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Kernel Two-Dimensional Ridge Regression for
Subspace Clustering

Chong Peng, Qian Zhang, Zhao Kang, Chenglizhao Chen, and Qiang Cheng

Abstract—Subspace clustering methods have been widely
studied recently. When the inputs are 2-dimensional (2D)
data, existing subspace clustering methods usually convert
them into vectors, which severely damages inherent struc-
tures and relationships from original data. In this paper, we
propose a novel subspace clustering method for 2D data.
It directly uses 2D data as inputs such that the learning
of representations benefits from inherent structures and
relationships of the data. It simultaneously seeks image
projection and representation coefficients such that they
mutually enhance each other and lead to powerful data
representations. An efficient algorithm is developed to solve
the proposed objective function with provable decreasing
and convergence property. Extensive experimental results
verify the effectiveness of the new method.

I. INTRODUCTION

High-dimensional data are ubiquitous and com-
monly used in various real-world applications such
as computer vision and image processing. Often
times, such data have latent low-dimensional struc-
tures rather than uniformly distributed. To illus-
trate this, we show a simple example in Fig. 1.
Such phenomenons are often seen in real-world
applications. For example, face images lie in high-
dimensional space, however they belong to a few
number of subjects and form clear low-dimensional
structures. This inspires us to effectively represent
high-dimensional data in low-dimensional subspaces
[1, 2]. To recover such low-dimensional subspaces,
it usually requires clustering the data into different
groups. Each of these groups can be fitted with a
subspace and this procedure is known as subspace
clustering or subspace segmentation.

During the last decade, various types of sub-
space clustering algorithms have been developed.
These methods can be roughly categorized into 4
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Fig. 1: Example of high-dimensional data lying in
low-dimensional subspaces. It is seen that rather
than uniformly distributed in the 3-dimensional
space, these data points lie on the union of two lines
and one plane.

groups, including algebraic methods [3-5], statisti-
cal methods [6-8], iterative methods [9, 10], and
spectral clustering based methods [11-13]; see [14]
for a review. Among them, spectral clustering-based
methods have been popular with great success.
Typical methods such as low-rank representation
(LRR) [15, 16] and sparse subspace clustering (SSC)
[17] have drawn considerable attentions due to their
efficiencies and elegant theories. The basic idea of
LRR and SSC is the self-expressive property of the
data, which suggests that each example of the data
can be represented by the data as a dictionary. With
specific structure requirements on the representation
matrix, the learned representation coefficient matrix
by LRR and SSC admit low rankness and sparsity,
respectively. In the ideal case, such low-rank or
sparse structure clearly shows group information
of the data. Recent work also attempts to merge
the advantages of simultaneous low-rank and sparse
learning with both low-rank and sparse regulariza-
tion terms [18].

It is pointed out that the nuclear norm is not
accurate for rank approximation, which makes LRR
less efficiency in learning accurate structure of
the data [1]. To overcome this drawback, recent



works develop various more accurate non-convex
approximations to the rank function, such as the
log-determinant rank approximation, which signifi-
cantly improves the learning performance [1]. Some
studies demonstrate the importance of feature learn-
ing for subspace clustering [19, 20]. For example,
[19, 21] seek a low-rank representation with re-
spect to a subset of features, which alleviates the
importance of rank approximations; [20] seeks a
sparse representation of projected data in a latent
low-dimensional space such that hidden structures
of the data provide useful information. To consider
nonlinear structures of the data, various approaches
have been attempted. For example, grpah Laplacian
is introduced to LRR [22], which accounts for non-
linear relationships of the data on manifold; kernel
is adopted in LRR [23] and SSC [24], respectively,
which seeks sparse representation of the data in
nonlinear feature space. Other types of representa-
tion are also shown to be successful in subspace
clustering, such as thresholding ridge regression [25]
and simplex representation [26]. Other than dealing
with noise effect with data reconstruction term, [25]
alleviates the noise effect by vanishing the small
values in the coefficients obtained from a ridge
regression model. Simplex representation is similar
to ridge regression, which seeks a representation
matrix of the data with additional constraints on it
[26].

Subspace clustering is often used in problems that
deal with 2-dimensional (2D) data, with each ex-
ample being a matrix. Unfortunately, these methods
usually suffer from a common issue when dealing
with such data. When handling 2D data, these
methods usually convert all examples of the data
to vectors in a pre-processing step, which severely
damages inherent structural information of the data.
This strategy omits the inherent structures and cor-
relations of the original data which are essentially
important, and building models with vectored data
is not effective to filter the noise, occlusions or
redundant information [27]. To better handle 2D
data, tensor-based methods have been considered in
many areas, such as non-negative tensor factoriza-
tion [28], tensor robust principal component analysis
[29, 30], tensor subspace learning [31, 32], etc.
For tensor methods, tensor decomposition is often
needed, where the main techniques include cande-
comp/parafac decomposition (CPD) and Tucker de-
composition (TD). Tensor-based subspace clustering

methods usually involve flatting and folding opera-
tions, which may not measure the true structures
of the data [33]. More importantly, tensor methods
usually suffer from the following major issues: 1)
for CPD-based methods, it is generally NP-hard to
compute the CP rank [30, 34]; 2) TD is not unique
[34]; 3) the application of a core tensor and a high-
order tensor product would incure information loss
of spatial details [35].

Besides tensor-based methods, some other ap-
proaches have been attempted to handle 2D data in
many areas, such as 2-dimensional principal com-
ponent analysis (2DPCA) [36], 2-dimensional semi-
nonnegative matrix factorization [37], and nuclear
norm-based 2DPCA [38]. 2DPCA uses a projec-
tion matrix to extract the most representative spa-
tial information from 2D data, which inspires us
to recover low-dimensional subspaces of 2D data
with such features. Thus, to overcome the above
mentioned key drawbacks of the current subspace
clustering methods, we propose a novel method for
2-dimensional data, which directly uses a projection
matrix on the original 2D data, such that the rich
structural information of the data can be maximally
used in the learning process. We briefly summarize
key contributions of the paper as follows: 1) Unlike
existing methods that perform vectorization to 2D
data in a pre-processing step, we propose to learn a
2D projection matrix such that the most expressive
structural information is retained in the spanned
subspaces; 2) The learning of projection and con-
struction of representation are seamlessly integrated,
such that these two tasks mutually enhance each
other and lead to powerful representation; 3) Kernel
method for 2D data is introduced to our model,
which explicitly considers nonlinear structures of
the data; 4) Efficient optimization algorithm is de-
veloped with provable convergence guarantee; 5)
The algorithm does not rely on augmented La-
grangian multiplier (ALM) type optimization as
existing methods usually do, thus we do not need to
introduce additional parameters in ALM framework;
6) Extensive experiments confirm the effectiveness
of our method.

The rest of this paper is organized as follows.
We briefly review some closely related methods in
Section II. Then we introduce the proposed method,
develop its optimization to obtain the representation
matrix, and present how to perform clustering using
the learned representation matrix in Section III.



We conduct extensive experiments to testify the
effectiveness of the proposed method in Section IV.
Finally, we conclude the paper in Section V.

II. RELATED WORK

In this section, we briefly review some closely
related subspace clustering methods.

Given the data matrix A = [ay,--- ,a,] € R
with each sample a; € RY LRR seeks a low-
rank representation of the data with the following
minimization problem:

mZinHA—AZH2,1+>\||ZH*a (D

where || - [|2,1 is the sum of column-wise ¢, norms of
a matrix, || - ||, is the nuclear norm, \ is a balancing
parameter, and Z € R"*" is the representation to be
sought. Instead of seeking a low-rank representation,
the SSC assumes sparse representation of the data,
which leads to the following:

- 2
min | B[+ A1Z11 + 41151,
st. A=AZ+ S+ E,diag(Z) =0,

where 7 is a balancing parameter and the constraint
diag(Z) = 0 avoids trivial solution to SSC. The
above models seek the representation of the data
with the assumption of self-expressiveness. Various
developments have been made based on LRR and
SSC, such as nonlinear extensions [24, 39] and
feature integration approaches [40].

III. KERNEL TWO-DIMENSIONAL RIDGE
REGRESSION

In this section, we will develop a new subspace
clustering model based on ridge regression. In the
following of this section, we will present its for-
mulation, optimization, and the clustering algorithm,
respectively.

A. Formulation of Kernel Two-Dimensional Ridge
Regression

Ridge regression-based data representation has
been shown successful for high-dimensional data
in both supervised [25] and unsupervised learning
problems [41]. For a collection of examples { X},
with each example X; € R%*® being a matrix,
inspired by [25, 41], we seek a low-dimensional

representation of the data with the following ridge
regression model:

n n
Z i=1 j=1

where || - || is the Frobenius norm, and A > 0 is
a balancing parameter. Here, unlike [25, 42] that
vanish the diagonal elements of Z, we do not have
such constraints due to the following two reasons: 1)
the example X is in the intra-subspace of X itself,
thus it is meaningful if Z; # 0; 2) v > 0 excludes
potentially trivial solutions such as I,,, where I,, is
an identity matrix of size n X n.

