
FANG, Z, REN, J., MARSHALL, S., ZHAO, H., WANG, S. and LI, X. 2021. Topological optimization of the DenseNet with
pretrained-weights inheritance and genetic channel selection. Pattern recognition [online], 109, article ID 107608.

Available from: https://doi.org/10.1016/j.patcog.2020.107608

This document was downloaded from
https://openair.rgu.ac.uk

Topological optimization of the DenseNet with
pretrained-weights inheritance and genetic

channel selection.

FANG, Z, REN, J., MARSHALL, S., ZHAO, H., WANG, S. and LI, X.

2021

https://doi.org/10.1016/j.patcog.2020.107608

Topological Optimization of the DenseNet with
Pretrained-Weights Inheritance and Genetic Channel

Selection

Zhenyu Fanga, Jinchang Renb,a1,, Stephen Marshalla, Huimin Zhaob, Song
Wangc, Xuelong Lid

aCentre for Signal and Image Processing, University of Strathclyde, Glasgow, UK.
bSchool of Computer Sciences, Guangdong Polytechnic Normal University, China

c Department of Computer Science and Engineering, University of South Carolina, USA
d Center for Optical Imagery Analysis and Learning (OPTIMAL), School of Computer

Science, Northwestern Polytechnical University, Xi’an, China

Abstract

Convolutional neural networks (CNNs) have been successfully applied in many
computer vision applications [1], especially in image classification tasks, where
most of the structures have been designed manually. With the aid of skip con-
nection and dense connection, the depths of the models are becoming “deeper”
and the filters of layers are getting “wider” in order to tackle the challenge of
large-scale datasets. However, large-scale models in convolutional layers become
inefficient due to the redundant channels from input feature maps. In this pa-
per, we aim to automatically optimize the topology of the DenseNet, in which
unnecessary convolutional kernels are reduced. To achieve this, we present a
training pipeline that generates the network structure using a genetic algorithm.
We first propose two encoding methods that can represent the structure of the
model using a fixed-length binary string. A three-step based evolutionary pro-
cess consisting of selection, crossover, and mutation is proposed to optimize the
structure. We also present a pretrained weight inheritance method which can
largely reduce the total time consumption of the genetic process. Experimen-
tal results have demonstrated that our proposed model can achieve comparable
accuracy to the state-of-the-art models, across a wide range of image recog-
nition and classification datasets, whilst significantly reducing the number of
parameters.

Keywords: Deep convolutional neural networks, Genetic algorithms,
Parameter reduction, Structure optimization, DenseNet.

∗Corresponding author
Email address: jinchang.ren@strath.ac.uk (Jinchang Ren)

Preprint submitted to Journal of LATEX Templates

Figure 1: The average absolute filter weights of convolutional layers in DenseNet40 (G = 12),
trained on the CIFAR-10 dataset. The colour patch (s, t) denotes the average L1 normalized
(by number of input depth) weights in the layer “t” which takes input from the layer “s” in
the same block. The last column of each block denotes the transition layer for the first two
blocks and the fully connected layer for the last block, respectively.

1. Introduction

Visual object classification is a fundamental task for a wide range of appli-
cations. Traditional algorithms mostly conduct classification tasks in two steps:
extraction of hand-crafted features, and classification using a particular classifier
[2]. Those manually designed features only work well in specific applications,5

with relatively small data, and may fail once transferred to a new application, or
a much large dataset. In recent years, Convolutional Neural Networks (CNNs)
have become the dominant computer vision approach in image classification.
Compared with the two-step traditional classification pipeline, CNN completes
the task using an end-to-end method. The way of self-feature generation im-10

proves the robustness of CNN, producing the state-of-the-art results in many
applications [3, 4, 5].

To yield higher level feature maps, the number of convolutional layers of
the state-of-the-art CNN has increased generation by generation [3], [6]. More
recently, Residual Network (ResNet) [7] and Densely Connected Convolutional15

Networks (DenseNet) [8] have expanded this number to more than 100 layers.
However, the channels in the inputs of a layer may be redundant. In [9], Veit
et al. have found that the deep residual network performs as a combination of
several shallow networks. The heat map of DenseNet (shown in Fig. 1) demon-
strates the same effect: not all channels in the concatenated input feature maps20

are essential for the classification tasks. Only a few channels are weighted with
a relatively high value and the rest are depressed. The redundant information
from these low significance inputs will not only impede the prediction accuracy,
but also cause a waste of computational resource.

In this paper, we aim to develop a robust approach to achieve a good trade-off25

between the efficiency and accuracy by selecting key channels from the inputs.
The whole structure is self-generated without manual interference. Generating
the model from scratch without constraints [10], [11], [12] would involve a huge
amount of computational cost, and the generated model could easily suffer from
overfitting. Thus, we constrain the framework of the model, which is learnt us-30

ing state-of-the-art CNN models, as the “prior knowledge” of the model. Find-

2

ing the best one by enumerating all the combinations is impractical, because
the number of permutations increases exponentially with the number of layers.
Rather than a full search of all the combinations, a more effective solution is
to optimize the structure using neural architecture search (NAS), which may35

be based on an evolutionary algorithm (EA) [10, 13], reinforcement learning
(RL) [12], [14], gradient descent [15], or other methods [16]. For the existing
approaches, there exist the following drawbacks:

i. High computational complexity and cost: For neural evolution meth-
ods [10], [13], [17], denote the number of populations as I and the number of40

the generation as NG, the whole training procedure will be required to train
I ×NG individuals. In order to achieve a higher performance, the values of
both I and NG should be sufficiently large. In [10], experiments were con-
ducted on about 250 high-end computers. A similar limitation also exists in
the reinforcement learning and gradient descent based method. The “dis-45

cover” process also consumes a huge amount of computational resources.
In [11], which adopts reinforcement learning, about 10 Graphic Processing
Units (GPUs) are deployed.

ii. More hyperparameters are required to control the searching process;

iii. The learnt architectures are not robust, i.e. architectures obtained by50

EA perform well on the datasets they are trained on, but perform poorly
on the new datasets.

To tackle these challenges, in this paper, an improved pipeline is proposed
for training, in which the Genetic algorithm (GA) is employed to optimize the
self-generated model. As we focus mainly on reducing the computational cost,55

we apply a binary encoding method to represent the structure of the model
in a binary string, where “1” and “0” indicates whether the feature is allowed
to pass into a layer or not. Three GA operations, selection, crossover and
mutation, are employed to evolve the structure. After conducting the selection
on each generation, poorly-performing structures are discarded. We measure60

the performance of the model by evaluating the accuracy on a validation/test
dataset.

To improve the training efficiency, a variable-inheritance-fine-tune training
method is proposed. Following the experimental settings in [10], instead of train-
ing each “individual” from scratch, we apply “variable inheritance” to reduce65

computational cost on each “individual”. This means that a reused kernel will
be reinitialized using the values obtained from training on the previous genera-
tion rather than randomly generated from a Gaussian distribution. We utilize
the structure of the DenseNet as our baseline framework. Compared with the
baseline, our model can reduce the number of parameters by up to 30% whilst70

maintaining the same accuracy. Although the GA procedure is mainly con-
ducted on the CIFAR-10 dataset[18], the model produced also performs well on
other datasets and is easily transferred onto large-scale datasets. The experi-
ments can be conducted on a single GTX1080Ti GPU hence the model is very
portable and affordable.75

3

Contributions. the main contributions of this paper can be summarized
as follows:

i. Based on the DenseNet, an effective GA training pipeline is proposed to
select the key input channels of the convolution layers automatically;

ii. Under limited computational resources, mechanisms are proposed to opti-80

mize the GA process by applying ’weight inheritance’ to reduce the total
computational cost without degrading the training or testing accuracy of
the models;

iii. The self-generated model structure can reduce the number of parameters
by up to 30% while achieving a similar accuracy as the baseline with a85

significantly reduced computation time;

iv. Experiments show that our self-generated model structure performs well
not only on the trained dataset, but also on untrained datasets. Even when
the structure is generated using a small-size dataset, it was found to work
well on large-scale image datasets.90

The remaining parts of this paper are organized as follows. Section 2 gives a
brief introduction to the related work. The design of the GA training pipeline
and the experimental results are detailed in Section 3 and Section 4, respectively.
Finally, some concluding remarks are given in Section 5.

2. Related Work95

Balancing the computational efficiency and the accuracy is a critical task in
designing a convolutional neural network, as it can help to reduce the computa-
tional cost and facilitate more portable implementations i.e. on mobile or low
power devices [19, 20, 21]. Two possible optimization approaches include: i)
Optimizing the connection method between layers [7, 8]; and ii) Optimizing the100

convolutional paradigm, e.g. the kernel size [6], and the activation function [22].
These two categories of methods can be conducted both by manual design and
self-generation. Manual-design-based methods are more robust but require sev-
eral attempts to achieve the best solution. Self-learning-based methods, on the
other hand, can optimize the model architecture but may suffer from overfitting.105

2.1. Manually Designed CNN Architectures

Manually designed CNN achieved great early success firstly on the MNIST
dataset [3]. After that, AlexNet [4] was proposed for large-scale practical image
classification, where the state-of-the-art results were reported on the ILSVRC
2012 classification dataset [5]. However, a large CNN kernel size is inefficient,110

causing huge computational cost. To tackle this drawback, in VGG [6], only 3-
by-3 and 1-by-1 convolutional kernels were applied, producing a deeper network
with higher accuracy. Moreover, the computational cost can be largely reduced
by using binary kernels [23] and regularization methods [24].

