

SI(FS)2: Fast simultaneous instance and feature selection for datasets with many features

Journal Pre-proof

SI(FS)2: Fast simultaneous instance and feature selection for
datasets with many features

Nicolás Garcı́a-Pedrajas, Juan A. Romero del Castillo,
Gonzalo Cerruela-Garcı́a

PII: S0031-3203(20)30526-4
DOI: https://doi.org/10.1016/j.patcog.2020.107723
Reference: PR 107723

To appear in: Pattern Recognition

Received date: 6 May 2020
Revised date: 10 August 2020
Accepted date: 23 October 2020

Please cite this article as: Nicolás Garcı́a-Pedrajas, Juan A. Romero del Castillo,
Gonzalo Cerruela-Garcı́a, SI(FS)2: Fast simultaneous instance and feature selection for datasets
with many features, Pattern Recognition (2020), doi: https://doi.org/10.1016/j.patcog.2020.107723

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

https://doi.org/10.1016/j.patcog.2020.107723
https://doi.org/10.1016/j.patcog.2020.107723

Highlights

• We propose a new simultaneous instance and feature selection algorithm.

• The method achieves better storage reduction and testing error than pre-
vious approaches.

• The method is scalable to datasets with millions of features.

1

SI(FS)2: Fast simultaneous instance and feature
selection for datasets with many features

Nicolás Garćıa-Pedrajasa,∗, Juan A. Romero del Castilloa, Gonzalo
Cerruela-Garćıaa

aUniversity of Córdoba, Campus de Rabanales, 14011 Córdoba (Spain)

Abstract

Data reduction is becoming increasingly relevant due to the enormous amounts

of data that are constantly being produced in many fields of research. Instance

selection is one of the most widely used methods for this task. At the same

time, most recent pattern recognition problems involve highly complex datasets

with a large number of possible explanatory variables. For many reasons, this

abundance of variables significantly hinders classification and recognition tasks.

There are efficiency issues, too, because the speed of many classification algo-

rithms is greatly improved when the complexity of the data is reduced. Thus,

feature selection is also a widely used method for data reduction and for gaining

an understanding of feature information.

Although most methods address instance and feature selection separately,

the two problems are interwoven, and benefits are expected from performing

these two tasks jointly. However, few algorithms have been proposed for simul-

taneously addressing the tasks of instance and feature selection. Furthermore,

most of those methods are based on complex heuristics that are very difficult

to scale up even to moderately large datasets. This paper proposes a new al-

gorithm for dealing with many instances and many features simultaneously by

IThis work was supported in part by grant PID2019-109481GB-I00 of the Spanish Ministry
of Science and Innovation and grant UCO-1264182 of the Junta de Andalućıa Excellence in
Research program and FEDER funds.

∗Corresponding author
Email addresses: npedrajas@uco.es (Nicolás Garćıa-Pedrajas), aromero@uco.es (Juan

A. Romero del Castillo), gcerruela@uco.es (Gonzalo Cerruela-Garćıa)

Preprint submitted to Pattern Recognition October 23, 2020

performing joint instance and feature selection using a simple heuristic search

and several scaling-up mechanisms that can be successfully applied to datasets

with millions of features and instances.

In the proposed method, a forward selection search is performed in the fea-

ture space jointly with the application of standard instance selection in a con-

structive subspace built stepwise. Several simplifications are adopted in the

search to obtain a scalable method. An extensive comparison using 95 large

datasets shows the usefulness of our method and its ability to deal with mil-

lions of instances and features simultaneously. The method is able to obtain

better classification performance results than state-of-the-art approaches while

achieving considerable data reduction.

Keywords: Instance selection, Feature selection, Evolutionary algorithms, k

nearest neighbor rule.

1. Introduction

The overwhelming amounts of data that are available today in many fields of

research pose new problems for data mining and knowledge discovery methods.

These enormous volumes of data cause most existing algorithms to be inappli-

cable to many real-world problems. Two approaches have been used to address

this problem: scaling up data mining algorithms and data reduction. However,

scaling up a given algorithm is not always feasible. Data reduction consists

of removing missing data, redundant data, information-poor data and/or erro-

neous data to obtain a tractable problem size. Among the different methods

that can be used for data reduction, instance and feature selection are arguably

the most widely used.

Instance selection consists of choosing a subset of the total available data to

achieve the original purpose of the data mining application as successfully as

this purpose would have been achieved with the whole dataset. Multiple vari-

ants of instance selection exist. Moreover, in real-world situations, the relevant

features are often unknown a priori. Therefore, many candidate features are in-

2

troduced to better represent the domain. Unfortunately, many of these features

are either partially or completely irrelevant or redundant with respect to the

target concept. Furthermore, many current applications involve large number

of features that can represent tens or hundreds of thousands of input variables.

Data mining, as a multidisciplinary joint effort involving databases, machine

learning, and statistics, is currently being used to turn mountains of data into

nuggets. To use data mining tools effectively, data preprocessing is essential.

Feature selection is one of the most important and frequently used techniques in

data preprocessing for data mining. In contrast to other dimensionality reduc-

tion techniques, feature selection preserves the original semantics of the variables

and thus offers the advantage of interpretability by a domain expert[1].

Feature selection can be defined as the selection of a subset Φ′ of features

from a set Φ of features, where |Φ′| < |Φ|, such that the value of a criterion

function is optimized over all subsets of size |Φ′|[2]. The objectives of feature

selection are manifold, with the most important ones being as follows[1]:

• To avoid overfitting and improve model performance, i.e., achieve better

prediction performance in the case of supervised classification and better

cluster detection in the case of clustering.

• To provide faster and more cost-effective models.

• To gain deeper insight into the underlying processes through which data

are generated.

Although most proposed methods for instance selection or feature selection

address one of these problems but not both, feature and instance selection are

closely related. Depending on the subset of instances considered, the relevant

features might change. Conversely, different subsets of features might yield dif-

ferent subsets of relevant instances. Figure 1 presents an illustration of this

idea. The instances or features selected to classify query instance q depend

on each other, as different instances will be nearest to the query instance in

different subspaces. Thus, jointly searching for a subset of relevant instances

3

and features may be beneficial for the overall classification performance of the

obtained subset. It has also been established experimentally[3] that the simul-

taneous selection of features and instances yields better results than sequential

selection. Furthermore, because such algorithms can remove instances as well

as features, their data reduction capability is increased. The problem of feature

and instance selection is further complicated in the case of many features but

few instances[4].

(a) 1-NN rule using

inputs x and y.

(b) 1-NN rule using input

x.

(c) 1-NN rule using input

y.

Figure 1: Relationship between instance and feature selection. We consider a test instance, q,

and three training instances, p, s and r, belonging to classes 2, 1 and 1, respectively. Using the

1-Nearest neighbor rule, to classify q correctly, we need to select different instances depending

on the features selected. If we select feature x, we need to select instance r, and if we select

feature y, we need to select instance s. If both features are selected, then q is misclassified.

Most previous attempts to deal with the simultaneous selection of features

and instances have been based on evolutionary algorithms[5, 6, 4] or similar

swarm-based procedures[7]. Although these methods achieve very good results

on small to medium datasets, it is very difficult to apply them to large datasets.

Methods used for scaling up instance selection algorithms, such as stratification

sampling for evolutionary instance selection[8], are not readily applicable to

simultaneous instance and feature selection. Other common ways of speeding

up evolutionary algorithms such as using a cache of distances cannot be used for

this task as the number of possible subspaces grows exponentially. This means

that, even when several methods of scaling up are used the time needed for large

4

datasets is prohibitive. As an example, Garćıa-Pedrajas et al.[5] developed a

memetic algorithm for simultaneous instance and feature selection. Although

several modifications were carried out to make it scalable, in the worst case the

algorithm took more than 100 hours to evolve a solution for a dataset with 5,620

instances and 64 features. It is evident that such method would be infeasible

for the datasets used in this paper.

In this paper, we aim to design a method for the simultaneous selection of

instances and features that can be scaled up to problems with millions of features

and instances. We place special emphasis on problems with many features, as

the presence of many features poses a greater challenge for existing methods. To

meet the requirement of scalability, we resort to two well-known techniques for

scaling up learning algorithms. First, we use simple search heuristics, which are

better suited to large datasets. Second, we limit the search space with certain

simplifications that reduce the number of possible solutions.

