-order quaternion tensor (quaternion matrix) with size

M × N and a third-order quaternion tensor with size M × N × T whose entries are pure

quaternions. The main advantage of this quaternion representation is that it processes a

color pixel holistically as a vector field and handles the coupling between the color channels

naturally [17], and color information of source video and image is fully utilized.

However, the existing quaternion based methods mainly consider the color image issues

but not consider the higher dimensional data structures, for example, color videos. In this

paper, we reconstruct an M × N × 3 × T color video (fourth-order tensor) as an M ×

2A detailed introduction to the quaternion can be found in Section 2.
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N × T third-order quaternion tensor with each frontal slice being a quaternion matrix.

It is important to highlight that different from traditional tensor model, the three color

channels of each pixel in quaternion tensor can be fully connected by the model (1), and

it is clear that even if the matricization operations (e.g., tensor unfolding) can not destroy

the color pixel structure, i.e., the relative positions of the three color channel pixels of

one pixel will remain unchanged just as Figure.1. Hence, Under the definition of Tucker

rank, the global low-rank prior to quaternion tensor is encoded as the nuclear norm of

unfolding quaternion matrices. Then, we provide the completion algorithm for any order (≥

2) quaternion tensors by applying the alternating direction method of multipliers (ADMM)

[20] framework. Simulation results for color videos and color images recovery show that the

performance of the proposed method is better than that of the testing methods.

The rest of this paper is organized as follows. Section 2 introduces some notations

and preliminaries for quaternion algebra and quaternion tensor. Section 3 reviews the tensor

completion theory and proposes our quaternion-based tensor completion model. The detailed

overview of the quaternion tensor completion method is presented in Section 4. Section 5

provides some simulations to illustrate the performance of our approach, and compare it

with some state-of-the-art methods. Finally, some conclusions are drawn in Section 6.

2. Notations and preliminaries

In this section, we first summarize some main notations and then introduce some basic

knowledge of quaternion algebra and quaternion tensor.
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2.1. Notations and definitions

In this paper, R, C, and H respectively denote the set of real numbers, the set of complex

numbers and the set of quaternions. A scalar, a vector, a matrix, and a tensor are written

as a, a, A, and A, respectively. For a tensor A, we use the Matlab notation A(:, :, k) to

denote its k-th frontal slice and the A[k] to denote its mode-k unfolding. A dot (above the

variable) is used to denote a quaternion variable (e.g., [4, 21]), ȧ, ȧ, Ȧ and Ȧ respectively

represent a quaternion scalar, a quaternion vector, a quaternion matrix and a quaternion

tensor. (·)∗ and (·)H denote the conjugation and conjugate transpose. | · |, ‖ · ‖F and ‖ · ‖∗

are respectively the moduli, the Frobenius norm, and the nuclear norm. tr{·}, rank(·) and

∇sub denote the trace, rank and subgradient operators respectively. Unfoldk is the Mode-k

unfolding operator of tensors, and we use Foldk to denote the inverse operator of Unfoldk.

2.2. Basic knowledge of quaternion algebra

Quaternions were discovered in 1843 by W.R. Hamilton [22]3. A quaternion q̇ ∈ H is a

four-dimensional (4D) hypercomplex number and has a Cartesian form given by:

q̇ = q0 + q1i+ q2j + q3k, (2)

3Here we just give some fundamental algebraic operations used in our work briefly, which follow the
definition in [19, 23]. Readers can find more details on quaternion algebra in the references.
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where ql ∈ R (l = 0, 1, 2, 3) are called its components, and i, j, k are square roots of -1 and

are related through the famous relations:


i2 = j2 = k2 = ijk = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j.

(3)

A quaternion q̇ ∈ H can be decomposed into a real part R(q̇) and an imaginary part I(q̇):

q̇ = R(q̇) + I(q̇), (4)

where R(q̇) = q0, I(q̇) = q1i + q2j + q3k. Then, q̇ ∈ H will be called a pure quaternion if

its real part is null, i.e., if R(q̇) = 0. Given two quaternions ṗ and q̇ ∈ H, the sum and

multiplication of them are respectively:

ṗ+ q̇ = (p0 + q0) + (p1 + q1)i+ (p2 + q2)j + (p3 + q3)k

and

ṗq̇ =(p0q0 − p1q1 − p2q2 − p3q3) + (p0q1 + p1q0 + p2q3 − p3q2)i

+ (p0q2 − p1q3 + p2q0 + p3q1)j + (p0q3 + p1q2 − p2q1 + p3q0)k.

It is noticeable that the multiplication of two quaternions is not commutative so that in

general ṗq̇ 6= q̇ṗ.
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The conjugate and the modulus of a quaternion q̇ ∈ H are, respectively, defined as follows:

q̇∗ = q0 − q1i− q2j − q3k,

|q̇| =
√
q2

0 + q2
1 + q2

2 + q2
3.

Every quaternion q̇ ∈ H can be uniquely represented as the CayleyDickson (CD) form:

q̇ = z1 + z2j, (5)

where z1 = q0 + q1i and z2 = q2 + q3i are complex numbers.

2.3. Quaternion matrix and tensor

The quaternion matrix is denoted as Q̇ = (q̇n1,n2) ∈ HN1×N2 , 1 ≤ n1 ≤ N1, 1 ≤ n2 ≤ N2,

where each entry is a quaternion [24]. We often rewritten it as

Q̇ = Q0 + Q1i+ Q2j + Q3k,

where Ql ∈ RN1×N2 (l = 0, 1, 2, 3), Q̇ is named a pure quaternion matrix when Q0 = 0. In

addition to scalar representations, based on the CD form (5), there exists their isomorphic

complex representation denoted as f(Q̇) ∈ C2N1×2N2 , is of the form:

f(Q̇) =

 Z1 Z2

−Z∗2 Z∗1

 , (6)
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where Z1 = Q0 + Q1i, Z2 = Q2 + Q3i ∈ CN1×N2 .