4

Batch normalization [22] reshapes the distribution of the input, which signif-115

icantly improves the training efficiency. With increasing numbers of layers, the
issue of gradient vanishing or gradient exploding emerges, where the weights of
the network struggle to converge. To ease this training difficulty, the Residual
Network (ResNet) [7] was proposed to allow groups of layers of the network to
learn the difference between the input and the output rather than the input-to-120

output transformation for each layer. This has significantly reduced the total
number of the parameters and allowed the number of layers to be extended to
over 100. However, it is found that there are many redundant layers in the
ResNet [9, 25]. To further improve the efficiency of the information transforma-
tion, in Huang et al. [8], a dense connection strategy, DenseNet, is proposed to125

connect the outputs of all formal layers as the input of the following layer rather
than sum all outputs in the ResNet. A comparable accuracy to the ImageNet
was achieved while the number of parameters was reduced to 1/3 of the original
ResNet. However, there still exist many unnecessary layers in the DenseNet,
leaving potential for further optimization.130

2.2. Neural Evolution Methods

To simulate the genotype-based evolution process of the nature, evolutionary
algorithms (EAs) are proposed to optimize a model by encoding it to a binary
string or even a string of integers or floating-point numbers. In [26], the net-
work architecture evolved using the Neuro Evolution of Augmenting Topologies135

(NEAT) algorithm, in which the connection or disconnection between nodes was
evolved through mutation.

When introducing the backpropagation algorithms for optimizing the weights
of the neural networks, it becomes unnecessary to train such weights using an
EA. This is because backpropagation algorithms help to converge the weights to140

the local minimum more easily and quickly. In order to gain the benefit of both
the back-propagation and EAs, one strategy is to combine them [27], where
they can be used to simultaneously train the weights of the neural network and
optimize the architecture. Although these methods achieve comparable results
to manually designed CNN models, they can only optimize the coding method145

and the training efficiency rather than the scale of the whole model. This has
led to their models being too small to cope with large-scale image classification
tasks. More recently, the scale of the model has been considered in the network
architecture [10], [13], [17] that evolves the process to design the optimized ar-
chitecture from scratch achieving comparable results on the CIFAR-10 dataset150

[18].

2.3. Neural Architecture Search (NAS)

Neural Architecture Search (NAS) is a process of automatic architecture
engineering. In image classification, NAS methods have outperformed most
of manually designed models. In this paper, two widely used NAS approach,155

gradient based NAS and the reinforcement learning based NAS, will be
briefed. Other methods such as Bayesian Optimization (BO), pruning based,

5

and meta-learning, as introduced in [16], will not be covered here, due to their
inefficiency or low performance [15].

Reinforcement Learning NAS. In [12], reinforcement learning was used160

to generate a fixed length structure of a CNN layer by layer. Furthermore, the
addition or removal of identical connections is also considered, which helps the
model achieve state-of-the-art results. A similar training framework was utilized
in [11], where Q-learning was applied to explore the structure of the model in
each layer. Instead of training with a fixed length of “Gene string”, the number165

of the layers was determined within the reinforcement learning itself. Mobile
NAS (MNAS) [14] proposed a factorized hierarchical search space to balance the
flexibility and the size of the search space, which was applied for light-weight
network generation. To reduce the scale of the network, Facebook-Berkeley-Nets
(FBNets) [28] utilized a layer-wise search space to specify the type of blocks for170

each layer.
Gradient NAS. Instead of searching the structure via an ”agent”, gradi-

ent NAS optimizes the structure using gradient descent. A differentiable NAS
method (DARTS) was proposed in [15], which was applied on both convolutional
and recurrent networks. To increase the computational efficiency, stochastic175

NAS (SNAS) [29] replaced the feedback mechanism with more efficient gradient
feedback from generic loss.

2.4. Training Strategy of Evolution Based CNN

To optimize the architecture of the CNN, each network model is considered
as an “individual” and its fitness value is measured by using the classification180

accuracy on the validation datasets [10], [13], [17]. After the mutation and
crossover (excluding [10], which replaces the crossover by computing a huge
number of combinations), the model is retrained to determine the fitness value
individually. Each new individual can be either fully trained i.e. trained 100
epochs on the CIFAR-10 dataset [10], [13], [17] or partially trained [30] i.e. 5185

epochs on the same dataset. In comparison to the fully trained approach, partial
training improves the training efficiency but suffers from overestimation or under
estimation caused by random initialization from a Gaussian distribution. In
Real et al. [10], it is found that an alternative training strategy inherits benefits
from both fully and partial training, where each “individual” is partially trained190

after structure evolution from the full training. If a variable is reused, its value
will be taken from the last generation instead of being reinitialized from scratch.

Similar works have been conducted in [10] and [13]. However, a large search
space makes both methods hard to be optimized under limited computational
resources. The search space of the proposed method is the input channels of195

each layer, while in [10] and [13] the search space is the connection method
between different layers. Even the elements of a layer are also considered in
[13]. To improve the training speed and reduce the computational cost, we do
not discard the crossover step as used in [10]. Experimental results in Section 4
show that, by using crossover, the total computational cost can be dramatically200

reduced whilst maintaining the test accuracy. The original weight inheritance
method [10] which is optimized for the residual structure, is not fit for the

6

densely connected structure. As a result, we propose a new pretrained weight
inheritance method to initialize the weights of the model, which is more suitable
for densely connected structures.205

3. The Proposed Algorithm

In this section, a detailed description of the proposed approach is presented
which discusses how a GA-based method can be used to remove the redundant
convolutional kernels. Training from scratch without any constraints is infea-
sible. Even with very few constraints, the training process can be significantly210

speeded up whilst reducing the risk of overfitting to the referenced dataset (“ref-
erenced dataset” refers to the dataset where each “individual” is trained). To
this end, we borrow from the frameworks of manually designed models to con-
strain the model architecture.

Specifically, our model is based on two state-of-the-art architectures, the215

ResNet and the DenseNet styles with skip-connect inputs between different lay-
ers with dense connection. More details of the constraints are discussed in
Section 3.1. As the GA is applied to evolve the architecture of the model, in
Section 3.2, two binary coding methods are proposed based on previous works
[10, 13]: channel coding and layer coding. In Section 3.3, a simple but effi-220

cient genetic process is detailed, which consists of the selection, crossover and
mutation operations.

To improve the training efficiency without degrading the model performance,
in Section 3.4 we propose: 1). a partial-training and fine-tuning strategy to
obtain the fitness value of the evolved structure and 2). a pretrained weight225

inheritance strategy to initialize the weights of the model, which is more suitable
for densely connected structures and easy to implement.

3.1. Pre-defined Elements of the Model

In [10, 12, 30], it is suggested that the architecture of a model generated
from scratch with very few constraints is more efficient than manually designed230

model, because of the benefit brought by mutation. However, the self-generated
structure paradigm may be less robust than manually designed methods [10,
18]. On the other hand, generating a model without constraints consumes a
huge amount of computational resources [10, 12]. As a result, in this paper,
to increase the robustness while reducing the computational cost, we pre-define235

the following constraints by taking some manually-designed structures [7, 8, 25]
as the “prior” of our model:

i. Similar to the ResNet and DenseNet, the network will be split into N blocks,
in which the feature sizes of layers within each block are the same. Its width
and height will be halved by a “transmission layer” [8] before passing to the240

next block.

ii. A “transmission layer” consists of 1) a 1-by-1 convolutional layer for fus-
ing all channels and 2) a 2-by-2 mean pooling layer for down-sampling the

7

feature maps. The depth of the output of a transmission layer will either re-
main the same or be halved depending on the structure of a “convolutional245

layer”. This allows consistent comparisons with other approaches. There-
fore, if a convolutional layer contains only one 3-by-3 kernel followed by a
batch normalization (BN) layer [22] and a ReLU layer, the depth remains
the same. If a convolutional layer contains two convolutional sublayers, one
with a 1-by-1 kernel and the other with a 3-by-3 kernel (both with BN-ReLU250

before each convolution as well), known as the “bottleneck structure”, the
depth will be halved. We label the “compressed-bottleneck structure” as
BC, and only the BC structure will be used after the architecture is gener-
ated.

iii. The channel number of the convolution layer is unchanged in each block,255

denoted as “growth rate” G [8].

iv. The number of layers in each block is fixed during the training.

v. The skip-connection is allowed. Features from different layers will be pro-
cessed by concatenation [8] instead of addition [7].

3.2. Coding Method260

To improve the training efficiency and attain a comparable performance
while reducing the computational cost, binary coding [13] and the GA are used
to evolve the architecture of the model, instead of integer/float number coding
[10]. For each convolutional layer, we assign a binary string to “gate” the input,
which is a concatenation of the outputs of all the previous convolutional layers.265

Hence, the search space corresponds to a binary string representing the structure
of the model. For each bit, “1” and “0” means the associated feature can “pass”
into the layer or not. Each bit of the string can represent either a single channel
or multiple channels of the input feature map. Here we propose two binary
coding methods, i.e. Channel coding and Layer coding.270

3.2.1. Channel Coding

In channel coding, each bit represents only one channel of the concatenated
feature map. Therefore, for a three-convolutional-layer block with the number
of initial input channels of Ninit and a growth rate of G, the length of the strings
for all three layers are Ninit, Ninit + G and Ninit + 2G, respectively. Thus, the
length of the string of the block is 3Ninit + 3G. As such, the length of binary
string L for a single block is

Lchannel = (Ninit + G) + (Ninit + 2G) + · · ·+
(Ninit + (C − 1)G)

= C ×Ninit +
C(C − 1)

2
G

(1)

where C is the number of convolutional layers in the block.