It is straightforward that (3) is equivalent to
seeking the representation Z with vectored data
due to the nature of element-wise operation of the
squared Frobenius norm. To retain inherent spatial
information of the data in the learning process,
we introduce a projection vector p € R, ie., a
direction, which projects the data to a subspace in
which the most expressive 2D feature of the data is
retained. That is, each example X; is projected as
X,pp! to the subspace spanned by p. To mutually
enhance the learning tasks of the projection and
representation, we propose to simultaneously seek
the representation with projected data as follows:

Xipp" iop" ij
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where v > 0 is a balancing parameter. It is seen that
the projection vector p captures spatial information
of the data and the representation is sought with
the projected data and thus benefits from spatial
information of the data. The first term of (4) can
be derived as Y, || Xipp" — 370 Xjpp”zjllF =
> i I(Xi — ZJ Xzt IF = 20 G —

Z] L Xzopls = Y [ Xap — Zg L Xjpzjill3.
Thus, (4) can be mathematically simplified as

n n 2
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Usually, it is not enough to seek a single projec-
tion vector in real-world applications and multiple
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projection directions are often needed. Major in-
formation of the data may exist in several distinct
subspaces and recovering multiple subspaces may
allow us to better understand the data. To seek
multiple projection directions or feature subspaces,
we define a projection matrix P = [py,pa, -+ ,p,] €
RY*" with p; being a projection direction satisfying
that p/p; = 1 and plp; = O for i # j. With
P, we expand (5) to construct the representation
with simultaneous learning of multiple projection
directions:

n n
PTP=I.,7 “ X
=1 J=1
n

2
F

(©6)
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where [, is an identity matrix of size r X r. It is seen
that in (6) the coefficient matrix Z is constructed
using the projected features (X;P)’s or equivalently
the projected samples (X;PP")’s, which contain
the most expressive information in the orthogonal
subspaces (p;p])'s spanned by projection vectors
p;s. The projection in our model performs dimen-
sion reduction, for which we claim from the fol-
lowing two perspectives: 1) The original examples
have size a x b and the projection reduces the size
of examples to a X r. 2) The original examples have
¢ = min{a,b} 2D component features. With the
projection, it is seen that only up to » 2D component
features are used in the construction of representa-
tion matrix Z. In this paper, we consider the number
of 2D features as the dimension, thus the projection
actually extracts most expressive 2D features of the
data and performs dimension reduction. For ease of
representation, we define

J = Z {||XiP—ZXjPij’H%*')\HXi—XiPPTH%

i=1 Jj=1
(7)
and thus (6) can be written as
i Z||%.
i J +711Z% (8)

Up to now, model (8) only considers the linear re-
lationships of projected data in the Euclidean space.
In real world problems, nonlinear relationships of
data often exist and should be counted in data
processing. To directly take nonlinear relationships
of 2D data into consideration, we adopt the kernel

approach for 2D data and develop a nonlinear model
in remaining of this section. Inspired by [43], we de-
fine nonlinear mappings of the data in the following.
For a 2D example M € R**’, we define m; € R**!
to be its column instance vectors, i.€.,

M:[ml mb}. 9)

We define ¢ : R¥*® — RJ+*? with f, > a being a
column-wise nonlinear mapping, such that it maps
columns of a matrix to nonlinear space:

$(M) = [d(m1) ¢(my)]

where ¢(M) € R/**® and ¢(m;) € R*L. For
two matrices of the same size U = [uy, - ,up] €
ROV = [vg, -+, 0] € R¥?, it is straightforward
to obtain the following multiplications by simple
algebra:

(10)

o (ur)p(v1) o" (u1)p(vy)

" (U)p(V) = : : ,
¢" (up)P(v1) ¢" (up)(vs)

(11)

where ¢7(-) denotes (¢(-))? for simplicity, and
u;, v; are columns of U and V, respectively. It
is seen that each element of (11) is inner prod-
uct of mapped instance vectors and thus can be
calculated by k(u;,v;) = ¢7 (u;)¢(vj), where k :
R* x R* — R is a kernel function. By defining
K{ = ¢T(X:)p(X;) € RY®, we can see that J
can be extended to its nonlinear version [J¢ in the
kernel space:

n

7=y {H¢<X»P - Z S, Pyl
(X - ¢<X»PPTH%}
:iTr{PTng(Xi)qb(Xi)P
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- z”: PToT(X;)¢(X:) 2 P
j=1
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Therefore, by extending J to kernel version, we
extend (6) to the following nonlinear model, which
is named Kernel Two-dimensional Ridge Regression
(KTRR):

. é 9
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(13)

It is seen that the representation Z is sought with the
nonlinear similarity matrices of the examples. It is
worth pointing out that the integrated projection P
extracts spatial information of the data from the right
side, i.e., in vertical direction. It is straightforward
to extend the above model by introducing another
projection matrix ) € R**" to project the data from
left side, such that spatial information from both
vertical and horizontal directions can be retained.
However, the current model (13) already provides us
with the key idea and contribution of the paper, i.e.,
seeking representation with 2D features in nonlinear
space, and extending (13) with () is not within
the main scope of this paper. Thus, in this paper,
we focus on (13) and do not fully expand the
model to the bi-directional case. We will discuss the
optimization of (13) in the following of this section.

B. Optimization of (13)

In the above subsection, we have proposed a
new subspace clustering model for 2D data. In this
subsection, we will develop an alternating mini-
mization algorithm for its optimization. Specifically,
we alternatively solve the sub-problem associated
with a single variable while keeping the others
fixed. We repeat the procedure until convergent. It is
worth mentioning that the optimization does not rely

on ALM type optimization and thus no additional
parameters are needed as existing methods usually
do. We regard this as an advantage because such
parameters usually have effects on the solution and
it takes efforts to tune such parameters. The detailed
optimization strategy is discussed as follows.

1) P-minimization: The sub-problem associated
with P-minimization is

min J¢.
PTp=],

(14)

It is seen that

J? :Tr{PT(zn: K;*;)P}

i=1

—Tr{PT ZZ (K% + K%)250) }

i=1 j=1
+Tr{PT ZZICtzszt }

s=1 t=1
ZIC¢PPT}
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:ﬁ{PT((l — M+ H — H;’f)P +¢°,

=1

(15)
where we define
HE = Z/cn,
ZZICtzszt —iiK zz—
s=1 t=1 i=1 j=1 (16)
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Here, z; and z; denote the s-th and ¢-th rows of
matrix Z, respectively. It is easy to check that the
matrices "H¢, H¢, and ’H¢ defined in (16) are real
symmetric. Hence, (1 — )\)’Hd) + Hy — HY is real
symmetric and P can be obtained by performing
the standard eigenvalue decomposition:

P =eig, ((1 — MM +Hy —HS),

where eig, () is an operator that returns eigenvectors
of the input matrix that are associated with its r
smallest eigenvalues.

(17)



2) Z-minimization: Fixing P, the Z-minimization
problem is

min J¢ + 7 2|3 (18)

To simplify the notation of Z-minimization, we
define an operator ¢(-) such that ¢p(X;) and ¢p(X)
are defined as

o(Xi)p1

op(Xi) = : € RFmt (19)
and

op(X) = [op(X1)

Then it is seen that (18) can be mathematically
derived as

T + A2 1%

= i HQS(Xz’)P - i O(X;)Pzji

op(X,)] € RF™". (20)

2
7 2
"zl

2
7 2
Az

= i HQEP(XD - Zi: op(X;)z5i

21)
It is seen that the Z-subproblem is quadratic and
convex, which admits closed-form solution with its

first-order optimality condition. Hence, Z is solved
by

_ _ 2
op(X) = 6p(X)Z| +1Z|}.

7= (¢£<x>¢P<x> + m) <¢£<x>¢P<x>) |

(22)

To explicitly expand (22) and give the precise

solution of Z, we define the matrix K¢ € R "
as follows:

K? =pp(X)¢p(X)

[Oh(X1)
= : [&P(Xl) Q;P(Xn)}
L o5(X)
22:1 pzlc(lﬁlps T Z;:l szfnpS
_22:1 psTlCilps ZZ:I pglcgnps

Tr(PTKS, P) Tr(PTKS,P)
= : .. : (23
Tr(PTK?, P) Tr(PTK?, P)

Incorporating (23) into (22), we obtain the solution
of Z with explicit expression

Z = (K +~41,) "' (K?). (24)

To be clearer, we summarize the optimization steps
in Algorithm 1. Regarding the optimization of
KTRR, we have the following theorem to guarantee
the convergence.

Theorem 1. Denote the objective function of (13)
as (P, Z), then its value sequence {g(P*, Z*)}?°, is
decreasing under the update rules of (17) and (24)
and converges.

Proof: According to the optimization of P and
Z, it is easy to see that

g(P',Z") < (P, Z") < g(P™', Z'Y),  (25)

hence (13), i.e., the value sequence {g(P*, Z")} is
decreasing under the update rules of (17) and (24).
Moreover, it is straightforward to verify the nonneg-
ativity of {g(P*, Z")} by the definition of g(P, Z)
in (13), hence {g(P* Z")} is bounded and thus
converges. |

Remark. We analyze the time complexity of KTRR
as follows. To compute the kernel matrices ICf’j, we
need O(ab?) for each and thus O(n?ab?) complexity
for all. At each step, the complexity comes from
the calculation of P! and Z'. According to (16)
and (17), it takes O(n® + n?b* + b*r) operations to
solve P-subproblem per iteration. For Z‘-updating,
it takes O(n?br) operations to obtain K¢ in (23)
and O(b*) operations to solve (24). Thus, the overall
complexity per each iteration of KTRR is O(n?® +
n?b? + b?r + n?br + b3) = O(n® + n?b* + 1°).

C. Subspace Clustering Algorithm via KTRR

After we obtain the representation matrix Z by
solving (13), we construct an affinity matrix A
in a post-processing step as commonly done for
many spectral clustering-based subspace clustering
methods [1, 15]. Following [1, 15], we construct A
with the following steps:



Algorithm 1 Solving (13): Kernel Two-dimensional
Ridge Regression (KTRR)

Input: X, A, v, € (convergent tolerance), t.,,qz
Initialize: Z°, P°, t = 0.
Construct kernel matrices ICf;
repeat

Update P! by (17).

Update Z* by (22).

t=t+1.
until ¢ > t,,4, or {J?(P!, Z")} converges
Output: Z, P

RS S

1) Let Z = UXVT be the skinny SVD of Z.
Define Z = UX'/? to be the weighted column
space of Z.

2) Obtain U by normalizing each row of Z.

3) Construct the affinity matrix A as [A]; =
(1 [UUT]ij])¢, where ¢ > 1 controls the sharp-
ness of the affinity matrix between two data
points'.

Subsequently, we perform Normalized Cut (NCut)
[44] on A in a way similar to [1, 45]. We will present
the detailed experimental results in the following
section.

IV. EXPERIMENT

In this section, we conduct extensive experiments
to verify the effectiveness of the proposed method.
In particular, we compare our method with several
state-of-the-art subspace clustering algorithms, in-
cluding LRR [15], LapLRR [22], SCLA [1], SSC
[17], S3C [46], TLRR [33], SSRSC [26], and DSCN
[47]. Seven data sets are used in our experiments, in-
cluding Jaffe [48], PIX [49], Yale [50], Opticalpen,
Alphadigit, ORL [51], and PIE. Three evaluation
metrics are adopted in the experiments, including
clustering accuracy, normalized mutual information
(NMI), and purity, whose detailed information can
be found in [21, 52]. In rest of this section, we
will introduce the subspace clustering methods,
benchmark data sets, and detailed clustering per-
formance and analysis, respectively. For purpose of
re-productivity, we will provide our code at xxx
(available after acceptance).