Note that the multiplication between quaternion matrices can be defined similar to classi-

cal multiplication between real or complex matrices, except that the multiplication between

two quaternion numbers is employed.

Definition 1. (The rank of quaternion matrix [24]) The maximum number of right (left)

linearly independent columns (rows) of a quaternion matrix Q̇ ∈ HN1×N2 is called the rank

of Q̇.

Theorem 1. (Quaternion singular value decomposition (QSVD) [24]) Let Q̇ ∈ HN1×N2 be

of rank r. Then, there exist two unitary quaternion matrices4 U̇ ∈ HN1×N1 and V̇ ∈ HN2×N2

such that

U̇HQ̇V̇ = Λ =

 Σr 0

0 0

 ,

where Σr = diag(σ1, . . . , σr) is a real diagonal matrix and has r positive entries σk, (k =

1, . . . , r) on its diagonal ( i.e., positive singular values of Q̇).

The relation between the QSVD of quaternion matrix Q̇ ∈ HN1×N2 and the SVD of its

isomorphic complex matrix f(Q̇) ∈ C2N1×2N2 (f(Q̇) = UΛ̌VH) is defined as [21]:


Λ = rowodd(colodd(Λ̌)),

U̇ = colodd(U1) + colodd(−(U2)∗)j,

V̇ = colodd(V1) + colodd(−(V2)∗)j,

(7)

4A unitary quaternion matrix U̇ ∈ HN×N has the following property: U̇U̇H = U̇HU̇ = IN , with
IN ∈ RN×N being the quaternion identity matrix which is the same as the classical identity matrix.
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such that Q̇ = U̇ΛV̇H , where

U =

 (U1)N1×2N1

(U2)N1×2N1

 , V =

 (V1)N2×2N2

(V2)N2×2N2

 ,

and rowodd(M), colodd(M) respectively extract the odd rows and odd columns of matrix M.

Based on the QSVD, we define the quaternion matrix nuclear norm (QMNN) below.

Definition 2. (QMNN) Given a quaternion matrix Q̇ ∈ HN1×N2, the QMNN of it is defined

as

‖Q̇‖∗ =

min{N1,N2}∑
k=1

σk, (8)

where σk is the singular value of Q̇, which can be obtained by the QSVD of Q̇.

In addition, the Frobenius norm of the quaternion matrix Q̇ ∈ HN1×N2 is defined as [24]:

‖Q̇‖F =
√∑N1

n1=1

∑N2

n2=1 |q̇n1,n2|2 =
√

tr{(Q̇)HQ̇}.

Analogously, in this paper, we generalize the definition of quaternion matrix to higher

dimensional quaternion array, i.e., quaternion tensor.

Definition 3. (Quaternion tensor) A multidimensional array or an Nth-order tensor is

called a quaternion tensor if its entries are quaternion numbers, i.e.,

Ṫ = (ṫn1,n2,...,nN ) ∈ HN1×N2×...×NN

= T0 + T1i+ T2j + T3k, (9)

where Tl ∈ RN1×N2×...×NN (l = 0, 1, 2, 3), Ṫ is named a pure quaternion tensor when T0 is a
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zero tensor.

Definition 4. (Mode-k unfolding) For an Nth-order quaternion tensor Ṫ ∈ HN1×N2×...×NN ,

its mode-k unfolding is defined as a quaternion matrix

Unfoldk(Ṫ ) = Ṫ[k] ∈ HNk×N1...Nk−1Nk+1...NN with entries

Ṫ[k](nk, n1 . . . nk−1nk+1 . . . nN) = ṫn1,n2,...,nN ,

where ṫn1,n2,...,nN is the (n1, n2, . . . , nN)th entry of Ṫ .

Definition 5. (Tucker rank [25]) Given a quaternion tensor Ṫ ∈ HN1×N2×...×NN , the Tucker

rank of it is defined as

ranktucker(Ṫ ) = (rank(Ṫ[1]), rank(Ṫ[2]), . . . , rank(Ṫ[N ])), (10)

where rank(Ṫ[k]) denotes the rank of the mode-k unfolding quaternion matrix Ṫ[k].

3. Problem formulation

In this section, we first review the tensor completion theory and then propose our quater-

nion based tensor completion model.

3.1. Tensor completion theory

The tensor completion problem consists of recovering a tensor from a subset of its entries.

The key is to build up the relationship between the available and the missing entries [12].
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The usual structural assumption on a tensor that makes the problem well-posed is that the

tensor is low-rank or approximate low-rank. Mathematically, the optimization model for

tensor completion problem can be formulated as:

minimize
T

rank(T )

subject to PΩ(T ) = Y ,
(11)

where Y is the underlying complete tensor, T is the observed tensor, and PΩ denotes the

random sampling operator which is defined by:

PΩ(T ) =


tn1,n2,...,nN , (n1, n2, . . . , nN) ∈ Ω,

0, otherwise.

However, there is no unique definition for the rank of tensors, such as CP rank [26], Tucker

rank [12], tubal rank [6], tensor train rank [27], etc.. With different definitions of tensor

rank, there are many methods optimization models for tensor completion problem. Among

all definitions for the rank of tensors, the Tucker rank is widely used to depict the low-

rankness of the underlying tensor. based on minimizing Tucker rank, (11) can be formulated

as:

minimize
T

ranktucker(T )

subject to PΩ(T ) = Y ,
(12)
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According to the definition of Tucker rank, (12) can be written as [12, 28]:

minimize
T[n]

N∑
n=1

αnrank(T[n])

subject to PΩ(T ) = Y ,

(13)

where αn are nonnegative constants. However, directly optimizing the problem (13) is NP-

hard [29]. Inspired by matrix nuclear norm, the tightest convex surrogate of the matrix rank,

Liu et al. [12] established the following definition of the nuclear norm for tensors:

‖T ‖∗ =
N∑
n=1

αn‖T[n]‖∗. (14)

Then, based on (14), the problem (13) can be finally rewritten as:

minimize
T[n]

N∑
n=1

αn‖T[n]‖∗

subject to PΩ(T ) = Y .

