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a b s t r a c t 

Due to the high cost of manual annotation, learning directly from the web has attracted broad attention. 

One issue that limits the performance of current webly supervised models is the problem of visual poly- 

semy. In this work, we present a novel framework that resolves visual polysemy by dynamically matching 

candidate text queries with retrieved images. Specifically, our proposed framework includes three major 

steps: we first discover and then dynamically select the text queries according to the keyword-based im- 

age search results, we employ the proposed saliency-guided deep multi-instance learning (MIL) network 

to remove outliers and learn classification models for visual disambiguation. Compared to existing meth- 

ods, our proposed approach can figure out the right visual senses, adapt to dynamic changes in the search 

results, remove outliers, and jointly learn the classification models. Extensive experiments and ablation 

studies on CMU-Poly-30 and MIT-ISD datasets demonstrate the effectiveness of our proposed approach. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Over the past several years, labeled image datasets have played

 critical role in high-level image understanding [1,2] . However, the

rocess of constructing labeled datasets is both time-consuming

nd labor-intensive [3,4] . To reduce the time and labor cost of

anual annotation, several works have focused on active learning.

or example, Collins et al. [5] proposed to label some seed images

o train the initial classifiers. Then, they leveraged these classifiers

o carry out classification on other unlabeled images and find low

onfidence images for manual labeling. The process was iterated

ntil sufficient classification accuracy was achieved. In [6] , a sys-

em for online learning of object detectors was proposed. This sys-

em refined its models by actively requesting annotations on im-

ges. However, active learning methods require pre-existing anno-

ation, which often is one of the most significant limitations when

t comes to scalability. 

To further reduce the cost of manual annotation, learning di-

ectly from web images has attracted more and more attention [7] .

ompared to manually-labeled image datasets, web images are a

ich and free resource. For arbitrary categories, potential training

ata can be easily obtained from an image search engine [8,9] like
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oogle 1 , Bing 2 , or Baidu 

3 . Unfortunately, the precision of images

eturned from these search engines is still unsatisfactory. For ex-

mple, Schroff et al. [8] reported that the average precision of the

op 10 0 0 images for 18 categories from the Google Image Search

ngine is only 32%. 

One of the main reasons for the noisy results is the problem of

isual polysemy. As shown in Fig. 1 , visual polysemy means that

 word has multiple semantic senses that are visually distinct. For

xample, the keyword “coach” can refer to multiple text seman-

ics and visual senses (e.g., “bus”, “handbag”, sports “instructor”,

r “company”). This is commonly referred to as word-sense disam-

iguation in Natural Language Processing. 

Word-sense disambiguation is a top-down process arising from

mbiguities in natural language. The text semantics of a word are

obust and relatively static, and we can easily look them up from a

ictionary resource such as WordNet [10] or Wikipedia [11] . How-

ver, visual disambiguation is a dynamic data-driven problem that

s specific to images collection. For the same keyword, the visual

enses of images returned from the image search engine may be

ifferent at different time periods. For example, the keyword “ap-

le” might have mainly referred to the fruit apple before the “Ap-

le” company was founded. 
1 https://www.google.com/imghp? 
2 https://www.bing.com/images/discover? 
3 https://image.baidu.com/ 
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Fig. 1. Visual polysemy. The keyword “coach” can refer to multiple text semantics, 

resulting in images with various visual senses being included in the returned results 

by an image search engine. 
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The traditional way of handling visual polysemy falls back to

expert knowledge, WordNet or Wikipedia. However, this human-

developed knowledge suffers from the problem of missing visual

information and still requires manual annotation to bridge the text

semantics and visual senses [12,13] . Some existing works attempt

to reduce the influence of visual polysemy by filtering out irrel-

evant images [14,15] . For example, Li et al. [15] utilized the few

top-ranked images returned from an image search engine to learn

the initial classifier. Then, the classifier refined its model through

an incremental learning strategy. With the increase in the num-

ber of positive images accepted by the classifier, the learned model

would reach a robust level. Hua et al. [16] leveraged a clustering-

based strategy to remove “group” noisy images and a propagation-

based mechanism to filter out individual noisy images. These exist-

ing methods have the advantage of eliminating manual interven-

tion. However, none of them can directly address the problem of

visual polysemy. 

Since the text semantics and visual senses of a given keyword

are highly related, recent works have also concentrated on com-

bining text and image features [17] . Most of these methods assume

that there exists a one-to-one mapping between semantic and vi-

sual senses for a given keyword. However, this assumption is not

always true in practice. For example, while there are two predom-

inant text semantics for the word “apple”, there exist multiple vi-

sual senses due to appearance variation (green vs. red apples). To

deal with the multiple visual senses, Chen et al. [12] adopted a

one-to-many mapping between text semantics and visual senses.

This approach can help us discover multiple visual senses from the

web but overly depends on the collected webpages. The effective-

ness of this approach is greatly reduced if we fail to collect web-

pages that contain enough text semantics and visual senses [29] . 

Instead of relying on human-developed resources, we focus on

automatically solving visual disambiguation in an unsupervised

way. The motivation behind this work comes from the fact that

keyword-based image search may yield multiple visual senses, and

those returned results change dynamically. Therefore, the proposed

approach should have a better time adaptability. Unlike the com-

mon unsupervised paradigm, which jointly clusters text and im-

age features to solve visual disambiguation, we present a novel

framework that resolves it by dynamically matching candidate text

queries with images retrieved for the given keyword. Compared

to human-developed and clustering-based methods, our approach

can adapt to the dynamic changes in the search results. Our pro-

posed framework includes three major steps: we first discover and

then dynamically select the text queries according to the keyword-

based image search results, we employ the proposed saliency-

guided deep multi-instance learning (MIL) network to remove out-

liers and learn classification models for visual disambiguation. To

verify the effectiveness of our proposed approach and demonstrate

its superiority, we conduct extensive experiments on visual poly-

semy datasets CMU-Poly-30 [12] and MIT-ISD [18] . The main con-

tributions of this work can be summarized as follows: 
Please cite this article as: Z. Sun, Y. Yao and J. Xiao et al., Exploitin

Recognition, https://doi.org/10.1016/j.patcog.2020.107620 
1) Compared to existing methods, our proposed framework can

dapt to the dynamic changes in search results and carry out visual

isambiguation accordingly. Therefore, it has a better time adapt-

bility. 