A. Dataset

For the data sets used in our experiments, we
show some examples in Fig. 2. We briefly describe

'In this paper, we follow [2] and set ¢ = 4 for fair comparison.

these data sets as follows: 1) Yale. It contains 165
gray scale images of 15 persons with 11 images
of size 32x32 per person. 2) JAFFE. 10 Japanese
female models posed 7 facial expressions and 213
images were collected. Each image has been rated
on 6 motion adjectives by 60 Japanese subjects. 3)
PIX. 100 gray scale images of 100 x 100 pixels from
10 objects were collected. 4) Alphadigit data set is
a binary data set, which collects handwritten digits
0-9 and letters A-Z. Totally, there are 36 classes and
39 samples for each class, of which each example
has size of 20x16 pixels. 5) Opticalpen collects
hand-written pen digits of 0-9. Totally, there are
1797 images of size 88 in this data set. 6) ORL
contains face images of size 32 x 32 pixels from
40 individuals. Each individual has 10 images taken
at different times, with varying facial expressions,
facial details, and lighting conditions. 7) PIE has
face images of 68 persons with different poses,
illumination conditions, and expressions. For each
person, we select the first 5 images. All images are
resized to 32 x 32 pixels.

B. Methods in Comparison

To evaluate the performance of our method, we
compare it with several state-of-the-art subspace
clustering methods. For the baseline methods and
KTRR, we briefly describe them as follows:

e LRR seeks a low-rank representation of the
data by minimizing the nuclear norm of
the representation matrix. For its balanc-
ing parameter, we vary it within the set of
{0.001,0.01,0.1, 1, 10, 100, 1000};

e LapLRR is a nonlinear extension of the
LRR, which exploits nonlinear relationships
of the data on manifold [39]. We fol-
low [52] and keep 5 neighbors on the
graph, where binary and radial basis func-
tion (RBF) kernel with radial varying in
{0.001,0.01,0.1,1,10,100,1000} are used,
respectively;

e SCLA is a non-convex variant of the
LRR, which seeks a low-rank representa-
tion of the data by minimizing the non-
convex log-determinant rank approximation
of the representation matrix. For its bal-
ancing parameters that controls the spar-
sity of noise and low-rankness of the rep-
resentation, we vary them within the set of
{0.001,0.01,0.1, 1, 10, 100, 1000};



Fig. 2: Examples of data sets used in our experiments. From left to right are example from Yale, PIX, Jaffe,
ORL, PIE, Opticalpen, and Alphadigit data sets, respectively.

e SSC seeks a sparse representation of the
data by minimizing the ¢; norm of the
representation matrix. We tune the reg-
ularization parameters within the set of
{0.001,0.01,0.1, 1, 10, 100, 1000};

e S3C is an extension of SSC, which seeks
sparse representation of the data in latent
space. Moreover, S3C improves the clus-
tering capability by considering nonlinear
relationships of the data. For its balanc-
ing parameter , we set it within the set
{0.001,0.01,0.1,1, 10,100, 1000}. For its pa-
rameter that balances the sparsity and nonlin-
ear structure of the representation, we set it
within the set {0.1,0.15,0.2,0.25};

e TLRR seeks a low-rank representation of
the tensor-type data, where it recovers a
clean low-rank tensor while infering the clus-
ter structur of the data. For its balancing
parameter, we vary it within the set of
{0.001,0.01,0.1,1,10,100,1000};

e SSRSC recovers physically meaningful and
more discriminative coefficient matrix by re-
stricting the non-negativity of coefficients and
constraining sum of the coefficient vectors
up to a scalar less than 1. For its param-
eters including the sum of coefficient vec-
tors, the penalty parameter of ADMM frame-
work, and the iteration number, we follow
the original paper and set them to be 0.5,
0.5, and 5, respectively. For its balancing
parameter, we vary it within the set of
{0.001,0.01,0.1,1,10,100,1000}.

e DSCN [47] constructs a representation ma-
trix with deep neural networks, where it
maps given samples using explicit hierarchical
transformations and simultaneously learns the
reconstruction coefficients. For the network,
we conduct experiments with different kernel
sizes and three-layer network depths. The ker-

nel size and network depth are chosen within
the sets of {[3,3,3], [5,5,3]} and {[10,20,30],
[10,20,40], [20,30,40]}, respectively.

e KTRR seeks the least square representation
of the data with 2D features. Both RBF and
polynomial kernels are used, where we set
the radial and power parameters within the
sets of {0.001,0.01,0.1, 1,10, 100, 1000} and
{1,2, 3,4,5,8,10}, respectively. We set the
number of projections and vary other balanc-
ing parameters within the sets of {1,3,5,7,9}
and {0.001, 0.01,0.1,1, 10,100,1000}, re-
spectively.

C. Comparison of Clustering Performance

In this section, we present the detailed comparison
of KTRR and baseline methods. To provide more
comprehensive evaluation of KTRR, we consdier
conducting experiments in a way similar to [I,
53, 54]. Specifically, the experimental setting is as
follows. For each data set, we conduct experiments
using its subsets with different number of clusters.
In particular, for a data set with a total number
of N clusters, we consider its subsets with N
clusters, where /N may range in a set of values. For
example, in ORL data, N = 40 and we consider
its subsets with 5, 10, 15, 20, 25, 30, 35, and
40 clusters, respectively. It is clear that there are
(_N% possible subsets for a specific NV value and
we randomly choose 10 of them in the experiment.
We report the results in Tables I to VII, where
average performance over the 10 subsets is reported
with respect to each NV value.

Generally, we observe that KTRR achieves the
leading performance among all methods. Particu-
larly, we have the following observations: 1) KTRR
has the best performance in all cases on Jaffe data
set. 2) KTRR has the best performance in almost
all cases on PIX, Yale, and PIE data sets. 3) KTRR