(15)

3.2. Proposed formulation of quaternion tensor completion

Quaternion tensor completion can be regarded as the generalization of the traditional

tensor completion problem in the quaternion number field, which is to estimate the missing

values of a quaternion tensor Ṫ ∈ HN1×N2×...×NN under a given subset Ω of its entries

13



{Ṫn1,n2,...,nN |(n1, n2, . . . , nN) ∈ Ω}. That is

minimize
Ṫ

rank(Ṫ )

subject to PΩ(Ṫ ) = Ẏ ,
(16)

where Ẏ is the underlying complete quaternion tensor, Ṫ is the observed quaternion tensor.

Based on the previous Definition 3, Definition 4 and Definition 5, and followed by

traditional tensor case, we finally translate the problem (16) into the following low-rank

quaternion tensor completion formulation:

minimize
Ṫ[n]

N∑
n=1

αn‖Ṫ[n]‖∗

subject to PΩ(Ṫ ) = Ẏ .

(17)

The formulation (17) can be well used to recover missing entries of any multidimensional

data with color structures. For special cases, i.e., N = 3 and N = 2, we can deal with color

videos and color images recovery problems. It is important to notice that in these kinds

of applications the formulation (17) outperforms that of (15), because for traditional tensor

the Mode-k unfolding operation may destroy the color pixel structure, but for quaternion

tensor, the inherent color structures can be completely preserved during this process.

4. Proposed algorithm

In this section, we show how to solve the optimization problem (17), then we provide

complexity analyses of the proposed method.
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4.1. Optimization Procedure

The optimization problem (17) can be solved by various methods. For efficiency, we adopt

the ADMM framework in this paper, which can support the convergence of the algorithm

[20]. By using additional quaternion tensor Ẋ ∈ HN1×N2×...×NN with N Mode-k unfolding

quaternion matrices Ẋ[1], Ẋ[2], . . . , Ẋ[N ], we first convert (17) to the following equivalent

problem:

minimize
Ṫ ,Ẋ[n]

N∑
n=1

αn‖Ẋ[n]‖∗

subject to Ṫ[n] = Ẋ[n], for all n = 1, 2, . . . , N

PΩ(Ṫ ) = Ẏ .

(18)

This problem can be solved by the ADMM framework, which minimizes the following aug-

mented Lagrangian function:

L(Ṫ , {Ẋ[n]}Nn=1, {Ḟ[n]}Nn=1, {βn}Nn=1)

=
N∑
n=1

(
αn‖Ẋ[n]‖∗ + 〈Ḟ[n], Ṫ[n] − Ẋ[n]〉+

βn
2
‖Ṫ[n] − Ẋ[n]‖2

F

)
, (19)

where {βn}Nn=1 are the penalty parameters, {Ḟ[n]}Nn=1 are the Lagrange multipliers, which

are N Mode-k unfolding quaternion matrices of quaternion tensor Ḟ ∈ HN1×N2×...×NN .

It is clear that although the objective function of (19) is not jointly convex for all variables,

it is convex concerning each variable independently. Hence, A natural way to solve the

problem is to iteratively optimize the augmented Lagrangian function (19) over one variable,

while fixing the others. To update each variable, in the τ+1th iteration, perform the following
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steps:

• Step 1: Ṫ (τ+1) = arg min
Ṫ

L
(
Ṫ , ({Ẋ[n]}Nn=1)(τ), ({Ḟ[n]}Nn=1)(τ), ({βn}Nn=1)(τ)

)
,

• Step 2: ({Ẋ[n]}Nn=1)(τ+1) = arg min
{Ẋ[n]}Nn=1

L
(
Ṫ (τ+1), {Ẋ[n]}Nn=1, ({Ḟ[n]}Nn=1)(τ), ({βn}Nn=1)(τ)

)
,

• Step 3: ({Ḟ[n]}Nn=1)(τ+1) = arg min
{Ḟ[n]}Nn=1

L
(
Ṫ (τ+1), ({Ẋ[n]}Nn=1)(τ+1), {Ḟ[n]}Nn=1, ({βn}Nn=1)(τ)

)
,

• Step 4: Updating ({βn}Nn=1)(τ+1).

For Step 1, it is easy to find that the optimal solution of Ṫ (τ+1) is

Ṫ (τ+1) = PΩc

(
1

N

N∑
n

(
Foldn(Ẋ

(τ)
[n] )−

1

β
(τ)
n

Foldn(Ḟ
(τ)
[n] )

))
+ Ẏ , (20)

where Ωc is the complement of Ω, and we have used the fact that PΩc(Ẏ) = 0 in (20).

For Step 2, it can be decomposed into N independent optimization problems, which can

be solved in paralleled. For each n, Ẋ
(τ+1)
[n] is the optimal solution of the following problem:

Ẋ
(τ+1)
[n] = arg min

Ẋ[n]

αn‖Ẋ[n]‖∗ + 〈Ḟ(τ)
[n] , Ṫ

(τ+1)
[n] − Ẋ[n]〉+

β
(τ)
n

2
‖Ṫ(τ+1)

[n] − Ẋ[n]‖2
F

= arg min
Ẋ[n]

αn‖Ẋ[n]‖∗ +
β

(τ)
n

2
‖Ẋ[n] − (Ṫ

(τ+1)
[n] +

1

β
(τ)
n

Ḟ(τ)
n )‖2

F

= arg min
Ẋ[n]

αn

β
(τ)
n

‖Ẋ[n]‖∗ +
1

2
‖Ẋ[n] − (Ṫ

(τ+1)
[n] +

1

β
(τ)
n

Ḟ(τ)
n )‖2

F . (21)

Then, the optimal solution of (21) can be obtained by the following theorem.