Our proposal is called Simultaneous Instance and Feature Selection using

sequential Forward Search (SI(FS)2). The algorithm searches for the opti-

mal combined subset of instances and features using a simple heuristic search,

namely, sequential forward selection (SFS), in the feature space together with an

incremental instance selection process. Our method is intended for application

to datasets with many features[4].

This paper is organized as follows: Section 2 reviews some related work;

Section 3 describes our proposal; Section 4 describes the experimental setup;

Section 5 presents the results of our experiments; and Section 6 summarizes the

conclusions of our work.

2. Related work

A major problem with simultaneous instance and feature selection is the

absence of a formal theory that can be readily applied, as is the case for either

feature or instance selection separately. For feature selection, methods based on

mutual information or various statistical tests have been developed[9]. However,

5

it is very difficult to develop similar methods for selecting instances and features

at the same time. Thus, most of the methods developed so far for simultane-

ous instance and feature selection are based on heuristics such as evolutionary

algorithms[6], memetic algorithms[5] or particle swarm optimization[7]. Multi-

objective optimization has also been used. Intelligent Multiobjective Evolution-

ary Algorithm (IMOEA)[10] is a multi-objective evolutionary algorithm, which

considers both instance and feature selection. The algorithm has two objectives,

maximization of training accuracy and minimization of the number of instances

and features selected. The multi-objective algorithm used is based on Pareto

dominance because the approach is common in multi-objective algorithms. As

in other evolutionary methods scalability is a serious issue.

The first simultaneous method, RMHC-PF1, for instance and feature se-

lection was proposed by Skalak[11]. The method consists of a simple random

mutation hill climbing search where instances and features are equally consid-

ered during the search. Dasarathy and Sánchez[12] developed a method based

on combining both tasks using an heuristic search. However, this method has

scalability problems and can also remove entire classes[13]. Babu et al.[14] de-

veloped another method but it was only usable for binary features.

Zhang et al.[15] proposed a unified criterion for feature and instance se-

lection (UFI) to simultaneously identify the most informative features and in-

stances that minimize the trace of the parameter covariance matrix. A greedy

algorithm was introduced to efficiently solve the optimization problem. Exper-

imental results were presented for two small datasets.

Tsai et al.[16] combined instance and feature selection by means of a ge-

netic algorithm for large datasets. However, the two processes were carried

out sequentially rather than simultaneously. The order of selection was decided

depending on the characteristics of the datasets.

Derrac et al.[17] developed a cooperative coevolutionary approach based on

the use of three populations: the first population performed an instance selec-

tion process, the second population performed a feature selection process, and

the third population performed a joint instance and feature selection process.

6

The method was advantageous compared with other evolutionary approaches

performing instance and feature selection either separately or jointly.

Villuendas-Rey et al.[13] used genetic algorithms and rough sets for instance

and feature selection to improve the classification of families having children

with affective-behavioral maladies.

An objective similar to simultaneous instance and feature selection was ad-

dressed by Suganthi and Karunakaran[18], who applied a feature selection pro-

cess using cuttlefish optimization followed by principal component analysis. In

the same way, Zhang et al.[19] proposed an algorithm based on fuzzy rough sets

to select representative instances and then perform feature selection.

However, one major problem with these previous approaches is their scala-

bility. These previous papers addressed small- to medium-sized problems. The

number of features was always low. Table 1 shows the maximum numbers of

instances and features addressed in those previous papers. In this paper, we

consider a large dataset with more than 2 million instances and 3 million fea-

tures, representing a clear distinction from previous works, which considered

much smaller problems. Problems with millions of instances are quite common

in many research fields such as Bioinformatics, Physycs, Chemistry and many

other scientific areas. Datasets with thousands and even millions of features are

common in data extracted from web pages or when bag of words or n-grams are

used to represent text documents[20].

Table 1: Maximum numbers of features and instances in previous works.
Paper Largest datasets for instances Largest datasets for features

Instances Features Instances Features

Proposal 2,396,130 3,231,961 2,396,130 3,231,961

Derrac et al. (2010) [17] 6,435 36 360 90

Ahmad and Pedrycz (2011) [7] 5,875 26 5,875 26

Zhang et al. (2012) [15] 1,500 241 400 1,024

Tsai et al. (2013) [16] 581,012 54 779 2,197

Villuendas-Rey et al. (2013) [21] 1,728 6 798 38

Garćıa-Pedrajas et al. (2014) [5] 6,435 36 279 452

Zhang et al. (2018) [19] 7,195 21 126 310

Suganthi and Karunakaran (2019) [18] 1,025,010 11 581,012 54

7

3. SI(FS)2: Fast simultaneous instance and feature selection for datasets

with many features

As stated in the previous section, our aim is the development of a new

method for the simultaneous selection of instances and features, especially one

that is scalable to datasets with a large number of features. This aim precludes

the use of previous approaches based on evolutionary algorithms or similar meta-

heuristics due to their difficulties in dealing with large datasets for this task1.

Thus, our first decision is that our method must be based on simple search

heuristics, one of the most straightforward ways of scaling up learning methods[22].

The second decision is related to the size of the search space. Searching for the

global optimum in both the feature and instance spaces is infeasible. Thus, we

opt for two interwoven steps that aim to optimize both selections but in a feasi-

ble way. Based on these two premises, we design, as the basic architecture of our

proposal, a SFS search process in the feature space in which every time a new

feature is considered to be added to the subset of selected features, an instance

selection algorithm is carried out in the corresponding subspace. To describe the

method more formally, consider a training set S = {(x1, y1), . . . , (xN , yN)} with

a feature set Φ = {φ1, φ2, . . . , φM}. Our task is to obtain a subset of instances,

S′ ⊂ S, and features, Φ′ ⊂ Φ, such that S′ � S and Φ′ � Φ. Based on the

premises stated above, we develop the first basic model shown in Algorithm 1.

The result of the algorithm is the subset of selected features, Φ′, and the subset

of selected instances, S′.

Thus, our method is based on combining a simple heuristic search in the fea-

ture space with an instance selection algorithm in the instance space. However,

both algorithms would be too computationally expensive if we were to consider

the whole search space in every step. In a search space consisting of tens of

thousands of features and hundreds of thousands of instances, the procedure

1We must emphasize that we are not stating that evolutionary algorithms cannot deal with

large problems in general but rather that for the task of simultaneous instance and feature

selection in particular, their scalability is problematic.

8

Algorithm 1: Basic skeleton for our proposed method of simultaneous

instance and feature selection.
Data: Training set S = {(x1, y1), . . . , (xn, yn)} with feature set Φ = {φ1, φ2, . . . , φM} and instance

selection algorithm IS.

Result: Subset of selected features Φ′ ⊂ Φ and instances S′ ⊂ S.

1 Φ′ = ∅
2 do

/* Forward step */

3 forall the φ ∈ (Φ − Φ′) do

4 F = Φ′ ∪ φ
5 Perform instance selection on S with subspace F : s′ = IS(S, F)

/* IS(S, F) perform IS algorithm on S using subspace F . */

6 Evaluate 1-NN classification performance using (S′, F ′); if current best, φbest = φ and

S′best = s′

7 end

/* φbest and S′best are the best feature and best subset of instances obtained in the preceding loop respectively

*/

8 Φ′ = Φ′ + φbest

9 S′ = S′best

10 while Convergence criterion not met

11 Return S′,Φ′

described in Algorithm 1 could not be executed efficiently.

Therefore, several modifications are introduced to obtain a fast and scalable

method. A first approach to reducing the time needed for every round of the

algorithm is to consider only a subset of features for addition in every step of

the procedure. Furthermore, when the number of features is very large, many of

these features will be useless. To avoid repeatedly considering useless features for

addition, we use a roulette selection scheme in which the probability of selecting

each feature depends on its relevancy. Many ranking methods for scoring the

importance of a feature have been developed. Among them, methods based on

mutual information both offer good performance and are fast[23] and thus the

reason why we use them. However, the particular feature ranking method used

does not have a significant impact on the performance of SI(FS)2, provided that

it is fast enough to avoid compromising the scalability of our method. Thus, for

every feature φi, we obtain the mutual information between that feature and

the target class and assign that score to a vector of weights to be used for the

roulette selection of features: wi = MI(φi, Y). Then, the number of features

considered for addition each round is set to a fixed small number, this value is

named fstep (see Algorithm 2 line 6). Through experiments, we will show that

9

considering only 100 features is sufficient for datasets with millions of features.

The second way to scale up our method is central to our algorithm. It

consists of a constructive scheme for selecting instances. Instance selection can

be a costly procedure[24]. This procedure must be carried out many times in

our method, thus precluding its application to even moderately large datasets.