8

Input
from
former
layers

Convolutional Layer 1

1-1

1-2

1-3

’genotype’ 1 0 1

Convolutional Layer 2

2-1

2-2

2-3

0 1 1

1-1 1-3 2-2 2-3

Convolutional Layer 3

(a)

Input
from
former
layers

Convolutional Layer 1

1-1

1-2

1-3

’genotype’ 0

Convolutional Layer 2

2-1

2-2

2-3

1

2-1 2-2 2-3

Convolutional Layer 3

(b)

275

Figure 2: An example to show how the channel coding (a) and the layer coding (b) filter the
input of a convolutional layer: The layer has two preceding layers with G = 3. Features from
layers 1-2 are highlighted by orange and green, respectively. A channel coding string to
represent the input (from the layers 1-2) of the last convolutional layer (layer 3), calculated
using Eq. 1, will be “101-011”. For the channel coding, the length of this binary string is 6,
where each bit represents a single channel of the input. While for layer coding, each bit
represents channels from a layer. Therefore, the binary string is represented as “0-1” in Eq. 2.
Compared with channel coding, the length of layer coding will reduce to only 1/3.

In channel coding, the model can be more flexible than the plain DenseNet
for training as it can fit a densely connected structure with an arbitrary number
of layers and an arbitrary number of filters in each layer if G is small enough
and Ninit is large enough. An example is illustrated in Fig. 2. Assume a single
CNN block has 3 layers (labelled as ”0”, ”1”, and ”2”) with a growth rate of
3, a channel coding string to represent the input (from the layer ”0” and layer
”1”) of the last convolutional layer (layer ”2”) will be “101-011”.

3.2.2. Layer Coding280

Channel coding works well when the scale of the model is small. When the
number of the layers and the growth rate are large, the length of the string for
the whole model becomes very long and difficult to train. For a model with
Ninit = 24, C = 12 and G = 12, when the number of blocks is 3 (N = 3), the
length of the binary string for the first block, calculated from Eq. (1), will be
1080. An effective way to reduce the length of the binary string is “bit-sharing”,
which is referred to as “Layer coding” in this paper. In layer coding, each bit
represents the status of the channels from the same convolutional layer. The
length of the layer coding can be determined by

Llayer = 1 + (1 + 1) + (1 + 2) + · · ·+
(1 + (C − 1))

=
C(C + 1)

2
,

(2)

9

Genetic process of structure evolution

I: initial population
T: The number of generations to conduct evolving process
P: parent population is denoted

Weight Initialization
Fully train the baseline (i.e. DenseNet) on the reference dataset D
Individual Initialization
(1) Generate individuals in I via B(0.5)
(2) Partially train and evaluate the individuals on D
for i in range(T):

P = []
for ii in range(length(I)):

Random select S individuals from I
Select the best individual, and save it into P

Crossover
for iii in range(length(I)/2):

Conduct crossover for P[iii] and P[iii+ 1] with Pc and Pbc

Mutation
for iiii in range(length(I)):

Conduct mutation for P[iiii] with Pm and Pbm

Evaluation
Evaluate P on D
Best Selection
Save and store the best individual in the generation i

Algorithm 1: A Python style pseudocode of the genetic process in our
proposed method. The corresponding flowchart is shown in Figure 3.

where C is the number of convolutional layers in the block.
The layer coding above can significantly reduce the training difficulty, how-

ever, it only fits to a model whose layer depth is the magnitude of the growth
rate (ignoring the initial filter size). Taking the same model in Fig. 2 for exam-
ple, if we apply layer coding to the third layer, the length will become only 1/3285

of the channel coding if represented as “0-1”.
Although channel coding is more flexible, the length of its string is limited

by the fixed growth rate and will increase the training difficulty under limited
training steps. On the other hand, the model generated by layer coding can
support arbitrary growth rates according to the scale of the dataset. Experi-290

mental results in Section 4 indicate that channel coding leads to slightly higher
accuracy than the layer coding on the MNIST dataset but performs worse when
transferred to the CIFAR-10 dataset. Thus, to balance the computational cost
and the accuracy, we will apply the layer coding method to code our model.

3.3. GA-based structure evolution295

The genetic process for evolving the architecture of the model is given in
Algorithm 1. In the Weight initialization step, after pre-training the baseline
model, weights will be initialized using the values derived from the baseline
model as detailed in Section 3.4. As the possible values of each bit in the

10

Figure 3: Flowchart of the architecture optimization process using genetic algorithm. The
number of layers in this example is 3. As a result, the length of genotype, encoded using layer
coding, is 6. Bits presenting different layers are sequentially separated by ”-”. Take the network
encoded with ”1-10-111” for example, the first two layers use the initial feature map as the
input; both the initial feature maps and the outputs of the first two layers are used as the input
for the third layer. The genetic algorithm consists of three operators: tournament selection (S =
3), crossover and mutation. Bits updated by crossover and mutation are highlighted by bold in
the figure. At the end of the process, the architecture with the best performance is chosen as the
final output.

binary string are ’0’ and ’1’, we randomly initialize each bit using the Bernoulli300

distribution with a probability of 0.5, i.e. B(0.5). The fitness value for each
“individual” in the first generation is the classification accuracy of the model on
the validation dataset D after fine-tuning of training. The number of individuals,
i.e. “population size” I, in the first generation will remain the same during the
following iterations. The evolving process will conduct T generations. Following305

the suggestions in [13], we assign three evolutionary operations to evolve the
architecture of the model: selection, crossover and mutation.

For the selection operation, we use tournament selection [31] as it is com-
monly used in similar applications [10, 13]. After that, in the crossover part, bits
from different individuals but at the same position in the string are randomly310

“swapped”. The probability of crossover for each pair is PC and the probability
of crossover of a bit is denoted as PbC . During crossover, the structures of a
pair are modified simultaneously, and we conduct mutation to bring more vari-
ance to the structure. The probability of mutation for each pair is PM and the
probability of mutation of a bit is PbM . To avoid overfitting, we automatically315

flip the first and the last bits to “1” rather than discarding the layer as did in
[10], [13]. Experimental results in [10] indicates that, without this constraint,
the model generated on the CIFAR-10 has fewer layers. However, when apply-
ing on the CIFAR-100 dataset, the generated structure becomes suboptimal.
As a result, the number of layers should not be stabilized during the evolution320

process.

3.4. Pretrained Weight-inheritance based Individual Training Strategy

After the structure evolution, some “individuals” need to be retrained to
determine the fitness value. Using the approach, which is partially trained from

11

scratch [30], is hard to converge the weights to the global optimal, causing under-
estimation or overestimation of the model. Meanwhile, the fully trained method
[13] has an extremely high computational cost and takes too long to converge. In
the original weight inheritance from partially training method [10, 30], weights
inherit their values from the last update and are reused during the training in-
stead of initializing from scratch, generating a well-performed model structure.
The original weight inheritance method [10] guarantees that reused weights are
actually fully trained, without being constrained by the limited training steps of
each generation. However, this strategy assumes that the model takes the resid-
ual structure as the baseline without implementing a concatenation operation.
In a residual structure, the output can be interpreted by

Xn+1 = F (Xn)n + Xn, (3)

where Xn is the input of the nth layer, F (∗)n is the convolution operation of layer
n which may contain two convolution sublayers with a batch normalization and
ReLU connected after each of those [7], or three convolutional sublayers known
as the “bottleneck” structure [7]. In a densely connected structure, the output
can be given as

Xn+1 = F ([Xn, Xn−1, . . . , X1])n, (4)

where [Xn, Xn−1, . . . , X1] is the concatenated inputs from all former layers of
the layer n.

As seen in ResNet, the convolutional operation minimizes the residual error325

between the input and the output, hence its magnitude is usually very small.
As suggested in Veit et al. [9], the performance of the ResNet will not be
significantly affected when removing several layers. Thus, the modification of
the weights in a layer only slightly affects the outputs of the following layers and
can be easily fine-tuned by a few training steps. However, in a densely connected330

structure, the output of a layer will be connected as part of the input to all the
following layers, which has a direct effect on. The modification of a layer in
a densely connected structure will strongly affect the structure of the model,
leading to possible oscillation of the optimization process. Experimental results
in Section 4 shows that the performance of the densely-connected model trained335

using the original weight inheritance strategy is almost equivalent to that trained
from scratch. The fitness values of individuals oscillate with a small margin
between generations. On the other hand, the original weight inheritance method
must record all the latest trained variables regardless of whether they will be
reused or not, which is flexible for models without a predefined framework.340

However, in our training pipeline, the total number of variables is fixed, and the
framework is predefined. Recalling the weights and reformatting the structure
each time when the training starts is inefficient and unnecessary.