Theorem 2. 5 Let Q̇ ∈ HN1×N2 be a given quaternion matrix, then the QSVD (defined on

5Similar theorems for traditional real matrix case can be found in [27, 30, 31], etc., we will demonstrate
that the theorem still holds true for the quaternion matrix case in this paper.
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theorem 1) of Q̇ with rank r is

Q̇ = U̇ΛV̇H = U̇rΣrV̇
H
r , (22)

where U̇r = [u̇1, u̇2, . . . , u̇r] ∈ HN1×r and V̇r = [v̇1, v̇2, . . . , v̇r] ∈ HN2×r, Σr = diag(σ1, . . . , σr).

Define the quaternion matrix singular value thresholding operator Sξ(Q̇) = U̇rΣ̆rV̇
H
r , where

Σ̆r = diag{max(σn − ξ, 0)}(n = 1, 2, . . . , r). Then the operator Sξ(Q̇) obeys

Sξ(Q̇) = arg min
Ẋ

ξ‖Ẋ‖∗ +
1

2
‖Ẋ− Q̇‖2

F . (23)

Proof . It is obvious that the function N(Ẋ) = ξ‖Ẋ‖∗ + 1
2
‖Ẋ − Q̇‖2

F is strictly convex,

hence there indeed exists a unique minimizer. We say that Ẋ∗ minimizes N(Ẋ) if and only

if 0 is a subgradient of the function N(Ẋ) at the point Ẋ∗, i.e.,

0 ∈ ξ∇sub‖Ẋ∗‖∗ + Ẋ∗ − Q̇, (24)

where ∇sub‖Ẋ∗‖∗ denotes the subgradient set of ‖Ẋ∗‖∗, which can be obtained by the fol-

lowing Lemma.

Lemma 1. [32] Suppose that Ẋ ∈ HN1×N2 with rank r has the QSVD as ȦrDrḂ
H
r =∑r

n=1 dnȧnḃ
H
n , then

∇sub‖Ẋ‖∗ = {
r∑

n=1

ȧnḃ
H
n + Ė | Ė ∈ HN1×N2 , ȦH

r Ė = 0, ĖḂr = 0, ‖Ė‖ ≤ 1}. (25)
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We rewritten the QSVD of Q̇ (see (22)) as

Q̇ = U̇rΣrV̇
H
r =

r∑
n=1

σnu̇nv̇
H
n =

r0∑
n=1

σnu̇nv̇
H
n +

r∑
n=r0+1

σnu̇nv̇
H
n ,

where σn ≤ ξ when r0 + 1 ≤ n ≤ r. Then, setting Ẋ∗ = Sξ(Q̇), we have

Ẋ∗ =

r0∑
n=1

(σn − ξ)u̇nv̇Hn +
r∑

n=r0+1

0u̇nv̇
H
n ,

and as a result

Ẋ∗ − Q̇ = −ξ

(
r0∑
n=1

u̇nv̇
H
n +

r∑
n=r0+1

σn
ξ

u̇nv̇
H
n

)
= −ξ

(
r0∑
n=1

u̇nv̇
H
n + Ė

)
,

where Ė =
∑r

n=r0+1−
σn
ξ

u̇nv̇
H
n . According to Lemma 1, it is obvious that Ẋ∗ − Q̇ ∈

−ξ∇sub‖Ẋ‖∗, i.e., when Ẋ∗ = Sξ(Q̇), (24) holds. Consequently, the Sξ(Q̇) obeys the

optimization problem (23).

Therefore, based on Theorem 2, we can easily obtain the following optimization result

of (21)

Ẋ
(τ+1)
[n] = S αn

β
(τ)
n

(
Ṫ

(τ+1)
[n] +

1

β
(τ)
n

Ḟ(τ)
n

)
. (26)

For Step 3, it can also be decomposed into N independent optimization problems and

be solved in paralled. For each n, Ḟ
(τ+1)
[n] is updated by the following equation:

Ḟ
(τ+1)
[n] = Ḟ

(τ)
[n] − β

(τ)
n (Ẋ

(τ+1)
[n] − Ṫ

(τ+1)
[n] ). (27)
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For Step 4, since the dynamical ({βn}Nn=1) are usually preferred to speed up the con-

vergence of the algorithm [33], we use the following way to adaptive update βn, for n =

1, 2, . . . , N .

β(τ+1)
n = min(βmaxn , ηβ(τ)

n ), (28)

where βmaxn is the default maximum of βn, and η ≥ 1 is a constant parameter. Generally, we

set η = η0 > 1 if ‖Ṫ (τ+1) − Ṫ (τ)‖F is small enough (e.g., 0.01), η = 1 otherwise.

Finally, the proposed Low-Rank Completion for Quaternion Tensor (LRC-QT) method

can be summarized in Table 1.

Table 1: The low-rank completion for quaternion tensor (LRC-QT) method.

Input: The observed quaternion tensor data Ṫ ∈ HN1×N2×...×NN , the observed index set Ω.
1: Initialize ({Ẋ[n]}Nn=1)(0), ({Ḟ[n]}Nn=1)(0), {αn}Nn=1, ({βn}Nn=1)(0), {βmaxn }Nn=1, η0, ε.
2: Repeat
3: Update Ṫ (τ+1) using equation (20).
4: % Lines 5 and 6 all can be performed in parallel.
5: Update ({Ẋ[n]}Nn=1)(τ+1) using equation (26).