2) We propose a saliency-guided deep MIL network to remove

utliers and jointly learn the classification models for visual disam-

iguation. Compared to existing approaches, our proposed network

chieves state-of-the-art performance. 

3) Our work can be used as a pre-step before directly learning

rom the web, which helps identify appropriate visual senses for

ense-specific image collection, thereby improving the efficiency of

earning from the web. 

The rest of the paper is organized as follows: Section 2 elabo-

ates the related works of visual disambiguation. We propose our

ramework and associated algorithms in Section 3 . The experimen-

al evaluations and ablation studies are presented in Sections 4 and

 , respectively. Section 6 concludes this paper. 

. Related work 

Dynamically discovering and distinguishing multiple visual

enses for polysemous words is a difficult task [19] . Several au-

hors have proposed to clean the web images and learn visual clas-

ification models, although none have specifically addressed the

roblem of visual polysemy [14,15,20–22] . Fergus et al. [21] pro-

osed the use of visual classifiers learned from the Google Image

earch Engine to re-rank the images based on their visual consis-

ency. Subsequent methods [15,20] have employed similar remov-

ng mechanisms to automatically construct clean image datasets

or training visual classifiers. Berg et al. [14] discovered topics us-

ng LDA in the text domain, and then used them to cluster the im-

ges. However, these works are category-independent and do not

earn which words are predictive of a specific sense. 

Our work is related to the text-based word sense discovering

ethods [23,24] . Pantel et al. [23] presented a clustering algorithm,

alled Clustering By Committee (CBC), that automatically discovers

ord senses from the text. It first discovers a set of tight clusters,

amed committees, that are well-scattered in the similarity space.

hen proceeds by assigning words to their most similar clusters.

his allows CBC to discover the less frequent senses of a word

nd to avoid discovering duplicate senses. Each cluster that a word

elongs to represents one of its senses. A subsequent method in

24] also employed a similar Clustering by Committee algorithm to

ongregate similar words. 

Our work is also related to the manually labeled expert knowl-

dge works [11,25] . The method in [25] proposed to disambiguate

ord-senses using statistical models. This method overcomes the

nowledge acquisition bottleneck faced by word-specific sense dis-

riminators. By entirely circumventing the issue of polysemy res-

lution in training material acquisition, the system has acquired

n extensive set of sense discriminators from unrestricted mono-

ingual texts without human intervention. In addition, class mod-

ls also offer the additional advantages of smaller model storage

equirements and increased implementation efficiency due to re-

uced dimensionality. Mihalcea et al. [11] proposed an approach

or using Wikipedia as a source of sense annotations for word

ense disambiguation. Nevertheless, all methods in [11,25] lack vi-

ual information and require human annotation to bridge the text

emantics and visual senses. 

Our work is related to methods that leverage images for visual

isambiguation [18,26–28] . Barnard et al. [28] proposed a method

hat can be alone, or in conjunction with traditional text-based

ethods for visual disambiguation. This approach is based on a

ethod developed for automatically annotating images using a sta-

istical model for the joint probability of image regions and words.

he method in [27] proposed an unsupervised algorithm based on
g textual queries for dynamically visual disambiguation, Pattern 
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esk, which performs visual sense disambiguation using textual, vi-

ual, or multi-modal embeddings. Saenko et al. [18] proposed to

se a dictionary to learn models of visual word senses, from a large

ollection of unlabeled web data. Due to the text semantics and

isual senses are highly related, the performance when leveraging

nly images is not satisfying. 

Our work is more related to the methods that combine text and

mages [29–32] . Wan et al. [30] proposed a method that combines

 dictionary and the visual content of web images to disambiguate

eyword-based image search. The motivation is that these images

ontain a rich source of information about the various senses (vi-

ual and word) of a word. Both methods in [30,31] assumed that

here exists a one-to-one mapping between the semantic and vi-

ual sense. However, this assumption is not always true in prac-

ice. Chen et al. [12] proposed a co-clustering based approach for

ense discovery. Specifically, they relaxed the assumption and al-

owed a one-to-many mapping, which is useful when the granular-

ty of clustering in two domains is different. However, clustering-

ased methods have a scalability problem. This is because the im-

ges are directly retrieved from the web, and thus have no bound-

ng boxes. Every image creates millions of data points, the ma-

ority of which are outliers. Our work is inspired by Zhang et al.

13] , which has two major drawbacks. Our work solves these two

roblems very well. Firstly, our proposed approach can adapt to

he dynamic changes in the keyword-based image search results.

econdly, our proposed saliency-guided deep MIL network can re-

ove outliers and capture the key regions of the web images to

earn classification models. 

. Framework and methods 

As shown in Fig. 2 , our proposed approach consists of three

ajor steps. The following subsections describe our proposed ap-

roach in detail. 

For ease of presentation, we denote kw as a keyword and E ( kw )

s the number of discovered candidate text queries for kw. I ( kw )

nd I ( tq ) are the selected images for keyword kw and text query

q , respectively. We denote each image as x i and ϑi ( I ) to be the

umber of images in I ( kw ), which can match with x i . D ( m, n ) rep-

esents the distinctness between text query m and n . 

.1. Discovering candidate text queries 

Manually developed dictionaries (e.g., WordNet [10] or Con-

eptNet [33] ) usually serve as a source for word senses. However,

hese dictionaries tend to include many rare senses, while miss-

ng corpus/domain-specific senses. In addition, the process of con-
ig. 2. The proposed dynamically visual disambiguation framework. The input is a keyw

or the given keyword. Then, we dynamically purify the candidate text queries according

nal selected text queries. We retrieve the top images for each selected text query and 

isambiguation. 

Please cite this article as: Z. Sun, Y. Yao and J. Xiao et al., Exploiting

Recognition, https://doi.org/10.1016/j.patcog.2020.107620 
tructing manually compiled dictionaries is time-consuming and

abor-intensive. To ease the limitations of missing information, as

ell as to reduce the dependency on manually labeled data, Pantel

t al. [23] and Chatterjee et al. [24] proposed to discover seman-

ic senses from text via clustering. The disadvantage is that these

ethods overly depend on the quality of the collected text. The

erformance of these methods is greatly reduced when we fail to

ollect enough useful text. Inspired by recent works [13,34] , un-

agged corpora Google Books [35] can be used to discover can-

idate text queries for modifying a given keyword. Following the

ork in [35] (see Section 4.3), we discover the candidate text

ueries by using n-gram dependencies whose modifiers are tagged

s NOUN. 