 To tackle this issue, we propose a pretrained weight inheritance strategy to
345 train each “individual”. Before the evolutionary procedure starts, we first set all
 bits on the genotype string to one as the baseline and fully train the baseline.
 The length of the model is fixed, and its growth rate remains the same during the
 procedure, the structure of which is the same as the plain DenseNet. When

12

the evolutionary procedure starts, the weights from each “individual” will be
350 initialized using the values from the well-trained baseline instead of from
scratch.

Each “individual” will be fine-tuned for several epochs to optimize the fitness
value, i.e. each “individual” is partially trained. All fine-tuned weights will not
be inherited by the next generation, and the weights of the next generation will
be initialized using the values from the baseline as well. To achieve this, during

355 the fine-tuning procedure, the binary string will be partitioned back onto each
layer (when conducting evolutionary steps, binary strings from different layers
are concatenated together as discussed in Section 3.2.2) and act as a binary mask
for each channel of the input. For each filter, the forward-propagation process
and the back-propagation process are mathematically interpreted as follows:

Forward :

Xn
m
+1 =

D∑
bini × F (Xi, Ki

m)n

=

i{=1∑
Di=1

0,

F (Xi, Km
i)n, if bini = 1

if bini = 0
;

(5)

Backward :
∂Loss

∂Km
i

=
∂Loss

∂Xn+1
×

∂Xn+1

∂Km
i

=
∂Loss

∂Xn+1
× bini × ∂F (Xi, Ki

m)n

=

{
∂Loss
∂Xn+1

×∂F (Xi, Ki
m)n, if bini = 1

0, if bini = 0
;

(6)

where Xm
n+1 denotes the mth channel of the input for the (n + 1)th layer; D360

is the depth of the input X; bini denotes the binary bit of the ith channel of X
(channels generated by the same layer will have the same bit value, as described
in Section 3.2.2); Km

i denotes the mth channel of the kernel and F (∗)n denotes
the convolutional operation of the layer n.

Let the size of the input X of a layer be 32 × 32 × 3, it can be generated by365

three convolutional layers beforehand, and the size of the baseline kernel (de-
noted as K) of the layer is 3×3×3×24. The length of the corresponding binary
string will be 3. If the string is “1−1−0”, it is obvious that the first two channels
of each filter can be trained using the back-propagation algorithm. However,
the last channel of each filter is excluded from both the forward propagation370

and the backpropagation as its input is an all-zero feature map.

13

4. Experimental Results and Discussions

4.1. Datasets and pre-processing

4.1.1. MNIST

The MNIST [3] is a handwritten digit dataset for recognition tasks of digits375

from 0 to 9, which contains 60,000 images for training and 10,000 for testing. As
the number of the epochs for fully training is small, we do not split a validation
dataset during the training. We do not apply any data augmentation or pre-
processing during the training of this dataset in order to reproduce consistent
conditions to other approaches.380

4.1.2. CIFAR-10 and CIFAR-100

The CIFAR-10 and CIFAR-100 datasets [18] contain colored natural images
in 10 classes and 100 classes, respectively. Both datasets have 50,000 images
for training and 10,000 for testing, and each image has 32 × 32 pixels. We split
5,000 images from the 50,000 training images as a validation dataset and keep385

the remaining 45,000 images for training. The data augmentation method for
the two CIFAR datasets is the same as used in [7], [8], [32], where 4 pixels are
padded on each side of the original image or its horizontal flip. A 32×32 image
is cropped randomly from the padded image. When testing, the input images
remain the same as the original without padding and randomly cropping. For390

pre-processing, pixel-based normalization is used to normalize the image using
the channel means and the channel standard deviations. For a fair comparison
with other methods [8, 13, 30, 17], we use the CIFAR-10 training dataset as
the reference dataset (in the genetic process) to generate the structure of model
and the benchmark dataset (in the model evaluation process). After that, we395

fix the structure and use the CIFAR-10 and CIFAR-100 datasets as benchmark
datasets to evaluate the performance of the learned model as in [8, 25, 32]. For
the CIFAR-10 dataset, we do not train the model on the validation dataset
when it acts as a reference dataset. When it acts as a benchmark dataset, we
train our model on the validation dataset only at the final epoch as in [8].400

4.1.3. Street View House Numbers (SVHN)

Similar to the CIFAR-10 dataset, the SVHN dataset [33] is also an image
dataset of 0 − 9 digits with a size of 32 × 32 pixels each. In addition to 73,257
training images and 26,032 testing images, there are 531,131 images for extra
training. We only use the SVHN dataset as the benchmark dataset. For a fair405

comparison with other models, we do not apply any data augmentation step
and train the model using all images from the training dataset and the extra
training dataset except for 6,000 images used as a validation dataset as did in
[8, 25]. We only normalize the range of the images from [0, 255] to [0, 1] as
data pre-processing [8, 34]. We load the weights of the model with the lowest410

validation error during training and evaluate it on the test dataset.

14

Figure 4: Test accuracy (%) of the model on the MNIST dataset using the two coding methods.
The genetic process conducts 30 generations for both methods separately and records the
maximum, minimum and average test accuracy of each generation. It is obvious to see that
the results trained using channel coding method (denoted by dash red) outperforms the layer
coding method-based training (denoted by dash blue) by 0.13%.

4.1.4. ImageNet

The ILSVRC 2012 classification dataset [5] is a large-scale image dataset.
which consists of 1.2 million training images and 50,000 validation images, uni-
formly distributed in 1,000 classes. We adopt the augmentation method as used415

in [7, 8], where the per-pixel normalized image is resized without modifying the
width/height ratio as scale augmentation. A 224 × 224 sub-image is randomly
cropped from the scaled image or its horizontal flip with color augmentation.
We only apply the data augmentation during training. As most of methods
evaluate their results on the validation set [6, 7, 8, 15, 35, 36], we also test420

our model on the validation set in the same way, and report the single-crop
classification errors.

4.2. Channel Coding vs Layer Coding

To fairly compare the performances between the channel coding and the
layer coding methods, we generate the structure of the model using the MNIST425

dataset and evaluate the results on both the MNIST and CIFAR10 datasets.
We assign 3 blocks in the model, i.e. N = 3, and 8 convolutional layers without
a bottleneck structure in each block. The number of outputs of each convolu-
tional layer is 8, i.e. G = 8. The depth of the input image is expanded to 16
using a 3-by-3 convolutional layer before entering the first block. The model430

is completed with a global average pooling, a 10-output fully-connected layer,
and the softmax output. As the MNIST is easy to train, we did not apply any
weight inheritance strategy, and every individual is fully trained from scratch.

15

Table 1: Relationship between the Number of Generation and the Test Accuracy on CIFAR-10

Test accuracy of the fully trained best structure(%)

#Generations Channel coding Layer coding

10 90.40 90.30

20 90.87 91.10

30 91.23 92.63

50 92.69 92.60

Training implementation. We use a weight decay of 0.0001 and optimize
the model using Stochastic Gradient Descent (SGD) with a momentum of 0.9.435

Weights are initialized by using the method in [8]. These models are trained
with a batch size of 64 on a single GTX1080Ti GPU, where each “individual”
is trained by 20 epochs on the MNIST dataset. We start with a learning rate
of 0.1, then divide it by 10 at 5 epochs, 10 epochs and 15 epochs. When the
generated architecture of the model is transferred to the CIFAR-10 dataset, we440

fix the structure and fully train the model from scratch. Following the settings
on [8], the model is trained by 300 epochs on the CIFAR10 dataset and the
learning rate is initialized as 0.1, divided by 10 at 150 and 225 epochs with the
same weight decay and batch size as used on the MNIST dataset.

Genetic hyperparameters. Following the parameter setting used in [10],445

[13], we set the population size as I = 20 and the number of generations T = 30.
The sample size of tournament selection is S = 3. The probability of the pair-
wise crossover and the bit-wise crossover for each “individual” are PC = 0.2 and
PbC = 0.2, respectively. The probability of the individual mutation and the bit
mutation are PM = 0.8 and PbM = 0.05, respectively. It takes about 3.2 GPU450

days to conduct each genetic process, and the experimental results are given in
Fig. 4.

A similar setting for the number of generations and the population size can
be found in [10] and [13]. In [13], the number of population is 20 and the
number of generations is 50. The generated model has no specific gains after 30455

generations. In [10], the method with a population size of 2 has the best result
at an early stage. For our model, when the number of generations is set to 50,
the best model is found from the 24th generation as shown in Fig. 5.

This is because: 1). Both MNIST and CIFAR are small datasets, for which it
is easy to find the optimal models; 2). Compared with manually designed models460

such as the DenseNet and ResNet with over 100 layers, the model sizes of self-
structure generation from [10], [13] and our proposed approach are relatively
small, i.e. around 20-30.

We fully train the model with the best structure on the CIFAR-10 dataset,
where an accuracy of 88.3% and 92.3% are achieved from the channel-coding465

based model and layer-coding based model, respectively. When tested on the
reference dataset (MNIST), channel coding slightly outperforms layer coding
but underperforms the layer coding by a large margin on transfer learning. We

16

Figure 5: Test accuracy (%) of the model on the CIFAR-10 dataset using our training pipeline
given in Section 3 with the genetic process conducted over 30 generations. We denote the
baseline (Generation 0: 90.2%) using the red dash line and highlight the key generation
IDs using a black box. With the performance comparable to the baseline at Generation 10
(90.2%), the model outperforms the baseline starting from Generation 20 (90.5%) and
achieves the best among all individuals at Generation 24 (90.8%).

also conduct a similar experiment on the CIFAR-10 dataset for both methods,
and the results are shown in Table 1. It turns out that the channel coding470

method requires 66% more generations than the layer coding to reach the same
test accuracy (92.6%).

