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Abstract

Object detection is an important task in remote sensing image analysis. To

reduce the computational complexity of redundant information and improve

the efficiency of image processing, visual saliency models have been widely ap-

plied in this field. In this paper, a novel saliency detection model based on

Contrast-weighted Dictionary Learning (CDL) is proposed for remote sensing

images. Specifically, the proposed CDL learns salient and non-salient atoms

from positive and negative samples to construct a discriminant dictionary, in

which a contrast-weighted term is proposed to encourage the contrast-weighted

patterns to be present in the learned salient dictionary while discouraging them

from being present in the non-salient dictionary. Then, we measure the saliency

by combining the coefficients of the sparse representation (SR) and reconstruc-

tion errors. Furthermore, by using the proposed joint saliency measure, a variety

of saliency maps are generated based on the discriminant dictionary. Finally,

a fusion method based on global gradient optimization is proposed to integrate

multiple saliency maps. Experimental results on four datasets demonstrate that

the proposed model outperforms other state-of-the-art methods.
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1. Introduction

Guided by our gaze, the human visual system (HVS) can quickly and au-

tomatically select regions of interest in complex scenes (known as the visual

attention mechanism) [1]. This intelligent mechanism of the HVS has been ex-

tensively studied in the fields of psychology [2], neurobiology [3], and computer

vision [4]. In the past two decades, research on visual saliency has advanced in

two ways: eye fixation prediction in human vision [5] and salient object detec-

tion (SOD) in computer vision [6, 7]. The former focuses on predicting the eye

fixations of an observer in a short time [8], whereas the latter aims to locate or

segment the most prominent objects in a scene [9, 10, 11]. Because saliency de-

tection can optimize the computing resources required for image analysis, visual

saliency models are widely used in various fields of remote sensing (RS) image

processing, including regional change detection [12], building detection [13] and

oil tank detection [14].

The latest research [15] suggests that information is typically represented by

a few simultaneously active neurons. Importantly, while the retina receives a

lot information, only a small amount of useful data is transmitted to nerve cells

in the visual cortex for processing. This representation of information is known

as a sparse representation (SR) [16]. The principle of SR is to represent the

signal by a linear combination of a series of base vectors in the over-complete

dictionary, and that linear combination must be sparse [17]. In recent years,

image structure analysis based on SR has been widely used in computer vision

and image processing. At the same time, SR theory has been introduced into the

field of image saliency detection [18, 19]. However, there are two key problems

with SR-based SOD methods: the construction of the SR dictionary and the

criteria for saliency measure.

In the construction of dictionaries, most of the early methods used inde-

pendent component analysis (ICA) to sample numerous image patches from
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various kinds of natural images to generate basic atoms [8]. However, these

basic atoms cannot create a perfect SR of the detection image without infor-

mation loss because some features of the training image cannot be accurately

captured by the predetermined basic atom. Other SR-based methods [20, 21]

usually use the areas around the detected patches for dictionary construction.

However, as [22] showed, when the salient object has a high contrast with the

surrounding patches, such methods usually assign higher values to the edges of

the salient object rather than the entire object. In addition, in [23], a multi-view

joint SR framework that simultaneously considers the inherent contextual struc-

tures among instances improved the performance and robustness of the learned

dictionary. Recently, the background prior [24] was introduced into SR-based

saliency detection methods, which assumes that non-salient parts of the image

are usually distributed on the boundary. Under this assumption, patches or

superpixels near the boundaries of the image are usually selected to build the

background dictionary [25, 26]. However, when the salient object is near the

image boundary, some foreground regions are included in the background dictio-

nary, which causes them to be mistakenly detected as background regions. Also,

if the background regions near the boundary of the image have distinct features,

some background regions will be incorrectly marked as foreground. Moreover,

the training sample patches usually have their own characteristic features, such

as intensity and contrast, but these are usually disregarded in most existing

SOD methods, resulting in salient objects in a scene with similar background

and foregrounds being unevenly highlighted.

As for saliency measurement criteria, saliency detection methods based on

SR define this in terms of reconstruction error or sparsity of representation

coefficients (that is, using the l0-norm to calculate the coding length) [18, 19,

27]. These methods also usually add sparse constraints to sparse coefficients to

achieve sparse coding of image patches, and they calculate the saliency of image

patches by minimizing the sum of the reconstruction errors. Therefore, these

representation methods are more sensitive to non-Gaussian noise rather than

outliers representing coefficients.
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Through our research, we have found that two or more temporary saliency

maps are generated in most saliency detection models. Among these meth-

ods, some determine the fusion weights through simple weights [19, 27] or

experimental effects [8]. Other methods determine the optimal image fusion

weights through methods such as least-squares estimation of training data [28]

or Bayesian inference [18], but do not consider the connections between multiple

saliency maps.