.2. Dynamically selecting text queries 

Image search results are dynamically changing, and not all can-

idate text queries have enough images in the search results rep-

esenting their visual senses. Therefore, we can dynamically purify

he candidate text queries by matching them with the retrieved

mages. 

Suppose the given keyword is kw , then we discover E ( kw ) can-

idate text queries through Google Books. We collect the top K

mages for kw . Then we perform a clean-up step for broken links

nd set the rest images I ( kw ) as the selected images for kw (e.g.,

apple”). In addition, we retrieve the top I(tq ) = 5 images for

ach candidate text query tq (e.g., “Apple laptop”). A text query

q ∈ E ( kw ) is expected to frequently appear in I ( kw ). In addition,

o well obtain the visual senses of the images, some subset images

hich all have tq must contain visually similar content. To this end,

 ( kw ) can be dynamically selected in the following way. 

For each image x i ∈ I ( tq ), all images in I ( kw ) are matched with

 i on the basis of their visual similarity. In our work, the visual

eatures and similarity measure methods from Wang et al. [36] are

everaged. We set ϑi ( I ) to be the number of images in I ( kw ) that

an match with x i . The overall number of a candidate text query tq

atching with the search results is its accumulated number over

ll the I ( tq ) images: 

(tq ) = 

I(tq ) ∑ 

i =1 

ϑ i (I) . (1)

 large ϑ( tq ) indicates that tq matches with a good number of im-

ges in I ( kw ). When tq is only present in a few images or images

nvolving tq are visually different, ϑ( tq ) will be set to zero. Accord-

ngly, when tq contains a large accumulated value ϑ( tq ), this indi-

ates that many images within I ( kw ) contain tq and the images in-

olving tq have similar visual senses. These N text queries with the
ord. We first discover a list of candidate text queries and retrieve the top images 

 to the retrieved images. We remove the redundant queries and set the rest as the 

leverage a saliency-guided deep MIL model to remove outliers and perform visual 

 textual queries for dynamically visual disambiguation, Pattern 
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highest numbers are chosen as the selected candidate text queries

E ( kw ) for the given keyword kw . 

Among the list of selected candidate text queries, some of them

share visually similar distributions (e.g., “Apple MacBook” and “Ap-

ple laptop”). To reduce the computing costs, the text queries that

increase the discriminative power of the semantic space are kept

and the others are removed. To calculate the visual similarity be-

tween two text queries, half of the data from each text query is

used to learn a binary SVM classifier to carry out classification on

the other half of the data. We conclude that the two text queries

are not similar if we can easily separate the testing data. Assume

we obtain N candidate text queries from the previous step. We

split the retrieved images for text query m into two groups, I t m 

and

I v m 

. To calculate the distinctness D ( m, n ) between text queries m

and n , we train a binary SVM using I t m 

and I t n . We then obtain the

probability of an image in I v m 

belonging to class m with the learned

SVM classifier. Suppose the average score over I v m 

is ρ̄m 

. Similarly,

we can also obtain the average score ρ̄n over I v n . Then, D ( m, n ) can

be calculated as: 

D (m, n ) = χ(( ρ̄m 

+ ρ̄n ) / 2) (2)

where χ is a monotonically increasing function. In this work, we

define 

χ( ̄ρ) = 1 − e −β( ̄ρ−α) (3)

in which the parameters α and β are two constants. When the

value of ( ρ̄m 

+ ρ̄n ) / 2 goes below the threshold α, χ( ̄ρ) decreases

with a fast speed to penalize pair-wisely similar text queries. In

our work, the value of α and β are set to 0.6 and 30, respectively. 

Finally, we select a set of text queries from the N candidates.

The selected text queries are most relevant to the given keyword

kw . We define the relevance in Eq. (1) . Meanwhile, to character-

ize the visual distributions of the given keyword, the selected text

queries are required to dissimilar with each other from a visual rel-

evance perspective. The distinctiveness can be calculated through

matrix D in Eq. (2) . We can solve the following optimization prob-

lem to satisfy the two criteria. 

γ N is an N -dimensional indicator vector γ ∈ {0, 1} N such that

γ n = 1 indicates the n th text query is selected and γn = 0 indicates

it is removed. We can estimate the value of γ by solving: 

arg max 
γ ∈{ 0 , 1 } N 

{ λφγ + γ N D γ } . (4)

Let tq n be the text query of keyword kw . φ = (ϑ( tq 1 ) ,

ϑ ( tq 2 ) , . . . , ϑ ( tq N )) , where ϑ( tq n ) is defined in Eq. (1) . λ is the

scaling factor. Then Eq. (4) is formulated as an integer quadratic

programming problem where the variable γ ∈ {0, 1}. Although the

integer quadratic programming is NP hard, we can use the Label

Generating MMC (LG-MMC) algorithm [51] to solve this integer

programming problem. To be specific, γ is relaxed to be in R 

T and

we choose the text query n whose γ n ≥ 0.5 as the final selected

text query. 

3.3. Outliers removal and visual disambiguation 

Due to the error indexing of an image search engine, even if

we retrieve the top sense-specific images, some noise may still be

included. The last step of our approach is to train saliency-guided

deep MIL visual models for pruning these instance-level outlier im-

ages and distinguishing visual senses of image search results. Our

proposed saliency-guided deep MIL visual model consists of two-

stream networks, SGN and DMIL. SGN is used to localize an ob-

ject for generating instances and learning object features. DMIL is

used to encode the discriminative features for learning the deep

classification models that will remove outliers and perform visual

disambiguation. 
Please cite this article as: Z. Sun, Y. Yao and J. Xiao et al., Exploitin

Recognition, https://doi.org/10.1016/j.patcog.2020.107620 
Different from existing methods which attempt to follow a

ulti-instance assumption, where the object proposals are re-

arded as one “instance” sets and each image is treated as one

bag”, our approach treats each selected text query as a “bag” and

ach image therein as one “instance”. The main reason for this

s that our images come from the web and may contain noise. If

e treat each web image as a “bag”, the proposals (“instances”)

enerated by existing methods like selective search [37] or RPN

38] can’t always satisfy such a condition: object lies in at least

ne of the proposals. However, when we treat each image returned

rom the image search engine as one “instance”, and each selected

ext query as one “bag”, then it becomes natural to formulate out-

iers removal as a multi-instance learning problem. 