To circumvent this problem, we modify the way the instances are selected using

the following procedure:

• Initially, all instances are removed from the selected subset S′.

• Each time the instance selection algorithm is carried out for a certain

subspace, it is performed on a small stratified sample from the whole

dataset, s ⊂ S, to obtain a subset of selected instances, s′ ⊂ s (see

Algorithm 2 step 5). As will be shown in the experimental results, the

size of this subset can be as small as 100 instances. The evaluation of the

current subspace and the subset of selected instances is also carried out

considering only the instances in s. There is not a fixed bound for the

size of s, as it depends on the available resources and the time constraints.

However, as a rule of thumb, in the reported experiments a size of 1,000

instances was used with very good results. That means that although

larger samples could be used for datasets with many instances a good

performance is already achieved with this small sampling size.

• Once the best feature to add to the subset of selected features, φbest, is

obtained, the selection associated with it, sbest, is used to update the

current subset of instances S′ as follows: S′ = S′ + {x ∈ s′}. That is, all

selected instances in s′ are added to the selected subset S′. If an instance

was already in S′, its status is not affected.

• Regarding the unselected instances in s, i.e., s − s′, two versions of the

algorithm have been implemented. In the first version, after the selected

instances are added, the instances in s that have not been selected are

also removed, i.e., S′ = S′−{x ∈ (s−s′)}. This is the standard version of

10

our proposed SI(FS)2 method. In the alternative version, called the OR

version or our proposed SI(FS)2∨ method, the unselected instances do not

affect the set S′; only the newly selected instances are added to S′, i.e.,

S′ = S′ ∪ s′.

The last method used to improve the speed of SI(FS)2 is applied in the eval-

uation of the current solution, which must be carried out in every round of the

algorithm. For large datasets, evaluating the 1-NN classification performance

may be a costly process. In our method, we instead evaluate the classification

performance using a stratified partition of the dataset. The training data are

divided into T strata of fixed size, which was 10,000 instances in the experiments

reported here, using a stratified partition that preserves the class distribution

of the instances, and then, the 1-NN classification performance is evaluated

in each stratum independently. The overall classification performance value is

the average over all the strata. As will be shown in the reported experiments,

with this procedure, it is possible to obtain very small subsets of features and

instances that provide a performance comparable to that achieved using the

whole dataset in a moderate amount of time.

To evaluate the current solution, we consider both the classification perfor-

mance and the data reduction ability. Both factors are weighted equally. The

quality of a certain selection of instances, S′, and features, Φ′, is given by

f(S′,Φ′) = classification performance1−NN (S′,Φ′) + r(S′,Φ′), (1)

where classification performance1−NN (S′,Φ′) is the classification performance

of the subset of instances and features obtained using the stratified approach

described above and r(S′,Φ′) is the reduction of the dataset, defined as r =

1 − |S
′|
|S|
|Φ′|
|Φ| . For the classification performance we can consider any metric of

our choice.

The stopping criterion is based on the average value of this fitness measure

throughout the execution of the algorithm. A certain number of consecutive

rounds with worsening average values must be reached to consider that no fur-

11

ther improvement might be expected. We use the average value instead of the

current fitness because it is a more stable measure. The result of our algorithm is

always the subset of features and instances that achieved the best classification

performance during the search process, as better classification performance is

usually preferred over greater data reduction. The length of this “losing streak”,

ls, must be sufficiently long to avoid premature convergence, but since the final

result is always the best-performing selection, it has no major impact on the

ultimate performance of SI(FS)2. In our experiments, this criterion was fixed

to ls = 10. The final SI(FS)2 procedure is described in Algorithm 2. As in

the previous algorithm, the result is the subset of selected features, Φ′, and the

subset of selected instances, S′.

Algorithm 2: Simultaneous Instance and Feature Selection using sequen-

tial Forward Search (SI(FS)2).
Data: Training set S = {(x1, y1), . . . , (xn, yn)} with feature set Φ = {φ1, φ2, . . . , φM}.
Result: Subset of selected features Φ′ ⊂ Φ and instances S′ ⊂ S.

1 wi = MI(Φi, y), ∀φi ∈ Φ

2 Φ′ = ∅
3 S′ = ∅
4 do

/* Forward step */

5 s, a random stratified sample of S

6 for i = 1 to fstep do

7 φ = Roulette selection of next instance

8 F = Φ′ ∪ φ
9 Perform instance selection on s with subspace F : s′ = IS(s, F)

/* IS(S, F) perform IS algorithm on S using subspace F . */

10 Evaluate 1-NN classification performance using (s′, F ′); if current best, φbest = φ and

S′best = s′

11 end

/* φbest and S′best are the best feature and best subset of instances obtained in the preceding loop respectively

*/

12 Φ′ = Φ′ + φbest

13 S′ = S′ ∪ S′best

14 S′ = S′ − s \ Sbest

/* Not applied to OR version of SI(FS)2 */

15 while Convergence criterion not met

16 Return S′,Φ′

4. Experimental setup

To ensure a fair comparison between standard instance and feature selection

algorithms and our proposed approach, we selected a set of 95 datasets with

12

wide-ranging numbers of patterns, features and classes. A summary of these

datasets is provided in Table 1 of the supplementary material. Because this

paper focuses on datasets with many features, we selected problems with at least

500 features. To estimate the data reduction and classifier performance, we used

10-fold cross-validation. rcv1 has two versions, consisting of the original dataset

and a stratified 10% sample. The numbers of features of these two versions are

different because the sampling caused some of the features to be constant, and

thus, they were removed.

We used the Wilcoxon test[25] as the main statistical test for comparing

pairs of algorithms. This test was chosen because it assumes limited commen-

surability and is safer than parametric tests because it does not assume normal

distributions or homogeneity of the variance. Thus, this test can be applied

to both error ratios and data storage requirements. Furthermore, empirical

results[25] show that this test is stronger than other tests.

In our experiments, we also compared groups of methods. In such cases, it

is not advisable to use pairwise statistical tests such as the Wilcoxon test. In-

stead, we first applied the Iman-Davenport test to ascertain whether there were

significant differences among the methods. The Iman-Davenport test is based

on the χ2
F Friedman test, which compares the average ranks of k algorithms,

but the former is more powerful. After applying the Iman-Davenport test, we

can use any of the general procedures available for controlling the familywise

error in multiple hypothesis testing. One of the simplest methods of this type

is Holm’s procedure[25], which is the one used in our experiments.

In Holm’s procedure, the best-performing algorithm in terms of Friedman’s

ranks is compared in a stepwise manner against the other methods. The test

statistic for comparing the i-th and j-th methods is

z =
(Ri −Rj)√
k(k + 1)/6N)

. (2)

The z value is used to find the corresponding probability from the normal

distribution table, which is then compared against an appropriate α. The tests

13

differ in how the α value is adjusted to compensate for multiple comparisons.

The ordered p-values are denoted by p1, p2, . . ., such that p1 ≤ p2 ≤ . . . ≤ pk−1.

Holm’s step-down procedure starts with the most significant p-value. If p1 is

less than α/(k − 1), then the corresponding hypothesis is rejected, and p2 with

α/(k − 2) can be tested. If the second hypothesis is rejected, then the test

proceeds to the third, and so on. As soon as a certain null hypothesis cannot

be rejected, all remaining null hypotheses are also retained.

When the Iman-Davenport test rejects a null hypothesis, we can also pro-

ceed with a post hoc Nemenyi test, which compares groups of methods. The

performances of two classifiers are considered significantly different if the corre-

sponding average ranks differ by at least the following critical difference:

CD = qα

√
k(k + 1)

6

N
, (3)

where the critical value qα is based on the studentized range statistic divided

by
√

2, N is the number of datasets, and k is the number of compared methods.

As a graphical representation of the Nemenyi test, we use the plots described by

Demšar[25]. When comparing the algorithms against one another, we connect

each group of algorithms that are not significantly different with a horizontal

line. We also show the critical difference above the graph. For all statistical

tests, we use a significance level of 0.05.

The source codes, written in C and licensed under the GNU General Public

License, for all methods as well as the partitioning of the datasets are freely

available from the authors upon request.

4.1. Evaluation measures

The data reduction is measured as the percentage of instances and features

removed by an algorithm. Thus, if we have N instances and M features and

a certain algorithm selects n instances and m features, the reduction is r =

1 − (n/N)(m/M). We can use the standard measure of accuracy to quantify

the percentage of instances that are correctly classified. However, recent works

have shown that misclassification rates may be biased because they contain

14

substantial randomness[26]. Furthermore, when the numbers of patterns are not

evenly distributed among the classes, the accuracy may yield a poor evaluation

of the performance, as the performance on classes with only a few patterns is

almost entirely disregarded if we calculate the accuracy over the entire test set.