To solve the above problems, we propose an SR method based on Contrast-

weighted Dictionary Learning (CDL) for saliency detection. Specifically, this

paper uses the positive and negative samples generated by the salient and non-

salient regions in the image as a template for dictionary learning. Inspired by

the online dictionary learning algorithm [17], to solve the problem of dictionary

learning we also propose an online discriminant CDL algorithm, which effec-

tively overcomes the shortcomings of some methods using background priors.

To determine saliency, we use the l2-norm to measure the sparsity of sparse

coefficients, combined with the l1,2-norm to calculate the sparse reconstruction

errors and improve the expression of outliers in the sparse coefficient. For the

various saliency maps generated by calculating representation coefficients, we

propose an image fusion method based on global gradient optimization to in-

tegrate multiple salient images. To summarize, the main contributions of this

paper are as follows:

(1) Considering the features of the training sample patch itself, we propose a

novel atomic learning formula based on contrast weights. Further, we use

an online discriminative CDL to solve the formula.

(2) We use the l2-norm to measure the sparsity of sparse coefficients, use the

l2,1-norm to measure the sparsity of the reconstruction errors, and then

combine the two measures to improve the expression of outliers in the

representation coefficients.

(3) We use a salient map fusion method based on global gradient optimization

to integrate multiple saliency maps. This method optimizes the image
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fusion effect by establishing the relation between saliency maps.

The rest of this paper is organized as follows: Section 2 briefly reviews related

work. Section 3 describes the SOD method in detail. Sections 4 and 5 give the

experimental analysis and conclusions.

2. Related Work

In recent years, more and more researchers are committed to the work of

SOD [29, 30]. Several review papers [1, 31] have investigated and discussed

many of the most advanced SOD methods in detail. In this section, we review

the work most relevant to ours, including SOD based on sparse representations

and the application of saliency detection in optical RS images. Further, SOD

based on deep learning is another hot topic in recent years and will be briefly

reviewed in this section.

2.1. SOD based on sparse representations

In recent years, SR theory has been gradually addressed in the field of

saliency detection. Generally, SR based saliency detection methods need to

first construct an over-complete dictionary, then sparsely represent an input

image through the dictionary, and finally measure the saliency according to the

SR coefficients or reconstruction errors. In [8], the construction of the dictionary

was learned by applying ICA on the image patches sampled from each position

of the input image and using the reconstruction errors to measure the saliency.

In the method of [20] the image patches around the central patch were used

for SR, and the saliency was measured by the coding length or residual. These

methods usually give higher saliency values to the object boundaries, because

both the background and foreground are included in the dictionary.

Later, the background prior method [24] was proposed. As an extension of

this, some methods then [25, 26] used patches or superpixels near the image

boundary as background templates to construct a global background dictio-

nary and sparsely reconstruct the image. Recently, in [32], a SOD method was
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proposed based on two-stage graphs, taking into account the consistency of ad-

jacent spaces between graph nodes and the consistency of regional spaces, while

improving the accuracy of SOD in complex scenes.

2.2. Application of SOD in RS images

Due to the rapid development of massive RS data and the complexity of

RS scenes, many traditional methods of processing natural images are not suit-

able for RS images. As one method of data compression and rapid screening,

saliency detection can effectively process RS data. Importantly, there are sev-

eral essential similarities between SOD/ target detection and extraction in RS

images. For instance, both extract regions of interest in an image based on

the saliency of a particular task or target. As image processing and RS tech-

nology have developed, saliency detection has been widely used in the field of

RS. Many researchers have combined visual saliency and image interpretation

to accomplish specific target detection, such as regional change detection [12],

airport detection [33], building detection [13] and oil tank detection [14]. For

example, Yao et al. [33] proposed a coarse-to-fine airport saliency detection

model. At the coarse layer, combined with contrast and linear density clues, a

goal-oriented saliency model was established to quickly locate airport candidate

regions. Later, Li [13] et al. proposed a two-step building extraction method

based on saliency cues, designed a saliency estimation algorithm for building

objects, extracted saliency cues in a local region of each candidate building, and

integrated them into a probability model to get the final building extraction

results. However, these methods do not involve road detection methods based

on saliency in RS images.

2.3. SOD based on deep learning

Recently, SOD methods based on deep learning have attracted more atten-

tion. Zhang et al. [34] proposed a SOD model based on fully a convolutional

neural network by introducing a gated two-way message passing module to in-

tegrate multi-level features. In [35], a predict-refine architecture and a new
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hybrid loss for boundary-aware SOD were proposed to pay more attention to

the boundary quality of salient objects. In another work focusing on salient edge

information [36], an essential pyramid attention structure for SOD was designed

to enhance the representation ability of the corresponding network layer.

