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Abstract

Most existing crowd counting methods require object location-level annotation,
i.e., placing a dot at the center of an object. While being simpler than the bounding-
box or pixel-level annotation, obtaining this annotation is still labor-intensive and
time-consuming especially for images with highly crowded scenes. On the other
hand, weaker annotations that only know the total count of objects can be almost
effortless in many practical scenarios. Thus, it is desirable to develop a learning
method that can effectively train models from count-level annotations. To this end,
this paper studies the problem of weakly-supervised crowd counting which learns
a model from only a small amount of location-level annotations (fully-supervised)
but a large amount of count-level annotations (weakly-supervised). To perform
effective training in this scenario, we observe that the direct solution of regressing
the integral of density map to the object count is not sufficient and it is beneficial
to introduce stronger regularizations on the predicted density map of weakly-
annotated images. We devise a simple-yet-effective training strategy, namely
Multiple Auxiliary Tasks Training (MATT), to construct regularizes for restricting
the freedom of the generated density maps. Through extensive experiments on
existing datasets and a newly proposed dataset, we validate the effectiveness of
the proposed weakly-supervised method and demonstrate its superior performance
over existing solutions.
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1. Introduction

Crowd counting aims to estimate the number of object-of-interest within an
input image [1, 2] or video sequence [3, 4]. The modern solution to the crowd
counting problem is based on the idea of “learning to count ” [5], that is, building
a learnable model to directly or indirectly estimate the count number [6, 7]. To
train such a crowd counting model, annotation on the object location is often
needed. In the most commonly used annotation protocol, a dot is put on the object
center to create a “dot map” to indicate the object location. Then after convolving
with a Gaussian kernel, a “dot-map” can covert to a “density map” for model
training. Comparing with the bounding box annotation in object detection [8], or
the pixel-level annotation in object segmentation [9], the dot-map based location-
level annotation seems to be easier to obtain. However, for a crowd scene, the
number of objects can be large and in such a scenario collecting the location-level
object annotations can become labor-intensive and time-consuming.

On the other hand, the count-level annotation, i.e., the total count of objects,
can usually be effortlessly obtained in many practical scenarios. For example,
we can take images of the same set of objects with different spatial arrangements
or from different viewpoints and the total object count remains the same. Once
we know the total count of one image, i.e., “seed image”1, the total count for the
remaining ones are known2. For the sake of reducing annotation cost, it is desirable
to develop methods that can fully leverage the count-level annotation to train a
crowd counting model.

Despite being cheap to collect, count-level annotation induces weaker super-
vision signals than the location-level annotation since the latter naturally derives
the count-level annotation but not vice versa. In the literature, training a model

1The total count of seed image can be obtained by using manually counting. Note that it is
common practice to put a dot mark on already counted objects for the convenience of counting. So
the location-level annotation for the seed images will be naturally obtained as the byproduct of the
counting process.

2Note that in this example, we only assume that the camera is movable at the training stage.
The learned crowd counter can be applied to the scenario that the camera is fixed. Therefore, the
multi-view information or motion information for crowd counting is not always available at the test
stage.
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by using a large number of images with only count-level annotation has not been
systematically studied, and it is still unclear to what extent using the count-level
annotation can benefit model training.

To fill this gap, this paper studies how to train a crowd counting model in
the weakly-supervised training setting which assumes the availability of a small
amount of location-level annotations and a large amount of count-level annotation,
as demonstrated in Figure 1. At first glance, training under such weakly-supervised
training setting can be easily achieved with a loss function to encourage the
integration of the estimated density map being close to the ground-truth total
count. However, through our study, we discover that this naive solution is not
sufficiently effective since it does not properly constrain the predicted density maps
with only count-level annotation, a.k.a, weakly-annotated images. To overcome
this drawback, we introduce more loss terms to regularize the predicted density
maps. These losses are constructed by adding extra branches and auxiliary training
tasks at the training stage. Specifically, we introduce multiple auxiliary prediction
branches to produce different but equivalent density maps. Two types of losses
are imposed at each branch: (1) the integral of the predicted density map from
each branch should be close to the object count. (2) density map estimations
from different branches should be consistent. Those auxiliary branches essentially
encourage the feature extractor to encode more accurate location information to
support diverse density map realizations. Consequently, a better feature extractor
and the corresponding crowd counting model can be obtained.

Furthermore, a new dataset is released to verify that if the count information
obtained effortlessly can benefit the model training and whether the proposed
method is more robust than the naive solution. Such dataset uses the progressive
adding/removing strategy to collect a large amount of images with easily obtained
total count annotation. We evaluate our method on this newly introduced dataset
and the traditional crowd counting datasets. The results demonstrate the advantage
of the count-level weakly-supervised training and the superior performance over
the baseline methods. The main contributions of this paper can be summarized as
follows:

• We identify the count-level weakly-supervised method as an effective way
to alleviate the burden of annotations.

• We develop a novel Multiple Auxiliary Tasks Training strategy to achieve
better prediction performance.

• We introduce a new dataset that is designed for evaluating the weakly-
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Figure 1: (a) Traditional full supervision setting. All images are labeled with location-level
annotations. (b) Proposed weak supervision setting. Only a small number of images are annotated
with location-level annotations, while most images are annotated with the total count.

supervised crowd counting solutions.