Thus, as a performance measure, we use Cohen’s κ measure, which compensates

for random hits. Its original purpose was to measure the degree of agreement.

However, κ can also be adapted to measure classification accuracy, and its use is

recommended because it accounts for random successes[26]. For a classification

task, the value of κ can be computed from the confusion matrix as follows:

κ =
n
∑C
i=1 xii −

∑C
i=1 xi·x·i

n2 −∑C
i=1 xi·x·i

, (4)

where xii is the cell count on the main diagonal, n is the number of examples,

C is the number of classes, and xi· and x·i are the total column and row counts,

respectively. The value of κ ranges from -1 (total disagreement) to 1 (perfect

agreement). For multiclass problems, κ is a very useful yet simple metric for

measuring the accuracy of a classifier while compensating for random successes.

5. Experimental results

As stated in the previous sections, the actual instance selection algorithm

used in our search is a variable setting of our method. In the first step of

our experiments, we performed a comparison of 14 different instance selec-

tion algorithms to determine the one that is best suited for our method using

the datasets listed in Table 1 of the supplementary material and the two ver-

sions of our proposed method. The tested instance selection algorithms were

BBIS[27], CHC[24], CNN[28], DROP3[29], GCNN[30], HMNEI[31], IB3[28],

ICF[32], MSS[33], PSA[34], PSRCG[35], RMHC[28], RNGE[28] and RNN[28].

For the OR version of our method, the name of the instance selection algorithm

used is marked as NAME∨.

Figures 2 and 3 show the results of the Nemenyi test for data reduction and

classification performance, measured using κ, as obtained with the 14 different

15

instance selection methods and the two versions of SI(FS)2. Detailed numerical

comparisons are shown in Tables 4, 5, 6 and 7 of the supplementary material.

The Iman-Davenport test yielded a p-value of 0.0000 for three compared factors

of the algorithms: classification performance, data reduction and run time.

In terms of data reduction ability (see Figure 2), the first interesting result is

the impressive ability of our method to achieve large reductions. Even the worst

method in terms of the Friedman ranks, SI(FS)2∨ using RNGE, achieved an

average reduction of over 96%. Several algorithms achieved an average reduction

of over 99%. Although RMHC was the best overall method, the differences were

small. RNGE also showed very good performance in terms of data reduction

but at the cost of the worst classification performance. As is clear from the

algorithm design, the OR version of SI(FS)2 reduced fewer instances in all cases

than its standard counterpart.

6.08.010.012.014.016.018.020.022.0

CD (4.433)

RMHC (5.063)

PSRCG (5.711)

CHC (8.121)

DROP3 (9.511)

RNN (9.858)

MSS (10.111)

IB3 (10.289)

ICF (10.516)

CNN (11.268)

PSA (11.884)

RMHC (12.026)

GCNN (14.284)

RNN (14.879)

HMNEI (15.163)DROP3 (16.305)

PSRCG (16.358)

IB3 (16.879)

MSS (16.968)

GCNN (17.089)

BBIS (17.774)

CHC (18.326)

PSA (18.468)

BBIS (18.979)

RNGE (19.405)

ICF (19.742)

HMNEI (19.747)

CNN (20.258)

RNGE (21.016)

Figure 2: Nemenyi test for reduction results for the 14 different instance selection algorithms

used to implement SI(FS)2.

In terms of κ, CHC∨ was better than the remaining methods, although

the Nemenyi test did not find any significant differences among the best 22

methods. Overall, there were four algorithms that achieved good classification

performance for both versions of the proposed method: CHC, RMHC, HMNEI

and BBIS. Among these algorithms, we selected HMNEI as the representative

setting of SI(FS)2 for the remaining experiments due to its very good combined

behavior in terms of classification performance and data reduction. Thus, HM-

16

NEI was used as the representative instance selection method of our approach

for the subsequent experiments.

12.014.016.018.020.0

CD (4.433)

CHC (11.000)

HMNEI (11.753)

ICF (11.905)

BBIS (11.995)

HMNEI (12.079)

MSS (12.216)

BBIS (12.232)

RMHC (13.247)

CHC (13.289)

RNGE (13.337)

RNN (13.379)

RNGE (13.389)

RMHC (13.563)

GCNN (14.047)ICF (14.068)

IB3 (14.121)

DROP3 (14.326)

CNN (14.968)

DROP3 (15.195)

MSS (15.442)

GCNN (15.774)

PSA (15.989)

RNN (16.579)

PSRCG (17.516)

CNN (17.758)

IB3 (17.816)

PSRCG (18.458)

PSA (20.558)

Figure 3: Nemenyi test for κ results for the 14 different instance selection algorithms used to

implement SI(FS)2.

Finally, a run-time comparison is shown in Figure 1 of the supplementary

material. In most cases, the OR version ran for a shorter time. This is ex-

plained by its worse data reduction ability. Because our algorithm stops when

the average fitness has continuously decreased for a certain number of rounds,

a worse reduction ability means that the classification performance must con-

tinuously improve to avoid convergence. Thus, the OR version usually met the

stopping criterion earlier. However, there is room for differences, as its better

classification performance compensated for this effect on many datasets.

Previous results have shown that evolutionary algorithms outperform other

methods[17]. The differences between the different evolutionary methods are

usually small and due to the large computational cost involved comparing with

many different algorithms is infeasible. Thus, we compared SI(FS)2 against

a memetic algorithm that showed the best performance compared with other

evolutionary methods in a comparison on many datasets[5]. We also compared

both algorithms against the classification performance of the 1-NN rule without

instance or feature selection.

Due to the size of some of the datasets and to ensure that comparisons

were carried out on similar grounds for all methods, we set an arbitrary time

17

limit of 10 hours for all algorithms. When this time was reached, the best

result so far was returned as the final output of the algorithm. In the tables,

some of the methods are reported to have longer run times because the last

iteration/generation of every algorithm was always allowed to reach completion.

Table 2 of the supplementary material shows the κ results for 1-NN, a memetic

algorithm performing instance and feature selection, and the two versions of our

method with HMNEI as the instance selection algorithm.

The four methods are compared in Table 2. For κ, the Iman-Davenport test

yielded a p-value of 0.0109. The Wilcoxon test showed that both versions of

SI(FS)2 achieved significantly better performance not only than the memetic

algorithm but also than the use of the whole dataset while achieving dramatic

data reduction. For κ, no significant differences were found between the two

versions of our method.

Table 2: Comparison of results for 1-NN, a memetic algorithm and our method in terms of

the κ measure.
1-NN Memetic SI(FS)2 SI(FS)2∨

Mean 0.5318 0.5246 0.5678 0.5663

Ranks 2.7316 2.7053 2.3158 2.2474

w/l 47/45 50/36 53/25

1-NN p 0.7921 0.0284 0.0027

R+/R− 2351.0/2209.0 2870.5/1689.5 3088.5/1471.5

w/l 57/35 55/36

Memetic p 0.0325 0.0227

R+/R− 2856.0/1704.0 2894.0/1666.0

w/l 42/41

SI(FS)2 p 0.8035

R+/R− 2213.0/2347.0

The results for data reduction are shown in Table 3 of the supplementary

material, and the corresponding comparison is shown in Table 3. For data

reduction, the Iman-Davenport test yielded a p-value of 0.0000. The differences

between our proposed method and the memetic algorithm are dramatic. Both

versions of our method achieved greater reduction at the 99% confidence level.

As should be expected, the standard version of SI(FS)2 outperformed the OR

version. Both tables show the efficiency of the memetic algorithm and SI(FS)2 in

terms of data reduction. The memetic algorithm achieved an average reduction

greater than 90%.

18

Table 3: Comparison of the results for the memetic algorithm and our method in terms of

data reduction.
Memetic SI(FS)2 SI(FS)2∨

Mean 0.9050 0.9801 0.9594

Ranks 2.8632 1.3053 1.8316

w/l 93/2 84/11

Memetic p 0.0000 0.0000

R+/R− 4557.0/3.0 4159.0/401.0

w/l 25/66

SI(FS)2 p 0.0000

R+/R− 921.5/3638.5

However, the reduction ability was mainly focused on instance selection;

only approximately 50% of the features were removed, whereas the removed

instances constituted more than 90%. On the other hand, the data reduction

ability of SI(FS)2 showed impressive results, with average reductions of 98.0%

and 95.9% for the standard and OR versions of our algorithm, respectively. On

average, only 43.8 instances and 95.5 features were selected. A comparison of

the memetic algorithm and SI(FS)2 in terms of the numbers of instances and

features selected is shown in Figure 4.