The selected text queries are leveraged to collect sense-specific

mages from the image search engine. To reduce the interference

f noisy background objects in web images, we propose to use a

aliency extraction network (SGN) to localize the discriminative re-

ions and generate an instance for the web image. Specifically, we

ollow the work in [39] to model this process by leveraging global

verage pooling (GAP) to produce the saliency map. The feature

aps of the last convolutional layer with weights are summed to

enerate the saliency map for each image. Finally, we conduct a bi-

arization operation on the saliency map with an adaptive thresh-

ld, which is obtained through the OTSU algorithm [40] , and lever-

ge the bounding box that covers the largest connected area as the

iscriminative region of the object. For a given image I , the value

f the spatial location ( x, y ) in the saliency map for category c is

efined as follows: 

 c ( x , y ) = 

∑ 

u 

w 

c 
u f u ( x , y ) , (5)

here M c ( x , y ) directly indicates the importance of activation at

patial location ( x, y ), leading to the classification of an image to

ategory c . f u ( x , y ) denotes the activation of neuron u in the last

onvolutional layer at spatial location ( x, y ), and w 

c 
u denotes the

eight corresponding to category c for neuron u . Instead of treat-

ng the whole image as one instance, we use the generated bound-

ng box result as the instance for the image. 

In the traditional supervised learning paradigm, training sam-

les are given as pairs { ( x i , y i ) } , where x i ∈ R 

d is a feature vec-

or and y i ∈ {−1 , 1 } is the label. However, in MIL, data are orga-

ized as bags { X i }. Each bag contains a number of instances { x i, j } .
abels { Y i } are only available for the bag. The labels of instances

 y i, j } are unknown. Considering the recent advances achieved by

eep learning, in this work, we propose to exploit a deep CNN

s our architecture for learning visual representations with multi-

nstance learning. Our structure is based on VGG-16 [41] and we

edesign the last hidden layer for MIL. For a given training image

 , we set the output of the last fully connected layer f c 15 ∈ R 

m as

he high-level features of the input image. Followed by a softmax

ayer, fc 15 is transformed into a probability distribution ρ ∈ R 

m for

bjects belonging to the m text queries. Cross-entropy is taken to

easure the prediction loss of the network. Specifically, we have 

 = −
∑ 

i 

t i log (ρi ) where ρi = 

exp (h i ) ∑ 

i exp (h i ) 
, i = 1 ., m. (6)

e can calculate the gradients of the deep CNN through back-

ropagation 

∂L 

∂h i 

= ρi − t i , (7)

here 

 = { t i | 
m ∑ 

i =1 

t i = 1 , t i ∈ { 0 , 1 } , i = 1 , . . . , m } (8)

epresents the true label of the sample x . To learn multiple in-

tances as a bag of samples, we incorporate a deep representation
g textual queries for dynamically visual disambiguation, Pattern 
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nto MIL and name it DMIL. Assume a bag { x j | j = 1 , . . . , n } con-

ains n instances and the label of the bag is t = { t i | t i ∈ { 0 , 1 } , i =
 , . . . m } ; DMIL extracts representations of the bag: h = { h i j } ∈
 

m ×n , in which each column is the representation of an instance.

he aggregated representation of the bag for MIL is: 

˜ 
 i = f (h i 1 , . . . , h in ) , (9)

here function f can be max j ( h ij ), avg j ( h ij ), or log [1 + 

∑ 

j exp (h i j )] .

or this work, we use the max ( · ) layer. In the ablation studies, we

how experiments for each possible choice. Then, we can represent

he visual distribution of the bag and the loss L as: 

i = 

exp ( ̃  h i ) ∑ 

i exp ( ̃  h i ) 
, i = 1 , . . . , m. (10)

nd 

 = −
∑ 

i 

t i log (ρi ) , (11)

espectively. To minimize the loss function of DMIL, we employ

tochastic gradient descent (SGD) for optimization. The gradient

an be calculated via back propagation: 

∂L 

∂ ̃  h i 

= ρi − t i and 

∂ ̃  h i 

∂h i j 

= 

{
1 , h i j = 

˜ h i 

0 , else 
. (12) 

To disambiguate the keyword-based search results, we first em-

loy SGN to generate the saliency map for localizing the discrim-

native region and generating the “instance” of the image. Then,

he proposed DMIL is used to encode the discriminative features

or learning deep models to remove outliers and perform visual

isambiguation. 

. Experiments 

To verify the effectiveness of our proposed approach, in this

ection, we first conduct experiments on the task of classifying im-

ges into sense-specific categories. Then, we compare the search

esults re-ranking ability of our approach with baseline methods.

n addition, we conduct ablation studies on coefficients, domains,

idden layers, deep models, more web images, and the different

ontributions of each step. 

.1. Classifying sense-specific images 

The goal of this experiment is to compare the image sense-

pecific categorization ability of our proposed approach with four

ets of baseline works. 