2. Related Works

2.1. Crowd Counting by Detection
Early methods rely on extracting low-level or hand-craft features [10] to obtain

global count in a specific scene, e.g., Histogram Oriented Gradients (HOG) [11]
and Haar wavelets [12]. Then object detection algorithms apply to crowd counting
and approaches based on detecting individual heads or body parts [13] are widely
used. Detection-based methods [14] are qualified to sparsely populated regions.
Nevertheless, when it comes to some extreme cases, such as low-resolution, heavy
occlusion, counting-by-detection are impotent to give an appropriate prediction.

2.2. Crowd Counting by Regression
To handle images with a dense crowd, the feature-regression-based methods

[15] are proposed. These approaches learn a mapping function from the feature
domain to corresponding counts [5] or density [1]. These methods are relying
on the feature extraction mechanism, such as the Gaussian Process [16, 17] and
Random Forests regression [18, 19]. In the early years, regressing count value is
widely adopted. To make use of spatial information, later works convert this task
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to a density map regression problem, and integrating a density map can be used to
obtain the final crowd counts.

2.3. Crowd Counting by CNN
Benefited from the deep convolutional neural network [20], counting-by-CNN

methods have received much attention. CNN-based methods [21, 22, 23] typically
center around density map prediction and crowd count regression leveraging a
Fully Convolutional Network (FCN) [24, 25, 26]. Most recent crowd counting
methods follow the framework developed in [5], which solves crowd counting
problem by regressing to the object density map. The regression framework is
more robust than other options such as counting by detection [27, 28], counting by
segmentation [29, 30], or directly estimating the count value [16, 31].

Since then, many works have been proposed to modify this framework. For
example, the work in [32] proposes a switching network architecture to better
handle the multi-scale issue in crowd counting. The context information is exploited
in [33] to produce more accurate density maps. The state-of-the-art network
architecture [34] in image segmentation is also shown to be useful for crowd
counting in [35]. This work is then upgraded by incorporating a two-stream network
architecture [36]. Recently, networks with multiple prediction targets, such as
predicting density maps with different resolutions [37] or predicting density maps
with various smoothness levels [38] are shown to be effective. As shown in [39],
creating an ensemble of predictors can also boost the prediction accuracy. Besides,
the attention mechanism shows the effectiveness of reducing the estimation error
caused by background noise [40, 41]. Incorporating the strength of CNN-based
and detection-based solutions to settle the nonuniform distribution of the crowd is
also effective [42, 3]. The work in [43] proposes a deep structured scale integration
network to handle scale variation. Recently, the spatial information is identified to
be effective to solve the density variation problem [44]. Leveraging foreground
and background mask information [45] is able to improve the robustness and
effectiveness of crowd counting . Besides, a novel Bayesian based loss function
[46] is proposed to enhance the supervision reliability for crowd counting. In
combination with temporal information, Long Short-Term Memory (LSTM) is
widely used in video crowd counting [4, 47].

2.4. Crowd Counting by Low Supervision Methods
However, the above works mainly focus on the crowd counting with the fully-

supervised setting, i.e., all images are labeled with location-level annotations.
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Recently, some low supervision-based methods (i.e., semi, weakly or even unsu-
pervised) are proposed with the considerations of reducing the annotation burden.
Few works sought other solutions to train the crowd counting models under semi-
supervised settings [48, 49]. They collect abundant unlabeled crowd images as
extra images of a whole location-level annotated crowd counting dataset. Besides,
they construct a rank loss function on these unlabeled images to achieve a more
accurate prediction. Furthermore, the work in [17] proposes a weakly-supervised
solution based on the Gaussian process for crowd density estimation. In their work,
all samples are annotated with count-level supervision on the training set. A novel
crowd counting solution leveraging sparse features is proposed in [50] to train a
crowd counting model under an almost unsupervised manner. In their work, most
parameters are trained without any labeled data, and only small part parameters
are updated with location-level annotated data. More recently, the use of synthetic
images is explored to reduce the burden of labor-intensive annotation [51], which
shows the feasibility of transforming synthetic images to authentic ones. Then,
the synthetic images are labeled with location-level annotations automatically.
Moreover, a GAN-based adaptation method to learn from synthetic images and
the corresponding free density maps is proposed in the work [52]. Also, the work
[53] constructs a domain transfer based framework transferring synthetic images to
realistic images to train a crowd counter without any manual label. Those pseudo
labels are produced from a Gaussian-prior Reconstruction.

However, the count-level weakly-supervised crowd counting, i.e., learning a
counting model by using count-level supervision, is still not well-explored. This
paper identifies its potential value in reducing the annotation workload and proposes
a new method to improve the existing methods. At the methodology level, our
work is also related to a recently proposed semi-supervised learning method [54]
which is primarily developed for Natural Language Processing (NLP) applications.
Inspired by the nature of crowd counting, our construction of auxiliary tasks is
significantly diverse from that in [54].

3. Methodology

In this section, we first introduce the the traditional location-level fully-supervised
crowd counting setting in Subsection 3.1. Then, Subsection 3.2 describes the ac-
quisition of the count-level annotations and the weakly-supervised crowd counting
setting addressed in this paper. In Subsection 3.3 we discuss a naive solution to
weakly-supervised crowd counting. Later, Subsection 3.4 elaborates the details
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of the proposed Multiple Auxiliary Tasks Training method. Last, Subsection 3.5
describes the details of the introduced asymmetry training strategy.