To better illustrate the results, Figure 4 shows the instances and features

selected by each method for all datasets. The actual results are shown in Table 8

and 9 of the supplementary material for the instances and features, respectively.

In general, SI(FS)2 retained more instances, although the differences were small.

However, its ability to remove features was far superior to that of the memetic

algorithm. As an example, for the datasets with the largest number of features,

day and url-rep, both with 2,396,130 features, our proposed method retained

only 16,211.9 and 11,763.9 features on average, respectively, while 534,496.9

and 545,199.9 features, respectively, were retained on average by the memetic

algorithm. Furthermore, in both cases, the classification performance of SI(FS)2

was better than that of the memetic algorithm.

In fact, for datasets with more than 10,000 instances, the evolutionary algo-

rithm performed too few iterations in the assigned time, which resulted in very

poor performance. The capability of faster execution is an interesting charac-

teristic of our approach when dealing with large datasets. To further illustrate

19

100 101 102 103 104 105 106

Memetic algorithm

100

101

102

103

104

105

106

SI
FS

2 1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16

17

18

19

20

21

22

23

2425

26

27

2829

30

31

32

33

34

35

36

37

38

3940

41

42

43 44

4546 47

48

49

50

51

52535455

56

57

58

59

60

61

62

63

64

65

66

67
68

69

70

71
72

73

7475
76
77
7879

80

81

82

83

84
8586

87

8889
90

91

92

9394

95 1

2
3

4

5
6

7

8

9
10

11

12
13

14

15

16
17

18

19
20

21

22

23

24

25

2627 2829

30

31

32

33

34

35

36

37

38

39

40
41

42

43 44

45
46

47

48

49

50

51

52535455

56

57

58

59

60

61

62

63
64

65

66

67

68

69

70

71

72

73

74

75

76

77

78 79

80

81

82

8384

85
86

87
88

89

90

91

92

93

94
95

#Selected instances
#Selected features

(a) Memetic algorithm and SI(FS)2

100 101 102 103 104 105 106

Memetic algorithm

100

101

102

103

104

105

106

SI
FS

2

1

2

3

4

5

67

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
25

26

27

28

29

30

31

32

33

34

35

36

37

38

3940

41

42

43 44
45

46

47

48

49

50

51

52535455

56

57

58

59

60

61

62

63
64

65

66

67 68

69

70

71

72

73

7475767778

79

80

81

82

83

84
8586

87

8889
90

91

92

93

94
95

1

2

3

4

5

6

7

8

9

10

11

12

13

1415

16 17

18

19

20

21

22

23

24
25

26

27

28

29

30

31

32

33
34

35

36

37

38

39
40

41

42

43

44

45

46
47

48
49

50

51

5253

54

55
56

57

58

59

60

61
62

63

64

65

66

67
68

69

7071

72

73

74

75

76
77

78

79

80

81

82

83

84

85

86
87 88

8990

91

92

93

94

95

#Selected instances
#Selected features

(b) Memetic algorithm and SI(FS)2∨

Figure 4: Comparison of the numbers of instances and features selected by the memetic

algorithm (on the x-axis) and SI(FS)2 with HMNEI (on the y-axis). Both axes are shown on

a logarithmic scale.
20

the results, Figure 5 shows the results for the memetic algorithm and SI(FS)2 in

terms of κ, data reduction, run time and the average between κ and reduction

as a combined fitness metric. We selected the standard version of our method

for this comparison because it matched the classification performance of the OR

version with significantly better data reduction.

Figure 5(a) shows κ, Figure 5(b) shows the data reduction, Figure 5(c) shows

the run time, and Figure 5(d) shows the average of κ and data reduction. In

these figures, points above the main diagonal line y = x indicate better perfor-

mance of SI(FS)2. The results for the κ measure show the overall advantage

of our method, as corroborated by the Wilcoxon test. More points are located

above the diagonal, and these points tend to be more separated from the y = x

line. The differences in data reduction ability shown in Figure 5(b) are a perfect

illustration of the capability of our method. With the exception of the cnae-9

dataset, for which our method was 0.1% worse on average, for the remaining 94

datasets, SI(FS)2 achieved a superior reduction ability.

Regarding the run time (see Figure 5(c)), we found a group of datasets for

which both algorithms did not finish within the time limit of 10 hours, and

thus, their run times were similar. The differences depend on the length of

the last iteration of each method. However, there are a few datasets, namely,

comedy comparisons, day, rcv1 and url-rep, for which just one generation

of the memetic algorithm took many hours and the overall run time was much

longer than that of our proposed method. Finally, to unify the performance

of the two methods into one metric, we show the average of κ and the data

reduction metric in Figure 5(d). This last figure shows a clear improvement of

SI(FS)2 over the memetic algorithm. Most of the points are above the main

diagonal and, furthermore, are clearly more separated from it than the points

below the diagonal.

The results of the two selection methods are further illustrated in Figure 6.

This figure shows the results in terms of κ and data reduction. This graph-

ical representation is based on κ-error relative movement diagrams. In such

diagrams, an arrow is used to represent the results of both methods applied

21

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Memetic

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

SI
FS

2

1

2

3
4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

2122

23

24

25

26

27

28 29
30

31
32

33

34

35

36

37

38

39

40

41

42

4344

45

4647

48

49

50

51

52

53 54

55

56

57 58

59

60

61

62
63

64

65

66

67

68

69

70

71

72

73

74

7576

77
78 79

80

81

82
83

84

85

86

87

88

89

90

91

92

93

94

95

0.80 0.85 0.90 0.95 1.00
Memetic

0.80

0.85

0.90

0.95

1.00

SI
FS

2

1

2

3 4
5 6

7
8

9
10

11
12

13
14

15

16

17
18

19

20

21
22

23

24

25
26

27

28

29

30

31

32
33

3435

36

37
38

39
40

41 42
43

44 4546
47

48

49
50 51

5253 54

55

56

57

58
59

60

61

62

63 646566

67

68

69
70 71

72

73
74

757677787980 81

82

83 84

85
8687

88
89

90

91

92

93

94

95

Reduction

(a) κ (b) Data reduction

101 102 103 104 105

Memetic

101

102

103

104

105

SI
FS

2

12 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

3334

35

36

3738 3940

41

42

43

44

45

46

47

48

49
50

51

52

53

54
55

56

57

58

59

60

61

62

63

64

6566

67

68
69

70

71

72

73

74
75

76
77

7879
80

81

82

83

84

85

86

87

88

89
90

9192

93

94

95

Time (s)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Memetic

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SI
FS

2

1

23
4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

2122

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

4344

45

4647

48

49

50

51

52

53 54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

7576
77

78 79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

A(, r)

(c) Time (logarithmic scale) (c) Average of κ and data reduction

Figure 5: Comparison in terms of classification performance, data reduction and run time for

the memetic algorithm and SI(FS)2 using HMNEI.

22

0.00 0.05 0.10 0.15 0.20
Reduction

0.4

0.2

0.0

0.2

0.4

0.6

1

2
3

4

5

6

7

8
9 10

11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

33

34

35
36

37
38

3940

41

42

43

44

45

46

47

48

49

50

51

52
53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69
70

71
72 73

74

75
76

77
78

79

80
81

82

838485

86

87

88
89

90

91

92 93

94

95

Figure 6: Relative movement diagram for CHC and SI(FS)2 in terms of κ and data reduction.

to the same dataset. The arrow starts at the coordinate origin, and the co-

ordinates of the tip of the arrow represent the differences between the κ and

data reduction metrics of our boosting method and those of the standard algo-

rithm alone. These graphs are a convenient way of summarizing the results. A

positive value for either data reduction or κ means that our method performed

better. This figure shows that SI(FS)2 achieves impressive performance in terms

of data reduction while also improving the overall classification performance of

the selected subset of instances and features.

As stated above, the major aim of this work was to develop a simultaneous

instance and feature selection method that is able to deal with large numbers

of features. To evaluate whether that objective was achieved, Table 4 shows a

summary of the results for the nine datasets with more than 50,000 features.