TABLE I: Clustering Performance on Jaffe

~N Accuracy
DSCN SSRSC TLRR LRR LapLRR S°C SCLA SsC proposed
2 1.000040.0000 1.0000==0.0000 0.718840.1462 1.00004-0.0000 1.00004-0.0000 1.000040.0000 1.0000==0.0000 1.00004-0.0000 1.00004-0.0000
3 1.0000-40.0000 1.000040.0000 0.6608+40.1345 0.9984-+0.0051 1.00004-0.0000 1.0000-40.0000 0.99844-0.0051 0.9890+40.0149 1.00004-0.0000
4 1.0000-+40.0000 1.0000+0.0000 0.6275+40.0892 0.9988-0.0037 1.0000+40.0000 0.9965+0.0110 0.9965+40.0078 0.9953+0.0112 1.0000+4-0.0000
5 0.9800£0.0000 | 0.9990-£0.0031 | 0.6692:£0.0395 | 0.9962-£0.0080 | 0.9915£0.0136 | 0.994420.0117 | 0.999040.0031 | 0.99432£0.0079 | 1.0000-20.0000
6 0.976720.0000 | 0.9976-£0.0038 | 0.6131=£0.1177 | 0.9889-£0.0120 | 0.9921=0.0098 | 0.9883%0.0166 | 0.995240.0056 | 0.990520.0082 | 1.0000-20.0000
7 0.9428+40.0000 0.99934-0.0021 0.6646+0.0775 0.9934+0.0093 0.9960+0.0071 0.9560+0.0671 0.99874-0.0028 0.992740.0049 1.00004=0.0000
8 0.900040.0000 1.0000-£0.0000 0.540440.0429 0.995340.0054 0.9923+0.0225 0.970140.0520 0.99824-0.0029 0.991740.0041 1.00004-0.0000
9 0.9888+0.0000 1.0000+0.0000 0.6189+40.0468 0.9984-40.0035 0.9854-+0.0109 0.93464-0.0561 1.0000+0.0000 0.99434-0.0030 1.00004-0.0000
10 0.9700 1.0000 0.6850 1.0000 1.0000 0.9671 1.0000 0.9917 1.0000
Average 0.9731 0.9996 0.6343 0.9966 0.9953 0.9786 0.9984 0.9937 1.0000
N NMI
DSCN SSRSC TLRR LRR LapLRR S3C SCLA SsC proposed
2 1.0000-+0.0000 1.0000+0.0000 0.2311+0.2878 1.0000+40.0000 1.0000+0.0000 1.0000-+0.0000 1.0000+0.0000 1.0000+0.0000 1.0000+40.0000
3 0.9999+0.0000 1.0000-£0.0000 0.443340.1820 0.9940-+0.0189 1.0000+40.0000 1.0000-0.0000 0.994140.0187 0.9636+0.0437 1.000040.0000
4 1.0000+£0.0000 1.000040.0000 0.4666+0.1114 0.9965+0.0110 1.000040.0000 0.992240.0247 0.9908+0.0201 0.987540.0294 1.0000+40.0000
5 0.9583+40.0000 0.99764-0.0077 0.578440.0510 0.9920+0.0170 0.9823+0.0271 0.9893+0.0226 0.99764-0.0077 0.987240.0174 1.00004=0.0000
6 0.95674-0.0165 0.99474-0.0086 0.542540.1126 0.9787+0.0221 0.9848£0.0181 0.97994-0.0283 0.989340.0125 0.979840.0169 1.00004-0.0000
7 0.9297+40.0080 0.9986+40.0043 0.62524-0.0696 0.9891+0.0149 0.9931-£0.0119 0.9568+0.0532 0.99724-0.0058 0.9850+40.0098 1.00004-0.0000
8 0.886740.0000 1.0000+0.0000 0.551440.0397 0.9916+0.0085 0.9893-+0.0301 0.967440.0332 0.9966+40.0055 0.9838+40.0080 1.00004-0.0000
9 0.9830+0.0000 1.0000+40.0000 0.6215+0.0393 0.9974-+0.0057 0.9773-£0.0164 0.947240.0309 1.0000-£0.0000 0.9893+0.0055 1.0000+40.0000
10 0.9695 1.0000 0.6571 1.0000 1.0000 0.9586 1.00000 0.9917 1.0000
Average 0.9648 0.9990 0.5241 0.9933 0.9919 0.9768 0.9962 0.9853 1.0000
N Purity
DSCN SSRSC TLRR LRR LapLRR S3C SCLA SSC proposed
2 1.0000=+0.0000 1.000040.0000 0.7188+0.1462 1.0000=£0.0000 1.0000=+0.0000 1.0000=+0.0000 1.000040.0000 1.000040.0000 1.0000+0.0000
3 1.000040.0000 1.0000=£0.0000 0.6808+0.1168 0.9984+0.0051 1.00004-0.0000 1.000040.0000 0.99844-0.0051 0.9890+0.0149 1.00004=0.0000
4 1.000040.0000 1.0000==0.0000 0.648240.0693 0.9988+0.0037 1.00004-0.0000 0.996540.0110 0.99654-0.0078 0.995340.0112 1.00004-0.0000
5 0.9800+40.0000 0.9990+40.0031 0.6847+40.0392 0.9962-40.0080 0.9915-£0.0136 0.99444-0.0117 0.9990+40.0031 0.9943+40.0079 1.00004-0.0000
6 0.976740.0000 0.9976+40.0038 0.6239+40.1146 0.9889+40.0120 0.9921-£0.0098 0.9883+0.0166 0.9952+40.0056 0.9905+40.0082 1.000040.0000
7 0.942820.0000 | 0.9993-£0.0021 | 0.6851=£0.0655 | 0.9934-£0.0093 | 0.9960+0.0071 | 0.9600+0.0588 | 0.998740.0028 | 0.9927-0.0049 | 1.0000-20.0000
8 0.9000+0.0000 1.0000=£0.0000 0.5634+0.0451 0.9953+0.0054 0.9923+0.0225 0.975440.0358 0.9982+40.0029 0.9917+0.0041 1.0000+0.0000
9 0.9888+40.0000 1.0000=£0.0000 0.645540.0392 0.998440.0035 0.9854+0.0109 0.9409+40.0481 1.0000+£0.0000 0.99434-0.0030 1.00004-0.0000
10 0.9700 1.0000 0.6977 1.0000 1.0000 0.9671 1.0000 0.9953 1.0000
Average 0.9731 0.9996 0.6609 0.9966 0.9953 0.9803 0.9984 0.9937 1.0000
For all tables, the top two performances are highlighted in red and blue, respectively.
TABLE II: Clustering Performance on PIX
N Accuracy
DSCN SSRSC TLRR LRR LapLRR S3C SCLA SSC proposed
2 1.0000-+40.0000 0.9560+£0.0626 0.7050+£0.1092 0.9950-£0.0158 0.9950+£0.0158 0.9950-£0.0158 0.9950+£0.0158 0.9850+0.0337 1.0000-£0.0000
3 1.0000-+40.0000 0.9767+0.0161 0.7570+0.1222 0.9767+0.0161 0.9767+0.0161 0.9800-£0.0172 0.9800+0.0233 0.9600+0.0584 1.0000-0.0000
4 0.9000-£0.0000 | 0.9775:£0.0381 | 0.6680=£0.0997 | 0.945040.0373 | 0.9850+0.0175 | 0.9800£0.0197 | 0.9800-£0.0258 | 0.9600-£0.0474 | 1.0000--0.0000
5 1.0000+0.0000 0.924040.0974 0.72244-0.0904 0.9200+0.0919 0.97404-0.0212 0.9740+0.0267 0.974040.0212 0.842040.1141 0.9900+£0.0170
6 0.9167+£0.0068 0.8950+0.1147 0.60784-0.0647 0.8917+0.1106 0.9600+£0.0453 0.9200+0.1062 0.9550+£0.0672 0.85174-0.1087 0.9900+£0.0161
7 0.9714£0.0191 0.9114£0.0808 0.6236+0.0686 0.9129-+0.0884 0.9671+£0.0252 0.92140.0897 0.9543+0.0563 0.9029+0.0571 1.0000+40.0000
8 0.9777+0.0157 0.8262+0.0522 0.6133+0.0616 0.9050-+0.0798 0.9600+0.0079 0.9525-+0.0202 0.9488+0.0181 0.8650+0.0467 0.9800-+0.0105
9 0.8889-+0.0111 0.8500-0.0600 0.6030+0.0370 0.9444-+0.0590 0.9689+0.0070 0.9589-+0.0105 0.9544+0.0470 0.8533+0.0286 0.9800-0.0070
10 0.9300 0.8400 0.6130 0.9700 0.9700 0.9600 0.9700 0.8500 0.9800
Average 0.9538 0.9073 0.6570 0.9434 0.9730 0.9602 0.9679 0.8967 0.9911
NMI
DSCN SSRSC TLRR LRR LapLRR S°C SCLA SSC proposed
2 1.0000=+0.0000 0.8745+£0.2145 0.1751+0.1645 0.9758+£0.0764 0.9758+0.0764 0.9758-£0.0764 0.9758+0.0764 0.9368+0.1377 1.0000+0.0000
3 1.0000==0.0000 0.9288+0.0491 0.52994-0.1732 0.9228+0.0491 0.92884-0.0491 0.9390+0.0525 0.9429+0.0630 0.90184-0.1074 1.0000=4=0.0000
4 0.81890.0000 0.9586+£0.0549 0.55064-0.1050 0.9526+0.0531 0.9661+£0.0374 0.9563+0.0402 0.9567+£0.0533 0.929540.0653 1.000040.0000
5 1.000040.0000 0.9220+£0.0733 0.6477+£0.0797 0.9106£0.0722 0.9539+0.0367 0.9569-0.0420 0.9539+0.0367 0.8498+40.0773 0.9824+0.0292
6 0.91124+0.0079 0.9167+0.0618 0.6032+0.0691 0.9064+0.0648 0.9441+0.0492 0.9315+0.0697 0.9465+0.0429 0.8788+0.0566 0.9849-+0.0243
7 0.9515+0.0210 0.9224+0.0519 0.6182+0.0596 0.921140.0558 0.9531+0.0326 0.9198-£0.0666 0.9483+0.0356 0.8967+0.0556 1.0000-£0.0000
8 0.9677-£0.0224 | 0.8725-£0.0328 | 0.6356-20.0555 | 0.922620.0413 | 0.945140.0070 | 0.93560.0248 | 0.9331£0.0191 | 0.8630-£0.0296 | 0.9740-20.0137
9 0.913440.0006 0.887540.0410 0.64884-0.0233 0.949440.0301 0.95844-0.0086 0.9474+0.0131 0.9511+£0.0257 0.86364-0.0137 0.9754+£0.0086
10 0.9298 0.8989 0.6465 0.9612 0.9620 0.9497 0.9620 0.8661 0.9765
Average 0.9436 0.9091 0.5613 0.9365 0.9542 0.9458 0.9522 0.8874 0.9881
N Purity
DSCN SSRSC TLRR LRR LapLRR S3C SCLA SSC proposed
2 1.000020.0000 0.9650+£0.0626 0.70504-0.1092 0.9950£0.0158 0.9950+£0.0158 0.9950+0.0158 0.9950+£0.0158 0.98504-0.0337 1.000040.0000
3 1.0000+40.0000 0.9767+0.0161 0.7637+0.1098 0.9767+0.0161 0.9767+0.0161 0.9800£0.0172 0.9800+£0.0233 0.9600+0.0584 1.0000+£0.0000
4 0.9000-0.0000 0.9775+0.0381 0.6802+0.0894 0.9750-+0.0373 0.9850+0.0175 0.9800+0.0197 0.9800+0.0258 0.9600+0.0474 1.0000-+0.0000
5 1.0000-0.0000 0.9340+0.0712 0.73124+0.0823 0.9300-+0.0675 0.9740+0.0212 0.9740-+0.0267 0.9740+0.0212 0.8700+0.0762 0.9900-+0.0170
6 0.9167-£0.0068 | 0.9200-£0.0761 | 0.641320.0665 | 0.9133%0.0781 | 0.9600+0.0453 | 0.9350£0.0822 | 0.9600-£0.0516 | 0.8850-£0.0700 | 0.9900+0.0161
7 0.9714+0.0191 0.922940.0599 0.64164-0.0583 0.9257+0.0676 0.967140.0252 0.9314+0.0696 0.9586+0.0434 0.907140.0505 1.0000=4=0.0000
8 0.9777+0.0395 0.8613+£0.0351 0.63054-0.0538 0.9200£0.0604 0.9600+£0.0079 0.9525+0.0202 0.9488+0.0181 0.871240.0413 0.9800+£0.0105
9 0.8889+0.01111 0.8767+£0.0464 0.6327+0.0331 0.9511£0.0451 0.9689+0.0070 0.9589+0.0105 0.9578+0.0366 0.8622+0.0241 0.9800-0.0070
10 0.9300 0.8700 0.6250 0.9700 0.9700 0.9600 0.9700 0.8600 0.9800
Average 0.9538 0.9227 0.6724 0.9508 0.9730 0.9630 0.9693 0.9067 0.9911

is the best on Alphadigit data set, where it obtains
the top two performance in almost all cases among
which more than half are the best. 4) KTRR is
the second best method on Opticalpen and ORL
data sets with quite competitive performance. For
each observation, we provide detailed discussion and
analysis in the following.

1) Observation 1): 1t is seen that KTRR can clus-
ter Jaffe data set correctly in all cases, whereas the
baseline methods cannot. Besides KTRR, SSRSC
has the best performance, where it achieves the
top two performances in all cases. LRR, LapLRR,

SCLA, and SSC are also very competitive on this
data set with the averaged performance higher than
99%. However, these methods are less competitive
on other data sets, which will be discussed in later
sections. It should be noted that although some
methods show promising performance, KTRR is the
only method that achieves 100% accuracy in all
cases.

2) Observation 2): It is seen that KTRR achieves
the top performances in 32 out of 36, 17 out of
21, and 24 out of 27 cases on Yale, PIE, and
PIX data sets, respectively. Moreover, KTRR also