3.1. Location-level Fully-supervised Crowd Counting
As described above, most recent crowd counting methods [33, 55] require

labeling a dot on each object-of-interest to provide the location-level annotation.
With such full supervision, the crowd counting can be formulated as a density
map regression problem. The density map is usually obtained by convolving the
location-level annotation with a Gaussian kernel, which is expressed as:

D(x) =
∑
xp

G(
‖x− xp‖2

σ2
), (1)

where x ∈ R2 denotes the coordinate of a pixel and xp denotes the p-th annotated
point. G(‖x−xp‖2

σ2 ) indicates a Gaussian kernel with xp as the mean vector and σ2

as the empirically chosen variance term. Note that since
∫
G(‖x−xp‖2

σ2 )dx = 1, the
integral of D(x) equals the total object count. Thus as long as the density map is
accurately estimated by the learned model, the object count can be readily obtained
by taking the integral of the estimated density map [5].

The Mean Square Error (MSE) loss is widely used in training a density map
predictor, which is formulated as:

LMSE =
∑
m∈A

∫
(F (x|Im, λ)−Dm(x))

2dx, (2)

where F (x|Im, λ) denotes the density value estimation at point x for the m-th
image given by the model λ, which is a deep neural network in our case. For
the sake of simplicity, we use F (x) to denote the estimated density map in the
following part.

3.2. Count-level Weak Supervision and Problem Formulation
As described in Section 1, collecting location-level annotations can be labor-

intensive especially for highly crowd scenes. On the contrary, the total object count
can be obtained easily in many practical scenarios. This subsection reviews several
methods to obtain such count-level annotation: (1) Taking images of the same set
of objects from different viewpoints or shuffling the object arrangement before
taking the image again. This method can generate many images with identical
object count. Once the total count of one image, i.e., a “seed image”, is known,
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Table 1: The notation of variables in this paper.

Variables Description
Im ∈ R2 the image with location-level annotation
In ∈ R2 the image with count-level annotation
Dm ∈ R2 the ground truth density map for Im

cn ∈ R the ground truth total count for In

F0(x) ∈ R2 the predicted density map from primary branch
Fk(x) ∈ R2 the predicted density map from the k-th auxiliary branch

fb the feature extractor backbone
g0 the primary branch

g1, ..., gk the auxiliary branch
L the loss function of model

the counts for the remaining images are known. (2) Similar to (1), but each time
removing or adding a small amount (which is easy to count) of objects before
re-taking the image. This approach can effortlessly generate a sequence of images
with diverse object counts. (3) the total number of objects can be found out via
other measurements, e.g., derived from the total weight of objects or estimated
through other sensors at the offline stage.

Although count-level annotation is cheap to obtain, its supervision signal is
weaker in comparison with the traditional location-level supervision. To achieve
appropriate performance, this paper considers a semi-supervised alike setting.

Our setting: We first assume there is a small set of images AF with a location-
level annotation, where image Im in AF is annotated with the ground-truth density
map Dm. Then we also assume there is a large set of imagesAW with a count-level
annotation, where image In in AW is annotated with the ground-truth object count
cn. In the scenario of taking multiple images of the same set of objects, a small
number of location-level annotations can be obtained as a byproduct of counting
the objects in the “seed image”, which makes this assumption more realistic in
practical applications. For ease of reading, we summarize a set of important
notations used in this paper as Table 1.

3.3. Naive Solution for Weakly-supervised Crowd Counting
For model training in the weakly-supervised setting, it is straightforward to

extend the traditional density map estimation framework by imposing the integral
the estimated density map being close to the ground-truth object count for count-
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level annotated images. The overall training objective function for count-level
weakly-supervised crowd counting can be written as:

LBase = LMSE + αLcount =∑
m∈AF

∫
(F (x)−Dm(x))

2dx+ α
∑
n∈AW

|
∫
F (x)dx− cn| (3)

At first glance, this simple solution seems to be sufficient for training the crowd
counting network. However, we find that it leads to unsatisfying results in practice.
Its major weakness is that the count loss, i.e., the second term of Eq.3, holds a very
weak constraint on the generated density map. The network can easily achieve
low count-loss by producing less desirable density map which does not encode the
accurate object locations and results in poor generalization performance.

3.4. Multiple Auxiliary Tasks Training (MATT)
To overcome the limitation of the naive solution described in Subsection 3.3, we

introduce more regularization terms to restrict the freedom of the estimated density
maps on the weakly-supervised images. Our idea is to construct multiple auxiliary
branches in addition to the primary branch which produces the density map used
during the test stage. Both the primary branch and the auxiliary branches generate
density maps. Those density maps are supposed to be diverse but equivalent, that
is, all the density maps could be derived from the same dot-map (i.e., location-level
annotation) but with different smoothness levels.

To this end, we introduce auxiliary tasks in the form of auxiliary losses to
each branch. Specifically, our losses reflect two requirements: (1) The integral
of the predicted density map should be close to the ground-truth object count.
(2) The predicted density maps from an auxiliary branch should be consistent
with the predicted density map from the primary branch. Rather than directly
minimizing the discrepancy of the predicted density maps between primary and
auxiliary branches, we introduce an additional step to convolve the prediction
from each auxiliary branch with a different predefined Gaussian kernel, and require
convolution result to be close to the density map generated from the primary branch.
The introduction of this extra convolution operation avoids setting the identical
prediction target for each auxiliary branch. It can prevent the auxiliary branch from
collapsing into the identical regressor as the primary branch. The scheme of our
strategy is illustrated in Figure 2. Formally, the whole loss function of our method
can be written as:
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Figure 2: Overview of the proposed method. For location-level annotated images, we require the
predicted density map close to ground-truth. The proposed method also generates multiple auxiliary
branches. All branches share a same feature extractor. Once training is done, the auxiliary branches
will be discarded and only the feature extractor and the primary branch will be used during testing
phase.