This table shows interesting results. First, SI(FS)2 achieved an impressive data

23

reduction of more than 99.9% on average, in contrast with the 87.5% reduction

of the memetic algorithm. In terms of the number of features selected, only

62.2 features were selected on average. For some of the largest datasets, this

reduction was achieved while maintaining a classification performance close to

that achieved with the use of the whole dataset. For the day dataset, only 42.1

features were selected from a total of 3,231,961. However, the value of κ was

0.9260, very close to the value of 0.9411 obtained using the whole dataset. The

same behavior was observed for url-rep and sens-10-grams.

Table 4: Results of the memetic algorithm and our method for datasets with more than 50,000

features.
Dataset Features 1-NN Memetic

κ Red. #Instances #Features κ Time(s)

day 3,231,961 0.9411 0.8735 545199.9 1616872.1 0.4062 518134.3

farm-ads 54,877 0.6547 0.8769 916.0 27499.1 0.4525 37850.4

sens-10-gram 2,052,063 -0.0499 0.8766 843.9 1025693.1 -0.0489 53219.6

sens-5-gram 51,238 0.0374 0.8728 866.0 25746.1 0.0327 39258.4

sens-6-gram 172,109 0.1059 0.8758 851.9 85860.9 0.0292 42982.7

sens-7-gram 441,251 0.0209 0.8769 842.0 220778.1 0.0775 49212.1

sens-8-gram 888,837 0.0590 0.8721 874.9 444590.0 0.1848 51234.2

sens-9-gram 1,465,215 0.0258 0.8699 888.9 733666.1 0.1479 51234.3

url-rep 3,231,961 0.9427 0.8761 534496.9 1616021.9 0.8236 398156.4

Average 0.3042 0.8745 120642.1 644080.6 0.2340 137919.5

Dataset Features 1-NN SI(FS)2

κ Red. #Instances #Features κ Time(s)

day 3,231,961 0.9411 1.0000 20263.9 42.1 0.9260 38092.0

farm-ads 54,877 0.6547 0.9987 1148.0 235.1 0.6764 36017.3

sens-10-gram 2,052,063 -0.0499 1.0000 22.9 1.1 -0.0037 41931.5

sens-5-gram 51,238 0.0374 0.9996 1034.0 69.1 0.1308 25491.1

sens-6-gram 172,109 0.1059 0.9999 1383.9 23.9 0.1754 21218.2

sens-7-gram 441,251 0.0209 0.9999 1075.0 75.0 0.2043 36170.4

sens-8-gram 888,837 0.0590 1.0000 1045.9 85.9 0.2157 36679.5

sens-9-gram 1,465,215 0.0258 1.0000 18.9 1.8 0.0040 42574.5

url-rep 3,231,961 0.9427 1.0000 11756.9 30.0 0.9267 36714.6

Average 0.3042 0.9998 4194.3 62.6 0.3617 34987.3

Regarding the comparison with the memetic algorithm, SI(FS)2 showed the

ability to deal with large datasets, a situation in which the memetic algorithm

encountered serious problems in achieving a useful solution. The scalability

problems of the latter are clearly shown: although a significantly longer time

was used, the achieved solution was inferior to that of SI(FS)2 in terms of both

data reduction and κ. In terms of both measures, our approach obtained results

that were improved by more than 10% compared with those of the memetic

24

algorithm.

Among the non-evolutionary methods previously proposed we also consid-

ered the method of Dasarathy and Sánchez[12]. This method consists of a

sequential backward selection search in tge feature space where at each step two

instance selection algorithms are applied one after another, RNGE and MCS[36]

procedures. This method is not scalable even to medium datasets, due to the

large computational cost of each step and thus cannot be compared with our

proposal. Skalak[11] proposed a random mutation hill climbing method to select

prototypes and features (RMHC-PF1) that it is able to deal with large datasets.

Table 5 shows the comparison of SI(FS)2 and RMHC-PF1 in terms of reduction

and classification performance.

Table 5: Comparison of the results of RMHC-PF1 and our method in terms of κ and data

reduction.
Reduction

RMHC-PF1 SI(FS)2

Mean 0.9650 0.9801

Ranks 1.6421 1.3579

w/l 61/34

RMHC-PF1 p 0.0007

R+/R− 3189.0/1371.0

κ

RMHC-PF1 SI(FS)2

Mean 0.4749 0.5678

Ranks 1.7316 1.2684

w/l 65/21

RMHC-PF1 p 0.0000

R+/R− 3604.5/955.5

The table shows the advantage of our method when compared with RMHC-

PF1. SI(FS)2 significantly outperformed RMHC-PF1 in terms of both reduction

and classification performance measured using κ.

Instance and feature selection when performed together are usually applied

to nearest neighbor classifier, however the selected subset of instances and fea-

tures can also be applied to other classification models. To further assure the

viability of our proposal we also evaluated its results using three additional

classifiers: decision trees (DTs), support vector machines (SVMs) and random

forests (RFs). We have selected these methods because they are some of the

25

most commonly used and are typically top performing when classification mod-

els are compared. To set the hyperparameters of the SVMs, we utilized a linear

kernel with C ∈ {0.1, 1, 10}, and a Gaussian kernel with C ∈ {0.1, 1, 10} and

γ ∈ {0.0001, 0.001, 0.01, 0.1, 1, 10}, and tested all 21 possible combinations us-

ing 10-fold cross-validation on the training set. Although this method does not

ensure an optimal set of hyperparameters, it guarantees that a satisfactory set

of hyperparameters will be obtained in a reasonable amount of time. For DTs,

we used Gini as the impurity measure. For RFs, we used forests of 100 member

trees.

Tables 6, 7 and 8 show the comparison of RMHC-PF1, the memetic algo-

rithm and our proposal, SI(FS)2 version, using as classification model DTs, RFs

and SVMs respectively in terms of κ measure. Reduction results were already

reported in Table 3. A first interesting result is the best overall performance

of RFs and SVMs against DTs. The average κ values of RFs and SVMs are

clearly above that of the DTs. Regarding the behavior of SI(FS)2 it kept its

better performance using the three different classifiers. SI(FS)2 beat both the

memetic algorithm and RMHC-PF1 using either DTs, RFs or SVMs.

Table 6: Comparison of the results of RMHC-PF1, a memetic algorithm and our method in

terms of κ using a decision tree as classifier.
Memetic RMHC-PF1 SI(FS)2

Mean 0.2121 0.2636 0.3380

Ranks 2.2526 2.0842 1.6632

w/l 42/33 61/22

Memetic p 0.1568 0.0000

R+/R− 2661.0/1899.0 3407.0/1153.0

w/l 56/31

RMHC-PF1 p 0.0120

R+/R− 2957.0/1603.0

The results of the previous tables are illustrated in Figures 7(a) and 7(b)

for the memetic algorithm and RMHC-PF1 respectively. The figures show the

performance of our method and the corresponding standard approach for the

three classifiers. Points above the main diagonal are datasets for which SI(FS)2

performed better than the standard approach. Both plots show most of the

points above of the main diagonal. Furthermore, there is a large separation

26

Table 7: Comparison of the results of RMHC-PF1, a memetic algorithm and our method in

terms of κ using a random forest as classifier.
Memetic RMHC-PF1 SI(FS)2

Mean 0.5250 0.5001 0.5734

Ranks 2.1053 2.0947 1.8000

w/l 42/42 48/28

Memetic p 0.5801 0.0171

R+/R− 2131.0/2429.0 2922.0/1638.0

w/l 53/35

RMHC-PF1 p 0.0207

R+/R− 2903.0/1657.0

Table 8: Comparison of the results of RMHC-PF1, a memetic algorithm and our method in

terms of κ using a support vector machine as classifier.
Memetic RMHC-PF1 SI(FS)2

Mean 0.5375 0.5039 0.6100

Ranks 1.8789 2.3947 1.7263

w/l 21/54 42/32

Memetic p 0.0007 0.0466

R+/R− 1370.5/3189.5 2815.5/1744.5

w/l 60/18

RMHC-PF1 p 0.0000

R+/R− 3643.5/916.5

from the main diagonal for many datasets meaning a considerable classification

performance.

5.1. Comparison with instance and feature selection separately

One interesting question that must be experimentally tested is whether si-

multaneous instance and feature selection is able to outperform instance and

feature selection separately. Thus, we performed an additional experiment us-

ing memetic algorithms to separately select instances and features. Tables 10

and 11 of the supplementary material show the results for instance and feature

selection performed separately respectively.

Figure 8 shows a comparison of all four methods using Holm’s procedure.