In summary, the channel coding method is capable of generating a more
competitive model than the layer coding as long as the number of generations
is sufficiently large, while layer coding performs better at transfer learning. To475

balance the training cost and the performance of transfer learning, layer coding
is applied in all the following experiments.

4.3. Weight Inheritance Methods

In this section, we compare the difference between the original weight in-
heritance in [10] and our proposed pretrained weight inheritance strategy. We480

use the layer coding method to derive the architecture of the model during the
genetic process. The baseline structure of the model is the same as discussed
in Section 4.2 with the same weight decay. We use the CIFAR-10 dataset as
the reference dataset D and implement the Adam optimizer [37] in a weighted
training pipeline. For the original method, each “individual” is trained around485

30 epochs with a fixed learning rate of 0.01 and evaluated on the validation
dataset. After the evolutionary steps, each model inherits the weights trained
from the last generation. For our pretrained weight inheritance method, we first

17

Figure 6: Comparison of test accuracy on the CIFAR-10 dataset using the original (blue line)
and our (red line) weight inheritance methods.

fully train the model with all bits set to 1 in the binary string under the same
learning rate fixed at 0.01, which makes it similar to the DenseNet. All weights490

are stored in a “checkpoint model”. During the fine-tuning procedure, each “in-
dividual” is trained for 30 epochs, which is the same as the original method. We
also divide the learning rate by 10, i.e. 0.001, to avoid the weights oscillating
between the local minima and the global minima. The genetic hyperparameters
are the same as in Section 4.2 except that the number of generations is reduced495

to 10, i.e. T = 10. Each of the genetic training procedure takes about 3.2 days
on a single GTX1080Ti.

Experimental results are summarized in Fig. 6. As seen, the increment of
the test accuracy from the validation dataset is insignificant during the training
process when using the original weights inheritance method in [10]. The weights500

of the model can inherit very limited information of the last generation. The
reason behind is the structural difference of the models, where the original
weight inheritance method is designed for the residual structure while our model
is for the densely connected structures. In addition, our pretrained weight
inheritance method is more efficient. The weights can therefore inherit more505

information from the last generation using our method, and the model can even
reach the same test accuracy as the baseline. The experiments in Section 4.4
indicate that if the model is evolved by more generations, the self-structure-
generating model can even outperform the baseline but using fewer parameters.

510

18

Table 2: Architecture of the Model
Block Layer ID Output points to

1

0 1, 2, 3, 6, 8, 9
1 2, 3, 4, 5, 7, 9, 10
2 6, 8, 9
3 5, 6, 8, 9
4 6, 8, 10
5 8, 9, 10
6 10
7 10
8 -
9 -

Transition 1

2

0 1, 2, 6, 7, 8, 10
1 2, 5, 6, 9
2 -
3 7
4 7, 10
5 6, 9, 10
6 7, 9
7 -
8 -
9 -

Transition 2

3

0 1, 3, 4, 5, 6, 7, 8, 9, 10
1 4, 7
2 3, 4, 5, 7, 8, 9, 10
3 5, 7, 9, 10
4 5, 6, 7
5 6, 10
6 7
7 -
8 9
9 10

Global Average Pooling

FC-Softmax

4.4. Generating the Model Architecture on the CIFAR-10 Dataset

In the previous two sections, we discussed the coding methods and the in-
dividual weight optimization strategies. In this section we will detail the final
training pipeline of the proposed GA based self-generating structure method.
Following the work in [10], [12], [13], we assign the CIFAR-10 dataset as the515

reference dataset D. For the baseline design, we slightly upscale the number of
layers of the model for transfer learning on different scales of the datasets while

19

downscaling the number of the growth rate to improve the training speed. As
a result, we assign 10 convolutional layers in each block without the bottleneck
structure and set the growth rate to G = 4. Thus, the total length of the binary520

string is 162. The depth of the initial feature map is 32. Other settings are
the same as that in the per-training weight inheritance strategy as discussed in
Section 4.3.

Evolutionary results of each generation are presented in Fig. 5, where the
test accuracy of the baseline is 90.23%. After 10 generations, our derived model525

reaches a similar accuracy as the baseline. After 20 generations, our model
outperforms the baseline, achieving an accuracy of 90.8% on the validation
dataset at the 24th generation. Individuals in the later generations perform
worse than the former generations due to the high individual mutation rate
PM . A high mutation rate brings benefits of generating a high-performance530

model but fails to guarantee the mutation variance. We display the details of
the best individual in Table 2, which summarizes the structure of the model and
layer connections in each block. The model generated using the GA consists of
three blocks with 10 convolutional layers in each block. At the end of the first
two blocks, a transition layer is connected to fuse the feature map. The third535

block consists of a global average pooling layer and a fully connected layer to
make the final prediction. Layer id ”0” indicates the input of the block and
the “Output points to” column denotes the layers to which the output of the
current layer will be fed. ”-” means that the output of the current layer will
only be fed to the transition layer. As the output of the last convolutional layer540

can only be fed to the transition layer, we omit the last layer in the table.
Due to limited page space, we only present the first block, i.e. the most

densely connected one in Fig. 7. As seen, the connection path of the model
is sparser than the baseline (DenseNet). The feature maps from the first three
layers are frequently reused in each block, and the reuse frequency of each layer’s545

output is reduced with the increasing layer id. This validates the importance
of the shallow feature map in the final classification. This phenomenon is also
found in many manually designed CNN models [7], [8].

4.5. Effect of GA

550 In this subsection, an ablation study is conducted to verify the effect of the
evolutionary operators, i.e. tournament selection, crossover and mutation by
respectively disabling these three operators individually. When the tournament
selection is disabled, the mechanism will randomly select samples from the par-ent
generation as suggested in large-scale evolution [10] and the experimental
555 results are reported in Figure 8 (a). As seen, with the disabled tournament
selection, the best mean accuracy of generations is decreased by 0.65%, because the
sub-optimal models are not excluded at an early stage. The similar finding
is also reported in [10, 38], where the overall performance degrades when the
tournament selection is skipped. When the crossover is disabled, the proposed
560 model is still able to achieve a comparable accuracy, however, with more gen-
erations being searched. This indicates that the crossover brings benefits of reducing
the searching cost for efficiency. Without the mutation method, the

20

Figure 7: Visualization of the first block. Each numbered circle denotes a convolutional
layer. Connections between layers are expressed by colour arrows. ”Conv1” denotes the first
convolutional layer before the first block.

classification accuracy drops by 0.22%, due to limited exploration of the archi-
tecture, i.e. variety of the generated model space. Moreover, we notice that the

565 mean accuracy of the generation is found decreasing, when all three operators
are disabled. We deduce that this is caused by the reduction of generation vari-
ety, because the well-performed individuals may be randomly discarded during
random selection. This further validates the effectiveness of mutation.

As shown in some previous works [10, 13, 38], the performance of these
570 searching methods is insensitive to the population size, the crossover rate and the
probability of crossover in terms of each bit (P bC). As a different mutation operation
is applied in this paper, we specifically investigate the impact of the mutation rate (P
bM) to our proposed method below. We vary the P bM and keep other evolutionary
hyperparameters the same, and the results are shown in
575 Figure 8 (b). At first, the mean accuracy drops as the mutation rate increases.

21

(a) (b)

580

Figure 8: Ablation studies of evolutionary operators (a) and the probability of mutation in
terms of each bit (P bM). The best performance with respect to each test is highlighted by
dot, with the corresponding value shown in the legend.

When the mutation rate exceeds 0.5, however, the mean accuracy starts to
increase. Specifically, when P bM < 0.1, the maximum decrease is only 0.03, which
verifies that the proposed method is insensitive to the mutation rate, especially
when it is below 0.1. Across this ablation study, it takes more than 20 GPU days
to search on a single evolutionary hyperparameter, which is not computational
efficiency. One future work is to further improve the efficiency of the evolutionary
hyperparameter searching.

4.6. Classification Test on Multiple Datasets

With the selected best structure, we also test it on multiple benchmark
datasets. Apart from structure with a the single convolutional layer, we also585

consider the “bottleneck” structure in our model, where the number of layers is
either 34 (without bottleneck) or 64 (with bottleneck). We denote our geneti-
cally generated densely connected model as “GADNet” for the non-bottleneck
structure and “GADNet-BC” for the bottleneck structure. We will compare
our results with other manually designed models, especially the variance of the590

ResNet and the DenseNet, as well as some self-structure-generating approaches.

4.6.1. Test on the CIFAR-10, CIFAR-100 and SVHN datasets

Experimental results, shown in Table 3, indicate that our model has ad-
vantages over manually designed and other self-structure-generating models in595

terms of the accuracy, transfer capability, parameter saving and efficiency of
feature reuse as explained below.