Laux = β1
∑
k

∫
((Fk ∗ hk)(x)− F0(x))

2 dx+

β2
∑
k

|
∫
Fk(x)dx− cn| k ∈ {1, · · · , K}, (4)

where K is the total number of auxiliary branches. hk is a predefined convolution
kernel for the k-th auxiliary branch. In our implementation, we constructed those
convolution kernels by using a Gaussian function with relatively low variance
(σ = 1) and different kernel sizes, e.g., 3× 3, 5× 5, 3× 5 and 5× 3 for h1 to h4,
respectively. Note that the low variance Gaussian function will have significant
values outside the kernel boundaries, so each hk is essentially a truncated Gaussian
kernel. We normalize the values inside a kernel to make their integral equal to
1. This normalization ensures that the ground-truth total count of each branch is
equal to the total count of the main branch. Fk is the predicted density map from
the k-th auxiliary branch gk. F0(x) is the density map estimated from the primary
branch g0. All the branches share the same feature extractor fb. Our method can be
intuitively understood as follows: a crowd counting network can be decomposed
into a feature extractor and a density map regressor. The feature extractor produces
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Algorithm 1: Multiple auxiliary task training.
Input: Current mini-batch B = {Im, Dm}

⋃
{In, cn}, feature extractor

backbone fb, primary branch g0, and auxiliary branches {gk}.
Output: Updated fb, g0 and {gk}.

1 for s in B do
2 if s is labeled with the location-level annotations (density map) Dm

then
3 Use LMSE =

∫
(F0(x)−Dm(x))

2dx and back-propagate gradients
to fb and g0

4 else
5 s is labeled with count-level annotations (total count) cn, calculate

the density map estimation F0 from the primary branch
6 Use Lcount = α|

∫
F0(x)dx− cn| and update fb and g0.

7 Frozen the parameters in F0 and use Laux in Eq. 4 to update fb and
{gk}.

features that implicitly encode the object location information and the density map
regressor converts those features into a realization of density map (recall that the
density map is derived from the location annotation and it is not unique). Our
method essentially requires the extracted features to support multiple realizations
of density maps and their relationships. These requirements can enforce the feature
extractor to encode location information more accurately since by doing so the
features can be easily converted to the different realization of density maps.

3.5. Asymmetry Training
Directly training the model with the loss in Eq. 4 can result in less satisfying

results. The reason is that the primary branch and the auxiliary branches can
co-adapt with each other to produce low consistency loss (i.e., the first term in
Eq. 4). To solve this issue, we devise an asymmetry training strategy that ensures
the training signal of the primary branch only comes from the credible sources,
i.e. the ground-truth density map from fully-supervised data or the ground-truth
count from weakly-supervised data. In other words, when optimizing Eq. 4, the
parameters of the primary branch is fixed due to predicted density maps in other
branches are not very reliable. F0(x) is treated as a constant in Eq. 4, which means
the gradient will not back-propagate through the primary branch g0.
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This treatment essentially imposes such an asymmetry learning strategy: the
auxiliary branches will learn from the primary branch but not vice versa. This is
because we want the auxiliary tasks only to assist training the feature extractor but
not affecting the primary task training. We postulate that the density map regressor
is sensitive to the input training signal, but the feature extractor is insensitive to
it. Feature extractor training is more robust to the imprecise training signal since
its output can be further adapted by the regressor. On this basis, the asymmetry
training avoids the gradient of the auxiliary branches from flowing into the primary
branch. The overall auxiliary training objective function for count-level weakly-
supervised crowd counting in our method can be formulated as:

LMATT = LMSE + αLcount + Laux =∑
m∈AF

∫
(F0(x)−Dm(x))

2dx+

α
∑
n∈AW

|
∫
F0(x)dx− cn|+

β1
∑
k

∫
((Fk ∗ hk)(x)− F0(x))

2 dx+

β2
∑
k

|
∫
Fk(x)dx− cn| k ∈ {1, · · · , K}. (5)

In practice, we use a stochastic gradient descent algorithm to train the model
and the pseudo-code of our methods is shown in Algorithm 1. Note that the training
procedure for a count-level annotated sample essentially consists of two steps: the
update of the primary branch and the update of the auxiliary branches.

4. Multi-Shot Crowd Counting (MSCC) dataset

This work advocates the advantage of using count-level annotation and proposes
a new way for weakly-supervised crowd counting. To verify the effectiveness of
the proposed method, we certainly can evaluate our method on the existing crowd
counting datasets and modify their evaluation protocol to suit the weakly-supervised
setting. However, the total counts of the object in those datasets are not collected
in the way as discussed in Subsection 3.2. One can integral ground-truth density
map to obtain total object count in those datasets. One may wonder whether the
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samples collected in a way in Subsection 3.2 can benefit for network training and
whether the proposed method can be effective in using those samples.