TABLE III: Clustering Performance on ORL

N Accuracy
DSCN SSRSC TLRR LRR LapLRR S°C SCLA SsC proposed
5 0.7640+0.0554 0.8400+0.1488 0.8404+0.0890 0.8260=£0.1310 0.8380=£0.1471 0.8120=£0.1244 0.8700=£0.1287 0.7126+0.1405 0.8860+0.1116
10 0.7380-+0.0327 0.7860-+0.0652 0.7750+0.0822 0.7090-+0.0833 0.7360+0.1117 0.7530+0.0763 0.8300+0.0389 0.6851+0.0697 0.8160+0.0753
15 0.8988-0.0029 0.7687+£0.0536 0.7657+£0.0374 0.7500£0.0664 0.7467+0.0553 0.7687+0.0655 0.8053+£0.0618 0.6861+£0.0584 0.8467+£0.0683
20 0.8350=£0.0010 0.7280=+0.0377 0.7083+0.0231 0.7310=£0.0445 0.7405£0.0409 0.7175+£0.0371 0.7805+£0.0478 0.68190.0418 0.7985+£0.0426
25 0.8912-+0.0133 0.7428-+0.0394 0.6833-+0.0233 0.7472+0.0339 0.7104+0.0334 0.7336+0.0270 0.7636+0.0262 0.6700+0.0458 0.8028-+0.0465
30 0.91334£0.0023 0.73534£0.0322 0.6473+£0.0156 0.7383+£0.0388 0.7253+0.0298 0.7430+0.0397 0.7480+£0.0271 0.63524+0.0384 0.8120+£0.0335
35 0.8428+£0.0142 0.707440.0264 0.6248+0.0132 0.7169+£0.0282 0.6320=£0.0595 0.7371£0.0295 0.73460.0180 0.65640.0227 0.7920=£0.0205
40 0.8579 0.7075 0.6078 0.7275 0.7000 0.7475 0.7500 0.6541 0.8350
Average 0.8426 0.7520 0.7066 0.7432 0.7286 0.7516 0.7853 0.6727 0.8236
N NMI
DSCN SSRSC TLRR LRR LapLRR S3C SCLA SSC proposed
5 0.6153£0.0796 0.8331£0.1231 0.7859+0.1066 0.8465+£0.0980 0.8550£0.1247 0.8345+£0.0927 0.88260.0900 0.7696+0.1502 0.8938+£0.0724
10 0.7807+0.0041 0.8118£0.0478 0.7965+£0.0658 0.8376£0.0534 0.81440.0669 0.8410=0.0707 0.84380.0311 0.7711£0.0653 0.8428+0.0506
15 0.9379-0.0030 0.8350-+0.0305 0.8065-+0.0246 0.8236+0.0381 0.8183+0.0338 0.8722+0.0460 0.8444+0.0397 0.8264+0.0312 0.9035+0.0369
20 0.8957+£0.0110 0.8313£0.0247 0.7889+0.0195 0.8197+£0.0293 0.8351+£0.0335 0.8408+£0.0281 0.8487+0.0321 0.8271+£0.0236 0.8804+£0.0160
25 0.9235+0.0053 0.8313+0.0247 0.7858+0.0191 0.8378+£0.0249 0.8077+0.0220 0.85920.0205 0.8700=£0.0171 0.8368+0.0238 0.8889+0.0252
30 0.9430-£0.0016 0.8359-+0.0174 0.7726+0.0087 0.83724+0.0237 0.8318+0.0198 0.8663+0.0251 0.8572+0.0161 0.8355+0.0207 0.9038+0.0196
35 0.89380.0382 0.8547+£0.0134 0.7663+0.0089 0.8307+0.0185 0.7824+0.0295 0.8686+0.0087 0.8565+0.0154 0.83724+£0.0149 0.8978+£0.0074
40 0.9130 0.8273 0.7622 0.8370 0.8071 0.8670 0.8688 0.8246 0.9135
Average 0.8536 0.8326 0.7831 0.8338 0.8190 0.8562 0.7529 0.8160 0.8906
N Purity
DSCN SSRSC TLRR LRR LapLLRR S°C SCLA SSC proposed
5 0.7640-+£0.0055 0.8580+0.1168 0.8410-+£0.0882 0.8600+0.0957 0.8640+0.1169 0.8520-+0.0895 0.8940-+0.0929 0.8100+£0.0891 0.9060+0.0772
10 0.7760+£0.0151 0.8020£0.0565 0.7913£0.0783 0.7860+0.0636 0.7870+0.0860 0.8100+£0.0650 0.8400+£0.0316 0.7520+0.0860 0.8330£0.0607
15 0.9186=£0.0029 0.7907£0.0427 0.78330.0303 0.7800=£0.0557 0.7707+£0.0431 0.8300+£0.0512 0.8133£0.0583 0.7787+£0.0563 0.8760=0.0508
20 0.8699-+0.0100 0.7700+0.0289 0.7311+£0.0222 0.7620+0.0393 0.7775+0.0347 0.7785+0.0311 0.7945+0.0447 0.7610+0.0398 0.8355+0.0289
25 0.911240.0133 0.7668+0.0306 0.71184+0.0234 0.7760+0.0280 0.73724£0.0304 0.7892+0.0214 0.8124+0.0212 0.7656+0.0313 0.8412+0.0338
30 0.9300=£0.0023 0.7610£0.0246 0.6773+£0.0133 0.7640+£0.0352 0.7557+£0.0247 0.7937+£0.0364 0.7923£0.0283 0.7483+£0.0227 0.8500£0.0257
35 0.8600-+0.0145 0.7574+0.0196 0.6577+0.0135 0.7489+0.0236 0.6626+0.0505 0.7854+0.0227 0.7766+0.0206 0.7466+0.0202 0.8346+0.0157
40 0.8619 0.7350 0.6413 0.7575 0.7150 0.7950 0.7875 0.7175 0.8625
Average 0.8614 0.7801 0.7291 0.7793 0.7587 0.8042 0.8138 0.7600 0.8546
TABLE IV: Clustering Performance on Yale
~N Accuracy
DSCN SSRSC TLRR LRR LapLRR S3C SCLA SSC proposed
2 0.8500-+£0.0000 0.8545+£0.1790 0.8045+0.1438 0.8682+0.1429 0.8182+0.1780 0.8000+£0.1770 0.8636+0.1530 0.6591+0.1488 0.9545+0.0000
3 0.69334+0.0149 0.6909+0.1008 0.674240.1283 0.769740.1465 0.730340.1663 0.739440.1649 0.742440.1327 0.5515+0.0935 0.83334+0.0848
4 0.62004+0.0111 0.6432+0.0735 0.5548+0.1190 0.6909+0.1083 0.6500+0.1458 0.6523+0.0890 0.6909+0.1199 0.5295+0.0750 0.75914+0.1410
5 0.612040.0109 0.614540.1107 0.524040.1213 0.64734+0.0970 0.627340.1237 0.6255+0.1170 0.6418+0.1191 0.54554-0.0696 0.85454-0.0000
6 0.5767+0.0091 0.5924+0.0784 0.4956+0.0973 0.6242+0.0807 0.5879+0.0409 0.5652+0.0860 0.6121+0.0757 0.5333+0.0630 0.6818+0.0000
7 0.5800+0.0216 0.581840.0700 0.529540.1012 0.583140.0638 0.635140.0484 0.583140.0592 0.6169+0.0353 0.5468+0.0535 0.7000+0.0905
8 0.5675+0.0167 0.5432:40.0479 0.4710+£0.1136 0.5761+£0.0525 0.5841:+0.0813 0.5477+0.0677 0.5807+0.0593 0.5045+0.0442 0.6534+0.0634
9 0.5533+0.0363 0.5414+0.0539 0.4850+0.0599 0.5636+0.0468 0.5677+0.0269 0.5525+0.0330 0.5788+0.0566 0.5091+0.0507 0.63034+0.0529
10 0.5820+40.0178 0.54454-0.0341 0.42554-0.0645 0.57824+0.0211 0.6018+0.0280 0.5300+0.0445 0.5873+0.0656 0.5136+0.0272 0.6391+0.0487
12 0.5583+0.0263 0.5485+0.0265 0.435440.0611 0.5553+0.0407 0.5818+0.0298 0.52424+0.0327 0.5621+0.0290 0.5000+40.0283 0.621240.0226
14 0.63594+0.0139 0.53394-0.0267 0.415040.0163 0.57734+0.0266 0.601940.0235 0.503240.0273 0.54224-0.0302 0.4929+0.0327 0.6364+0.0254
15 0.6506 0.5697 0.3655 0.6061 0.5697 0.4667 0.5515 0.4727 0.6485
Average 0.6233 0.6066 0.5128 0.6367 0.6296 0.5098 0.6309 0.5299 0.7177
N NMI
DSCN SSRSC TLRR LRR LapLRR S°C SCLA SSC proposed
2 0.397340.0000 0.5656+0.3430 0.4002+0.3056 0.582440.3637 0.4930+0.4131 0.4503+0.3928 0.5931+£0.3704 0.1886+0.2543 0.7743+£0.0000
3 0.38814+0.0264 0.4325+0.1582 0.371240.1459 0.5407+0.2108 0.5137+0.2791 0.5511+0.1818 0.4909+0.1898 0.2224+0.1389 0.6169+0.1359
4 0.368240.0016 0.4636+0.1134 0.374440.1438 0.506740.1345 0.4676+0.1391 0.488140.0693 0.511140.1484 0.313440.1245 0.6204=+0.1885
5 0.5262+0.0119 0.4671+0.1509 0.4023+0.1384 0.5351+0.1324 0.5128+0.0934 0.5290+0.1230 0.5248+0.1330 0.3998+0.1024 0.6018+0.0000
6 0.445640.0135 0.487540.0556 0.397340.1183 0.5209=0. 5 0.479140.0444 0.5146+0.0694 0.5087+0.0531 0.4198+0.0648 0.43444-0.0000
7 0.4557+£0.0273 0.5081+0.0756 0.4494+0.1109 0.5100£0.0722 0.5600+0.0476 0.5465+0.0669 0.5515+£0.0461 0.4545+0.0558 0.6389:+0.0889
8 0.499040.0094 0.497740.0403 0.432340.1353 0.509740.0535 0.545340.0876 0.526940.0669 0.505140.0572 0.45234-0.0394 0.6155+40.0637
9 0.533740.0196 0.513640.0433 0.432840.0650 0.521240.0352 0.5338+0.0331 0.5531+0.0331 0.5535+0.0496 0.4768+0.0583 0.6098+0.0190
10 0.560040.0086 0.532140.0301 0.4199+0.0733 0.5511+0.0403 0.5793+0.0405 0.55314+0.0445 0.5849+0.0741 0.48374+0.0263 0.62424+0.0264
12 0.573140.0250 0.556040.0215 0.46934+0.0550 0.55524-0.0293 0.5660+40.0253 0.555240.0261 0.5676+0.0248 0.4966+0.0265 0.6212+0.0226
14 0.6641+0.0116 0.5669+0.0237 0.4729+0.0147 0.5832+0.0207 0.6003+0.0179 0.5526+0.0233 0.57114+0.0168 0.5042+4+0.0263 0.6669+0.0151
15 0.6491 4503 3 .5 0.5271 0.5716 0.6571
Average 0.5050 0.5140 0.4227 0.5433 0.5347 0.5273 0.5445 0.4084 0.6234
Purity
DSCN SSRSC TLRR LRR LapLRR S@C SCLA SSC proposed
2 0.8500-+0.0000 0.8545+0.1790 0.8045+0.1438 0.8682+0.1429 0.8182+0.1780 0.8000+0.1770 0.8636+0.1530 0.6591+0.1488 0.9545+0.0000
3 0.69334+0.0149 0.690940.1008 0.6803+0.1186 0.769740.1465 0.733340.1615 0.751540.1476 0.745540.1287 0.554540.0893 5 340.0848
4 0.6250-+0.0000 0.6432+0.0735 0.5686+0.1135 0.6932+0.1067 0.6636+0.1258 0.6614+0.0798 0.6955+0.1165 0.5295+0.0750 0.7659+0.1295
5 0.652040.0109 0.618240.1140 0.5469+0.1186 0.658240.0954 0.652740.1055 0.638240.1092 0.6491+0.1166 0.54914+0.0736 0.6970=40.0000
6 0.5800-40.0074 0.6091+0.0658 0.5136+0.0933 0.6318:+0.0736 0.6061+0.0468 0.5970+£0.0711 0.6136:+0.0733 0.5364+0.0644 0.5455+0.0000
7 0.5885+0.0292 0.5948+0.0662 0.5421+£0.1002 0.5896+0.0565 0.6416+0.0475 0.6117+0.0576 0.6260+0.0279 0.5545+0.0490 0.705240.0857
8 0.56754+0.0167 0.5580+0.0416 0.49244-0.1207 0.5841+0.0536 0.5909+0.0778 0.57274+0.0663 0.5875+0.0554 0.5125+0.0392 0.67394+0.0643
9 0.5866+0.0318 0.5475+0.0534 0.4746+0.0634 0.5677+0.0456 0.5798+0.0309 0.5798+0.0334 0.59194+0.0529 0.517240.0478 5354+0.0378
10 0.594040.0134 0.55914-0.0285 0.441340.0682 0.581840.0246 0.609140.0264 0.558240.0429 0.597340.0653 0.519140.0304 5 6+0.0352
12 0.5817+0.0285 0.5553+0.0265 0.4525+0.0608 0.5621+0.0388 0.5879+0.0272 0.5462+0.0280 0.5735+0.0196 0.5091+0.0272 0.6265+0.0240
14 0.65424-0.0081 0.558440.0252 0.43584+0.0170 0.581840.0255 0.6039+0.0212 0.53184+0.0264 0.5545+40.0245 0.4987+0.0328 0.6481+0.0191
15 0.6540 0.5697 0.3915 0.6121 0.5758 0.4909 0.5515 0.4788 0.6545
Average 0.6356 0.6132 0.5287 0.6417 0.6386 0.6116 0.6375 0.5349 0.7010

