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Abstract

Many clustering algorithms fail when clusters are of arbitrary shapes, of vary-

ing densities, or the data classes are unbalanced and close to each other, even

in two dimensions. A novel clustering algorithm "DenMune" is presented to

meet this challenge. It is based on identifying dense regions using mutual

nearest neighborhoods of size K, where K is the only parameter required

from the user, besides obeying the mutual nearest neighbor consistency prin-

ciple. The algorithm is stable for a wide range of values of K. Moreover, it

is able to automatically detect and remove noise from the clustering process

as well as detecting the target clusters. It produces robust results on various

low and high dimensional datasets relative to several known state of the art

clustering algorithms.
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1. Introduction

Data clustering, which is the process of gathering similar data samples

into groups/clusters, has been found useful in different fields such as med-

ical imaging (to differentiate between different types of tissues [1]), market

research (to partition consumers into perceptual market segments [2]), docu-

ment retrieval (to find documents that are relevant to a user query in a collec-

tion of documents [3]), and fraud detection (to detect suspicious fraudulent

patterns) [4]), as well as many others [5]. In general, Clustering algorithms

can be divided into the following types:

1.1. Partitioning-based Clustering Algorithms

In this category, data objects are divided into non-overlapping subsets

(clusters) such that each object lies in exactly one subset. The most well-

known and commonly used algorithm in this class is K-means. K-means is

heavily dependent on the initial cluster centers, which are badly affected by

noise and outliers. A well known variant is K-medoid. K-medoid selects the

most centrally located point in a cluster, namely its medoid, as its repre-

sentative point. Another well-known variant of K-means is KMeans++. It

chooses centers at random, but weighs them according to the square distance

from the closest already chosen center.

A recent algorithm in this area is RS algorithm [6]. It belongs to the class

of swap-based clustering algorithms that aim at using a sequence of proto-

type swaps to deal with the inability of K-means in fine-tuning the cluster

boundaries globally, although it succeeds locally. By adopting a random swap

strategy the computational complexity is reduced and the results are better
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than those obtained by k-means. Its main limitation is that there is no clear

rule how long the algorithm should be iterated.

Another recent algorithm in this category is CBKM [7]. It investigates

the extent to which using better initialization (poor initialization can cause

the algorithm to get suck at an inferior local minimum) and repeats can

improve the k-means algorithm. It is found that when the clusters overlap,

furthest point heuristic(Maxmin)can reduce the number of erroneous clusters

from 15

1.2. Proximity-based Clustering Algorithms

Neighborhood construction is useful in discovering the hidden interre-

lations between connected patterns [8]. Proximity can be identified using

k-nearest-neighbor (cardinality-based), or identified using ϵ -neighbourhood

(distance-based).

A recent algorithm in this category is FastDP algorithm [9]. It focuses

on improving the quadratic time complexity of the "Density peaks" popular

clustering algorithm by using a fast and generic construction of approximate

k-nearest neighbor graph both for density and for delta calculation (distance

to the nearest point with higher density). The cluster centers are selected

so that they have a high value of both delta and density. After that, the

remaining points are allocated (joined) to the already formed clusters by

merging with the nearest higher density point. The algorithm inherits the

problems associated with the original "Density peaks" algorithm which in-

clude: (1) how to select the initial k cluster centers based on dendity and

delta. The algorithm adopts the gamma strategy (which uses the points with

high product of the two features(density and delta). (2) the problem of how
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to threshold the density and delta features.

Another recent algorithm is NPIR algorithm [10]. it finds the nearest

neighbors for the points that are already clustered based on the Euclidean

distance between them and cluster them accordingly. Different nearest neigh-

bors are selected; from the kNN lists of the already clustered point; at differ-

ent iterations of the algorithm. Therefore,the algorithm relies on the random

and iterative behavior of the partitional clustering algorithms to give quality

clustering results. It performs Election, Selection, and Assignment operations

to assign data points to appropriate clusters. Therefore, three parameters

should are needed: The number of clusters, The indexing ratio (controls the

amount of possible reassignment of points) and the number of iterations.

CMUNE [11], a predecessor of DPC, uses the MNN graph to calculate the

density of each point and select the high-density points (also called strong

points) as the seeds from which clusters may grow up. A cutoff parameter is

also needed to differentiate between strong and weak points. Similar to DPC,

the constructed clusters are very sensitive to variations in this parameter.

The notion of weak/isolated points has been introduced in ( [11], [12] and [13])

to define points which are prone to be classified as noise and, consequently,

excluded from the clusters’ formation.

1.3. Hierarchical Clustering Algorithms

In this category, data objects are organized into a tree of group-of-objects.

The tree is constructed either from top to bottom or from bottom to top lead-

ing to divisive or agglomerative type of algorithms, respectively. Hierarchical

clustering has been extensively applied in pattern recognition. Some known

examples are Chameleon [14] and CURE [15]. The scalability of hierarchical
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methods is generally limited due to their time complexity. To address this

issue, [16] proposed a fast hierarchical clustering algorithm based on topology

training. PHA [17] uses both local and global data distribution information

during the clustering process. It can deal with overlapping clusters, clusters

of non-spherical shapes and clusters containing noisy data, by making good

use of the similarity between the iso-potential contours of a potential field

and hierarchical clustering. A more successful variant of hierarchical density

is HDBSCAN [18]. HDBSCAN provides a clustering hierarchy from which

a simplified tree of significant clusters is constructed, then a flat partition

composed of clusters extracted from optimal local cuts through the cluster

tree. Unlike DBSCAN, It can find clusters of variable densities.

RCC [19] is a clustering algorithm that achieves high accuracy across

multiple domains and scales efficiently to high dimensions and large datasets.

it optimizes a smooth continuous objective function that allows the algorithm

to be extended to perform joint clustering and dimensionality reduction.

A recent algorithm in this category is FINCH algorithm [20]. It is fully

parameter-free (i.e. does not require any user defined parameters such as

similarity thresholds, number of clusters or a priori knowledge about the data

distribution) clustering algorithm.The algorithm is based on the clustering

equation which defines an adjacency link matrix that links two points i and j

if j is the first neighbor of i or i is the first neighbor of j or both i and j have

(share) the same first nearest neighbor. The algorithm belongs to the family

of hierarchical agglomerative methods, has low computational overhead and

is fast.
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In this paper, a novel clustering algorithm DenMune is presented for the

purpose of finding complex clusters of arbitrary shapes and densities in a

two-dimensional space. Higher dimensional spaces are first reduced to 2-D

using the t-sne algorithm. It can be considered as a variation of the CMUNE

algorithm [11]. DenMune requires only one parameter from the user across

its two-phases. Other advantages include its ability in automatically detect-

ing, removing and excluding noise from the clustering process. It adopts a

voting-system where all data points are voters but only those that receive

highest votes are considered clusters’ constructors. Moreover, it automati-

cally detects the target clusters and produces robust results with no cutoff

parameter needed.

1.4. Outline of the Paper

The rest of this paper is organized as follows. Section 2 describes the

key concepts of the DenMune clustering algorithm. Section 3 describes the

algorithm itself and its time complexity analysis. Section 4 presents the data

sets used in the experiments conducted to evaluate the performance of the

algorithm. Section 5 presents the conclusion and possible future work.