6: Update ({Ḟ[n]}Nn=1)(τ+1) using equation (27).

7: Update β
(τ+1)
n using equation (28).

8: τ ←− τ + 1.
9: Until ‖Ṫ (τ+1) − Ṫ (τ)‖F ≤ ε.

Output: Ṫ .

In the rest of this section, to facilitate direct processing of color image recovery issues,

as a special case of the aforementioned method, we consider the low-rank quaternion matrix

(second-order tensor) completion problem, i.e.,

minimize
Ṫ

α‖Ṫ‖∗

subject to PΩ(Ṫ) = Ẏ,

(29)
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where Ẏ ∈ HM×N is the underlying complete quaternion matrix, Ṫ ∈ HM×N is the observed

quaternion matrix. For color image recovery, model (29) is different from traditional matrix

based and third-order tensor based models and is more advantageous than them. Since the

traditional matrix based models are inherently developed for gray-level images. Although

third-order tensor based models can deal with this problem, for this type of algorithms, the

rank of a tensor is generally pretty hard to determine [6], so they usually cannot offer the best

low-rank approximation to a tensor. Besides, the tensor factorization or matricization based

methods (see, e.g., [12]) are likely to destroy color pixel structure. In brief, the recovery

theory for low-rank tensor completion problem is not well established compared with that

of matrix based completion problems [32].

For problem (29), adding an additional variable quaternion matrix Ẋ ∈ HM×N , we can

obtain the following equivalent formulation:

minimize
Ṫ

α‖Ẋ‖∗

subject to Ṫ = Ẋ, PΩ(Ṫ) = Ẏ.

(30)

Then we define the following augment Lagrangian function:

L(Ṫ, Ẋ, Ḟ, β) = α‖Ẋ‖∗ + 〈Ḟ, Ṫ− Ẋ〉+
β

2
‖Ṫ− Ẋ‖2

F , (31)

where β is the penalty parameter, Ḟ is the Lagrange multiplier. According to the ADMM

framework, we independently update Ṫ, Ẋ, Ḟ, β, and we summarize the proposed Low-Rank

Completion for Quaternion Matrix (LRC-QM) method in Table 2.
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Table 2: The low-rank completion for quaternion matrix (LRC-QM) method.

Input: The observed quaternion matrix data Ṫ ∈ HM×N , the observed index set Ω.
1: Initialize Ẋ(0), Ḟ(0), α, β(0), βmax, η0, ε.
2: Repeat

3: Ṫ(τ+1) ←− PΩc

(
Ẋ(τ) − 1

β
Ḟ(τ)

)
+ Ẏ (where PΩc(Ẏ) = 0).

4: Ẋ(τ+1) ←− S α

β(τ)

(
Ṫ(τ+1) + 1

β(τ) Ḟ
(τ)
)

.

5: Ḟ(τ+1) ←− Ḟ(τ) − β(τ)(Ẋ(τ+1) − Ṫ(τ+1)).
6: β(τ+1) ←− min(βmax, ηβ(τ)) (we set η = η0 > 1 if ‖Ṫ(τ+1)− Ṫ(τ)‖F is small enough (e.g.,

0.01), η = 1 otherwise).
7: τ ←− τ + 1.
8: Until ‖Ṫ(τ+1) − Ṫ(τ)‖F ≤ ε.

Output: Ṫ.

4.2. The computational complexity analysis

For LRC-QT, the observed quaternion tensor data Ṫ ∈ HN1×N2×...×NN . We assume, for

simplicity, that N1 = N2 = . . . = NN = I. It is easy to see that the main per-iteration com-

putational complexity lies in the update of Ẋ[n], n = 1, 2, . . . , N , which requires computing N

QSVD of I × IN−1 quaternion matrices. There has been some quaternionic algorithms (e.g.,

[34]) were proposed for computing the QSVD, nevertheless, they are too time-consuming.

We propose to compute the QSVD using the isomorphism between HN1×N2 and C2N1×2N2 (see

(6)). According to (7), the computation of the QSVD for N I × IN−1 quaternion matrices

is equivalent to the computation of the SVD of N 2I × 2IN−1 complex matrices, which can

be performed using well-established classical algorithms of SVD over C2N1×2N2 (the built-in

function ‘svd’ in MATLAB 2014b is used by us). We still assume that the computational

complexity of SVD for a K × K complex matrix is about O(K3). Therefore, the whole

computational complexity of LRC-QT for one iteration is about O(8NI2N−1). Analogously,

For LRC-QM, the observed quaternion matrix data Ṫ ∈ HM×N . Assuming M = N = I, the
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main per-iteration computational complexity lies in the update of Ẋ, which is about O(8I3).

5. Simulation results

In this section, simulations on some natural color videos and images are conducted to

evaluate the performance of the proposed LRC-QT and LRC-QM methods. And we compare

them with several existing state-of-the-art approaches, including SiLRTC [12], SPC [11],

TMac (involving TMac-inc and TMac-dec) [13] and TCTF (which is not applicable in color

video simulation) [6]. All the simulations are run in MATLAB 2014b under Windows 7 on a

personal computer with 2.20GHz CPU and 8.00GB memory.

All color videos and images, in our simulations, are initially represented by fourth-order

tensors TV ∈ RM×N×3×T and third-order tensors TI ∈ RM×N×3 respectively. For LRC-QT,

each color video is reshaped as a pure quaternion tensor Ṫ ∈ HM×N×T by using the following

way:

Ṫ = TV (:, :, 1, :)i+ TV (:, :, 2, :)j + TV (:, :, 3, :)k.

For LRC-QM, each color image is reshaped as a pure quaternion matrix Ṫ ∈ HM×N by using

the following way:

Ṫ = TI(:, :, 1)i+ TI(:, :, 2)j + TI(:, :, 3)k.