.1.1. Datasets and evaluation metric 

Two widely used polysemy datasets, CMU-Polysemy-30 [12] and

IT-ISD [18] , are employed to validate the proposed dynamic

isual disambiguation framework. Specifically, CMU-Polysemy-30 

nd MIT-ISD include 30 and 5 keywords, respectively. We set the

mages corresponding to various keywords in CMU-Polysemy-30

nd MIT-ISD as the results of a keyword-based image search. We

ollow the settings in baselines [12,13] and exploit web images as

he training set, and human-labeled images in CMU-Polysemy-30

nd MIT-ISD as the testing set to evaluate the visual disambigua-

ion performance. Average Classification Accuracy ( ACA ) is adopted

s the evaluation metric. The image features used in the experi-

ents are 4096-dimensional deep features based on the VGG-16

odel. 
Please cite this article as: Z. Sun, Y. Yao and J. Xiao et al., Exploiting

Recognition, https://doi.org/10.1016/j.patcog.2020.107620 
.1.2. Implementation details and parameters 

For each keyword, we first discover the candidate text queries

y searching in Google Books. We set the corresponding images

n CMU-Polysemy-30 and MIT-ISD as the results of the keyword-

ased image search. Then we retrieve the top I ( tq ) images for each

andidate text query. The value of I ( tq ) is selected from {1, 2, 3,

, 5, 6, 7, 8, 9}. We dynamically purify the candidate text queries

y matching them with the results of the keyword-based image

earch. Specifically, we select the top N text queries with the high-

st numbers. N is selected from {10, 20, 30, 40, 50, 60}. For re-

oving redundancy and selecting representative text queries, we

etrieve the top 100 images for the selected candidate text queries

nd assume the retrieved images are the positive instances (in

pite of the fact that noisy images might be included). The 100

mages collected for each selected text query are randomly split

nto a training set and testing set (e.g., I m 

= { I t m 

= 50 , I v m 

= 50 } and

 n = { I t n = 50 , I v n = 50 } ). We train a linear SVM classifier with I t m 

and

 

t 
n for classifying I v m 

and I v n to obtain the values of ρ̄m 

and ρ̄n . We

hen get the distinctness D ( m, n ) by calculating Eq. (2) and remove

edundant queries by solving Eq. (4) . The value of α is selected

rom {0.2, 0.4, 0.5, 0.6, 0.8} and β is selected from {10, 20, 30, 40,

0} in Eq. (2) . γ n is set to γ n ≥ 0.5 in Eq. (4) . 

The structure of SGN is based on VGG-16 [41] . To obtain a

igher spatial resolution, we remove the layers after conv 5 _ 3 and

et a mapping resolution of 14 × 14. Then, we add a convolu-

ional layer of size 3 × 3, stride 1, and pad 1 with 1024 neurons,

ollowed by a global average pooling (GAP) layer and a softmax

ayer. SGN is pre-trained on the 1.3 million images of the ImageNet

ataset [4] and then fine-tuned on the collected web images. The

umber of neurons in the softmax layer is set as the number of se-

ected text queries. The structure of DMIL is also based on VGG-16

41] . We remove the last hidden layer and use a max ( · ) layer in-

tead. The initial parameters of the modified version of the model

re inherited from the pre-trained VGG-16 model. During training,

e leverage “instances” generated by SGN and set the selected text

ueries as “bags” to fine-tune the model. DMIL is trained for 100

pochs with an initial learning rate selected from [0.0 0 01, 0.0 02]

which is robust). In order to generate test “bags”, we only sample

mages from the CMU-Polysemy-30 and MIT-ISD datasets. 

.1.3. Baselines 

To quantify the performance of our proposed approach, we

ompare its sense-specific image classification ability with four

ets of baselines: knowledge-based methods, text-based methods,

mage-based methods, and the combination of text and images

ased methods. The knowledge-based methods consist of Wiki-MD

11] , Dict-MD [42] , and Copr-MD [25] . The text-based methods in-

lude EDWD [43] , DWST [23] , and TMWSD [44] . The image-based

ethods contain VSD [30] , ULVSM [18] , VSCN [45] , NEIL [46] , Con-

eptMap [47] , and WSDP [28] . The combination of text and im-

ges based methods are ISD [31] , SDCIT [12] , DRID [9] , DDPW [29] ,

EAN [34] , VSDE [4 8] , and IWSD [4 9] . The method [29] reproduced

early all leading methods on the CMU-Polysemy-30 and MIT-ISD

atasets. We directly use the results of these methods from [29] . 

.1.4. Experimental results 

Fig. 3 shows a snapshot of multiple text queries discovered

rom Google Books and visual senses disambiguated from the

MU-Poly-30 dataset by our proposed framework. It should be

oted that, for some keywords, the CMU-Poly-30 dataset only an-

otates one or two visual senses. However, our proposed approach

uccessfully discovers and distinguishes more visual senses. For ex-

mple, for the keyword “bass” in the CMU-Poly-30 dataset, only

bass fish” and “bass guitar” are annotated. Our approach addition-

lly discovers two other visual senses “bass amp” and “Mr./Miss
 textual queries for dynamically visual disambiguation, Pattern 
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Fig. 3. A snapshot of multiple text queries discovered from Google Books and visual senses disambiguated from the CMU-Poly-30 dataset by our proposed framework. For 

example, our proposed method automatically discovers and disambiguates five senses for “Subway ”: subway sandwich, subway store, subway people, subway station and 

subway map. For “Mouse ”, it discovers multiple visual senses of the computer mouse, mouse animal, mouse man, and cartoon mouse, etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Visual disambiguation results (ACA) on two evaluated datasets CMU- 

Poly-30 and MIT-ISD. The best result is marked in bold . 

Method 

Dataset 

CMU-Poly-30 MIT-ISD 

a Wiki-MD [11] 0.498 0.487 

Dict-MD [42] 0.529 0.522 

Copr-MD [25] 0.549 0.593 
b EDWD [43] 0.469 0.483 

DWST [23] 0.563 0.627 

TMWSD [44] 0.593 0.646 
c VSD [30] 0.728 0.786 

ULVSM [18] 0.772 0.803 

WSDP [28] 0.791 0.743 

NEIL [46] 0.741 0.705 

ConceptMap [47] 0.726 0.758 

VSCN [45] 0.802 0.783 
d ISD [31] 0.554 0.634 

IWSD [49] 0.643 0.725 

SDCIT [12] 0.839 0.853 

VSDE [48] 0.747 0.763 

LEAN [34] 0.827 0.814 

DRID [9] 0.846 0.805 

DDPW [29] 0.884 0.897 
e Ours 0.925 0.938 

a Knowledge-based methods. 
b Text-based methods. 
c Image-based methods. 
d Combination of text and images based methods. 
e Our proposed approach. 
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Bass”. This is mainly due to the fact that our approach can dynam-

ically select text queries based on image search results. In other

words, our proposed framework can adapt to the dynamic changes

in search results and carry out visual disambiguation accordingly.

Therefore, our approach has a better time adaptability. 