Accuracy. Our best model with 64 layers only lags the state-of-the-art
method (DenseNet, L = 169, G = 40) by no more than 0.6% on the CIFAR-10
and SVHN datasets and no more than 2% on the CIFAR-100 dataset. This is600

due to the large margin of the length between models (169 layers for the best

22

Table 3: Evaluation Results on Multiple Datasets

Model #Params (M) #Layers C10 C100 SVHN

Manually designed methods

FractalNet [32] 38.6 21 4.60 23.73 1.87

ResNet by [25] 1.7 110 6.41 27.22 2.01

with Stochastic Depth 1.7 110 5.23 24.58 1.75

Wide ResNet [34] 36.5 28 4.17 20.50 -

With Drouput 2.7 16 - - 1.64

DenseNet [8] 1.0 40 5.24 24.42 1.79

DenseNet (K=12) 4.0 100 4.10 20.20 1.67

DenseNet (K=24) 27.2 100 3.74 19.25 1.59

DenseNet-BC (K=40) 25.6 190 3.46 17.18 -

Evolutionary algorithm methods

Large-scale
Evolution-C10 [10]

5.4 - 5.40 - -

Large-scale
Evolution-C100

40.4 - - 23.00 -

CGP-CNN [27] 3.9 - 23.48 - -

CGP-CNN (ResSet) 0.8 - 23.47 - -

GeNet#1 [13] - 12 7.19 29.03 1.99

GeNet#2 - 12 7.10 29.05 1.97

Our methods

GADNet (G=12)* 0.7 34 6.03 26.00 1.81

GADNet (G=12) 0.6 34 5.71 25.50 1.74

GADNet (G=32)* 4.8 34 4.39 21.83 1.65

GADNet (G=32) 3.9 34 4.35 21.10 1.61

GADNet-BC (G=32)* 2.4 64 4.06 21.00 1.71

GADNet-BC (G=32) 2.0 64 4.02 20.50 1.70

(”*” indicates the baseline of the model)

DenseNet, which is 2.6 times longer than our model), as our model surpasses
the baseline by a slight margin. It is conceivable that our model can reach a
more comparable result by extending the length of the model. Apart from the
DenseNet, our results on the CIFAR-10 dataset surpass the FractalNet with605

drop-path regularization [32] and wide ResNet by 15% and 5% lower of accu-
racy, respectively. On the CIFAR-100 and SVHN datasets, our model produces
similar results to the wide ResNet.

23

Figure 9: The number of parameters (M) and the corresponding test accuracy (%) of each
model on the CIFAR-10 dataset. Our models are labelled using large squares, while the
baseline models are marked as large triangular. Other models are denoted by dots.

Transfer capability. Most of the self-structure-generating methods cannot
610 generate robust models that can yield comparable results on different recogni-

tion tasks or different scales of tasks, i.e. poor transfer capability. Large scale
evolution methods [10] and GeNet [13] can generate comparable results in mul-
tiple datasets but still lag the manually designed methods by a small margin.
However, our proposed method has outperformed most of the manually designed

615 models and can be easily implemented on different tasks. The experiments de-
scribed in Section 4.6.2 have also validated that our model has a high flexibility
and can cope with a large-scale dataset such as the ImageNet.

Saving of parameters and computational cost. We plot the relation-
ship between the number of the parameters and the test accuracy on the CIFAR-
10 dataset in Fig. 9. As seen, our method outperforms state-of-the-art manually620

designed models, while using significantly fewer parameters and less computa-
tion time to achieve the comparable results. When comparing the parameter
requirement with the densely connection and the genetic connection, they show
a similar trend. For instance, our best model lags the best DenseNet by 0.5%
but with 92.2% fewer parameters. As the number of FLOPs (floating point625

operations) required is in proportion to the number of parameters, models gen-
erated using the GAs can, as a result, significantly reduce the computational
cost, while achieving comparable classification accuracy. We also measure the
evaluation times (forward propagation only) on the CIFAR-10 dataset for both
the DenseNet and our method, as shown in Fig. 10. As seen, under a similar630

test accuracy, our method only requires 1/3 of the computational time than
the DenseNet. Compared with the best model of DenseNet, i.e. DenseNet-
BC190 (K=40), our model GADNet-BC64(G=32) lags 0.5% on accuracy but
improves the evaluation speed by about 6 times, directly benefitting from the

24

Figure 10: Comparison of the evaluation times (S) of our method (marked by squares)
and the DenseNet (labelled by triangles). Evaluation times are measured on the CIFAR-
10 test dataset, where only forward propagation is conducted. We run all models on a single
GTX1080ti during the time measurement.

(a)

(b)

Figure 11: The average absolute filter weights of convolutional layers in (a) DenseNet34 (G
= 12) and (b) GADNet34 (G = 12), trained on the CIFAR-10 dataset. The colour patch
(s, t) denotes the average L1 normalized (by number of input depth) weights in the layer “t”
which takes input from the layer “s” in the same block. The last column of each block denotes
the transition layer for the first two blocks and the fully connected layer for the last block
respectively.

fewer parameters of the model.635

25

High efficiency of reused features. Following the measurement method
in [8], we measure the efficiency of reused features in each convolutional layer
using the absolute average weights of the input channels. A higher value in
the layer l whose input is from the layer s denotes that the feature map from
the layer s is strongly used in layer l. In Fig. 11, we plot the heat maps of a640

34-layer model using both densely connected (baseline, shown in (11a)) and the
genetic connected (our method, shown in (11b)) methods. Compared with the
densely connected method, our method maintains almost all the strong features
whilst discarding the weakly used features from the input of each convolutional
layer. This has indicated that the GA improves the efficiency of feature reuse645

significantly. There are also few “cold zones” in the heat map of our method,
possibly due to the hyperparameter settings of the GA, which is left for future
investigation.

4.6.2. Test on large-scale dataset of the ImageNet

We also evaluate our model on the ImageNet by upscaling its depth and650

width. As the size of the images in ImageNet is far larger than the CIFAR and
SVHN datasets, we down sample the feature maps of the model as in [4, 6, 7, 8,
13] by connecting a densely connected block with 6 bottleneck layers [8] at the
input end of our model. As a result, the first block is densely connected and the
following three are genetically connected. We assign different growth rates in655

each block, which are 32, 32, 64 and 128 for each of the four blocks, respectively.
Experimental results are given in Table 4. As seen, our genetic connection
model, denoted as ”GADNet-expand”, can yield comparable results to manually
designed methods as well as other self-structure-generating approaches. This has
validated that our model is robust even with the scale variance, while most of660

the self-generating structure methods may fail on large scale classification tasks
such as ImageNet.

As shown in Table 4, the proposed method has remarkably reduced the
floating-point operations per second (FLOPs), when compared with state-of-

665 the-art methods. However, as presented in [20], the computational cost from
the ordinary convolution layer is still too large for mobile and embedded vision
applications. To validate the performance for those resource-constrained envi-
ronments, following the works in [20, 36, 39, 15], we replace the convolution
layers in the proposed GADNet by separable convolution layers (with a bot-

670 tleneck structure), which is verified as a low-cost operation [20]. Meanwhile,
we discard the last 5 layers for each GA-searched block to further reduce the
computational cost. We denote the low-cost implementation of the proposed
method as ”GADNet-mobile”. As a result, the number of parameters is further
reduced by 14%, whilst the FLOPs have been significantly reduced by 84%.

675 Meanwhile, the top-1 error is only slightly degraded from 27.35% to 28.03%.

26

We also compared our proposed approach with other manually designed light-weight
models, such as SqueezeNet [19], MobileNet v2 [20] and ShuffleNet [21]. With
additional 0.07-0.27 million FLOPs, the proposed GADNet-mobile leads by 4.37% on
average. The existing manually designed methods optimize 680 the deep learning
structures by either optimizing the convolutional operation

Table 4: Validation Error Rate on ImageNet

Model #Params (M) FLOPs (G) Top-1 Err. Top-5 Err.

State-of-the-art methods

AlexNet [4] 60 0.77 43.45 20.91

VGG-19 [6] 144 19.77 27.62 9.12

ResNet-18 [7] 11.7 1.82 30.24 10.92

ResNet-34 [7] 21.8 3.68 26.70 8.58

ResNet-152 [7] 60.2 11.61 21.69 5.94

DenseNet-121 [8] 7.2 2.90 25.35 7.83

DenseNet-169 [8] 13.0 3.44 24.00 7.00

Manually designed light-weight methods

SqueezeNet [19] 1.2 0.35 41.80 19.30

MobileNet v2 [20] 3.4 0.30 28.12 9.71

ShuffleNet v2 [21] 2.3 0.15 30.64 11.68

Self-structure-generating methods

NASNet-A (4@1056) [39] 5.3 0.56 26.0 8.4

GeNet [13] 30.6 - 27.87 9.74

LEMONADE [36] 6.0 0.60 28.3 9.6

SNAS [29] 4.3 0.52 27.3 9.2

DARTS [15] 4.7 0.57 26.7 8.7

FBNet-C [28] 5.5 0.37 25.1 -

MnasNet-A3 [14] 5.2 0.43 24.3 6.7

AmoebaNet-A3 [35] 469 104.00 17.1 3.4

Proposed methods

GADNet-expand 5.0 2.70 27.35 8.91

GADNet-mobile 4.3 0.42 28.03 9.51

685

690

(MobileNet, ShuffleNet) or connecting additional short-cut (SqueezeNet), which
are all local optimization methods. On the contrary, our method is a form of
global optimization as it optimizes the connection routine across the whole net-
work. The results in Table 4 have clearly validated that the global optimization is
more efficient than the local optimization. Nevertheless, our method did not
optimize the convolutional structure. We deduce that a combination of both
global and local optimization methods can further improve the optimization
performance, and this will also be part of our future work for investigation.