Figure 3: Typical images of the 15 categories from the MSCC dataset.

To address above issues, we collect a new dataset by following one of the
sample collection strategies discussed in Section 3.2. Specifically, we collect
crowd object images for 15 different categories (details see Figure 3), including
Marble, Biscuit, two types of Candies (i.e., Candy1 and Candy2), three types of
Capacitors (i.e., Cap1, Cap2 and Cap3), Capsule, M&M beans (i.e., MM), Go,
Cherry Tomato (i.e., Tomato), Longan, Pin-Header and two types of Resistances
(i.e., Res1 and Res2). For each category, we choose a “seed image” and perform
the location-level annotation on it. This will give the total object count for the
“seed image”.

Remove 15 

M&M beans

&Shuffle

Add 40 

M&M beans

&Shuffle

Total count :75

Shuffle
Total count: 130

Total count: 25Total count : 40

Total count : 90

Total count :75

Seed Image

Figure 4: The procedure of generating the MSCC dataset. We obtain count-level annotations from
one “seed image”, once we know the total count of “seed image”. When we shuffle the arrangement
of the objects, i.e., add or remove a small amount of objects before retaking, we can infer the
amount of objects of other images.
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We collect more images by taking images from different viewpoints, shuffling
the object layout and changing the background before re-taking the image. To
collect various quantity levels in categories, we sequentially remove or add a small
amount of object. With those operations shown in Figure 4, we can quickly gather
a large number of images and infer their object count from the count of the “seed
image”. In our dataset, we collect 200 images with ten quantity levels per category.
Since the images are collected by taking multiple shots at the same pile of objects,
we name our dataset as Multi-Shot Crowd Counting (MSCC) dataset.

For each object category, we use 170 images as the training set, consisting of
169 images with the count-level annotation (i.e., weakly-supervised images) and
one image with the location-level annotation (i.e., fully-supervised image). The
other 30 images with the count-level annotation are used as the validation set. To
build the test set, we manually annotated 100 additional images with a total count
value. The total count value in the test set is designed to be more diverse than that
in the training set. This enables us to test if our trained model can generalize to
images with a different object count.

5. Experimental Results

5.1. Experimental Setting
In this section, we demonstrate the effectiveness of the proposed weakly-

supervised crowd counting method by conducting experiments on three traditional
benchmark datasets: ShanghaiTech [2], UCF CC 50 [56] and WorldExpo’10
[1] datasets, along with the proposed MSCC dataset. Different from the evalu-
ation protocol of other location-level fully-supervised crowd counting methods,
we have modified their evaluation protocols to suit for our count-level weakly-
supervised setting. For each dataset, we divide the original training images into a
weakly-supervised part (i.e., count-level annotation ) and fully-supervised part (i.e.,
location-level annotation). Following the existing works [1, 35], we use the Mean
Absolute Error (MAE) and Mean Square Error (MSE) as the evaluation metrics for
the above three traditional crowd counting datasets.

Meanwhile, two measures are used as the evaluation metrics for the proposed
MSCC dataset, i.e., the MAE and the Relative Error Ratio (RER) which is
derived from MAE by dividing the total object count. The RER is an indicator
of relative error and it is meaningful because we usually allow larger estimation
error for a more crowded scene and vice versa. For example, incorrectly predicting
10 objects for an image with 1,000 objects is more favorable than incorrectly
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predicting 10 objects for an image with only 20 objects. These three metrics are
defined as follows:

MAE =
1

N

N∑
i=1

|Prei −GTi| , (6)

MSE =

√√√√ 1

N

N∑
i=1

|Prei −GTi|2, (7)

RER =
1

N

N∑
i=1

|Prei −GTi|
GTi

, (8)

where N is the number of test images, Prei is the predicted object count of image
I i and GTi is the corresponding ground-truth total count. The lower result of these
metrics means the better performance.

Three methods compared in our experiment are:

• Baseline1 only utilizes the part of images with location-level annotation
to train the feature extractor fb and primary branch g0 directly. In our
proposed settings, only a small set of images are provided with location-level
annotation, it can be seen as a “reduced” training set sampled from the
original training set.

• Baseline2 the straightforward solution to incorporate the count-level weak
supervision in Subsection 3.3. In our network, this method is equivalent
to only training a single branch: the feature extractor fb and the primary
branch g0. Different from the “Baseline1” method, it jointly considers a
small mount of location-level annotations and a large mount of count-level
annotations. Straightly we require training image Im with location-level
annotation generate density map close to ground-truth density map Dm. For
training image In with count-level annotation, we require the integral of
predicted density map close to ground-truth total count cn.

• MATT is the proposed method that leverages multiple auxiliary tasks for
model training. Notice that “Baseline1” and “Baseline2” only leverage
single branch: the feature extractor fb and primary branch g0. For the sake
of train a more robust fb, we propose the MATT method. When the model
meets image Ij with count-level weak supervision, firstly we introduce four
auxiliary branches to predict density map, then according to Algorithm 1 we
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update the corresponding parameters. The auxiliary branch can promote the
training of fb.

The differences of the above three methods are demonstrated in Table 2. Note that,
during testing we discard g1,...,gk and only use fb and g0 for the final density maps.

Table 2: The comparison between three methods.