To leverage the ground truth labels in CMU-Poly-30 and fairly

compare with other baseline methods, we remove the text query

discovering and selecting procedures and directly use the an-

notated labels in the dataset to collect web images. Then, we

leverage the proposed saliency-guided deep MIL to remove out-

liers and train classification models for visual disambiguation.

Table 1 presents the ACA results on the CMU-Poly-30 and MIT-ISD

datasets. 

From Table 1 , we can observe that image-based and the combi-

nation of text and images based methods are generally better than

the knowledge-based and text-based methods. The reason is that

knowledge-based and text-based methods directly leverage web

images for training. Due to the error indexing of an image search

engine, the web images tend to contain outliers, and we need to

remove these to train better models. 

By observing Table 1 , our proposed approach achieves state-

of-the-art ACA performance on both CMU-Poly-30 and MIT-ISD,

producing significant improvements over knowledge-based meth-

ods, text-based methods, image-based methods, and combination

of text and images based methods. One possible explanation is that

our proposed saliency-guided deep MIL can effectively remove the

outlier images from the image search results and train robust clas-

sification models for visual disambiguation. 

4.2. Re-ranking search results 

The goal of this experiment is to compare the image search re-

sults re-ranking ability of our approach with three sets of baseline

works. 

4.2.1. Datasets and evaluation metric 

We leverage the “Bass” and “Mouse” datasets introduced in

[29] to evaluate the re-ranking search results ability. Detailed in-

formation on these datasets is summarized in Table 2 . Following

[29,30] , we evaluate the re-ranking performance by computing the

Area Under Curve (AUC) of all senses for “bass” and “mouse”. 
Please cite this article as: Z. Sun, Y. Yao and J. Xiao et al., Exploitin

Recognition, https://doi.org/10.1016/j.patcog.2020.107620 
.2.2. Implementation details and parameters 

For each query, the sense-specific classifiers are trained with

ense-specific web images. Specifically, we leverage the previously

rained sense-specific classifiers for the classifying sense-specific

mages experiment. Retrieved images are then re-ranked by mov-

ng the negatively-classified images down to the last rank. For an

mage d , we compute the probability P ( S i | d ) of image d belonging

o the i th sense S i and rank the corresponding images according to

he probability of each sense S. P ( S i | d ) provides a way to re-rank

he images in the original polysemous order. Images belonging to

ome sibling sense are given lower probabilities and pushed to the

ack of the rank list. 
g textual queries for dynamically visual disambiguation, Pattern 
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Table 2 

“Bass” and “Mouse” polysemy datasets introduced in [29] . For each term, the number of annotated images, semantic 

senses, visual senses and their distributions are provided, with core semantic senses marked in bold . 

Query (# of annotated images) Semantic senses Visual senses # of images Coverage 

Bass (349) 1. bass fish fish 159 45.6% 

2. bass guitar musical instrument 154 44.1% 

3. Mr./ Mrs. Bass noise people 20 5.7% 

unrelated 16 4.6% 

Mouse (251) 1. computer mouse electronic product 125 49.8% 

2. little mouse animal 81 32.3% 

3. cartoon mouse noise cartoon role 26 10.4% 

unrelated 19 7.5% 

Table 3 

Area Under Curve (AUC) of all senses for “bass” and “mouse”. The best results are marked in bold . 

Method 

Semantic Senses & Visual Senses 

Average 
bass fish bass guitar M. Bass computer mouse little mouse cartoon mouse 

a Wiki-MD [11] 0.364 0.429 0.132 0.536 0.623 0.114 0.366 

Dict-MD [42] 0.443 0.635 0.205 0.464 0.573 0.186 0.418 

Copr-MD [25] 0.504 0.486 0.305 0.624 0.675 0.263 0.476 
b VSD [30] 0.547 0.538 0.239 0.684 0.652 0.226 0.481 

ULVSM [18] 0.526 0.615 0.326 0.732 0.735 0.314 0.541 
c ISD [31] 0.453 0.526 0.243 0.614 0.536 0.218 0.432 

LEAN [34] 0.623 0.658 0.413 0.753 0.785 0.336 0.595 

SDCIT [12] 0.658 0.773 0.386 0.815 0.845 0.337 0.636 

DDPW [29] 0.713 0.736 0.572 0.834 0.873 0.434 0.694 
d Ours 0.746 0.782 0.623 0.876 0.915 0.478 0.737 

a Knowledge-based methods. 
b Image-based methods. 
c Combination of text and images based methods. 
d Our proposed approach. 
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.2.3. Baselines 

We compare the search results re-ranking ability of our method

ith three sets of baselines, which include knowledge-based meth-

ds, image-based methods, and combination of text and images

ased methods. The knowledge-based methods consist of Wiki-MD

11] , Dict-MD [42] and Copr-MD [25] . The image-based methods

ontain VSD [30] and ULVSM [18] . The combination of text and im-

ges based methods include ISD [31] , LEAN [34] , SDCIT [12] , and

DPW [29] . The method [29] reproduced nearly all leading meth-

ds. We directly leverage the results of these methods from [29] . 

.2.4. Experimental results 

The experimental results are shown in Table 3 . From Table 3 ,

e observe that the combination of text and images based meth-

ds SDCIT [12] , LEAN [34] and DDPW [29] are generally better

han knowledge-based methods Wiki-MD [11] , Dict-MD [42] , Copr-

D [25] and images-based methods VSD [30] , ULVSM [18] . Specif-

cally, SDCIT [12] , LEAN [34] and DDPW [29] achieve better results

han ISD [31] . This is because it is necessary to remove outlier im-

ges from the training set during the process of classifier learning.

earning directly from the web images without outliers removal

ay affect the performance of the classifier due to the presence of

utlier images. 

By observing Table 2 , we can notice that there is only 4.6% and

.5% true noise in the retrieved images for “bass” and “mouse”, re-

pectively. Most of the retrieved images are different forms of vi-

ual senses for the given query. This indicates that we should first

iscover the multiple visual senses for the query. As such we can

hoose appropriate visual senses as needed to carry out sense-

pecific image collection. By doing this, we can greatly improve

he efficiency of collecting web images, thereby improving the ef-

ciency of learning from the web images. 