2. Basic Definitions and Mechanisms Underlying the Proposed Al-

gorithm

In this section we describe the basic concepts used in the proposed algo-

rithm and its underlying mechanisms.
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2.1. K-Mutual-Neighbors Consistency

The principle of K-Mutual-Neighbors (K-MNN) consistency [21]; which

states that for any data points in a cluster its MNN should also be in the same

cluster; is stronger than the K-nearest Neighbors (KNN) consistency concept.

In CMune and CSharp ( [11], [12]) the concept of K-MNN is used to develop

a clustering framework based on "Reference Points", defined in section 2.2, in

which dense regions are identified using mutual nearest neighborhoods of size

K, where K is a user-parameter. Next, sets of points sharing common mutual

nearest neighborhoods are considered in an agglomerative process to form

the final clusters. This process is controlled by two threshold parameters. In

contrast, by properly partitioning the data points into classes (section 2.3)

and guided by the principle of K-Mutual-Neighbors consistency (K-MNN),

DenMune is able to get rid of these threshold parameters in performing its

clustering task (section 2.6).

2.2. Refer-To-List, Reference-List and Reference Point

Given a set of points P = {p1, p2, . . . pn−2, pn−1, pn }, let KNNpi→ =

{p1, p2, p3, . . . , pk} be the K-nearest neighbors of point pi. In this paper, we

consider that points in a KNN set are sorted, ascendingly, according to

their distances from a given reference point. Therefore, KNNpi→ represents

the ordered list of points that pi refers-to, namely, the "Refer-To List". If

pi ∈ KNNpj→, then pi is referred-to by pj. In this case, pj ∈ KNNpi←,

the set of points considering pi among their K-nearest neighbors. The set

KNNpi→ ∩ KNNpi←, is the set MNNpi of mutual nearest neighbors of pi.

It represents a set of dense points associated with point pi. Point pi is said

to be the "Representative-Point" or "Reference-Point" of MNNpi .
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As shown in Fig. 1, although the Euclidean distance is a symmetric

metric, from the SNN [22] perspective (and considering K = 4), point A is

in KNNB→ , however, B is not in KNNA→ .

A refers to C

A does not refer to B

B refers to A

B does not refer to C

Figure 1: Asymmetry of the K -nearest neighborhood relation.

2.3. DenMune classification of data points into Strong, Weak and Noise

Points

According to the value of the non-negative ratio r = |KNNp←|
|KNNp→| =

|KNNp←|
K

,

since |KNNp→| = K (by definition), from DenMune point of view, each data

point ’p’ in a dataset, belongs to one of the types described in Eq.(1):

p.Type =


Strong point if r ≥ 1

Weak point if r < 1

Noise point if 0 ≤ r ≪ 1

(1)

• Strong Points: satisfy the condition |KNNp←| ≥ |KNNp→|, or |KNNp←| ≥

K. This implies that |MNNp| =| KNNp→ ∩ KNNp←| = K. Strong
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Figure 2: Fuzziness of the set W of weak points. N and S denote the noise (r = 0) and
strong (r ≥ 1) points, respectively. T is some threshold that partitions the set W into WN

and WS . Both sets are automatically detected by DenMune.

points are also called seed points. Seed points that share non-empty

MNN -sets of seeds are the clusters’ constructors in the proposed algo-

rithm.

• Weak points: satisfy the condition |KNNp←| < |KNNp→|. From

Eq.(1), it is clear that the boundaries of the set defining the weak

points are fuzzy. Fig. 2 illustrates the idea that in DenMune, a weak

point either succeeds in joining a cluster or it is considered as noise.

For this reason, weak-points are called non-strong (non-seed) points.

Hence, the following lemma can be concluded:

Lemma: The set of weak points is a fuzzy set. Its boundaries with

the sets of strong and noise points are fuzzy. The rule governing the

assignment of a weak point to a cluster or rejecting it as noise is, in

general, data as well as algorithm dependent.

• Noise points, represent points either with empty MNNs (corresponding

to r = 0, which are removed early in phase I of DenMune algorithm,
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named as noise of type-1), or weak points that fail to merge with any

formed cluster (corresponding to r ≪ 1, which are removed in phase II

of the algorithm, named as noise of type-2).

2.4. Proposed Algorithm: Overview

DenMune is based on a voting system framework where points that re-

ceive the largest number of votes (i.e. they belong to the K-nearest neighbors

of at least K other points), are marked as dense/ seed points and are used

to construct the backbone of the target clusters in phase I of the algorithm.

Points that receive no votes are considered as noise of type-1 and are elimi-

nated from the clustering process. Phase II deals with the weak points that

either survive by merging with the existing clusters, or are eliminated by

being considered as noise of type-2.

Table 1 shows the distribution of strong/ seeds and weak/ non-seeds points

among the Chameleon’s DS7 dataset which includes 10,000 data points, while

Fig. 3 illustrates how strong points determine the shapes/ structures of the

clusters where weak points can only merge with them.

Table 1: Strong and weak points found by DenMune in the Chameleon DS7 dataset.

Algorithm Parameters Strong Points Weak Points Noise of type-1 noise of type-2
DenMune K=39 5858 3471 0 671

2.5. Proposed Algorithm: Steps

DenMune involves the following steps:

• Canonical ordering: Clustering results obtained by DenMune are de-

terministic, as it orders the set of points P according to |KNNp←| in

a descending order.
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(a) Backbone-constructors (points that receive high
votes), also known as strong points.
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(c) DenMune merges some of the weak points in Fig.
3b with their nearest clusters.
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(d) Noise points.

Figure 3: Phases of DenMune

• Noise Removal: Noise points of type-1 as well as those of type-2 are

detected and removed in phase I and phase II, of the algorithm, respec-

tively, as illustrated in Table 2.

• Skeleton Construction and Propagation: after removal of type-1 noise

points, the remaining points are partitioned into two groups: dense

points (seeds) and low-dense points (non-seeds). Only seed points are

eligible to construct the skeleton of the target clusters (i.e. the number

of seed points represent an upper bound on the number of clusters),

while low-dense points are considered in the next phase.
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Table 2: Distribution of the different type of points, detected by DenMune, vs the number
K of nearest neighbors in Chameleon DS7 dataset.

K Strong Points Weak Points Noise of type-1 Noise of type-2
1 6078 0 3922 0
2 6545 958 1200 1297
3 6448 1910 369 1273
4 6262 2572 135 1031
5 6110 2933 71 886
6 6013 3164 45 778
7 5968 3334 36 662
8 5955 3400 28 617
9 5896 3485 17 602
10 5866 3589 13 532
11 5899 3572 10 519
12 5826 3668 5 501
13 5830 3635 5 530
14 5820 3643 4 533
15 5819 3638 4 539
16 5809 3572 4 615
17 5833 3550 4 613
18 5854 3539 4 603
19 5829 3556 4 611
20 5814 3568 3 615

To further illustrate the process of clusters propagation, Chameleon’s

dataset DS7 1 is used. Several snapshots of the clustering process, are

shown in Fig. 4, to illustrate how clusters propagate agglomeratively,

and in parallel, in CSharp and DenMune.