4.6.3. NAS vs. GA

Specifically, we compare our GA based optimization method with Neural
Architecture Search (NAS). Most existing NAS methods [15, 29, 35, 39] re-

27

Table 5: Searching cost of NAS and the proposed method

Model #Params (M)
Searching Cost

(GPU days)
C10 Err. (%)

NAS methods

MetaQNN [11] - 80-100 7.02

NAS v3 [12] 7.1 - 4.47

Progressive NAS [40] 3.2 2000 3.63

NASNet-A [39] 3.3 2000 3.41

AmoebaNet [35] 3.2 3150 3.34

SNAS ∗ [29] 2.9 2.7 3.70

DARTS ∗∗ [15] 3.9 5 2.95

The Proposed Method

GADNet-EXT 2.0
3.2

3.34

GADNet-EXT+ 5.3 2.91

∗ Result is generated using: ”https://github.com/xdhhh/Stochastic

neural architecture search”
∗∗Result is generated using the official code: ”https://github.com

/quark0/darts”

port their results based on additional enhancements such as cutout [42], path
dropout [39] and auxiliary towers [15]. For a fair comparison, we also adopt
these enhancements on the ”GADNet-BC (G=32)”and the enhanced model is
695 denoted as ”GADNet-EXT” in Table 5. Results in Table 5 indicate that the
model derived by the proposed method reaches comparable results as those from
NAS, but with fewer parameters. For example, the proposed method achieves a
comparable error rate as the AmoebaNet, but with a reduction of 37.5% on pa-
rameters. A similar conclusion can be seen when compared on the ImageNet, as
700 shown in Table 4. On the other hand, the proposed method aims to improve the
computational efficiency of the DenseNet, in which NAS is designed for improv-ing
the accuracy. We have also compared, as shown in Table 5, the searching cost
required by NAS and the proposed GA method. As can be seen, some NAS methods
need an RNN to optimize the structure of CNN, which naturally re-
705 quires more GPUs than GA. Some of the NAS methods even require more than
1000 GPU days [39, 40], raising the impractical difficulty of implementation,
particularly in resource-constrained applications and research labs. Although
DARTS outperforms the proposed method by 0.39%, we have significantly re-duced
the searching cost by at least 36%. As the performance of deep learning

28

Table 6: Comparison with other neuroevolution methods

Methods Searching Spaces
Evolutionary

Operators

Searching Cost

(GPU days)

C10 Err.

(%)
Pros/Cons

Genetic

CNN [13]

Layer connections

(add.)

1. Fitness proportionate

selection

2. Bit crossover

3. Bit mutation

17 7.10

Pros
1. One search for multiple datasets
2. Easy to implement

Cons
Constrained performance as the
network connection only relies on
addition

Large-scale

evolution [10]

1. Layer connection

(add. & concat.)

2. Cell Structure ∗

(layer type,

kernel parameters)

3. Hyperparameters

1. Tournament selection

2. Mutation from

predefined set

250 5.40

Pros
Both network architecture and the cell
architectures are optimized

Cons
The large searching space increases the
searching cost

CoDeepNEAT

[17]

1. Crossover

2. Mutation
- 7.30

Pros
Reaching competitive error rate with
existing ones, while using low searching
cost (as claimed)

Cons

Fixed network architecture and the cell
structure at the same time cause
difficulty of the application on
large-scale datasets

Hierarchical

architecture

search [38]

1. Layer connection

(add. & concat.)

2. Cell Structure

(layer type)

1. Tournament selection

2. Mutation from

predefined set

300 3.75

Pros Promising results

Cons
The cell searching with 6 different
types of layers remarkably increases
the cost

Memetic

Evolution [41]

1. Layer connections

(add.)

1. Crossover

2. Gaussian mutation
0.08 27.3

Pros Extremely low searching cost

Cons

1. Low performance of searched model
2. Weights inherited from the last
generation may be not the best
architecture but the best-trained
model.

LEMONADE

[36]

1. Layer connection

(add. & concat.)

2. Cell Structure

1. Tournament selection

2. Network morphism
80 2.58

Pros
Promising performance on both speed
and accuracy

Cons
The layer connections searching is
asynchronous with cell searching,
causing additional searching cost.

GADNet

(proposed)

Layer connection

(concat.)

1. Tournament selection

2. Bit crossover

3. Bit mutation

3.2 2.91

Pros
1. Only one search for multiple
datasets
2. Low searching costend

Cons
1. Only the best model is selected.
2. The length of the architecture
requires manual input

∗ ”Cell” refers to the structure of subnet, which may be used by multiples to build the network, e.g. bottleneck is a cell for ResNet

710 models is closely related to its scale [6, 7, 8], to validate the robustness under
a larger scale, we upscale the proposed model by adding 10 densely connected
layers at the end of the third block. At the same time, we set the growth rate to
40, which is denoted as ”GADNet-EXT+” in Table 5. The results indicate that
by using more layers, the proposed method can achieve a similar performance

715 as DARTS, without increasing the searching cost. This again has validated the
superior performance of the proposed method in optimizing the structure of the
DenseNet.

On the other hand, NAS based approaches need adaptation and additional
training for testing on a large dataset such as the ImageNet. In contrast, our
proposed method does not need such adaptation and additional training when720

migrating from a small dataset to larger ones, where the scalability can help to
significantly save the computational cost.

29

4.6.4. Comparison with other neuroevolution-based methods

Neuroevolution algorithms have been widely applied in a variety of fields,
725 such as accelerating neural evolution 1, architecture design 2, improved train-

ing 3, parameter optimization 4, and hyper-parameter selection 5. In Table 6,
some typical neuroevolution methods for image classification are compared. As
can be seen, the proposed method outperforms most of existing neuroevolution
methods on the CIFAR-10, except for LEMONADE. The proposed GADNet

730 lags LEMONADE by 0.33% on the error rate. However, our method only con-

sumes 4% of the searching cost as LEMONADE does. This has verified that the
proposed method can achieve a promising result with a high searching ef-ficiency.
We deduce this is due to the application of the bit crossover, as well as the well-
designed search space. As presented in Section 4.5, the bit crossover

735 can help to reduce the number of generations, hence reducing the searching cost.
Meanwhile, the proposed method searches the network architectures based on
the well performing manually designed model, which has further reduced the
searching cost.

However, our method still has some limitations. First, it evolves the struc-
740 ture of the model with a fixed length. Although the computational cost is

significantly reduced compared with those without predefined lengths, the fixed
length also constrains the flexibility of the evolution, e.g. when being evaluated
under resource-limited condition, we have to manually assign the number of
layers on each searched block.

4.6.5. Further implementation details745

We set the batch size to 64 for all the datasets (CIFAR, SVHN and ImageNet)
and train each model using the stochastic gradient descent (SGD) optimizer
with a Nesterov momentum [43] of 0.9 without dampening. We fixed the weight
decay to 0.0001 on each dataset. The learning rate is initialized as 0.1. When
training on the CIFAR and SVHN datasets, the learning rate is divided by750

10 on 150 and 225 epochs and the training terminates at 300 epochs. When
training on the ImageNet, the learning rate is divided by 10 on 30 and 60 epochs
and the training stops at 90 epochs. When training on the SVHN dataset, we
add a dropout layer as in [8], [32], [34] and set the dropout rate to 0.2. All
experimental tests on the evaluation section are conducted using Pytorch [44].755

5. Conclusion

We have applied the GA to optimize the structure of the DenseNet. The
GA assigns a binary bit to each channel of the input to remove the redundant

1 http://www.jmlr.org/papers/v9/gomez08a.html
2 https://www.nature.com/articles/s42256-018-0006-z
3 https://dl.acm.org/doi/abs/10.1145/3205651.3208763
4 https://dl.acm.org/doi/abs/10.1145/2834892.2834896
5 https://dl.acm.org/doi/abs/10.1145/3071178.3071208

30

features from the feature map. We first propose two encoding methods which
enable the GA to evolve the structure of the model. Then we apply a sim-760

ple but effective genetic process containing selection, crossover and mutation.
Conventional evaluation methods, in which each “individual” is fully trained,
consumes extremely high computational resources and takes a very long time
for convergence. Previous work that optimizes the individual training by using
weight inheritance between generations, is restricted by the residual structure.765

Thus, in our proposed approach, a pretrained weight inheritance method can
not only reduce the individual training time, but also release the constraints of
the residual structure. Experimental results indicate that our model can reach
competitive classification accuracy and requires significantly fewer parameters.

Rather than generating structures from scratch, our method is built based770

on predefined constraints, which has significantly reduced the computational
cost and is capable of generating a well performing structure under limited
training resources. When tested on the CIFAR-10 dataset, our model saves
more than 90% of the parameters in comparison to the state-of-the-art models.
The comparable results from the ImageNet has validated that the proposed775

model is robust in both the variance and the scale of the classification tasks.
At the current stage, we only validate the proposed approach on CNN. In the
future, we will evaluate our model using other popular deep learning networks,
such as RNN and LSTM.