From Table 3 , we achieve the best average performance which

s consistent with the results for sense-specific image classification.

his can be explained by the generated sense-specific terms and
Please cite this article as: Z. Sun, Y. Yao and J. Xiao et al., Exploiting

Recognition, https://doi.org/10.1016/j.patcog.2020.107620 
ltered images of our approach. Compared to knowledge-based

ethods Wiki-MD [11] , Dict-MD [42] and Copr-MD [25] , our ap-

roach does not directly use web images for classifier learning.

nstead, we purify the retrieved images to select useful data and

hen use the selected images to learn classifiers. By doing this, our

pproach can effectively overcome the impact of outliers on the

lassifiers due to the error indexing of image search engines. Com-

ared to image-based methods VSD [30] , ULVSM [18] and combi-

ation of text and images based methods ISD [31] , LEAN [34] , SD-

IT [12] , DDPW [29] , the sense-specific terms generated by our ap-

roach are more accurate and exhaustive, using our sense-specific

erms to retrieve images can return high precision web images, and

an thereby help us to train sense-specific classifiers to re-rank the

earch results. 

. Ablation studies 

Since our proposed approach incorporates multiple steps to

arry out dynamic visual disambiguation, we analyze the contribu-

ions of each step in this section. We also analyze the coefficients,

omains, hidden layers, models, web images, time and space com-

lexity through ablation studies. In addition, we leverage our ap-

roach as a pre-step before directly learning from the web and

how its superiority. 

.1. Contributions of each step in proposed framework 

Our proposed visual disambiguation framework includes three

ajor steps: candidate text queries discovering, text queries select-

ng, and outliers removing. To quantify the role of different steps

ontributing to the final model, we construct two new frameworks.

One is based on candidate text queries discovering and text

ueries selecting (which we refer to TQDS). The other one is based

n text queries discovering and outliers removing (which we refer

o TDOR). For framework TQDS, we first obtain the candidate text
 textual queries for dynamically visual disambiguation, Pattern 
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Fig. 4. Sense-specific image classification ability of TQDS, TDOR and ours on CMU-Poly-30 dataset (“bass”, “coach”, “football” and “note”). 
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queries through searching in Google Books. Then, we employ the

text queries selecting procedure to obtain the selected text queries.

We directly retrieve the top images from the image search engine

for the selected text queries to train image classifiers (without out-

liers removing). For framework TDOR, we also obtain the candidate

text queries by searching in Google Books. Then, we retrieve the

top images from the image search engine for all the candidate text

queries (without text queries selecting procedure). We employ the

saliency-guided deep MIL model to remove outliers and train im-

age classifiers. 

We compare the sense-specific image classification ability of

these two new frameworks with our complete framework. Follow-

ing [29] , we select “note”, “bass”, “coach” and “football” as four

target categories to evaluate. We sequentially collect [50, 100, 150,

200, 250] images for each selected text query as the positive train-

ing samples and use 500 fixed irrelevant negative samples to learn

image classifiers. We test the sense-specific image classification

ability of these three frameworks on the CMU-Poly-30 dataset. The

results are shown in Fig. 4 . From Fig. 4 , we can observe: Frame-

work TQDS usually performs better than TDOR when the training

number for each semantic sense is small (e.g., below 150). The ex-

planation is that the first few returned images tend to have fewer

outliers. With an increasing number of images for each text query,

the images retrieved from the image search engine contain more

and more noise. In this situation, the outlier images caused by the

image search engine have a worse effect than those induced by

noisy text queries. 

Our proposed complete framework outperforms both TQDS and

TDOR. The reason is that our complete framework, which combines

text queries selecting and outlier images removing, can effectively

remove the outliers induced by both the noisy text queries and the

error indexing of the image search engine. 

5.2. Coefficients in proposed framework 

For the coefficients analysis, we are mainly concerned with the

parameters α, β , γ , N , and I ( tq ) when selecting the text queries

and learning rate (LR) for the saliency-guided deep MIL. Specifi-

cally, we analyze the interaction between pairs of parameters α
and β in Eq. (3) . For other parameters, we analyze the sensitivities

using one graphic per parameter. As shown in Fig. 5 , the changing

tendency of ACA w.r.t. ( α, β), overall, is stable and consistent. Fig. 6

presents the parameter sensitivities of N , LR, γ , and I ( tq ) w.r.t. ACA

on the CMU-Poly-30 dataset. 

5.3. Influence of different domains 

To analyze the influence of using web images from different do-

mains for visual disambiguation, we collected web images for se-

lected text queries from the Google Image Search Engine, the Bing

Image Search Engine, and Flickr, respectively. As shown in Fig. 7 (a),

the performance on the web images from Flickr is much lower

than on those from the Google Image Search Engine and the Bing

Image Search Engine. One possible explanation is that Flickr’s im-

age data comes from people’s daily lives, and the background is
Please cite this article as: Z. Sun, Y. Yao and J. Xiao et al., Exploitin

Recognition, https://doi.org/10.1016/j.patcog.2020.107620 
ore complicated, making it difficult to accurately locate the target

bjects. The performance on web images coming from the Google

mage Search Engine is a little better than on those from the Bing

mage Search Engine. This may be due to Google’s bias toward im-

ges with a single centered object and a clean background. This

llows us to obtain the bounding boxes of the target objects easily

nd accurately. 

.4. Influence of different hidden layers 

The choice of hidden layer is of critical importance in our

roposed saliency-guided deep MIL network. As mentioned in

ection 3.3 , the max ( · ), avg( · ), and log ( · ) refer to max j ( h ij ),

vg j ( h ij ), and log [1 + 

∑ 

j exp (h i j )] , respectively. From Fig. 7 (b), we

an notice that the straightforward max ( · ) layer obtains the best

CA performance. 

.5. Are deeper models helpful? 

It is well known that the CNN model architecture has a critical

mpact on object recognition performance. We investigate this is-

ue by replacing VGG-16 with a new architecture, ResNet-50, in the

aliency-guided deep MIL model and compare the results. The ex-

erimental results are shown in Fig. 8 (a). In particular, the ResNet-

0 model is more effective for localizing the objects from the im-

ges on CMU-Poly-30 dataset. While on the MIT-ISD dataset, VGG-

6 obtains a better performance. 

.6. Are more web images helpful? 