1http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
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(a) CSharp: at the 10th iteration
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(c) CSharp: at the 50th iteration
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(d) DenMune : at the 50th iteration
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(e) CSharp: at the 250th iteration
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(f) DenMune : at the 250th iteration
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(g) CSharp: at the 1000th iteration
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(h) DenMune : at the 1000th iteration
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(i) CSharp: at the last iteration, 6734th
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(j) DenMune: at last iteration, 9329th

Figure 4: Clusters formation and propagation in DenMune and CSharp. Clusters seeds in
DenMune are sparser but their propagation speed is slower. Also, DenMune results are
more noise free.
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2.6. Conservative Nature of DenMune

– Clusters formation in Phase I: Fig. 5(a), illustrates the evolu-

tion of the number of clusters with the number of iterations for

Chameleon’s dataset. DenMune merges clusters conservatively in

contrast to CSharp which is eager to merge clusters. Table 1, in-

dicates that 5858 strong points are found by DenMune during this

phase. Therefore, the process of clusters formation stabilizes after

5858 iterations at the end of phase I, after which no more clusters

can be constructed.

– Slow Merging of Weak Points in Phase II: weak points are merged

one by one, each to the cluster with which it shares the largest

number of MNN -seeds. Table 1, indicates that out of the 4142

(3471 + 671) weak points, 3471 of them succeed in merging with

the clusters formed in the first phase. The remaining 671 points

are considered as noise points of type-2. It is worth to note that

DenMune overcomes the lack of the noise threshold L and the

merge parameter M , used in CSharp, by (1) strengthening the

MNN relationship to involve only seed points, (2) the propagation

process considers the weak points individually, i.e. one by one,

(3) weak points that fail to merge with the formed clusters are

detected and removed as noise. As shown in Fig. 5(b), for the

DS7 dataset, after 1000 iterations, CSharp clustered 80% of the

data points, while DenMune clustered only 50% of them. This is

due to the fact that clusters in DenMune are initially sparse, as

shown in Fig. 5(b).

14



0

20

40

60

80

100

120

1

1
6
4

3
2
7

4
9
0

6
5
3

8
1
6

9
7
9

1
1
4
2

1
3
0
5

1
4
6
8

1
6
3
1

1
7
9
4

1
9
5
7

2
1
2
0

2
2
8
3

2
4
4
6

2
6
0
9

2
7
7
2

2
9
3
5

3
0
9
8

3
2
6
1

3
4
2
4

3
5
8
7

3
7
5
0

3
9
1
3

4
0
7
6

4
2
3
9

4
4
0
2

4
5
6
5

4
7
2
8

4
8
9
1

5
0
5
4

5
2
1
7

5
3
8
0

5
5
4
3

5
7
0
6

DenMune CSharp

(a) Number of clusters vs number of iterations.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1

2
6

8

5
3

5

8
0

2

1
0

6
9

1
3

3
6

1
6

0
3

1
8

7
0

2
1

3
7

2
4

0
4

2
6

7
1

2
9

3
8

3
2

0
5

3
4

7
2

3
7

3
9

4
0

0
6

4
2

7
3

4
5

4
0

4
8

0
7

5
0

7
4

5
3

4
1

5
6

0
8

5
8

7
5

6
1

4
2

6
4

0
9

6
6

7
6

6
9

4
3

7
2

1
0

7
4

7
7

7
7

4
4

8
0

1
1

8
2

7
8

8
5

4
5

8
8

1
2

9
0

7
9

DenMune CSharp

Phase IIPhase I

iteration 5858

(b) Number of clustered data points vs number
of iterations.

Figure 5: DenMune vs CSharp:(a) Number of clusters and (b) number of clustered data
points vs number of iterations.

3. DenMune Algorithm

Algorithm 1 describes the proposed algorithm, followed by a detailed

discussion of its time complexity.
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Algorithm 1: DenMune Algorithm

Input: Data points P = {p1, p2 . . . , pn}, K // size of the

neighborhood of a point

Output: C // set of generated clusters

1 Construct distance matrix D

// Construct the Refer-To-List, KNNpi→, for each point pi ∈ P

2 KNNpi→ ← {j|d(pi, pj) ≤ d(pi, pk)}

// For each point pi construct KNNpi← by scanning KNNpj→ and

selecting points j having point i in their KNNpj→

3 foreach pi ∈ P do

4 foreach pj ∈ P do

5 if pi ∈ KNNpj→ then

6 KNNpi← ← {KNNpi← ∪ pj }

// From KNNpi→ and KNNpi←, construct MNNpi

7 MNNpi ← KNNpi→ ∩ KNNpi←

8 Remove the set O, of noise points pi of type-1, satisfying

|MNNpi | = 0

9 Form the sorted list P , The sorting is in a descending order

according to |KNNpi←| // P = P - O

10 Form the sorted list S ⊂ P = {pi|pi satisfies |KNNpi←| ≥

|KNNpi→|}

11 Form the set Q of non-seed points, where Q = P − S // Note that

Q ⊂ P = {pi|pi satisfies |KNNpi←| < |KNNpi→|}

12 CreateClustersSkeleton(S) // Phase I of the algorithm

13 AssignWeakPoints(Q) // Phase II of the algorithm
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Algorithm 2: CreateClustersSkeleton(S)
Input: Sorted list S of Seed points
Output: Sorted list L of the m generated clusters
// Loop through all seed points and create clusters skeleton from

seeds that share non-empty sets of MNN-seeds
1 i← 1 // i is a seed index
2 L← ϕ // List of clusters so far
3 C ← ∪(s1,MNN(s1))
4 L.append(C)
5 i← i+ 1 // increment i
6 foreach si ∈ S do
7 Cintersect ← ϕ
8 C ← ∪(si,MNN(si))
9 foreach l ∈ L do

10 if l ∩ C ̸= ϕ then
11 Cintersect ← ∪(Cintersect, l)
12 L.delete(l)

13 if Cintersect ̸= ϕ then
14 C ← ∪(C,Cintersect)
15 L.append(C)
16 i← i+ 1 // increment i

17 m← Length(L)
18 for j from 1 to m do
19 ℓ(s ∈ Cj)← j // label each seed point in Cj as belonging to

cluster j

// Output the set of generated clusters, m the number of clusters
and label each seed point s belonging to a cluster Cj by its
corresponding cluster index

Algorithm 3: AssignWeakPoints(Q)
Input: Sorted lists L of m clusters and Q of non-seed points.
Output: Updated list L of the m generated clusters.
// Loop through all non-seed points and assign each of them to the

cluster with which it shares the largest number of MNN-seeds
1 i← 1 // i is an index for non-seed points
2 foreach qi ∈ Q do
3 Select j such that |{qi ∪MNNqi} ∩ Cj| is maximum, where

j = 1, 2, · · · ,m and Cj ∈ L;
4 ℓ(qi)← j // label non-seed point qi as belonging to cluster Cj

5 i← i+ 1;
6 Output the formed clusters. The remaining unlabeled points are

noise of type-2.
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3.1. Time Complexity

Given N the number of data points, K the number of nearest neighbors, D

the number of dimensions and C the number of constructed clusters, the time

complexity for computing the similarity matrix, between the data points, is

O(N2) ∗ D = O(N2), since D = 2 (after dimensionality reduction). This

complexity can be reduced to O(N logN), by the use of a data structure

such as a k-d tree [23] and [24], which works efficiently with low dimensional

data. The space complexity of this preprocessing phase is O(ND). The time

complexity of the algorithm can be analyzed as follows:

• line 2, finding KNNpi→: needs K iterations for each data point, hence

it has a complexity of O(NK)

• lines 3-6, finding KNNpi←: needs K iterations for each of the N data

points, hence it has a complexity of O(KN)

• line 7, finding MNN for each of the N data points, a search for mutual

neighborhood is done within the K-nearest neighbors of each point.