achieves the top second performances on these data

if we compare KTRR with each baseline

method,

sets. For example, KTRR obtains the top second
performances in 2, 2, and 3 cases on Yale, PIE,
and PIX data sets, respectively, which indicates that
KTRR has the top two performances in 34 out of
36, 19 out of 21, and 27 out of 27 cases on these
data sets, respectively. On these data sets, the most
competing methods include DSCN, SSRSC, LRR,
LapLRR, and SCLA. Compared with these methods,
KTRR improves averaged clustering accuracy, NMI,
and purity by at least 7%, 6%, and 6% on Yale data
set. The improvement can be even more significant

respectively. For example, we can see that KTRR
improves the averaged NMI by about 10% compared
with SSRSC and DSCN. On Yale data set, it is
seen that LRR, LapLRR, and SCLA are comparable
to each other and they obtain the top two best
performances in 11, 10, and 9 out of 36 cases,
respectively. However, such kind of performances
is still significantly inferior to KTRR.

On PIX and PIE data sets, the most competing
methods include DSCN and S3C. Similar observa-
tions to Yale data set can be found. That is, the



TABLE V: Clustering Performance on Opticalpen

N Accuracy
DSCN SSRSC TLRR LRR LapLRR S°C SCLA SSC proposed
2 1.0000-£0.0000 0.9337+£0.1081 0.7864+0.1332 0.9530+£0.1119 0.9537+£0.1368 0.9348+0.0667 0.9703+£0.0390 0.9529+0.1365 0.9837+£0.0256
3 0.8333-+0.0000 0.9598+0.0484 0.8930+0.0606 0.9808+0.0266 0.9793+0.0291 0.9675+0.0454 0.9823+0.0229 0.970040.0447 0.9874+0.0340
4 0.8900+0.0136 0.8997+0.1029 0.7451+£0.1496 0.9369+0.1227 0.9489+0.0860 0.8412+0.1572 0.9324+0.0996 0.9076+0.1020 0.9334+0.1020
5 0.8520+0.0109 0.8939+4-0.0863 0.67374+0.0815 0.8864+0.1042 0.811540.2000 0.720440.1320 0.8748+40.1058 0.84934-0.1029 0.8762+40.1044
6 0.83334-0.0063 0.9058+0.0810 0.6792+0.0872 0.8793+0.0950 0.8668+0.1017 0.7462+0.0861 0.8700+0.1023 0.8290+0.1098 0.8940+0.0761
7 0.8542+0.0226 0.9101+£0.0625 0.6729+0.0473 0.8654+0.0639 0.8138+0.0726 0.7682+0.0699 0.8654+0.0581 0.8178+0.0661 0.8666+0.0000
8 0.8375+0.0000 0.8961+0.0698 0.5956+0.0329 0.8356+0.0527 0.7647+0.0553 0.6942+0.0362 0.8387+0.0539 0.7971+0.0880 0.8534+0.0344
9 0.8555+0.0207 0.8705+0.0664 0.5967+0.0258 0.8319+0.0144 0.7759+0.0534 0.7589+0.0539 0.8324+0.0125 0.7895+0.0336 0.8763+0.0269
10 0.8580 09171 0.5992 0.8375 0.7941 0.7735 0.8414 0.8114 0.8859
Average 0.8682 0.9096 0.6262 0.8896 0.8565 0.8583 0.8897 0.8583 0.9080
N NMI
DSCN SSRSC TLRR LRR LapLRR S°C SCLA SSC proposed
2 1.0000+£0.0000 0.7512+£0.3078 0.3330+£0.2298 0.8560+0.2810 0.8874+0.2862 0.7037+£0.1697 0.8629+0.1697 0.8796+0.2845 0.9177+0.1145
3 0.6587+0.0000 0.8790+0.1179 0.6877+0.1235 0.937240.0748 0.9322+4+0.0804 0.8963+0.0679 0.94194+0.0679 0.9069+0.1160 0.9200+40.0900
4 0.7963+0.0257 0.7984+0.1258 0.5470+40.1735 0.8896+0.1412 0.9049+0.0948 0.7891+0.1083 0.8919+0.1083 0.8376+0.1172 0.8929+0.1114
5 0.7865+0.0197 0.86160.0797 0.4704+0.0690 0.8158+0.1115 0.7841+0.1794 0.7102+0.1085 0.7939+0.1085 0.8118+0.1024 0.7880+0.1197
6 0.7537+0.0000 0.8771+£0.0637 0.5194+0.0657 0.8127+0.0876 0.8251+0.0827 0.7492+0.0916 0.8163+0.0916 0.8130+0.0921 0.8435+0.0745
7 0.8016+£0.0064 0.8839+0.0466 0.5143+0.0424 0.8201+£0.0550 0.8040+0.0498 0.7598+0.0525 0.7991+0.0525 0.77144+0.0633 0.7599+0.0000
8 0.8147+0.0055 0.8635+0.0466 0.4421+0.0230 0.7655+0.0466 0.75934+0.0402 0.711540.0491 0.7720+40.0491 0.7767+0.0685 0.7709+40.0290
9 0.8177+0.0207 0.8620+0.0362 0.4635+0.0284 0.7905+0.0208 0.777440.0387 0.7676+0.0165 0.7912+4+0.0165 0.791140.0366 0.8011+40.0223
10 0.8327 0.8766 0.5058 0.7867 0.7801 0.7541 0.7930 0.8190 0.8114
Average 0.0.8068 0.8504 0.4469 0.8305 0.8283 0.7062 0.8291 0.8230 0.8339
N Purity
DSCN SSRSC TLRR LRR LapLRR S5C SCLA SSC proposed
2 1.0000+0.0000 0.9337+0.1081 0.7866+0.1325 0.9530+0.1119 0.9537+0.1368 0.9348+0.0667 0.9703+0.0390 0.9529+0.1365 0.9837+0.0256
3 0.8333-+0.0000 0.9598+0.0484 0.8930+0.0606 0.9808+0.0266 0.9793+0.0291 0.9675+0.0454 0.9823+0.0229 0.970040.0447 0.9874+0.0340
4 0.8900+0.0136 0.9043+0.0936 0.7578+0.1333 0.9407+0.1110 0.9535+0.0720 0.8625+0.1309 0.9362+0.0910 0.9115+0.0939 0.9371+0.0936
5 0.8520+0.0109 0.8968+0.0817 0.6852+0.0678 0.8911+£0.0965 0.8332+0.1709 0.7706+£0.1124 0.8806+0.0969 0.8582+0.0927 0.8819+0.0948
6 0.833340.0000 0.91224+0.0719 0.6922+40.0727 0.8818+0.0886 0.8726+0.0927 0.79414+0.0712 0.8756+0.0932 0.8412+4+0.0970 0.8989+0.068
7 0.8542+40.0063 0.9165+0.0541 0.6783+0.0439 0.8708+40.0593 0.83174+0.0627 0.7949+0.0562 0.8679+0.0558 0.8249+4-0.0622 0.8666+0.0000
8 0.837540.0000 0.9038+0.0589 0.6046+0.0298 0.8360+0.0525 0.7905+0.0441 0.7448+0.0324 0.8394+0.0535 0.8197+0.0773 0.8534+0.0344
9 0.8555+0.0207 0.8862+0.0521 0.6030+0.0253 0.8340+0.0128 0.8013+0.0425 0.7940+0.0447 0.8346+0.0105 0.8211+0.0366 0.8763+0.0269
10 0.8580 09171 0.6070 0.8375 0.8091 0.7885 0.8414 0.8408 0.8859
Average 0.8682 0.9145 0.6326 0.8917 0.8694 0.8280 0.8920 0.8711 0.9080
TABLE VI: Clustering Performance on Alphadigit
~ Accuracy
DSCN SSRSC TLRR LRR LapLRR S3C SCLA SSC proposed
5 0.7400-0.0000 0.7723+0.0775 0.6763+0.1453 0.8431+0.1063 0.8559+0.0884 0.6426+0.0804 0.8426+0.0838 0.8579+0.0726 0.8708+0.0870
10 0.6700+0.0083 0.6397+0.0919 0.5372+0.0732 0.6733+0.0761 0.6531+0.0904 0.3659+0.0579 0.6777+0.0846 0.6503+0.1070 0.7046+0.0920
15 0.6093+0.0129 0.5515+0.0601 0.4647+0.0351 0.6072+0.0296 0.5851+0.0478 0.2699+0.0145 0.6275+0.0406 0.5132+0.0529 0.6366+0.0409
20 0.5950+0.0250 0.5064+0.0461 0.4292+0.0184 0.5796+0.0369 0.5510+0.0457 0.2310+0.0276 0.5928+0.0307 0.4706+0.2208 0.6132+0.0294
25 0.5072+0.0206 0.4528+0.0319 0.3870+0.0151 0.5547+0.0306 0.4888+0.0220 0.2241+0.0222 0.5475+0.0171 0. . 0.5569+0.0205
30 0.5213+0.0102 0.4030+0.0138 0.3515+0.0071 0.5250+0.0141 0.4468+0.0167 0.1981+0.0092 0.4860+0.0173 0.2853+0.0168 0.5214+0.0144