Data scale has a large impact on web-supervised learning. We

nvestigate this impact by incrementally increasing or decreasing

he number of web images used for each text query. Specifically,

e choose {50, 100, 150} images from the web for each selected

ext query. As shown in Fig. 8 (b), in general, the performance of

CA improves steadily with the use of more training samples. 

.7. Time and space complexity analysis 

Our proposed framework primarily contains three major steps:

andidate text queries discovering, text queries selecting, and out-

iers removing. Since the first step of our approach is to search

rom the corpus, its time complexity is negligible. For the time

omplexity analysis, we mainly concern the second and third step.

e formulate the process of “text queries selecting” as an SVM

roblem. There are a large number of works have analyzed the

ime complexity of SVM. According to [50] . The time complexity

f SVM is between O ( n 2 ) and O ( n 3 ) with n is the number of train-

ng instances. In the third step, we formulate the outliers remov-

ng as a saliency-guided deep MIL problem. The time complexity

s O ( 
∑ D 

l=1 M 

2 
l 

· K 

2 
l 

· C l−1 · C l ) where D is the number of convolution

ayers, that is, the depth of the network. l represents the l th con-

olutional layer and C l is the number of convolution kernels of

he l th layer of the neural network. M is the side length of l th
l 
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Fig. 5. The ACA performance of the interaction between pairs of parameters α and β . 

Fig. 6. The parameter sensitivities of N, LR, γ , and I ( tq ) w.r.t. ACA on CMU-Poly-30 dataset. 

Fig. 7. (a) Demonstration of the impact for different domains. (b) Demonstration of the impact for different hidden layers. 

c  
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u  

w  
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f  

w  

b  
onvolution kernel output feature map. K l is the length of l th con-

olution kernel. 

For the space complexity analysis, we give the hardware config-

ration of the experiment. All the data processing and experiments

ere performed on a Dell workstation (Intel Xeon Gold 5120 CPU,

4 GByte RAM and 12 GByte VRAM). 
Please cite this article as: Z. Sun, Y. Yao and J. Xiao et al., Exploiting

Recognition, https://doi.org/10.1016/j.patcog.2020.107620 
.8. Pre-step before learning from the web 

Our work can be used as a pre-step before directly learning

rom the web. To verify this statement, we collected the top 100

eb images from the Google Image Search Engine by using the la-

els in the CUB-200-2011 dataset [52] . Our overlap removing strat-
 textual queries for dynamically visual disambiguation, Pattern 
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Fig. 8. (a) Demonstration of the impact for different CNN architectures. (b) Demonstration of the impact for different training samples. 

Table 4 

Fine-grained visual recognition results on CUB-200-2011 

testing set. 

Training data Algorithm Accuracy 

Original web Bilinear 0.718 

Clean web Bilinear 0.832 

CUB training Bilinear 0.841 

Clean web + CUB training Bilinear 0.863 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Visualization of object locating via saliency map. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

egy between the web training and labeled testing set is under the

assumption that images with more similar semantic information

are more likely to be similar or even identical. To be specific, we

first use the VGG-16 model pre-trained on ImageNet to extract the

embedding feature vector for each image in both training and test-

ing data. Then, for every single test image per category, we calcu-

late the similarity distance between this testing image and every

training image. For each category, we obtain the smallest distance

between training and testing data, which is denoted as θ . We set

an empirical threshold factor η = 0 . 05 to scale the distance and re-

move the web training images which have a smaller distance than

(1 + η) × θ . 

Then we employed the proposed approach to choose appropri-

ate visual senses and purify the outliers. The outputs are a set

of relatively clean web images. We leverage the relatively clean

web images as the training set to perform one of the most popu-

lar weakly supervised fine-grained algorithms Bilinear [53] , on the

CUB-200-2011 [52] testing set. We leverage the retrieved original

web images (without outliers removal) as the training set to per-

form the Bilinear algorithm on CUB-200-2011 and set the result as

the baseline performance. In addition, we put the collected rela-

tively clean web data and the training data in the CUB-200-2011

dataset together as the training data to perform the Bilinear algo-

rithm, and then test on the CUB-200-2011 dataset. The results are

shown in Table 4 . From Table 4 , we can observe that our proposed

approach greatly improves the baseline accuracy. Our collected rel-

atively clean web data and manually labeled training data in CUB-

200 achieve a very close classification accuracy (83.2% VS 84.1%).

From the result of “Clean web + CUB training”, we can draw a con-

clusion that the collected clean web data can be used to enhance

existing manually labeled datasets and can achieve a more robust

classification model. 

5.9. Visualization 

Our saliency-guided deep MIL model consists of two-stream

networks, and SGN is used to localize objects and generate the “in-

stances” for the web images. Whether or not objects are accurately

located by SGN network is the basis for extracting deep features

and learning the classification models. Fig. 9 visualizes the object
Please cite this article as: Z. Sun, Y. Yao and J. Xiao et al., Exploitin

Recognition, https://doi.org/10.1016/j.patcog.2020.107620 
locating via a saliency map. By observing Fig. 9 , we can find the

SGN can well locate the object for the web image. For some im-

ages, although SGN cannot accurately locate the exact location of

the objects, they can nevertheless be roughly located. 

6. Conclusions 

In this work, we focused on one important yet often ignored

problem: we argue that the current poor performance of models

learned from web images is due to the inherent ambiguity in user

queries. We solved this problem by visual disambiguation in search

results. The contributions mainly contain: 1) our approach can

adapt to the dynamic changes in search results and carry out vi-

sual disambiguation accordingly; 2) we propose a saliency-guided

deep MIL network to remove outliers and jointly learn the clas-

sification models for visual disambiguation; 3) our work can be

used as a pre-step before directly learning from web images, help-

ing to choose appropriate visual senses for images collection and

thereby improving the efficiency of learning from the web. Com-

pared to existing methods, the strengths of our approach are: our

proposed approach can figure out the right visual senses, adapt to

dynamic changes in the search results, remove outliers, and jointly

learn the classification models. Despite the good results we have

achieved, the weakness of our approach is that our method still

has the problem of domain mismatch. In our future work, how

to solve the domain adaptation problem between web images and

practical test data is an important research direction. Besides, how

to build a large-scale/web-scale noisy data learning system is an-

other important research direction. 
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