• line 9, sorting points: has a complexity of O(N logN), using binary

sort.

• CreateClustersSkeleton algorithm has a complexity of O(|S| ∗ |R| ∗

logK), where R is an upper bound on the number of temporarily gen-

erated clusters, m ≤ R ≤ |S|. Letting O(R) ≈ |S| and O(|S|) ≈ N ,

then this complexity becomes ≈ O(N2 logK).

• Similarly AssignWeakPoints algorithm has a complexity of O(|Q|∗|R|∗

K), since we iterate through each of the Q weak data points, searching

18



for the maximum intersection between its MNN and each of the formed

clusters. Therefore, this complexity becomes ≈ O(N2K).

The overall time complexity for DenMune algorithm is O(N2K) and its

space complexity is O(NK).
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4. Experimental Results

Table 3: Datasets used in the experiments and their properties

Dataset Type Size Number of dimensions Number of clusters
A1 Synthetic 3000 2 20
A2 Synthetic 2050 2 35
Aggregation Synthetic 788 2 7
Compound Synthetic 399 2 6
D31 Synthetic 3100 2 31
Dim-32 Synthetic 1024 32 16
Dim-128 Synthetic 1024 128 16
Dim-512 Synthetic 1024 512 16
Flame Synthetic 240 2 2
G2-2-10 Synthetic 2048 2 2
G2-2-30 Synthetic 2048 2 2
G2-2-50 Synthetic 2048 2 2
Jain Synthetic 373 2 2
Mouse Synthetic 500 2 3
Pathbased Synthetic 300 2 3
R15 Synthetic 600 2 15
S1 Synthetic 5000 2 15
S2 Synthetic 5000 2 15
Spiral Synthetic 312 2 3
Unbalance Synthetic 6500 2 8
Vary density Synthetic 150 2 3
Appendicitis Real 106 7 2
Arcene Real 200 10000 2
Breast cancer Real 683 9 2
Optical digits Real 5620 64 10
Pendigits Real 10992 16 10
Ecoli Real 336 8 8
Glass Real 214 9 6
Iris Real 150 4 3
MNIST Real 70000 784 10
Libras movement Real 360 91 15
Robot navigation Real 5456 24 4
SCC Real 600 60 6
Seeds Real 210 7 3
WDBC Real 569 32 2
Yeast Real 1484 8 10
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We have conducted extensive experiments on the datasets described in

Table 3 which include: (1) Fifteen real datasets obtained from UCI repository
2, MNIST dataset3 and KEEL datasets4 (2) Twenty-one synthetic datasets

from 5 and 6. In total, thirty-six datasets have been used to assess the

results obtained by DenMune with respect to the ground truth as well as to

the results obtained by nine known algorithms, NPIR [10], CBKM [7], Fast

DP [9], FINCH [20]), RS [6]), RCC [19]) HDBSCAN [18], KMeans++ [25]

and Spectral clustering.

The Euclidean distance has been adopted as a similarity metric for all

datasets.

4.1. Dimensionality Reduction

Datasets often contain a large number of features, which may even out-

number the observations as in the Arcene dataset. Due to the computational

and theoretical challenges associated with high dimensional data, reducing

the dimension while maintaining the structure of the original data is de-

sirable [26]. Also, high dimensional data may contain many irrelevant di-

mensions that suppress each others. These issues can confuse any clustering

algorithm by hiding clusters, especially in noisy data. For these reasons, all

datasets have been reduced to two dimensions, using the t-sne algorithm [27],

before applying the examined algorithms on them. DenMune has been exam-

ined on the ten real datasets listed in Table 3, using various dimensionality

2https://archive.ics.uci.edu/ml/index.php
3http://yann.lecun.com/exdb/mnist/
4https://sci2s.ugr.es/keel/dataset.php?cod=183
5http://cs.joensuu.fi/sipu/datasets/
6https://elki-project.github.io/datasets/
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reduction techniques. In general, as shown in Table 5, the algorithm perfor-

mance on a dataset projected to 2-D is better than its performance on the

same dataset in its high dimension version. Table 4 shows that DenMune

attains its best performance when t-sne is used for dimensionality reduction.

t-sne outperforms Principal Component Analysis (PCA), Factor Analysis

(FA) and Non-negative Matrix Factorization (NMF) by a large margin.

4.2. Agorithms’ Implementation and Parameters’ setting

For HDBSCAN, Spectral Clustering and Kmeans++ the implementa-

tions provided by SKlearn7have been adopted. All other algorithms, NBIR,

CBKM, RS, FINCH, FastDP and RCC implementations are provided by au-

thors themselves. DenMune algorithm has been implemented in C++ and

integrated with SKlearn, to benefit from its libraries in computing various

validation indexes.

The parameters for each algorithm have been selected according to each

algorithm defaults and recommendations. (1) for NPIR, the IR parameter

is selected in the range [0.01, 0.05, 0.10, 0.15, 0.20], with ten iterations for

each run. (2) for HDBSCAN, The primary parameter and the most intuitive

parameter is min-cluster-size is selected in the range [2..100], (3) for Spec-

tral clustering and KMeans++ the default parameters in SKlearn have been

adopted. The number of clusters is set equal to the ground truth. Each algo-

rithm is run 100 times for each dataset and the best performance is recorded,

(4) for DenMune, the only used parameter, K is selected in the range [1..50]

for small datasets and [1..200] for big datasets. For MNIST dataset, NPIR

7https://scikit-learn.org/stable/
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failed to scale to adapt to this big dataset even on a cloud server with 128

GB memory, thus all MNIST results were removed from the ranking process

for all other algorithms.

4.3. Results and Discussion

The twenty-one synthetic datasets, listed in Table 3, have been used to

demonstrate the efficiency of our proposed algorithm. All datasets are 2-D

except DIM datasets which are reduced from 32, 128 and 512 to 2-D to make

them easy to visualize. They are of different sizes (G2 and DIM datasets).

They have clusters of different densities, shapes (Spiral, Compound, Flame

and Pathbased datasets) and degree of overlapping (S1 and G2 datasets).

Revealing the inherent structure of these datasets is challenging for most

heuristic algorithms. Three metrics have been recorded (1) The F1 scores

are recorded in Tables 6 and 7 for synthetic and real datasets, respectively.

The Normalized Mutual Information, NMI is recorded in Tables 8 and 9 for

synthetic and real datasets, respectively, and the Adjusted Rand Index, ARI

is recorded in Tables 10 and 11 for synthetic and real datasets, respectively.

We adopt a ranking system to order algorithms , based on their clustering

performance, as measured by F1, NMI and ARI scores. The lower the rank

of an algorithm, the better its clustering quality for the datasets examined.

Three ranking values are added to the bottom of Tables (6 : 11) as follows:

(1) Total rank: sum of the ranks of an algorithm over the examined datasets

(2) Average rank: Total rank divided by the number of datasets and (3)

rank: the algorithm ranking among the set of examined algorithms, given in

ascending order (lower ranks preferred).
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The ground truth for all datasets are visualised using the t-sne algorithm

as shown in Fig. (14 and 15) for synthetic and real datasets, respectively.