Train method Annotated type Loss function Parameters in model

Baseline1
location-level MSE Loss fb and g0
count-level - -

Baseline2
location-level MSE Loss fb and g0
count-level Count loss fb and g0

MATT
location-level MSE loss fb and g0

count-level
Count loss fb and g0

Auxiliary loss fb and g1,...,gk

5.2. Implementation Details
Our feature extractor is realized based on the CSRNet [35], which is one of the

state-of-the-art solutions for crowd counting. Certainly, the proposed method can
be extended to other feature extractor architectures. Specifically, the layers to the
third-last layer of CSRNet are used as the backbone which produces a feature map
with 256 channels. One primary branch and four auxiliary branches are used in
our implementation. Each branch contains three convolutional layers, the kernel
size of each convolutional layer is 3 × 3 and the channel number reduced from
256 to 128, 64 and finally 1. For four auxiliary branches, different convolutional
kernels hk are used to construct the loss in Eq. 4. We choose them as predefined
Gaussian kernels with different covariance matrices (see details in Subsection 3.4).
The PyTorch [57] is applied to implement the proposed method. Adam [58] is used
as the optimizer. All the hyper-parameters are chosen by using the validation set.
We will release the source code and the MSCC dataset upon the acceptance of this
work.

5.3. Datasets and Results
In this subsection, comprehensive experiments are conducted to evaluate the

performance of the proposed method. Please note that, our method only uses a
few training images with location-level annotation and a large amount of training
images with count-level annotation, which is only comparable to methods in the
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Figure 5: A comparison of the density map generated by different methods of the proposed method
on the ShanghaiTech Part A dataset.

“weakly” part. However we also list the fully-supervised crowd counting state-of-
the-art results in the “fully” part just for reference in Table 3-5.

5.3.1. Evaluation on the ShanghaiTech dataset
The ShanghaiTech dataset is a large-scale crowd counting dataset containing

1,198 images with 330,165 annotated heads [2], which is divided into two parts.
Part A contains 482 images with 241,667 annotated heads, and 300 images are
used for training while the rest for testing. In our experiment, we only use the
count-level annotation for 270 images from the training set and the object location-
level annotation from the remaining 30 images. Part B has 716 images with 88,498
annotated heads taken from street scenes in the Shanghai city, with 400 images
for training. Similar to Part A, we only use count-level weak annotation for 380
images from the training set and use location-level annotation for the remaining 20
images. This modification suits for the evaluation in the weakly-supervised setting.

The experimental results are shown in Table 3. In the traditional fully-supervised
setting, works based on CSRNet [35] leverage attention mechanism [40, 59] and
context information [60] can regress more accurate density maps and obtain lower
MAE in the test stage. While our method is comparable to those methods. In
addition, in the weak supervision setting, if we train our network only with the
location-level annotations (i.e. “Baseline1”). The performance is not satisfying,
and it only achieves a MAE of 106.5 on Part A and a MAE of 16.4 on Part B.
From the results reported in CSRNet [35], if the location-level annotations are used
for all the samples, the performance of the same network will achieve a MAE of
68.2 and 10.6 on Part A and Part B respectively. Thus, reducing the number of
location-level annotations incurs a significant performance drop due to a lack of
location-level annotated images. By using the naive method of incorporating count-
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level supervision, the performance is significantly improved. In Part A, the MAE
is reduced to 89.3. The proposed method can also make a significant improvement
over the “Baseline1”, and the improvement is much larger than the naive method.
Comparing with “Baseline2”, we achieve an improvement by 9.2 heads in the
terms of MAE on Part A. On Part B, our method also reduces the MAE by around
1.8 heads. The MAE improvement is smaller because Part B contains fewer crowd
scenes, and the MAE differences between various methods tend to be smaller. It is
easy to calculate that each image in Part A contains 501.4 persons averagely as
four times as Part B nearly. In other words, Part A is more challenging than Part B.
This is also a trend observed in the works in the location-level supervised setting
mentioned in Table 3. In Figure 5, we also visualize the estimated density maps of
different methods. It is interesting to find that the density map generated by the
proposed method is more similar to the ground-truth density map. In comparison,
the density map generated by the naive method tends to exhibit large homogeneous
regions.

Table 3: The comparison on the ShanghaiTech dataset. The best results are in underline and bold
font for “Fully” and “Weakly” methods respectively.

Method Part A Part B
MAE MSE MAE MSE

Fully

MCNN [2] 110.2 173.2 26.4 41.3
Switch-CNN [32] 90.4 135.0 21.6 33.4

ACSCP [61] 75.7 102.7 17.2 27.4
CP-CNN [33] 73.6 106.4 20.1 30.1
CSRNet [35] 68.2 115.0 10.6 16.0
SANet [62] 67.0 104.5 8.4 13.6

ADCrowdNet [40] 63.2 98.9 8.2 15.7
CAN [60] 62.3 100 7.8 12.2

SFANet [36] 59.8 99.3 6.9 10.9
W-NET [59] 59.5 97.3 6.9 10.3

Weakly
Baseline1 106.5 167.4 16.4 25.7
Baseline2 89.3 135.8 13.5 19.9

MATT 80.1 129.4 11.7 17.5

5.3.2. Evaluation on the UCF CC 50 Dataset
The UCF CC 50 dataset [56] contains only 50 black and white images which

are considered to be challenging due to the high object density in the images. Its
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count value varies from 94 to 4,543. In our weakly-supervised setting, 5 images
are with location-level annotation and the rest 45 images are with only count-level
annotation. 20 patches with half image size are cropped from each image, and 5-
fold cross-validation is used to evaluate the proposed method [56]. 4 location-level
annotated images with ground-truth location-level supervision and 36 count-level
annotated images with ground-truth count-level supervision are randomly selected
to form the training set.