35 0.4960+0.0104 0.3793+0.0137 0.33524+0.0061 0.5005+0.0115 0.4050+0.0124 0.1825+0.0058 0.5017+0.0121 0.2678+0.0121 0.5042+0.0208
36 0.5205 0.3796 0.3425 0.5100 0.4053 0.1859 0.4900 0.2400 0.5036
Average 0.5827 0.5106 0.3960 0.5992 0.5489 0.2875 0.5957 0.4548 0.6139
N NMI
DSCN SSRSC TLRR LRR LapLRR S°C SCLA SSC proposed
5 0.5715+0.0124 0.6271+£0.0721 0.5113+£0.1438 0.7375+0.1144 0.7429+0.0912 0.4550+0.0940 0.7325+0.1067 0.7362+0.1006 0.7718+0.0987
10 0.7010=0.0000 0.6467+0.0569 0.4980+0.0440 0.6567+0.0605 0.6647+0.0657 0.2810+0.0491 0.6742+0.0596 0.6519+0.0712 0.6959+0.0641
15 0.6514-+0.0042 0.5991+0.0316 0.4826+0.0285 0.6448+0.0226 0.6295+0.0330 0.2370+0.0268 0.6613+0.0222 0.5713+0.0391 0.6623+0.0237
20 0.6709+0.0192 0.5864+0.0301 0.4981+0.0142 0.6521+0.0221 0.6250+0.0245 0.2479+0.0366 0.6535+0.0166 0.5225+0.2628 0.6650+0.0179
25 0.6426+0.0079 0.5704+0.0199 0.4886+0.0146 0.6342+0.0235 0.6038+0.0178 0.2773+0.0215 0.6354+0.0167 0.4672+0.0483 0.6433+0.0175
30 0.6604+0.0288 0.5340+0.0100 0.4801+0.0045 0.6270+0.0103 0.5831+0.0088 0.2763+0.0137 0.6058+0.0082 0.4239+0.0223 0.6319+0.0069
35 0.6571+0.0208 0.5448+0.0107 0.4860+0.0055 0.6197+0.0061 0.5705+0.0093 0.2905+0.0063 0.6199+0.0049 0.4091+0.0117 0.62704+0.0081
36 0.6805 0.5240 0.4923 0.6270 0.5747 0.2936 0.6187 0.3869 0.6344
Average 0.6544 0.5791 0.4386 0.6499 0.6243 0.2948 0.6501 0.5211 0.6665
N Purity
DSCN SSRSC TLRR LRR LapLRR S°C SCLA SSsC proposed
5 0.7400-+0.0000 0.7774+0.0683 0.6831+£0.1401 0.8513+0.0912 0.8626+0.0718 0.6569+0.0704 0.8451+0.0797 0.8579+0.0726 0.8759+0.0750
10 0.710020.0000 0.6638+0.0808 0.5619+0.0644 0.6974+0.0701 0.6787+0.0851 0.3841+0.0540 0.6946+0.0764 0.6715+0.0953 0.72774+0.0785
15 0.6293+0.0160 0.5697+0.0565 0.4834+0.0285 0.6381+0.0201 0.6115+0.0458 0.2865+0.0191 0.6457+0.0382 0.5349+0.0457 0.6552+0.0401
20 0.5990+0.0216 0.5258-+0.0420 0.4551+0.0192 0.6158+0.0323 0.5824+0.0397 0.2504+0.0315 0.6167+0.0267 0.5056+0.2280 0.6305+0.0263
25 0.5328+0.0099 0.4750+0.0303 0.4090+£0.0163 0.5826+0.0229 0.5228+0.0186 0.2407+£0.0229 0.5713+0.0174 0.3790+0.0406 0.57894+0.0195
30 0.5373+0.0121 0.4342+0.0141 0.3739+0.0072 0.5561+0.0129 0.4768+0.0141 0.2179+0.0114 0.5270+0.0119 0.3109+0.0140 0.5442+0.0110
35 0.5120+0.0101 0.4014+0.0130 0.3582+0.0067 0.5269+0.0109 0.4396+0.0117 0.1999+0.0059 0.5289+0.0100 0.2845+0.0151 0.5207+0.0159
36 0.5355 0.4038 0.3645 0.5420 0.4395 0.2030 0.5192 0.2536 0.5285
Average 0.5995 0.5314 0.4141 0.6263 0.5767 0.3049 0.6187 0.4747 0.6327
TABLE VII: Clustering Performance on PIE
N Accuracy
DSCN SSRSC TLRR LRR LapLRR S°C SCLA SSC proposed
10 0.3880+0.0109 0.3720+£0.0501 0.4270+0.0427 0.4300+0.0330 0.3800+0.0559 0.3540+0.0299 0.3580+0.0466 0.3220+0.0220 0.6200+0.1033
20 0.4020-+0.0083 0.3470+0.0291 0.3720+0.0246 0.3440+0.0425 0.3220+0.0297 0.3560+0.0417 0.3460+0.0389 0.2980+0.0155 0.5500+0.0476
30 0.4160+0.0101 0.3367+0.0258 0.3281+0.0156 0.3100+0.0242 0.3320+0.0298 0.3300+0.0288 0.3400+0.0384 0.2827+0.0218 0.5020+0.0458
40 0.4160+0.0221 0.3105+0.0180 0.3156+0.0130 0.3020+0.0193 0.3190+0.0212 0.3190+0.0149 0.3200+0.0215 0.2675+0.0111 0.4645+0.0195
50 0.3880+0.0074 0.3104+0.0112 0.3082+0.0085 0.2996+0.0190 0.2844+0.0107 0.3208+0.0159 0.3208+0.0190 0.2652+0.0124 0.4464+0.0170
60 0.4076+0.0158 0.2997+0.0131 0.3043+0.0035 0.3010+0.0096 0.2880+0.0091 0.3117+0.0100 0.3240+0.0126 0.2620+0.0072 0.41274+0.0161
68 0.4294 0.3029 0.3088 0.3059 0.2676 0.3147 0.3029 0.2735 0.4059
Average 0.4067 0.3256 0.3377 0.3275 0.3144 0.3295 0.3302 0.2816 0.4868
N NMI
DSCN SSRSC TLRR LRR LapLRR S°C SCLA SSC proposed
10 0.3818+0.0115 0.4288+0.0629 0.4844+0.0329 0.4987+0.0503 0.4353+0.0537 0.4174+0.0340 0.3990+0.0364 0.34434+0.0257 0.6474+0.1015
20 0.5639+0.0238 0.5304+0.0189 0.5549+0.0186 0.5313+£0.0425 0.5053+0.0282 0.5537+0.0319 0.5289+0.0274 0.4853+0.0136 0.6542+0.0369
30 0.6155+0.0218 0.5789+0.0200 0.5796+0.0094 0.5581+0.0120 0.5690+0.0184 0.5800+0.0176 0.5812+0.0211 0.5256+0.0180 0.6768+0.0262
40 0.6551+£0.0145 0.5995+0.0103 0.6025+0.0073 0.5846+0.0103 0.5954+0.0158 0.6103+0.0078 0.6045+0.0120 0.5572+0.0105 0.6801+0.0134
50 0.6467+0.0230 0.6189+0.0061 0.6208-+0.0039 0.6041+0.0143 0.6074+0.0062 0.6295+0.0094 0.6134+0.0106 0.5845+0.0069 0.6842+0.0095
60 0.6642+0.0247 0.6281+0.0064 0.6345+0.0020 0.6223+0.0077 0.6237+0.0055 0.6391+0.0056 0.6304+0.0080 0.6063+0.0062 0.6900+0.0085
68 0.6835 0.6429 0.6470 0.6372 0.6232 0.6555 0.6251 0.6197 0.6647
Average 0.6015 0.5753 0.5891 0.5766 0.5656 0.5836 0.5689 0.5319 0.6711
N Purity
DSCN SSRSC TLRR LRR LapL.RR S°C SCLA SSC proposed
10 0.3880-+0.0109 0.3920-+0.0688 0.4414-+0.0429 0.4520+0.0329 0.3940+0.0558 0.3600+0.0365 0.3600+0.0499 0.3300+0.0236 0.6280+0.1029
20 0.4160+0.0089 0.3560+0.0317 0.3854+0.0263 0.3610+0.0528 0.3270+0.0295 0.3630+0.0422 0.3510+0.0360 0.3130+0.0170 0.56104+0.0461
30 0.4226+0.0121 0.3400+0.0290 0.3388+0.0160 0.3147+0.0268 0.3360+0.0263 0.3340+0.0305 0.3433+0.0380 0.2960+0.0202 0.51074+0.0445
40 0.4269+0.0286 0.3155+0.0183 0.3223+0.0133 0.3095+0.0209 0.3245+0.0198 0.3270+0.0170 0.3260+0.0249 0.2765+0.0142 0.4765+0.0207
50 0.3928+0.0065 0.3164+0.0118 0.3148+0.0087 0.3040+0.0180 0.2884+0.0115 0.3276+0.0169 0.3276+0.0173 0.2756+0.0130 0.4608+0.0154
60 0.4323+0.0187 0.3053+0.0149 0.3111+0.0040 0.3060+0.0115 0.2913+0.0093 0.3153+0.0115 0.3307+0.0120 0.2707+0.0062 0.42274+0.0168
68 0.4405 0.3088 0.3153 0.3118 0.2706 0.3265 0.3088 0.2794 0.4235
Average 0.4170 0.3334 0.3470 0.3370 0.3188 0.3362 0.3353 0.2916 0.4976




most competing methods show better performances
to the other baseline ones, but inferior to KTRR.
Moreover, methods such as SSRSC and S3C do
not always show competing performance on all
these data sets, whereas KTRR is consistently the
best. These observations indicate the superior per-
formance of KTRR.