In general, the results show that DenMune outperforms all other algo-

rithms for the majority of the datasets examined. Denmune has the lowest

rank values for each of the three validity indexes used in the assessment for

both synthetic, Tables( 6, 8 and 10) and real datasets, Tables( 7, 9 and 11).

Based on F1-score, Denmune outperforms the other algorithms for twenty-

eight out of the thirty-six datasets. For the remaining datasets.

(1) Arcene dataset: all algorithms (except for Finch and RCC algorithms)

outperform Denmune (+8%). (2) G2-2-50 dataset: CBKM, RS and FastDP

algorithms outperform DenMune (+2%). (3) Iris dataset: NPIR, CBKM, RS

and Spectral outperform DenMune (+1% : +8%). (4) Glass dataset: Spec-

tral Clustering outperforms DenMune slightly (+2%). (5) SCC dataset: RS

algorithm outperforms all other algorithms for this dataset with noticable F1-

score (84%) then comes RCC with (77%), while Denmune scores only 68%.

(6) Seeds dataset: NPIR and CBKM outperform DenMune (+1% : +2%).

(7). WDBC dataset: NPIR, RS and FastDP outperform DenMune (+2%

: +7%) (8) Yeast dataset: CBKM, FINCH, RCC, KMeans++ outperform

DenMune (+1% : +5%).

We are going to investigate why DenMune outperform for the majority of

datasets, then we will ilusterate why some algorithms outperform DenMune

for some datasets.

DenMune has a noticeable better performance over other algorithms for

many datasets such as (1) A1 dataset (+33%), (2) A2 dataset (+14%), (3)

Compound dataset (+8%), (4) D31 dataset (+34%), (5) Dim-128 dataset
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(+20%), (6) Pathbased dataset (+10%), (7) S1 dataset (+22%) ,(8) S2 datset

(+25%) , (9) Optical-digits dataset (+27%) , (10) Pendigits dataset (+24%),

(11) Ecoli dataset (+6%) and (12) MNIST datasets (+6%). This is due to

the framework DenMune adopts in its clustering process which allows it to

distinguish real clusters in noisy data, even if they are attached to each others

or overlapped as long as they are of distinguishable densities.

On contrary to DenMune, density-based algorithms such as HDBSCAN

fails when clusters have different densities, that is why HDBSCAN performs

badly on Compound and Pathbased datsets, Fig. 10i and Fig. 12i, re-

spectively. Also, on Aggregation dataset it merges some spherical shapes

incorrectly due to the strong linkage between them, Fig. 8i. nevertheless, it

performs well on spiral dataset, Fig.9i since clusters are well separated.

FastDP speeds up the clustering process by building an approximate k-

nearest neighbor (kNN) graph using an iterative algorithm. Its main advan-

tage is that it removes the quadratic time complexity limitation of density

peaks and allows clustering of very large datasets. FastDP can not select

the right cluster centers on Pathbased and Spiral datasets Fig. (12f and 9f)

respectively. Its performance goes down when working on datasets with ex-

tremely uneven distributions as in Compound dataset, Fig. 10f. On contrary

to the speed achieved by the algorithm, results obtained showed lower clus-

tering quality. This is obvious from the validity indexes values achieved by

the algorithm.

Centroid based algorithms fail when the centroid of a cluster is closer to

other data points rather than the data points of its representative cluster,

That is why KMeans++ and spectral clustering perform badly on arbitrary
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shaped data. They can detect clusters of globular shapes specifically when

clusters are well separated as in DIM datasets. Datasets with varying clus-

ters’ overlap degrade validations scores even if the clusters are of globular

shapes as in G2 datasets. Although,they have an advantage over traditional

KMmeans, they perform badly on noisy or data with overlapping clusters.

NPIR uses an indexing ratio, IR to control the amount of possible re-

assignment of points. The higher IR value means that the assigned points

have more possibility for reassignment. The reassignment process does not

guarantee algorithm to assign points to the correct clusters specifically when

data are noisy as in A1 and A2 datasets (F1= 0.48 and 0.40 respectively)

or clusters with different degree of cluster overlap as in S1 and S1 datasets

(F1= 0.43 and 0.41 respectively). It is obvious that NPIR performs badly

when data are noisy or clusters are of different densities and attached to

each other. It performs better when clusters are well separated even if they

are of different densities as in Jain and Aggregation datasets Fig.11c and

Fig.8c, respectively. A noticeable issue we experienced during examining the

algorithm is that it could not scale when working on the MNIST dataset

and failed to run even on a cloud server with 128 GB memory. We tested

NPIR for IR in the range [0.01, 0.05, 0.10, 0.15, 0.20.]. We found that NPIR

performs well when IR is set to 0.01. However, it achieved its highest score

for some datasets such as Mouse, Ecoli and Compound datasets for IR=0.15

and for Flame dataset on IR=0.20. Tuning NPIR to yield the best results is

not an easy task.

We can observe easily that the performance of all clustering algorithms

decrease for datasets with clusters’ overlap as in S1, S2, A1 and A2 datasets
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except for DenMune algorithm. DenMune can deal with overlaping clusters

as long as they are of distinguishable densities. DenMune outperformed the

other algorithms, for these datasets, with a remarkable margin.

RCC performs well on some datasets such as G2, Spiral and R15 datat-

sets, but it performs too badly on DIM datasets, a high-dimensional datasets

where clusters are well separated even in the higher dimensional space, Fig(14f:14h)

.

For synthetic datasets (6), FINCH has the closest F1-score to DenMune

while being faster. However, for the same datasets, its performance based on

the NMI and ARI metrics (Tables 9 and 11 as well as Figs 8e to 13e ) is bad.

The same applies for real datasets ( 7).

RS algorithm adopts a randomized search strategy, which is simple to

implement and efficient. It archived good quality clustering, and if iterated

longer, it would finds the correct clustering with high probability. CBKM

algorithm uses a better initialization technique and/or repeating (restart-

ing) the algorithm to improve the quality clustering of KMeans to overcome

issues with clusters overlap and clusters of unbalanced sizes. Authors of

CBKM observed that choosing an initialization technique like Maxmin can

compensate for the weaknesses of k-means and recommended that repeating

k-means 10–100 times; each time taking a random point as the first centroids

and selecting the rest using the Maxmin heuristic would improve the quality

clustering. We believe that increasing the number of runs (from 100 to say

1000) would slightly increase the clustering quality of RS, CBKM and NBIR

since they have random initial states. We found that RS and CBKM algo-

rithms have the most reasonable results achieved for both real and synthetic
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datasets assessed by F1, NMI and ARI scores. In general, they have the

closest rank to DenMune.

Also, we found that DenMune performs moderately for small size datasets

where DenMune has not enough chance to build robust KNN framework to

distinguish clusters, this is the case for Iris and Arcene datasets.

Finally, we recorded the Homogeneity and Completeness of DenMune in

Tables(12 and 13). A clustering result satisfies homogeneity if each cluster

contains only members of a single class, while it satisfies completeness if

all members of a given class are assigned to the same cluster. It is easy to

observe that DenMune has high homogeneity and completeness scores, which

explain the goodness of its clustering quality.