The performance of the compared methods is shown in Table 4. As seen,
with a small amount of location-level supervised samples, the crowd counting
performance is poor. With the count-level supervision, even the naive method
can reduce the MAE from 461.4 to 405. Our proposed method again shows a
significant improvement over the naive method. It improves the MAE almost by 50
heads comparing with the naive method. This clearly demonstrates the advantage
of the proposed method.

Table 4: The performance comparison on the UCFF CC 50 dataset. The best results are in underline
and bold font for “Fully” and “Weakly” methods respectively.

Method MAE MSE

Fully

MCNN [2] 377.6 509.1
Switch-CNN [32] 318.1 439.2

CP-CNN [33] 295.8 320.9
ACSCP [61] 291.0 404.6
CSRNet [35] 266.1 397.5

ADCrowdNet [40] 257.1 363.5
SANet [62] 258.4 334.9
SFANet [36] 219.6 316.2

CAN [60] 212.2 243.7
W-Net[59] 201.9 309.2

Weakly
Baseline1 461.4 779.9
Baseline2 405.0 586.2

MATT 355.0 550.2

5.3.3. Evaluation on the WorldExpo’10 Dataset
This dataset contains 3,980 uniformly sampled frames from video sequences

captured by 108 surveillance cameras from Shanghai 2010 WorldExpo [1]. 3,380
frames are used for training while the remaining 600 frames for testing. In our
setting, 5% frames (169), in the training set are used as the location-level annotated
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images while the remaining 95% frames (3,211) are used as count-level annotated
images.

The results are shown in Table 5. From the results, We can see that our
proposed method is superior to the baselines. The proposed method achieve the
highest average MAE, improving more than 2.4 heads over the “Baseline1”. For
the performance in each section, our method attains 4 lowest MAE among all 5
scenarios. In comparison, the “Baseline2” does not improve too much over the
“Baseline1”. This indicates an appropriate learning method can play an important
role when using the count-level annotations.

Table 5: The performance comparison in terms of MAE on the WorldExpo’10 dataset. It can be
seen that the performance of the proposed method MATT is close to the performance of methods
that all training images using location-level supervision. The best results are in underline and bold
font for “Fully” and “Weakly” methods respectively.

Method Sce.1 Sce.2 Sce.3 Sce.4 Sce.5 Avg.

Fully

MCNN [2] 3.4 20.6 12.9 13.0 8.1 11.6
Switch-CNN [32] 4.4 15.7 10.0 11.0 5.9 9.4

CP-CNN [33] 2.9 14.7 10.5 10.4 5.8 8.9
CSRNet [35] 2.9 11.5 8.6 16.6 3.4 8.6
SANet [62] 2.6 13.2 9.0 13.3 3.0 8.2
ACSCP [61] 2.8 14.1 9.6 8.1 2.9 7.5

ADCrowdNet [40] 1.6 13.2 8.7 10.6 2.6 7.3
CAN [60] 2.4 9.4 8.8 11.2 4.0 7.2

Weakly
Baseline1 4.2 18.3 11.9 22.8 3.3 12.1
Baseline2 3.9 17.6 16.1 16.3 4.8 11.7

MATT 3.8 13.1 10.4 15.9 5.3 9.7

5.3.4. Evaluation on the MSCC Dataset
Finally, we compare our method on the proposed MSCC dataset. We strictly

follow the experimental protocol in Section 4. The results are shown in Table 6.
As seen, for all categories, the proposed method achieves the best MAE and RER,
especially for categories with irregularly shaped objects such as pin headers. For
this category, the proposed method reduces MAE from 27.9 to 5.8 and delivers
87.8% lower RER. On average, the proposed method achieves a MAE of 6.8 and a
RER of 15.7. It is 63.8% lower MAE and 76.4% lower RER than a MAE of 18.8
and a RER of 66.5 from the “Baseline1” method.
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Table 6: The performance comparison for different methods on the MSCC dataset. The best results
are in bold font.

Marble Biscuit Candy1 Candy2 Cap1
Baseline1

MAE\RER
8.7\26.3 11.4\41.4 16.2\86.7 26.7\52.3 34.5\180.8

Baseline2 6.2\22.2 6.0\12.3 12.0\28.7 8.7\17.0 9.3\28.1
MATT 4.8\14.3 3.9\9.4 8.4\19.7 5.4\11.7 7.7\23.3

Cap2 Cap3 Capsule MM Go
Baseline1

MAE\RER
21.6\86.5 23.9\86.7 19.9\119.1 8.1\30.9 9.6\23.3

Baseline2 7.7\16.9 10.6\22.7 11.1\20.4 14.9\33.2 8.8\18.7
MATT 6.4\14.3 7.2\17.4 4.3\9.8 5.4\12.6 8.3\18.4

Tomato Longan Pin-Header Res1 Res2 Avg.
Baseline1

MAE\RER
13.8\39.7 5.4\16.0 27.9\103.8 20.0\45.4 34.5\59.8 18.8\66.5

Baseline2 11.3\35.2 10.8\27.2 15.1\26.7 23.0\35.9 15.0\31.6 11.4\25.1
MATT 7.3\21.9 4.0\10.6 5.8\12.7 15.8\24.2 7.2\14.6 6.8\15.7

Note that the object count annotation on the MSCC dataset is collected with
less effort. The better performance of the “Baseline2” and “MATT” comparing
with the “Baseline1” clearly demonstrates that using the effortlessly collected
count-level weakly supervised images is beneficial for training a crowd counting
network. Also, the consistently superior performance of the proposed approach
over the naive method demonstrates that our method is useful in practice.