3) Observation 3): On Alphadigit data set, KTRR
achieves the highest, the top second, and the top
third performances in 13 and 8, and 3 out of 24
cases, respectively. It is seen that KTRR obtains
more than half of the best and almost all of the top
two performances on this data set. Among the base-
line methods, DSCN, LRR, and SCLA achieve 6, 4,
and 1 the top performances, respectively. Moreover,
DSCN achieves the top second performances in 4
cases. Generally, DSCN is the second best method
on Alphadigit data set, but its performance is less
promising than KTRR. In general, we may conclude
that KTRR outperforms DSCN, as well as the other
methods on Alphadigit data set.

4) Observation 4): On ORL data set, DSCN and
KTRR are the most competitive methods. It is seen
that DSCN obtains the top two performances in 18
out of 24 cases, among which 15 are the best and
3 are the top second, respectively. KTRR obtains
the top two performances in all cases, including
6 cases with the best performances. Moreover, in
the average cases, DSCN outperforms KTRR in
accuracy and purity by about 1-2% whereas KTRR
outperforms DSCN in NMI by about 4%. Among
the other methods, SCLA obtains the top two per-
formances in 7 cases, which is observed to be
the best. These observations indicate that KTRR is
competitive to DSCN while superior to the other
baseline methods on ORL data set.

On Opticalpen data set, SSRSC, LRR, and KTRR
are the most competitive methods, among which
SSRSC is the best. It is observed that SSRSC
achieves the best performances in 17 out of 27
cases, which suggests its superior performance to
the other methods on Opticalpen data set. Among
the other methods, KTRR is the best, where it
obtains the best and the top second performances
in 3 and 13 cases, respectively. Overall, SSRSC
and KTRR achieve the top two performances in
18 and 16 cases, respectively. Moreover, LRR has
the top second performances in 8 cases but no best
ones, showing inferior performance to KTRR. These
observations indicate that though KTRR is not the

best on Opticalpen data set, it is rather competitive
to SSRSC and superior to the other methods.

5) Discussion: It is observed although KTRR out-
performs the other methods on Alphadigit data set,
the improvements are relatively less significant than
on other data sets such as Yale. Moreover, although
KTRR has the best performances in several cases
on Opticalpen data set, generally it is inferior to
SSRSC on this data set. One reasonable explanation
is as follows. Alphadigit and Opticalpen data sets are
pendigit images while the others are face images.
It is observed that pendigit images contain less
structural information than face images. Thus it is
relatively more difficult to extract rich and useful
structural information with the projection when con-
structing the representation matrix. However, KTRR
still outperforms or is comparable to the baseline
methods on these data sets. In general, all algorithms
have relatively better performance on “easy” data
sets such as Jaffe and PIX than the “hard” ones such
as ORL and Alphadigit. The reason is that Jaffe and
PIX data sets have less variations while the other
data sets are more complicated. For example, face
images in PIE data sets may have different angle,
facial expression, lighting conditions, and wearings;
some images in Alphadigit data set have similar
shapes but belong to different categories, such as
digit “0” and letter “O”. These properties of the data
sets make the corresponding classification task more
challenging.

In general, we can see that the baseline methods
may obtain the best performances on some data
sets, but they do not consistently show superior
performance to KTRR on other data sets. For ex-
ample, DSCN is the best method on ORL data set.
However, KTRR outperforms DSCN on the other
data sets. These observations suggest effectiveness
and superior clustering performance of the KTRR to
the baseline methods. In the following subsections,
we will further evaluate KTRR with some more
detailed tests.

D. Learned Representation

In the above test, we have conducted extensive ex-
periments to evaluate the the clustering performance
of all methods, which has confirmed the effective-
ness of KTRR. To better understand the clustering
behavior of the KTRR, in this test, we visually show
some examples of the learned representation matrix



(a) N=T (b) N=8

() N=9

(d) N=10

Fig. 3: Example of learned representation matrix 2
(on the top) and the constructed affinity matrix A
(on the bottom) on Jaffe data.

Z as well as the constructed affinity matrix A in
the post-processing. Without loss of generality, we
show the matrices on Jaffe data, where we consider
the cases of N = 7,8,9, and 10, respectively.
We visually show these matrices in Fig. 3. It is
seen that the learned representation matrices have
clear block-diagonal structure, which clearly shows
group information of the data. The post-processing
step makes the structured representation sharped,
leading to even stronger structural effects. Hence,
the proposed method performs clustering effectively
with such representation matrices.

E. Convergence Study

In Section III-B, we have theoretically analyzed
the convergence of objective value. To better un-
derstand the convergence behavior of the proposed
algorithm, we empirically show some results of con-
vergence. In this test, we use Jaffe and Alphadigit
data sets for illustration. To empirically testify the
convergence of KTRR in objective value, without
loss of generality, we fix r =5, A = 0.1,y = 0.1 and
iterate the algorithm 50 times. We plot the objective
values in Fig. 4. It is observed that the proposed
algorithm converges in objective value within a few
number of iterations.

Moreover, since it is difficult to provide theoret-
ical results on the convergence of variables, in this
test we show some experimental results to verify
this. To show the convergence of {Z;} and { P}, we
show the plots of sequences {||Z:+1 — Z:||r}32, and
{[|Prs1—P;||F}52,, i-€., the difference of consecutive
updates of variables. We remain the above settings
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Fig. 4: Examples of convergence curves of the
objective value on Jaffe and Alphadigit data sets.
Linear kernel is used and the other parameters are
fixed as r =5, A =0.1, and v = 0.1.

and show the results in Fig. 5. It is observed that the
proposed algorithm converges within a few number
of iterations in both {P,} and {Z;}, which implies
fast convergence of the proposed method in vari-
able sequence. Similar convergence pattern can be
observed on other data sets with various parameters.
These observations suggest fast convergence and
efficiency of KTRR and its potential applicability
in real-world applications.
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Fig. 5: Examples of convergence curves of the
variables on Jaffe and Alphadigit data sets. Linear
kernel is used and the other parameters are fixed as
r=25,A=0.1, and v = 0.1.



(b) Example 2

Fig. 6: Examples of reconstructed examples on
Yale data set. In each panel, the top left is the
original sample image. For the rest, the top are the
extracted j-th feature X pjp? while the bottom are
the reconstructed image using the top j features

11 Xp;p). From left to right, j = 1, 3, 5,
9, and 15, respectively. Linear kernel is used for
reconstruction and the other parameters are fixed to
be A\=1, v =0.01, and r = 15.

F. Feature Extraction and Data Reconstruction

In this subsection, we show some results on how
the sought projection matrix works. We use Yale
data and adopt the linear kernel for illustration.
Without loss of generality, we fix » = 30, A = 0.01,
and v = 0.01 and obtain the projection matrix P.
We show the extracted features and reconstructed
examples by P in Fig. 6. It is seen that the key
features of the examples can be captured with a few
number of projection directions. These key features
well reconstruct the original example, suggesting
the effectiveness of the proposed method in feature
extraction.

To further test how the projection works, we
investigate how the clustering performance of KTRR
changes with respect to r value. Without loss of
generality, we use Yale and PIX data sets for
illustration. For each data set, we consider two
types of kernels with the same parameter settings
as in previous test. For each kernel, we vary
r € {1,3,5,7,9,11,13,15}. For a fixed r value
we vary all the other parameters within the set

{0.001,0.01,0.1,1, 10,100, 1000}, and we record
the highest performance and report them in Fig. 7.
It is seen that for each metric, two curves can
be obtained corresponding to RBF and polynomial
kernels, respectively. For both kernels, the perfor-
mance of KTRR reaches the best performance with
small r in all metrics. With large r values, the
performance of our method is not further improved,
implying that a few number of projection directions
can sufficiently extract key features of the data
and lead to promising clustering performance. Thus,
our method can also be applided as a powerful
dimension reduction technique for 2D data.

G. KTRR v.s. TRR

In this test, we conduct some experiments on
Yale and PIE data sets to verify the importance
of learning nonlinear structures of data. For Yale
and PIE data sets, we use the same subsets as in
Section IV-C. To show the importance of learning
nonlinear structures with kernels, we compare the
performances of KTRR with general kernels and
linear kernel as two cases. For the linear case, we
use a linear kernel for KTRR and denote it as TRR.
For the other parameters, we tune them in the same
way as in Fig. 8. For KTRR, we use general kernels
as described in Section IV-B and tune the other
parameters in the same way as TRR. We report
the best performances of KTRR as well as TRR
with respect to the number of clusters in Fig. 8. It
is seen that generally KTRR with general kernels
outperforms TRR with linear kernel with significant
improvements in many cases. In fact, it is natural
that KTRR can always perform no worse than TRR,
because TRR is a special case of KTRR by using
linear kernel and this ensures that KTRR has at least
the same performance as TRR. Generally speaking,
we can observe much better performance if general
kernels are used because they correspond to some
more complicated nonlinear mappings, which may
better capture nonlinear structures of the data than
linear mapping.

V. CONCLUSIONS

In this paper, we propose a novel subspace clus-
tering method named KTRR for 2D data. The KTRR
provides us with a way, which is different from
tensor methods, to learn the most representative 2D
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features from 2D data in learning data representa-
tion. The KTRR performs 2D feature learning and
low-dimensional representation construction simul-
taneously, which renders the two tasks to mutually
enhance each other. 2D kernel renders the KTRR
to have enhanced capability of capturing nonlinear
relationships from data. An efficient algorithm is
developed for its optimization with provable de-
creasing and convergent property in objective value.
Extensive experimental results confirm the effective-

ness and efficiency of our method.

Besides the strengths of the KTRR, we should
also note its weakness and possible further research
directions, which are summarized as follows. 1)
The KTRR captures spatial information from hor-
izontal direction by multiplying a single projection
matrix P on right hand side, which omits spatial
information from vertical direction. Thus, it is in-
teresting to introduce another projection () on left
hand side of the data examples for both horizontal



and vertical spatial information extraction. 2) In
KTRR, we need to provide a value for r, which
determines the number of projection directions to
seek. After extending the KTRR to the bi-directional
case, we need to provide the number of projections
to seek from both sides. It is interesting to develop
the KTRR such that it can automatically determine
the optimal number of projection directions for P
and (), respectively, in a self-learning way. 3) For
KTRR, the clustering performance relays on the
kernel selection. However, the optimal type of kernel
function and parameters are not always available.
Thus, it is meaningful to develop multi-kernel model
based on KTRR such that it can automatically learn
an optimal kernel from a set of kernel functions.
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