Table 4: Best NMI scores, obtained by DenMune, when applying different dimensionality
reduction methods on three real N-D datasets

Dataset PCA FA NMF t-sne
Optical Digits 0.43 0.46 0.31 0.95
Pen Digits 0.48 0.46 0.36 0.88
MNIST 0.25 0.25 0.24 0.89
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Table 5: Best NMI scores when applying DenMune on five real datasets before and after
dimensionality reduction

Dataset
Original dataset Reduced dataset

Dimensions NMI Dimensions NMI

Optical Digits 64 0.75 2 0.95

SCC 60 0.85 2 0.85

Arcene 10000 0.19 2 0.20

iris 4 0.73 2 0.81

Breast Cancer 9 0.75 2 0.80

Ecoli 8 0.01 2 0.71

Pen Digits 16 0.81 2 0.88

4.4. Speed Performance

The speed of DenMune has been compared to the speed of CMune and

CSharp, as shown in Fig.6a. The data set considered is the MNIST dataset

(with 70000 patterns), after dividing it into subsets, each of size 1000 pat-

terns. The subsets are added incrementally, and the speed of the algorithm

is recorded with each increment. The time considered is the time required

for running the core clustering algorithms, excluding the pre-processing time

for computing the proximity matrix and dimensionality reduction. The time

is measured in seconds. The adopted algorithms as well as the proposed

algorithm have been executed on a cloud with the following configuration:

Intel E5 Processor, up to 128 GB RAM, and running Linux operating system

(Ubuntu 18.04 LTS). Another test is conducted to examine speed versus the

number of K-nearest neighbors used, as shown in Fig.6b
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Figure 6: (a) Speed of DenMune compared to the speed of CMune and CSharp on the
MNIST dataset. (b) Speed of DenMune vs number of K- nearest neighbors.

5. Conclusion and Future Work

In this paper, a novel shared nearest neighbors clustering algorithm Den-

Mune, is presented. It utilizes the MNN size to calculate the density of each

point and chooses the high-density points as the seeds from which clusters

may grow up. In contrast to recent similar algorithms, such as DPC and

CMune, no cut-off parameter is needed from the user of DenMune. Guided

by the principle of Mutual Nearest-Neighbors (MNN ) consistency, DenMune

prioritizes points according to a voting system and partitions them into seeds
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and non-seeds. Seed points determine the number as well as the skeleton of

the clusters while non-seed points either merge with the formed clusters or

are considered as noise. It has the ability to automatically detect the num-

ber of clusters and has shown robustness for datasets of different shapes and

densities. We examined the sensitivity of DenMune to changes in K, the

number of nearest neighbors (the only parameter required by the algorithm)

on three real datasets with K in the range [1..200] and recorded the NMI for

each dataset as shown in Fig. 7. The stability of DenMune, with respect to

K, makes it a good candidate for data exploration and visualization since it

works in a two-dimensional feature space. Algorithms that rely on several

parameters such as CSharp, CMune, HDBSCAN and DPC can offer more

flexibility than single parameter algorithms such as DenMune, but at the

expense of the time needed for their tuning.

Figure 7: DenMune Results stability over changes in K, measured in NMI

Although the motivations behind the algorithm are logical (the scheme

adopted by the algorithm to partition points in a given data set into three
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types (seed, noise and potential noise points) and the MNN consistency prin-

ciple that governs clusters growth), the conducted experiments on a variety

of data sets, have shown its efficiency and robustness in detecting clusters

of different sizes, shapes and densities in the presence of noise. In summary,

DenMune is conceptually simple, logically sound, relies on a single parameter.

As future work, we intend to implement a parallel version of it, since clusters’

propagation in the algorithm is inherently parallel, as shown in Fig.4, and

investigate its performance on other types of datasets.
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Table 6: Comparison of the performance of DenMune with other nine algorithms, based
on F1-score, on twenty-one synthetic datasets.

Dataset DenMune NPIR CBKM RS FastDP FINCH HDBSCAN RCC Spectral KM++

A1 0.93 0.48 0.55 0.60 0.44 0.80 0.40 0.57 0.48 0.63

A2 0.95 0.40 0.45 0.41 0.48 0.81 0.38 0.61 0.46 0.57

Aggregation 1.00 0.65 0.77 0.73 0.70 0.69 0.66 0.81 0.67 0.69

Compound 0.97 0.62 0.58 0.57 0.54 0.77 0.63 0.89 0.40 0.65

D31 0.97 0.42 0.52 0.48 0.41 0.63 0.38 0.59 0.46 0.54

Dim-32 1.00 0.52 0.75 0.58 0.51 0.99 0.45 0.07 0.54 0.92

Dim-128 1.00 0.53 0.58 0.54 0.59 0.80 0.52 0.10 0.58 0.94

Dim-512 1.00 0.53 0.67 0.59 0.59 0.22 0.36 0.01 0.68 0.97

Flame 1.00 1.00 0.86 0.86 1.00 0.99 0.91 0.80 0.98 0.85

G2-2-10 1.00 1.00 1.00 1.00 1.00 0.90 0.84 1.00 0.33 0.86

G2-2-30 0.99 0.97 0.99 0.99 0.33 0.99 0.96 0.99 0.33 0.99

G2-2-50 0.90 0.90 0.92 0.92 0.92 0.69 0.65 0.67 0.33 0.53

Jain 1.00 1.00 0.80 0.80 0.93 0.77 0.97 0.89 1.00 0.79

Mouse 0.98 0.88 0.66 0.82 0.76 0.82 0.77 0.96 0.95 0.67

Pathbased 0.97 0.84 0.49 0.53 0.50 0.73 0.77 0.87 0.48 0.69

R15 1.00 0.56 0.56 0.65 0.39 0.91 0.47 0.99 0.56 0.62

S1 1.00 0.43 0.58 0.49 0.42 0.78 0.49 0.75 0.67 0.72

S2 0.97 0.41 0.58 0.58 0.22 0.72 0.58 0.49 0.63 0.70

Spiral 1.00 0.48 0.28 0.36 0.55 0.46 1.00 0.56 1.00 0.44

Unbalance 1.00 0.92 0.98 0.98 0.86 0.67 0.93 0.97 0.85 0.63

Vary density 1.00 1.00 0.95 0.95 0.56 0.67 0.95 0.89 1.00 0.77

Total Rank 24 120 110 107 139 99 147 102 125 117

Avg rank 1.14 5.71 5.24 5.10 6.62 4.71 7.00 4.86 6.0 5.57

Rank 1 7 5 4 9 2 10 3 8 6
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Table 7: Comparison of the performance of DenMune with other nine algorithms, based
on F1-score, on fifteen real datasets.