5.4. Ablation Study
5.4.1. Other Alternative Auxiliary Loss Functions

The auxiliary loss in this paper involves two terms for count-level annotated
images: a count loss term and a density map consistency loss. To examine their
impacts, we conduct an ablation study on the ShanghaiTech Part A dataset by
constructing two alternative variations of the proposed method. The first variation
only uses a count loss. The second variation does not use the total count loss but
only uses the first term in Eq. 4. The asymmetry training strategy is also used in
those variations.

The performance comparison is shown in Table 7. As seen, the proposed
method achieves better performance than the first variation which can be seen
as a multi-branch variation of “Baseline2”. In comparison, the second variation
achieves better performance and is even comparable to the performance of MATT.
This suggests that MSE loss is the most effective part of the total loss function in
the proposed method. Combining both loss terms can achieve the best performance.
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Table 7: Results of alternative constructions of the auxiliary loss. Evaluated on the ShanghaiTech
Part A dataset. The best results are in bold font.

Method MAE MSE
only count loss 85.7 138.0
only MSE loss 83.3 132.6

MATT 80.1 129.4
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Figure 6: Impact of different number of auxiliary branches. Evaluated in terms of MAE on the
ShanghaiTech Part A dataset.

5.4.2. Varying the Number of Auxiliary Branches
In the proposed method, we use four auxiliary branches for the simplicity of

implementation. It would be interesting to see if using more or fewer branches
will result in better or poor performance. The experimental results on Shanghai
Tech Part A dataset are presented in Figure 6. It can be observed that if only
two auxiliary branches are used, the performance will not be better than the naive
method — both methods achieve MAE around 90.8 heads. However, with the
increase in the number of branches, the estimation error is reduced. The experiment
results show that the best performance is achieved when using 4 to 6 auxiliary
branches. From those results, it is clear to see the importance of using more
branches to maintain the diversity of the auxiliary supervision signals.

5.4.3. The Importance of the Asymmetry Training
Our work uses an asymmetry training strategy to learn the auxiliary tasks, and

the auxiliary tasks only learn from the primary task while the primary task will
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not learn from the auxiliary tasks. In our strategy, the primary task is used for all
images and learn from the discrepancy between predicted density map F0(x) and
ground-truth density map Dm(x) or ground-truth total count cn.

The auxiliary task works only when taking count-level annotated images In.
Learning from the discrepancy between predicted density map Fk(x) and (1)
corresponding density map F0(x) generated at the primary branch, (2) ground-
truth total count cn. We postulate that this is important because otherwise, the
auxiliary supervisions signals will flow into the primary branch. Because the
auxiliary branch will fit a less accurate density map — the predicted density map
from the primary task, the supervisions signals from the auxiliary task is inevitably
noisy. Thus, it might be harmful to allow its gradient to update the primary
branch. In this study, we conduct an experiment to verify our postulation on the
ShanghaiTech Part A dataset. As shown in Table 8, after removing the asymmetry
training strategy, we only obtained the MAE of 89.0 and MSE of 140.6 on the
ShanghaiTech Part A dataset. This is much worse than its original version and this
validates our asymmetry training postulation.

Table 8: Impact of the asymmetry training strategy. Evaluated on the ShanghaiTech Part A dataset.
The best results are in bold font.

Method MAE MSE
symmetry 89.0 140.6
asymmetry 80.1 129.4

5.4.4. MATT for Fully Annotated Data
The proposed method is in a spirit similar to the multi-task learning and one

may wonder the good performance of our method essentially comes from multi-task
learning. In other words, our method may lead to better baseline performance even
with the fully-annotated part of training data. To verify this, we apply the proposed
MATT method on the fully annotated part of the training set on the ShanghaiTech
Part A dataset, and report the results in Table 9. Interestingly, using MATT for a
location-level annotated image only performs slight better than “Baseline1”, which
only includes the primary branch (i.e., single task learning). This indicates that the
superior performance of the proposed method is largely originated from its ability
to better exploiting the information provided in the count-level annotated image
not only the multi-task learning.
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Table 9: Results of using proposed method for training based on the fully annotated part of data on
the ShanghaiTech Part A dataset. The best results are in bold font.

Method MAE MSE
MATT on Fully 104.6 162.7

Baseline1 106.5 167.4

6. Conclusions

In this paper, we point out that the count-level annotations can be easily ob-
tained. We also identify the limitation of the straightforward method to weakly
supervised counting and propose a novel Multiple Auxiliary Task Training (MATT)
scheme to learn a better crowd counting model. To verify the benefits of count-
level weakly supervised learning, we also introduce a new dataset. By performing
experiments on the newly introduced dataset and the traditional publicly available
crowd counting datasets, we demonstrate that the proposed method is superior to
the straightforward weakly supervised crowd counting method and can leverage
the count-level weak supervision to build a better crowd counting model.
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