The Iman-Davenport test yielded a p-value of 0.0000 for both data reduction

and κ.

This figure compares the best method in terms of Friedman’s ranks, i.e.,

SI(FS)2, with the other three methods. First, the figure shows that separate

instance and feature selection performed worse than simultaneous instance and

27

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Memetic

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SI
(F

S)
2

1

2

3

4

5

67

8

9

10

11

12
13 14

15
16

17

18

19

20

21

22

23

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
40

41

42

43

44

454647
48

49

50

51
52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67
68

69

70

71

72

73

74

75

76

77

78

79
80

81

82

83

84
85

86

87

88

89

90

91

92

93

94

95

1

2 3

4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

26

27

28

29

30

31

32

33

34

35

36

37

38

3940

4142

43

4445 46

47

48

49

50

51 52

53 54

55

56

5758
59

60

61

62

63 64

65

66

67
68

69

70

71

72

73

74

7576

77

787980

81

82
83

8485

86

87

88

8990

91

92

93

94

95

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

2325

26

27

28

29
30

31
32

33

34

35

3637

38

39
40

41

42

43

45

46

47

48

49

50

51 52

53

54
55

56 57

58

59

60

61 62

64

65

66

67

68

69

70

71

72

73

74

7576
77

78
79

80

81

82

83

8485

86

87

88

89
90

91

9293

94

95

DT
SVM
RF

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
RMHC-PF1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SI
(F

S)
2

1

2

3

4

5

67

8

9

10

11

12
1314

15
16

17

18

19

20

21

22

23

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
40

41

42

43

44

454647
48

49

50

51
52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67
68

69

70

71

72

73

74

75

76

77

78

79
80

81

82

83

84
85

86

87

88

89

90

91

92

93

94

95

1

23

4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39 40

41 42

43

44 4546

47

48

49

50

5152

5354

55

56

57 58
59

60

61

62

63 64

65

66

67
68

69

70

71

72

73

74

7576

77

787980

81

82
83

8485

86

87

88

8990

91

92

93

94

95

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 25

26

27

28

29
30

31
32

33

34

35

3637

38

39
40

41

42

43

44

45

46

47

48

49

50

51 52

53

54
55

5657

58

59

60

61 6263

64

65

66

67

68

69

70

71

72

73

74

75 76
77

78
79

80

81

82

83

84 85

86

87

88

89
90

91

9293

94

95

DT
SVM
RF

(a) SI(FS)2 vs. memetic algorithm (b) SI(FS)2 vs. RMHC-PF1

Figure 7: Comparison of the classification performance of the memetic algorithm (a) and

RMHC-pF1 (b) against SI(FS)2 in terms of κ for every dataset and the three different classi-

fiers.

Memetic(IS) Memetic(FS)Memet(IS+FS) 1-NN
0.00

0.02

0.04

0.06

0.08

0.10

SI
(F

S)
2 vs

.

0.0000 0.0001

0.0146

0.0994Threshold
p-value

Memetic(FS) Memetic(IS) Memetic(IS+FS)
0.00

0.01

0.02

0.03

0.04

0.05

SI
(F

S)
2 vs

.

0.0000 0.0000 0.0000

Threshold
p-value

(a) κ (b) Data reduction

Figure 8: Comparison using the Holm procedure in terms of classification performance and

data reduction among memetic algorithms for instance selection, feature selection and simulta-

neous instance and feature selection and SI(FS)2 with HMNEI. For classification performance,

1-NN with all instances and features is also considered.

28

feature selection in terms of both data reduction and classification performance.

In terms of κ, SI(FS)2 outperformed the other three selection methods and

was even able to achieve a better rank than 1-NN, although the difference was

not significant. In terms of data reduction, the dramatic ability of SI(FS)2 to

remove instances and features is shown by the fact that it outperformed all other

selection algorithms.

5.2. Study of the hyperparameters

One of the advantages of our proposed method is that is has very few hy-

perparameters that must be tuned in order to apply it to a problem. Above,

we have shown how different instance selection algorithms can be chosen while

maintaining very good performance. The only two remaining hyperparameters

are the sizes of the subsets of features and instances used for each round of

SI(FS)2. We fixed these sizes to 100 and 1,000, respectively. In this section, we

report experiments in which different sizes were tested to study the behavior of

our proposed method with respect to these two values.

For the size of the instance subset, we tested values from 100 to 1,000:

{100, 200, 300, 400, 500, 600, 700, 800, 900, 1, 000}. The same values were used

for the size of the feature subset. Although it is evident that the two sample

sizes might have a joint effect, studying the effect of both hyperparameters

simultaneously would require an infeasible number of experiments.

Figure 9 shows the behavior of the average values of the data reduction, κ and

run-time metrics as the sample size for instances was varied from 100 to 1,000 in

intervals of 100 instances. The results of the Nemenyi test for these three metrics

are shown in Figure 2 of the supplementary material. Three conclusions can be

extracted from these figures. First, the data reduction ability of our method was

constant regardless of the subset size, indicating a robust algorithm. Second,

very good classification performance could be obtained even with very small

sample sizes. In fact, the Nemenyi test indicated that only the smallest sample

size of 100 instances resulted in significantly worse performance. Third, as

expected, the relationship between run time and sample size is approximately

29

100 200 300 400 500 600 700 800 900 1000
Instance sample size

0.6

0.7

0.8

0.9

1.0

/R
ed

uc
tio

n

Reduction
Kappa

7000

8000

9000

10000

11000

12000

13000

14000

Ti
m

e(
s)

Time

Figure 9: Behavior of SI(FS)2 in terms of κ, data reduction and run time as a function of the

instance sample size.

linear.

Figure 10 shows the behavior of the average values of the data reduction, κ

and run-time metrics as the sample size for features was varied from 100 to 1,000

in intervals of 100 features. The results of the Nemenyi test for these three met-

rics are shown in Figure 3 of the supplementary material. As was the case for

the instance sample size, our proposed method was found to be robust in terms

of data reduction with respect to the size of the subset of features considered in

each round. Regarding κ, we found two relevant results. First, the algorithm

showed the same robustness for this hyperparameter, with almost constant be-

havior as the size of the feature subset was increased. Second, increasing the size

of the feature subset tended to worsen the classification performance instead of

improving it. The Nemenyi test showed that although there were no significant

differences, smaller feature sample sizes had better Friedman’s ranks.

An explanation for this effect may be found in the use of the roulette selection

method for the features to be considered. Increasing the sample size increases

the possibility that worse features will be considered and added to the subset

of selected features. Because our method does not include a backward step,

those worse features will remain in the subset of selected features, hindering

30

100 200 300 400 500 600 700 800 900 1000
Feature sample size

0.5

0.6

0.7

0.8

0.9

1.0

/R
ed

uc
tio

n

Reduction
Kappa

14000

16000

18000

20000

22000

24000

Ti
m

e(
s)

Time

Figure 10: Behavior of SI(FS)2 in terms of κ, data reduction and run time as a function of

the feature sample size.

performance. Finally, the behavior of the run time of the algorithm was similar

to that observed for the instance sample size.

6. Conclusions and future work

In this paper, we proposed a new heuristic instance and feature selection

method designed to deal with datasets that are large in terms of the numbers of

features and/or instances. We successfully applied the developed algorithm to

datasets with millions of instances and features. The proposed method showed

improved performance over the previous best methods in terms of three consid-

ered factors: data reduction, classification performance and run time.

Several new lines of future research are motivated by our proposal. One

of these is the improvement of the search process using more powerful search

heuristics than the simple forward selection heuristic used in this paper. Fur-

thermore, as our method has proven its good performance on datasets with

many features, it would be interesting to evaluate its behavior in certain ap-

plication areas, such as microarray datasets, in which problems involving many

features and few instances are common. Another interesting new line of research

31

is the adaptation of the method for class-imbalanced datasets.

References

[1] Y. Saeys, T. Abeel, S. Degroeve, Y. V. de Peer, Translation initiation

site prediction on a genomic scale: beauty in simplicity, Bioinformatics 23

(2007) 418–423.

[2] P. Narendra, K. Fukunaga, Branch, and bound algorithm for feature subset

selection, IEEE Transactions Computer C-26 (9) (1977) 917–922.

[3] L. Kuncheva, L. C. Jain, Nearest neighbor classifier: simultaneous edit-

ing and descriptor selection, Pattern Recognition Letters 20 (11) (1999)

1149–1156.