Dataset DenMune NPIR CBKM RS FastDP FINCH HDBSCAN RCC Spectral KM++

Appendicitis 0.89 0.89 0.75 0.75 0.88 0.76 0.86 0.73 0.71 0.78

Arcene 0.58 0.66 0.66 0.66 0.66 0.50 0.66 0.58 0.66 0.66

Breast cancer 0.97 0.97 0.88 0.91 0.97 0.48 0.96 0.54 0.51 0.96

Optical digits 0.97 0.49 0.69 0.58 0.59 0.54 0.70 0.58 0.58 0.59

Pendigits 0.89 0.53 0.65 0.65 0.41 0.57 0.52 0.62 0.52 0.67

Ecoli 0.77 0.69 0.71 0.65 0.28 0.52 0.21 0.53 0.51 0.56

Glass 0.57 0.51 0.55 0.54 0.36 0.52 0.47 0.52 0.59 0.46

Iris 0.90 0.97 0.91 0.94 0.90 0.90 0.56 0.90 0.98 0.88

MNIST 0.90 N/A∗ 0.66 0.64 0.46 0.61 0.84 0.18 0.83 0.61

Libras movement 0.46 0.27 0.29 0.33 0.24 0.44 0.27 0.41 0.26 0.39

Robot navigation 0.60 0.43 0.49 0.46 0.38 0.57 0.56 0.27 0.43 0.56

SCC 0.68 0.65 0.65 0.84 0.49 0.64 0.36 0.77 0.64 0.55

Seeds 0.89 0.91 0.90 0.89 0.54 0.76 0.82 0.89 0.52 0.77

WDBC 0.84 0.91 0.83 0.86 0.89 0.82 0.82 0.56 0.48 0.81

Yeast 0.40 0.35 0.44 0.40 0.27 0.41 0.31 0.45 0.40 0.42

Total Rank 37 60 54 57 92 86 88 80 91 72

Avg rank 2.64 4.29 3.86 4.07 6.57 6.14 6.29 5.71 6.5 5.14

Rank 1 4 2 3 10 7 8 6 9 5

* NPIR failed to scale to adapt to MNIST dataset even on a cloud server with 128 GB memory.
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Table 8: Comparison of the performance of DenMune with other nine algorithms, based
on NMI-score, on twenty-one synthetic datasets.

Dataset DenMune NPIR CBKM RS FastDP FINCH HDBSCAN RCC Spectral KM++

A1 0.98 0.84 0.87 0.92 0.83 0.85 0.74 0.78 0.88 0.89

A2 0.98 0.86 0.89 0.88 0.89 0.89 0.75 0.80 0.90 0.85

Aggregation 0.99 0.80 0.90 0.90 0.87 0.76 0.86 0.82 0.90 0.73

Compound 0.94 0.79 0.58 0.62 0.46 0.83 0.66 0.87 0.62 0.66

D31 0.96 0.84 0.87 0.87 0.84 0.85 0.71 0.85 0.85 0.84

Dim-32 1.00 0.91 0.95 0.92 0.89 0.99 0.85 0.16 0.87 0.90

Dim-128 1.00 0.87 0.92 0.87 0.91 0.90 0.87 0.22 0.92 0.91

Dim-512 1.00 0.88 0.93 0.91 0.91 0.59 0.83 0.00 0.93 0.94

Flame 1.00 1.00 0.46 0.48 1.00 0.94 0.61 0.47 0.85 0.55

G2-2-10 1.00 1.00 1.00 1.00 1.00 0.75 0.53 0.99 0.00 0.80

G2-2-30 0.94 0.83 0.92 0.92 0.00 0.92 0.76 0.94 0.00 0.92

G2-2-50 0.51 0.53 0.59 0.59 0.58 0.36 0.25 0.23 0.00 0.26

Jain 1.00 1.00 0.37 0.37 0.64 0.47 0.88 0.70 1.00 0.50

Mouse 0.94 0.68 0.58 0.58 0.85 0.56 0.55 0.87 0.85 0.61

Pathbased 0.89 0.66 0.51 0.55 0.52 0.56 0.56 0.70 0.50 0.58

R15 0.99 0.86 0.89 0.91 0.84 0.90 0.85 0.99 0.90 0.79

S1 0.99 0.84 0.89 0.87 0.84 0.80 0.83 0.86 0.91 0.88

S2 0.94 0.79 0.83 0.82 0.62 0.75 0.74 0.80 0.87 0.77

Spiral 1.00 0.28 0.00 0.00 0.74 0.26 1.00 0.50 1.00 0.31

Unbalance 1.00 0.94 0.99 0.99 0.82 0.97 0.95 0.95 0.88 0.90

Vary density 1.00 1.00 0.86 0.86 0.73 0.53 0.87 0.70 1.00 0.56

Total Rank 25 109 97 99 127 129 151 125 99 130

Avg rank 1.19 5.19 4.62 4.71 6.05 6.14 7.19 5.95 4.7 6.19

Rank 1 5 2 3 7 8 10 6 3 9
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Table 9: Comparison of the performance of DenMune with other nine algorithms, based
on NMI-score, on fifteen real datasets.

Dataset DenMune NPIR CBKM RS FastDP FINCH HDBSCAN RCC Spectral KM++

Appendicitis 0.37 0.37 0.18 0.18 0.33 0.18 0.26 0.21 0.00 0.16

Arcene 0.07 0.09 0.09 0.09 0.09 0.07 0.09 0.02 0.09 0.09

Breast cancer 0.80 0.80 0.53 0.61 0.80 0.20 0.77 0.24 0.00 0.77

Optical digits 0.94 0.83 0.86 0.81 0.82 0.73 0.83 0.82 0.80 0.81

Pendigits 0.88 0.72 0.78 0.71 0.57 0.76 0.77 0.74 0.70 0.75

Ecoli 0.71 0.56 0.53 0.54 0.52 0.49 0.51 0.43 0.49 0.55

Glass 0.39 0.34 0.37 0.35 0.31 0.37 0.35 0.36 0.39 0.34

Iris 0.81 0.90 0.79 0.82 0.81 0.81 0.73 0.80 0.92 0.82

MNIST 0.86 N/A∗ 0.74 0.76 0.61 0.75 0.87 0.54 0.85 0.66

Libras movement 0.67 0.52 0.56 0.52 0.52 0.63 0.57 0.63 0.54 0.63

Robot navigation 0.43 0.24 0.24 0.23 0.06 0.37 0.33 0.37 0.17 0.43

SCC 0.82 0.78 0.68 0.79 0.66 0.71 0.72 0.76 0.72 0.66

Seeds 0.69 0.71 0.73 0.71 0.56 0.60 0.62 0.68 0.53 0.60

WDBC 0.46 0.56 0.41 0.45 0.50 0.47 0.41 0.32 0.00 0.47

Yeast 0.27 0.22 0.26 0.25 0.25 0.23 0.22 0.28 0.19 0.18

Total Rank 33 52 66 71 83 81 73 81 99 72

Avg rank 2.36 3.71 4.71 5.07 5.93 5.79 5.21 5.79 7.1 5.14

Rank 1 2 3 4 9 7 6 7 10 5

* NPIR failed to scale to adapt to MNIST dataset even on a cloud server with 128 GB memory.
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Table 10: Comparison of the performance of DenMune with other nine algorithms, based
on ARI-score, on twenty-one synthetic datasets.