In addition, we uniformly generate the index set Ω at Gaussian random distribution, and de-

fine the sampling ratio (SR) as: SR = numel(Ω)
M×N×3×T 100% (or SR = numel(Ω)

M×N×3
100% for color images),

where numel(Ω) represents the number of observation entries in the index set Ω.

Quantitative assessment: To evaluate the performance of proposed methods, except
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visual quality, we employ three quantitative quality indexes, including the peak signal-to-

noise ratio (PSNR), the structure similarity (SSIM) and the feature similarity (FSIM), which

are respectively defined as: PSNR = 10log10
(

Peakval2

MSE

)
, where Peakval is taken from the

range of the pixel value datatype (e.g., for uint8 pixel value, it is 255), MSE is the mean square

error, i.e., MSE = ‖X − T ‖2
F/numel(X ), where X and T are the recovered and truth data,

respectively; SSIM = (2µT µX+C1)(2σT X+C2)

(µ2
T +µ2

X+C1)(σ2
T +σ2

X+C2)
, where µT , µX , σT , σX and σT X are the local

means, standard deviations, and cross-covariance for images T and X , C1 = (0.01L)2, C2 =

(0.03L)2, C3 = C2/2, L is the specified dynamic range of the pixel values (average structure

similarity index over frames (ASSIM) is chosen for color videos); FSIM =
∑
z∈∆ SL(z)PCm(z)∑

z∈∆ PCm(z)
,

where ∆ demotes the whole image spatial domain. The phase congruency for position z of

image T is denoted as PCx(T ), then PCm(z) = max{PCT (z), PCX (z)}, SL(z) is the gradient

magnitude for position z (average feature similarity index over frames (AFSIM) is chosen

for color videos).

For LRC-QT, we let X (:, :, 1, :) = Imag1(Ṫ ), X (:, :, 2, :) = Imag2(Ṫ ) and X (:, :, 3, :) =

Imag3(Ṫ ), where Imagn(Ṫ ) (n = 1, 2, 3) denotes n-th imaginary part of Ṫ . Analogously, for

LRC-QM, X (:, :, 1) = Imag1(Ṫ), X (:, :, 2) = Imag2(Ṫ) and X (:, :, 3) = Imag3(Ṫ).

Datasets: In the simulations, we use the color video dataset: YUV Video Sequence6

where each sequence contains at least 150 frames, and the color image dataset: Berkeley

Segmentation Dataset (BSD)7 which includes 300 clean color images of size 481× 321× 3.

We first show that these color videos and color images can be well approximated and

6http://trace.eas.asu.edu/yuv/
7https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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reconstructed by the low-rank quaternion tensors8 and low-rank quaternion matrices, re-

spectively. As mentioned in [6, 35], etc., when the videos or images data are arranged into

tensors or matrices, they lie on a union of low-rank subspaces approximately, which indicate

the low-rank structure of the video or image data. This is also true for quaternion tensor

and quaternion matrix data. For instance, in Figure.2 we display the singular values of

one color video with size 288 × 352 × 3 × 20 (reconstructed as third-order pure quaternion

tensor with size 288× 352× 20) and one color image with size 481× 321× 3 (reconstructed

as pure quaternion matrix with size 481 × 321), which are selected from the two datasets

randomly. One can obviously see that most of the singular values are very close to 0 and

much smaller than the first several larger singular values. So we could say that the color

videos and color images can be well approximated by the low-rank quaternion tensors and

low-rank quaternion matrices, respectively, as we desired.
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Index of Singular Values (Mode-3 unfolding)
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Figure 2: Illustration of the low-rank property of the color video (a) and color image (e). The (b), (c) and
(d) respectively display the singular values of Mode-1, Mode-2 and Mode-3 unfolding quaternion matrices of
(a). The (f) displays the singular values of (e).

Parameter and initialization settings: For LRC-QT in Table 1, ({Ẋ[n]}3
n=1)(0) =

8The rank of quaternion tensor here refers to the Tucker rank defined by Definition 5.
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({Ḟ[n]}3
n=1)(0) = (0,0,0), {αn}3

n=1 = (2, 2, 10−3), ({βn}3
n=1)(0) = (0.08, 0.08, 1), {βmaxn }3

n=1 =

(103, 103, 103), η0 = 1.05, ε = 10−3. For LRC-QM in Table 2, Ẋ(0) = Ḟ(0) = 0, α = 2,

β(0) = 0.08, βmax = 103, η0 = 1.05, ε = 10−3. For LRC-QT and LRC-QM, the parameters

and initialization settings are just based on our experience and simulation results, and there

may be better settings. For SiLRTC9, SPC10, TMac11 and TCTF12, the codes of them are

provided by their corresponding authors. The parameter settings and initialization methods

of these algorithms are all based on the suggestions of their corresponding papers. Besides, for

LRC-QT, as equations (26) and (27) show, we can update all Ẋ[n] and Ḟ[n] (n = 1, 2, . . . , N)

parallelly, but for a fair comparison of the algorithm running time, we still employ the serial

updating scheme in our code.