[4] H. M. Zawbaa, E. Emary, C. Grosan, V. Snasel, Large-dimensionality

small-instance set feature selection: A hybrid bio-inspired heuristic ap-

proach, Swarm and Evolutionary Computation 42 (2018) 29–42.

[5] N. Garćıa-Pedrajas, A. de Haro-Garćıa, J. Pérez-Rodŕıguez, A scalable

memetic algorithm for simultaneous instance and feature selection, Evolu-

tionary Computation 22 (2014) 1–45.

[6] J. Pérez-Rodŕıguez, A. Arroyo-Peña, N. Garćıa-Pedrajas, Simultaneous in-

stance and feature selection and weighting using evolutionary computation:

Proposal and study, Applied Soft Computing 37 (2015) 416–443.

[7] S. S. S. Ahmad, W. Pedrycz, Feature and instance selection via coopera-

tive pso, in: 2011 IEEE International Conference on Systems, Man, and

Cybernetics, 2011, p. 2127–2132.

[8] J. R. Cano, F. Herrera, M. Lozano, Stratification for scaling up evolutionary

prototype selection, Pattern Recognition Letters 26 (7) (2005) 953–963.

[9] J. Pérez-Rodŕıguez, A. de Haro-Garćıa, J. A. R. del Castillo, N. Garćıa-

Pedrajas, A general framework for boosting feature subset selection algo-

rithms, Information Fusion 44 (2018) 147–175.

32

[10] J. H. Chen, H. M. Chen, S. Y. Ho, Design of nearest neighbor classifiers:

multi-objective approach, International Journal of Approximate Reasoning

40 (1-2) (2005) 3–22.

[11] D. B. Skalak, Prototype and feature selection by sampling and random

mutation hill climbing algorithms, in: W. W. Cohen, H. Hirsh (Eds.),

International Conference on Machine Learning, Morgan Kaufmann, San

Francisco (CA), 1994, p. 293–301.

[12] B. V. Dasarathy, J. Sánchez, Concurrent feature and prototype selection

in the nearest neighbour decision process, in: Proc. of 4th World Multicon-

ference on Systemics, Cybernetics and Informatics, Vol. 7, Orlando (USA),

2000, p. 628–633.

[13] Y. Villuendas-Rey, C. Rey-Benguŕıa, M. Lytras, C. Yanez-Marquez, O. Ca-

macho, Simultaneous instance and feature selection for improving predic-

tion in special education data, Program 51 (2017) 278–297.

[14] T. R. Babu, M. N. Murty, V. K. Agrawal, On simultaneous selection of

prototypes and features in large data, in: S. K. Pal, S. Bandyopadhyay,

S. Biswas (Eds.), Pattern Recognition and Machine Intelligence. PReMI

2005, Vol. 3776 of Lecture Notes in Computer Science, 2005, p. 595–600.

[15] L. Zhang, C. Chen, J. Bu, X. He, A unified feature and instance selec-

tion framework using optimum experimental design, IEEE Transactions on

Image Processing 21 (5) (2012) 2379–2388.

[16] C.-F. Tsai, W. Eberle, C.-Y. Chu, Genetic algorithms in feature and in-

stance selection, Knowledge-Based Systems 39 (2013) 240–247.

[17] J. Derrac, S. Garćıa, F. Herrera, Ifs-coco: Instance and feature selec-

tion based on cooperative coevolution with nearest neighbor rule, Pattern

Recognition 43 (2010) 2082–2105.

33

[18] M. Suganthi, V. Karunakaran, Instance selection and feature extraction

using cuttlefish optimization algorithm and principal component analysis

using decision tree, Cluster Computing 22 (2019) S89–S101.

[19] X. Zhang, C. Mei, D. Chen, Y. Yang, A fuzzy rough set-based feature

selection method using representative instances, Knowledge-Based Systems

151 (2018) 216–229.

[20] G. Mcdonald, N. Garćıa-Pedrajas, C. Macdonald, I. Ounis, A study of svm

kernel functions for sensitivity classification ensembles with pos sequences,

in: Proceedings of the the 40th International ACM SIGIR Conference,

2017, p. 1097–1100.

[21] Y. Villuendas-Rey, Y. Caballero-Mota, M. M. Garćıa-Lorenzo, Intelligent

feature and instance selection to improve nearest neighbor classifiers, in:

I. Batyrshin, M. G. Mendoza (Eds.), Proceesings of MICAI’12, Vol. 7629

of Lecture Notes on Artificial Intelligence, 2013, p. 27–38.

[22] N. Garćıa-Pedrajas, A. de Haro-Garćıa, Scaling up data mining algorithms:

review and taxonomy, Progress in Artificial Intelligence 1 (1) (2012) 71–87.

[23] J. R. Vergara, P. A. Estévez, A review of feature selection methods based on

mutual information, Neural Computing & Applications 24 (2014) 175–186.

[24] N. Garćıa-Pedrajas, J. A. R. del Castillo, D. Ortiz-Boyer, A cooperative

coevolutionary algorithm for instance selection for instance-based learning,

Machine Learning 78 (2010) 381–420.

[25] J. Demšar, Statistical comparisons of classifiers over multiple data sets,

Journal of Machine Learning Research 7 (2006) 1–30.

[26] A. Ben-David, A lot of randomness is hiding accuracy, Engineering Appli-

cations of Artificial Intelligence 20 (7) (2007) 875–885.

[27] A. de Haro-Garćıa, G. Cerruela-Garćıa, N. Garćıa-Pedrajas, Instance se-

lection based on boosting for instance-based learners, Pattern Recognition

96 (2019) 1–13.

34

[28] J. A. Olvera-López, J. A. Carrasco-Ochoa, J. F. Mart́ınez-Trinidad, J. Kit-

tler, A review of instance selection methods, Artificial Intelligence Reviews

34 (2010) 133–143.

[29] D. R. Wilson, T. R. Martinez, Reduction techniques for instance-based

learning algorithms, Machine Learning 38 (2000) 257–286.

[30] C.-H. Chou, B.-H. Kuo, F. Chang, The generalized condensed nearest

neighbor rule as a data reduction method, in: 18th International Con-

ference on Pattern Recognition (ICPR’06), Vol. 2, 2006, p. 556–559.

[31] E. Marchiori, Hit miss networks with applications to instance selection,

Journal of Machine Learning Research 9 (2008) 997–1017.

[32] H. Brighton, C. Mellish, Advances in instance selection for instance-

based learning algorithms, Data Mining and Knowledge Discovery 6 (2002)

153–172.

[33] R. Barandela, F. J. Ferri, J. S. Sánchez, Decision boundary preserving

prototype selection for nearest neighbor classification, International Journal

of Pattern Recognition and Artificial Intelligence 19 (6) (2005) 787–806.

[34] H. Shin, S. Cho, Pattern selection for support vector classifiers, in:

IDEAL’02, Vol. 2412 of Lecture Notes in Computer Science, 2002, p.

469–474.

[35] M. Sebban, R. Nock, J. H. Chauchat, R. Rakotomalala, Impact of learning

set quality and size on decision tree performances, International Journal of

Computers, Systems and Signals 1 (1) (2000) 85–105.

[36] B. D. Dasarathy, Minimal consistent set (mcs) identification for optimal

nearest neighbor decision systems design, IEEE Transactions on Systems,

Man and Cybernetics 24 (1994) 511–517.

35

Declaration of Interest
The authors declare that there’s no financial/personal interest or belief that

could affect their objectivity.

37

Nicolás Garćıa-Pedrajas is a Full Professor in the Department of Computing
and Numerical Analysis at the University of Córdoba (Spain). He is the leading
researcher in the Computation Intelligence and Bioinformatics Research Groups.
He has published more the sixty papers in peer-reviewed journals, including the
JCR. His major research interests include Data Mining, Classification, Bioin-
formatics and other aspects of Machine Learning.

Juan A. Romero del Castillo is an Associate Professor in Computer Sci-
ence and Artificial Intelligence in the Department of Computing and Numerical
Analysis at the University of Córdoba. His major research interests include Data
Mining, Classification, Bioinformatics and other aspects of Machine Learning.

Gonzalo Cerruela-Garćıa is an Associate Professor in Computer Science and
Artificial Intelligence in the Department of Computing and Numerical Analysis
at the University of Córdoba. He received his Bachelor’s of Electronic Engineer-
ing in 1989 and Ph.D. in Computer Science in 1999. His teaching responsibilities
include the disciplines of Databases, Data Structures and Information, and Web
and Mobile Engineering. His research activities are oriented toward new com-
putational solutions in Chemistry and Computer Information Systems.

38