780 However, our method still has a few limitations. First, our method evolves
the structure of the model with a fixed length, of which the computational cost is
significantly reduced compared with those without predefined lengths. However,
the fixed length also constrains the flexibility of the evolution. Another drawback
is that the searching time on the evolutionary hyperparameters is

785 still too long, although the searching method is not sensitive to most of them,

e.g. population size and crossover rate. In the future works, we will further
optimize the searching pipeline in two aspects, i) Reducing the total searching
time by fusing the evolutionary hyperparameters into the searching procedure
and ii) Generating the structure of the model without the predefined length

790 while preserving the robustness of the model. iii) Jointly optimize the network
architecture and the block (cell) structure.

References

[1] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang,
G. Wang, J. Cai, et al., Recent advances in convolutional neural networks,
Pattern Recognition 77 (2018) 354–377.795

[2] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, B. Scholkopf, Support
vector machines, IEEE Intelligent Systems and Their Applications 13 (4)
(1998) 18–28.

[3] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., Gradient-based learning
applied to document recognition, Proc. of the IEEE 86 (11) (1998) 2278–800

2324.

31

[4] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with
deep convolutional neural networks, in: Advances in Neural Information
Processing Systems (ANIPS), 2012, pp. 1097–1105.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A805

large-scale hierarchical image database, in: Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2009, pp. 248–255.

[6] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-
scale image recognition, in: Int. Conf. on Learning Representations (ICLR),
2015.810

[7] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recogni-
tion, in: Proc. the IEEE conf. CVPR, 2016, pp. 770–778.

[8] G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, Densely con-
nected convolutional networks, in: Proc. the IEEE conf. CVPR, 2017, pp.
4700–4708.815

[9] A. Veit, M. J. Wilber, S. Belongie, Residual networks behave like ensembles
of relatively shallow networks, in: ANIPS, 2016, pp. 550–558.

[10] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le,
A. Kurakin, Large-scale evolution of image classifiers, in: Proc. the 34th
Int. Conf. on Machine Learning (ICML), Vol. 70, 2017, pp. 2902–2911.820

[11] B. Baker, O. Gupta, N. Naik, R. Raskar, Designing neural network ar-
chitectures using reinforcement learning, in: 5th Int. Conf. ICLR, Toulon,
France, April 24-26, 2017.

[12] B. Zoph, Q. V. Le, Neural architecture search with reinforcement learning,
in: 5th Int. Conf. ICLR, Toulon, France, April 24-26, 2017.825

[13] L. Xie, A. Yuille, Genetic cnn, in: Proc. the IEEE Int. Conf. on Computer
Vision (ICCV), 2017, pp. 1379–1388.

[14] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, Q. V. Le,
Mnasnet: Platform-aware neural architecture search for mobile, in: Proc.
the IEEE Conf. CVPR, 2019, pp. 2820–2828.830

[15] H. Liu, K. Simonyan, Y. Yang, DARTS: differentiable architecture search,
in: 7th Int. Conf. ICLR, New Orleans, LA, USA, May 6-9, 2019.

[16] T. Elsken, J. H. Metzen, F. Hutter, Neural architecture search: A survey,
Journal of Machine Learning Research 20 (55) (2019) 1–21.

[17] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,835

B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, et al., Evolving deep neural
networks, in: Artificial Intelligence in the Age of Neural Networks and
Brain Computing, Elsevier, 2019, pp. 293–312.

32

[18] A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny
images, Tech. rep., Citeseer (2009).840

[19] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
K. Keutzer, Squeezenet: Alexnet-level accuracy with 50x fewer parame-
ters and¡ 0.5 mb model size, arXiv preprint arXiv:1602.07360 (2016).

[20] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv2:
Inverted residuals and linear bottlenecks, in: Proc. the IEEE Conf. CVPR,845

2018, pp. 4510–4520.

[21] N. Ma, X. Zhang, H.-T. Zheng, J. Sun, Shufflenet v2: Practical guidelines
for efficient CNN architecture design, in: Proc. the European Conference
on Computer Vision (ECCV), 2018, pp. 116–131.

[22] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network train-850

ing by reducing internal covariate shift, in: Int. Conf. on ICML, 2015, pp.
448–456.

[23] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, N. Sebe, Binary neural networks:
A survey, Pattern Recognition (2020) 107281.

[24] M. Tzelepi, A. Tefas, Improving the performance of lightweight cnns for bi-855

nary classification using quadratic mutual information regularization, Pat-
tern Recognition (2020) 107407.

[25] G. Huang, Y. Sun, Z. Liu, D. Sedra, K. Q. Weinberger, Deep networks with
stochastic depth, in: Proc. ECCV, Springer, 2016, pp. 646–661.

[26] K. O. Stanley, R. Miikkulainen, Evolving neural networks through aug-860

menting topologies, Evolutionary Computation 10 (2) (2002) 99–127.

[27] C. Fernando, D. Banarse, M. Reynolds, F. Besse, D. Pfau, M. Jaderberg,
M. Lanctot, D. Wierstra, Convolution by evolution: Differentiable pattern
producing networks, in: Proc. the Genetic and Evolutionary Computation
Conf. 2016, ACM, 2016, pp. 109–116.865

[28] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, K. Keutzer, Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search, in: Proc. CVPR, 2019, pp. 10734–
10742.

[29] S. Xie, H. Zheng, C. Liu, L. Lin, SNAS: stochastic neural architecture870

search, in: Proc. 7th Int. Conf. ICLR, New Orleans, LA, USA, May 6-9,
2019.

[30] Y. Sun, B. Xue, M. Zhang, Evolving deep convolutional neural networks
for image classification, arXiv preprint arXiv:1710.10741 (2017).

33

[31] D. E. Goldberg, K. Deb, A comparative analysis of selection schemes used in875

genetic algorithms, in: Foundations of Genetic Algorithms, Vol. 1, Elsevier,
1991, pp. 69–93.

[32] G. Larsson, M. Maire, G. Shakhnarovich, Fractalnet: Ultra-deep neural
networks without residuals, in: Proc. 5th Int. Conf. ICLR, Toulon, France,
April 24-26, 2017, 2017.880

[33] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng, Reading
digits in natural images with unsupervised feature learning (2011).
URL http://ufldl.stanford.edu/housenumbers/

[34] S. Zagoruyko, N. Komodakis, Wide residual networks, in: Proc. the British
Machine Vision Conf., 2016, pp. 87.1–87.12.885

[35] E. Real, A. Aggarwal, Y. Huang, Q. V. Le, Regularized evolution for im-
age classifier architecture search, in: Proc. the AAAI Conf. on Artificial
Intelligence, Vol. 33, 2019, pp. 4780–4789.

[36] T. Elsken, J. H. Metzen, F. Hutter, Efficient multi-objective neural archi-
tecture search via lamarckian evolution, in: Proc. 7th Int. Conf. ICLR,890

New Orleans, LA, USA, May 6-9, 2019.

[37] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980 (2014).

[38] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, K. Kavukcuoglu, Hierar-
chical representations for efficient architecture search, in: Int. Conf. on895

Learning Representations, 2018.

[39] B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le, Learning transferable architec-
tures for scalable image recognition, in: Proc. the IEEE conf. on Computer
Vision and Pattern Recognition, 2018, pp. 8697–8710.

[40] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,900

A. Yuille, J. Huang, K. Murphy, Progressive neural architecture search, in:
Proc. of the Europ. Conf. on Computer Vision, 2018, pp. 19–34.

[41] P. R. Lorenzo, J. Nalepa, Memetic evolution of deep neural networks, in:
Proc. of the Genetic and Evolutionary Computation Conf., 2018, pp. 505–
512.905

[42] T. DeVries, G. W. Taylor, Improved regularization of convolutional neural
networks with cutout, arXiv preprint arXiv:1708.04552 (2017).

[43] I. Sutskever, J. Martens, G. Dahl, G. Hinton, On the importance of ini-
tialization and momentum in deep learning, in: Int. Conf. on Machine
Learning, 2013, pp. 1139–1147.910

34

http://ufldl.stanford.edu/housenumbers/
http://ufldl.stanford.edu/housenumbers/
http://ufldl.stanford.edu/housenumbers/
http://ufldl.stanford.edu/housenumbers/

[44] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in pytorch
(2017).
URL https://pytorch.org/

35

https://pytorch.org/
https://pytorch.org/

	coversheet_template
	FANG 2021 Topological optimization (AAM)
	Introduction
	Related Work
	Manually Designed CNN Architectures
	Neural Evolution Methods
	Neural Architecture Search (NAS)
	Training Strategy of Evolution Based CNN

	The Proposed Algorithm
	Pre-defined Elements of the Model
	Coding Method
	Channel Coding
	Layer Coding

	GA-based structure evolution
	Pretrained Weight-inheritance based Individual Training Strategy

	Experimental Results and Discussions
	Datasets and pre-processing
	MNIST
	CIFAR-10 and CIFAR-100
	Street View House Numbers (SVHN)
	ImageNet

	Channel Coding vs Layer Coding
	Weight Inheritance Methods
	Generating the Model Architecture on the CIFAR-10 Dataset
	Effect of GA
	Classification Test on Multiple Datasets
	Test on the CIFAR-10, CIFAR-100 and SVHN datasets
	Test on large-scale dataset of the ImageNet
	NAS vs. GA
	Comparison with other neuroevolution-based methods
	Further implementation details

	Conclusion