Simulation 1: In this simulation, we use four color videos (Bus, News, Salesman and

Suzie) reconstructed by third-order pure quaternion tensors with size 288× 253× 20, 144×

176× 20, 144× 176× 20 and 144× 176× 20 respectively, and shown as Figure.3, to evaluate

the proposed LRC-QT for color video recovery. Figures.4-7 show the recovery results by

different methods for the 1st, 8th, 15th and 20th frames of Bus video with SR = 50%, News

video with SR = 30%, Salesman video with SR = 20% and Suzie video with SR = 10%,

respectively. We see from Figures.4-7 that the color video frames recovered by LRC-QT are

visually better than those recovered by the other compared approaches. At very low SR

(e.g., SR= %10, see Figure.7), the advantage of LRC-QT seems to be more obvious. Table

9http://www.cs.rochester.edu/jliu/publications.html
10http://ieeexplore.ieee.org/document/7502115/media
11http://www.caam.rice.edu/yx9/TMac/
12https://panzhous.github.io/
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3 summaries the PSNR, ASSIM, AFSIM, iterations and running time of different methods

on the four color videos with various SRs. From the results, one can find that for PSNR,

ASSIM and AFSIM, LRC-QT reaches the highest values in most cases. We have reason to

believe that this is mainly due to the advantage of quaternion representation of color pixel

values. For the comparison of the number of iterations and running time, our approach is

to compare them required by different compared methods when the PSNR obtained by all

methods reaches a certain common pre-set value. We can see that although our method is

not the fastest one, it can also achieve an acceptable PSNR value faster, and if we consider

the fact that it can perform parallelly, the running time will be greatly reduced (Specifically,

we can see that to achieve an acceptable PSNR value, our method requires only a few

iterations, but the total time is not the shortest, which is closely related to the per-iteration

computational complexity and how optimized the code is.).

(a) Bus (b) News (c) Salesman (d) Suzie

Figure 3: The four color videos (a) Bus, (b) News, (c) Salesman (d) Suzie, which are reconstructed by
third-order pure quaternion tensors.

Simulation 2: In this simulation, we use BSD dataset to evaluate the proposed LRC-QM

for color image recovery. We randomly select 50 color images from this dataset reconstructed

by pure quaternion matrices with size 481×321. In Figures.8-10 we display the comparison

of PSNR, SSIM and FSIM results of different methods for color image recovery on 50 color

images with various SRs. From the results, one can find that our LRC-QM approach performs
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(a) Original frames (b) Observation frames (c) LRC-QT (d) SiLRTC (e) SPC (f) TMac-inc (g) TMac-dec

Figure 4: The 1st, 8th, 15th and 20th frames (from top to bottom row) in the Bus video, with each column
(from left to right) representing the original frames (a), observation frames with SR = 50% (b), recovery
results of LRC-QT (c), SiLRTC (d), SPC (e), TMac-inc (f) and TMac-dec (g).

(a) Original frames (b) Observation frames (c) LRC-QT (d) SiLRTC (e) SPC (f) TMac-inc (g) TMac-dec

Figure 5: The 1st, 8th, 15th and 20th frames (from top to bottom row) in the News video, with each
column (from left to right) representing the original frames (a), observation frames with SR = 30% (b),
recovery results of LRC-QT (c), SiLRTC (d), SPC (e), TMac-inc (f) and TMac-dec (g).

(a) Original frames (b) Observation frames (c) LRC-QT (d) SiLRTC (e) SPC (f) TMac-inc (g) TMac-dec

Figure 6: The 1st, 8th, 15th and 20th frames (from top to bottom row) in the Salesman video, with each
column (from left to right) representing the original frames (a), observation frames with SR = 20% (b),
recovery results of LRC-QT (c), SiLRTC (d), SPC (e), TMac-inc (f) and TMac-dec (g).
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(a) Original frames (b) Observation frames (c) LRC-QT (d) SiLRTC (e) SPC (f) TMac-inc (g) TMac-dec

Figure 7: The 1st, 8th, 15th and 20th frames (from top to bottom row) in the Suzie video, with each
column (from left to right) representing the original frames (a), observation frames with SR = 10% (b),
recovery results of LRC-QT (c), SiLRTC (d), SPC (e), TMac-inc (f) and TMac-dec (g).

Table 3: Quantitative quality indexes, iterations and running time (the display format is iterations/time) of
different methods on the four color videos with various SRs. The table is viewed better in zoomed PDF.

PSNR ASSIM AFSIM Time (s) (PSNR≥ a certain value)
Videos SR LRC-QT SiLRTC SPC TMac-inc TMac-dec LRC-QT SiLRTC SPC TMac-inc TMac-dec LRC-QT SiLRTC SPC TMac-inc TMac-dec LRC-QT SiLRTC SPC TMac-inc TMac-dec PSNR≥ ?

Bus

50% 26.230 25.764 17.745 21.604 25.316 0.886 0.877 0.561 0.725 0.841 0.997 0.996 0.978 0.988 0.992 3/30.34 37/55.55 \ 14/23.70 8/39.92 21
40% 24.326 23.900 16.941 20.597 24.148 0.828 0.819 0.535 0.668 0.798 0.993 0.993 0.969 0.982 0.989 4/40.58 47/71.42 \ 16/26.64 11/48.69 20
30% 22.696 22.141 16.272 19.717 21.981 0.759 0.744 0.477 0.607 0.745 0.988 0.987 0.959 0.973 0.984 5/43.94 60/84.31 \ 18/27.99 17/65.14 19
20% 21.805 20.248 15.677 18.876 21.367 0.663 0.638 0.419 0.539 0.649 0.978 0.978 0.947 0.959 0.977 7/57.23 86/117.48 \ 21/29.48 37/124.01 18
10% 18.668 17.863 15.145 18.074 17.304 0.527 0.482 0.387 0.463 0.471 0.959 0.958 0.930 0.941 0.959 9/72.63 112/160.12 22/18.29 16/23.34 65/207.62 15