Dataset DenMune NPIR CBKM RS FastDP FINCH HDBSCAN RCC Spectral KM++

A1 0.94 0.56 0.62 0.75 0.51 0.69 0.42 0.53 0.64 0.70

A2 0.96 0.55 0.62 0.61 0.61 0.73 0.37 0.53 0.64 0.60

Aggregation 0.99 0.65 0.90 0.90 0.81 0.57 0.77 0.65 0.84 0.54

Compound 0.97 0.73 0.56 0.59 0.30 0.79 0.62 0.86 0.36 0.44

D31 0.94 0.55 0.64 0.65 0.56 0.63 0.33 0.65 0.55 0.60

Dim-32 1.00 0.73 0.83 0.74 0.67 0.97 0.55 0.02 0.58 0.84

Dim-128 1.00 0.57 0.74 0.58 0.70 0.76 0.62 0.03 0.74 0.89

Dim-512 1.00 0.60 0.78 0.70 0.70 0.16 0.54 0.00 0.74 0.93

Flame 1.00 1.00 0.50 0.51 1.00 0.97 0.69 0.40 0.92 0.52

G2-2-10 1.00 1.00 1.00 1.00 1.00 0.72 0.63 1.00 0.00 0.75

G2-2-30 0.97 0.89 0.96 0.96 0.00 0.96 0.84 0.97 0.00 0.96

G2-2-50 0.63 0.64 0.70 0.70 0.69 0.30 0.21 0.17 0.00 0.17

Jain 1.00 1.00 0.32 0.32 0.71 0.38 0.95 0.59 1.00 0.44

Mouse 0.97 0.69 0.54 0.54 0.92 0.53 0.40 0.92 0.90 0.37

Pathbased 0.92 0.61 0.42 0.47 0.43 0.54 0.50 0.69 0.42 0.46

R15 0.99 0.65 0.67 0.72 0.60 0.83 0.66 0.98 0.72 0.50

S1 0.99 0.58 0.68 0.65 0.58 0.61 0.63 0.71 0.73 0.74

S2 0.93 0.56 0.58 0.56 0.27 0.54 0.52 0.52 0.72 0.55

Spiral 1.00 0.22 0.00 0.00 0.57 0.13 1.00 0.26 1.00 0.14

Unbalance 1.00 0.98 1.00 1.00 0.78 0.97 0.99 0.97 0.85 0.90

Vary density 1.00 1.00 0.87 0.87 0.57 0.41 0.87 0.73 1.00 0.51

Total Rank 25 111 100 97 133 120 144 120 113 132

Avg rank 1.19 5.29 4.76 4.62 6.33 5.71 6.86 5.71 5.4 6.29

Rank 1 4 3 2 9 6 10 6 5 8
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Table 11: Comparison of the performance of DenMune with other nine algorithms, based
on ARI-score, on fifteen real datasets.

Dataset DenMune NPIR CBKM RS FastDP FINCH HDBSCAN RCC Spectral KM++

Appendicitis 0.56 0.55 0.19 0.19 0.52 0.25 0.42 0.20 0.00 0.23

Arcene 0.09 0.10 0.10 0.10 0.10 0.01 0.10 0.03 0.10 0.10

Breast cancer 0.88 0.88 0.55 0.67 0.87 0.06 0.86 0.12 0.00 0.86

Optical digits 0.94 0.68 0.75 0.61 0.62 0.43 0.71 0.67 0.58 0.66

Pendigits 0.83 0.48 0.63 0.56 0.30 0.58 0.61 0.46 0.50 0.60

Ecoli 0.75 0.60 0.46 0.47 0.30 0.27 0.49 0.23 0.38 0.45

Glass 0.26 0.23 0.25 0.25 0.22 0.31 0.17 0.20 0.30 0.13

Iris 0.76 0.92 0.77 0.83 0.76 0.76 0.57 0.75 0.94 0.81

MNIST 0.84 N/A∗ 0.62 0.64 0.41 0.59 0.83 0.08 0.78 0.46

Libras movement 0.32 0.25 0.31 0.26 0.26 0.26 0.23 0.23 0.27 0.22

Robot navigation 0.26 0.12 0.16 0.15 0.03 0.24 0.20 0.08 0.05 0.25

SCC 0.66 0.62 0.54 0.68 0.45 0.51 0.48 0.61 0.56 0.47

Seeds 0.69 0.75 0.74 0.71 0.48 0.56 0.58 0.71 0.42 0.54

WDBC 0.49 0.66 0.41 0.53 0.60 0.46 0.41 0.20 0.00 0.46

Yeast 0.13 0.11 0.16 0.14 0.17 0.13 0.15 0.18 0.10 0.11

Total Rank 41 53 59 62 82 87 74 98 94 83

Avg rank 2.93 3.79 4.21 4.43 5.86 6.21 5.29 7.00 6.7 5.93

Rank 1 2 3 4 6 8 5 10 9 7

* NPIR failed to scale to adapt to MNIST dataset even on a cloud server with 128 GB memory.
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(a) Aggregation dataset (b) DenMune (c) NPIR (d) CBKM

(e) FINCH (f) FastDP (g) RS (h) RCC

(i) HDBSCAN (j) Spectral clustering (k) KMeans++

Figure 8: Visualization of the results obtained by the ten algorithms for the Aggregation
dataset.

(a) Spiral dataset (b) DenMune (c) NPIR (d) CBKM

(e) FINCH (f) FastDP (g) RS (h) RCC

(i) HDBSCAN (j) Spectral clustering (k) KMeans++

Figure 9: Visualization of the results obtained by the ten algorithms for the Spiral dataset.
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(a) Compound dataset (b) DenMune (c) NPIR (d) CBKM

(e) FINCH (f) FastDP (g) RS (h) RCC

(i) HDBSCAN (j) Spectral clustering (k) KMeans++

Figure 10: Visualization of the results obtained by the ten algorithms for the Compound
dataset.

(a) Jain dataset (b) DenMune (c) NPIR (d) CBKM

(e) FINCH (f) FastDP (g) RS (h) RCC

(i) HDBSCAN (j) Spectral clustering (k) KMeans++

Figure 11: Visualization of the results obtained by the ten algorithms for the Jain dataset.
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(a) Pathbased dataset (b) DenMune (c) NPIR (d) CBKM

(e) FINCH (f) FastDP (g) RS (h) RCC

(i) HDBSCAN (j) Spectral clustering (k) KMeans++

Figure 12: Visualization of the results obtained by the ten algorithms for the Pathbased
dataset.

(a) Mouse dataset (b) DenMune (c) NPIR (d) CBKM

(e) FINCH (f) FastDP (g) RS (h) RCC

(i) HDBSCAN (j) Spectral clustering (k) KMeans++

Figure 13: Visualization of the results obtained by the ten algorithms for the Mouse
dataset.
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(a) A1 dataset (b) A2 dataset (c) Flame dataset (d) D31 dataset

(e) R15 dataset (f) Dim-32 dataset (g) Dim-128 dataset (h) Dim-512 dataset

(i) Vary-density dataset (j) G2-2-10 dataset (k) G2-2-30 dataset (l) G2-2-50 dataset

(m) S1 dataset (n) S2 dataset (o) Unbalance dataset

Figure 14: Ground truths of the fifteen synthetic datasets, visualized using t-sne, and used
for algorithms’ comparisons.
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(a) Appendicitis dataset (b) Arcene dataset (c) Breast-cancer dataset (d) Pendigits dataset

(e) Optical digits dataset (f) Ecoli dataset (g) Glass dataset (h) iris dataset

(i) MNIST dataset (j) Libras move. dataset (k) Robot nav. dataset (l) SCC dataset

(m) Seeds dataset (n) WDBC dataset (o) Yeast dataset

Figure 15: Ground truths of the fifteen real datasets, visualized using t-sne, and used for
algorithm’s comparisons.
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