News

50% 32.252 28.561 19.103 25.103 33.015 0.953 0.933 0.636 0.844 0.951 0.999 0.998 0.973 0.993 0.999 6/9.77 32/10.18 \ 20/8.72 78/68.01 25
40% 30.308 26.308 17.609 24.006 30.601 0.941 0.903 0.584 0.809 0.930 0.998 0.995 0.964 0.990 0.998 7/11.45 43/13.34 \ 22/9.43 203/170.09 24
30% 27.153 24.578 16.630 23.001 22.024 0.893 0.861 0.538 0.774 0.813 0.996 0.993 0.953 0.986 0.992 5/8.36 54/16.13 \ 22/9.04 982/798.06 22
20% 24.696 22.064 16.020 22.072 16.706 0.847 0.786 0.489 0.731 0.616 0.991 0.986 0.942 0.981 0.976 4/6.68 46/13.61 17/4.05 7/3.72 988/805.69 16
10% 21.625 18.419 15,465 21.124 15.711 0.756 0.628 0.335 0.674 0.532 0.980 0.970 0.924 0.974 0.930 7/10.97 88/27.26 17/4.69 13/5.12 991/831.61 15

Salesman

50% 30.715 26.959 19.715 24.461 30.977 0.959 0.907 0.630 0.849 0.952 0.999 0.996 0.982 0.990 0.998 7/11.52 27/10.95 \ \ 56/54.76 25
40% 29.311 25.205 18.906 23.363 29.113 0.937 0.867 0.588 0.815 0.932 0.997 0.993 0.976 0.985 0.996 7/11.57 33/12.30 \ 15/6.48 109/91.38 23
30% 26.324 23.304 18.208 22.345 25.011 0.884 0.806 0.542 0.771 0.862 0.993 0.989 0.967 0.977 0.978 9/13.83 46/16.21 \ 23/8.65 524/492.81 22
20% 24.245 21.068 17.595 21.442 16.334 0.829 0.714 0.521 0.726 0.649 0.986 0.980 0.953 0.969 0.977 4/6.88 43/15.47 9/2.38 9/3.95 \ 17
10% 21.224 17.797 17.018 20.544 12.204 0.717 0.542 0.443 0.672 0.400 0.969 0.959 0.929 0.958 0.921 7/12.21 106/32.48 35/7.22 21/6.94 \ 17

Suzie

50% 34.801 31.302 21.749 28.953 33.048 0.980 0.938 0.702 0.903 0.967 0.999 0.996 0.967 0.991 0.998 7/11.01 34/11.43 \ 18/8.15 280/255.55 28
40% 32.811 29.470 20.899 27.840 27.274 0.963 0.918 0.676 0.886 0.934 0.997 0.993 0.960 0.987 0.994 9/13.89 50/16.97 \ 20/8.23 989/876.80 27
30% 30.613 27.484 20.272 26.810 22.179 0.944 0.886 0.633 0.872 0.871 0.993 0.989 0.952 0.981 0.988 10/15.22 61/19.37 \ 26/9.62 \ 26
20% 28.247 24.989 19.519 25.894 17.629 0.915 0.834 0.541 0.851 0.721 0.987 0.980 0.945 0.975 0.973 5/8.25 60/17.55 12/3.01 10/3.16 \ 19
10% 25.712 21.173 18.881 25.033 15.103 0.837 0.738 0.490 0.834 0.482 0.974 0.963 0.934 0.965 0.876 9/15.05 111/32.23 21/4.64 20/6.84 \ 18
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Figure 8: Comparison of PSNR, SSIM and FSIM results of different algorithms for color image recovery on
50 BSD images (SR = 40%). The figure is viewed better in zoomed PDF.
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(a) Index of image (SR=30%)
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Figure 9: Comparison of PSNR, SSIM and FSIM results of different algorithms for color image recovery on
50 BSD images (SR = 30%). The figure is viewed better in zoomed PDF.

(a) Index of image (SR=20%)

0 5 10 15 20 25 30 35 40 45 50

P
S

N
R

0

20

40

(b) Index of image (SR=20%)

0 5 10 15 20 25 30 35 40 45 50

S
S

IM

0

0.5

1

(c) Index of image (SR=20%)
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Figure 10: Comparison of PSNR, SSIM and FSIM results of different algorithms for color image recovery on
50 BSD images (SR = 20%). The figure is viewed better in zoomed PDF.

better than the other methods in the vast majority of images. Besides the superiority on

PSNR, the good performance of our method on SSIM and FSIM also demonstrates the

advantages of the quaternion-based model.

6. Conclusions

Focusing on color videos and images recovery problems, this paper utilizing quaternions

to represent the color pixels with RGB channels proposed a low-rank quaternion tensor

completion method. Quaternion representation processes a color video or image holistically

as a vector field and handles the coupling between the color channels naturally, and color

information of source video or image is fully preserved. Although color video and images can

also be represented as higher-order real tensors, the color structure will be destroyed during
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the process of matricization (e.g., mode-k unfolding). Due to the special structure of the three

imaginary parts of the quaternion, the relative positions of the three color channel pixels of

one pixel are insensitive to the deformation of the quaternion tensor, which means that the

color structure of the video can be completely maintained in the process of matricization.

We adopted the ADMM framework to optimize the proposed model, which can guarantee

the convergence of the algorithm. In addition, to facilitate direct processing of color image

recovery issues, as a special case, we displayed the low-rank quaternion matrix completion

model and optimization procedure separately. Theoretically, the proposed method can be

well used to recover missing entries of any multidimensional data with color structures. In

the simulation section, we mainly considered the color videos and images recovery problems.

The results demonstrate the competitive performance (w.r.t., PSNR, SSIM and FSIM) of

the proposed methods compared with several state-of-the-art approaches.

Note that although the proposed method can well recover color videos and images, it

needs to compute QSVD in each iteration, which is time-consuming and storage-intensive

for large matrices. While the characteristic of less iteration of the algorithm can alleviate

this shortcoming to some extent, in the future, we still aim to further explore better QSVD

method to improve the efficiency of the algorithm, or to use some low-rank decomposition

approaches to replace the nuclear norm minimization model.
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