In order to prevent SOD methods for RGB images from failing [24, 31, 37]

when processing complex scenes, as is common in recent saliency detection works

dedicated to RGB-D, [38] introduced the probabilistic RGB-D saliency detec-

tion network via conditional variational autoencoders to model human anno-

tation uncertainty and generate multiple saliency maps for each input image

by sampling in the latent space. Further, Fan et al. [39] constructed a 1K

high-resolution saliency person dataset, and proposed a baseline architecture

called the Deep Depth-Depurator Network for saliency detection. In addition,

binocular stereo cameras are widely used in various tasks of RS photogramme-

try, which makes it possible to use supplementary depth information to further

accurately detect and identify targets in the field of RS.

3. Proposed Saliency Detection Model

This section describes the proposed saliency detection model in detail. As

shown in Fig. ??, the model includes three main parts: CDL-based discriminant

dictionary learning, saliency maps generation and fusion.

3.1. Contrast-weighted dictionary learning formula

In the image processing method based on SR, an image patch is usually

represented by a linear combination of a few atoms in an over-complete dictio-

nary D = {di}ki=1 ∈ Rn×k; that is, the image patch x ∈ Rn is estimated by

dictionary D and the calculated sparse coefficients α ∈ Rk . The equation is

x = Dα s.t. ‖x−Dα‖2 ≤ ξ, (1)

where ‖•‖2 is the l2-norm used to measure the deviation and ξ is the error.

Within the feasible set, the solution that minimizes the number of nonzero
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Figure 1: Diagram of the proposed SOD method. NS: negative sample, PS: positive sample,
CDL: contrast-weighted dictionary learning, N-SD: non-salient dictionary, SD: salient dictio-
nary, SR: sparse representation, RC: representation coefficient, RE: reconstruction error.

sparse coefficients is undoubtedly an attractive representation. This form can

be expressed as:

min
α∈Rk

‖x−Dα‖22 s.t. ‖α‖0 ≤ L, (2)

where L is the sparsity of the coefficients α . In Eq. 2, the atoms in D represent

the smallest unit in the reconstructed image patches. Here, the atoms in D need

to be learned from the training patches X = {x}mi=1, which can be achieved by

[19]

min
D,A

1

m

m∑
i=1

(
1

2
‖xi −Dαi‖22 + λ ‖αi‖1

)
, (3)

where λ is the trade-off between the reconstruction errors ‖xi −Dαi‖22 and the

sparsity of the coefficient ‖αi‖1 and A = {αi}mi=1 is the SR coefficients set

corresponding to X . According to Eq. 3, we study salient and non-salient

dictionary learning based on contrast-weighted atoms. As one of the features

of an image, contrast plays an important role in both local and global saliency
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detection methods [40, 41]. In order to enhance the ability of the base atom

to learn the image contrast features and improve the sensitivity to the contrast

of the surrounding pixels, a novel contrast-weighted term is incorporated in

our formulation to encourage/discourage the contrast-weighted patterns in the

learned salient/non-salient dictionary, respectively. More specifically, in our

weight function, the weight of each pixel in the base atom is calculated by the

relative brightness contrast of the pixels and the corresponding training sample

patch xi. Thus, the weight of the j-th pixel pij in the i-th sample patch is:

w (pij) =
Lum (pij)−mean (Lum (xi))

max (Lum (xi))
, (4)

where Lum (·) is the luminance value operator for calculating the sample patch,

and mean (·) and max (·) are the average value operator and the maximum value

operator, respectively. Note that in the actual calculation, the i-th sample patch

is treated as a column vector; that is, w (pij) can be expressed as wT
ij ∈ R1×n ,

and n is the number of pixels of the sample patch. Upon WT
i ∈

{
wT
ij

}m,n
i,j=1

, the

contrast weight term can be designed by
∥∥∥WT

i D
∥∥∥2

2
, which quantifies the degree

of weighted contrast. Thus, given the contrast weight term, by rewriting Eq. 3,

we have the following formula for optimizing the salient and non-salient dictio-

nary learning:

min
DH,AH

1

mH

mH∑
i=1

(
1

2

∥∥∥xH
i −DHαH

i

∥∥∥2

2
+ λ1

∥∥αH
i

∥∥
1

+ λ2

∥∥∥WT
i DH

∥∥∥2

2

)
,H = { P ∨N} ,

(5)

where mH represents the number of positive or negative samples,
{
αH
i

}mH

i=1
is the

SR coefficient of positive or negative sample patches, and DH is a salient or non-

salient dictionary trained from positive or negative samples. The meaning of λ1

is the same as that of λ in formula (3), and λ2 (a very small positive number)

is a regularization parameter that controls the influence of contrast-weighted

terms.
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3.2. The solution to the dictionary learning formulation

We can learn the salient and non-salient dictionaries through (5). Be-

cause the online dictionary learning algorithm [17] can deal with large dynamic

datasets and is faster than the batch algorithm, we propose the CDL algorithm

to solve (5). Similar to the standard dictionary learning algorithm, we divide the

optimization problem in (5) into two subprocesses to solve alternately; namely,

the SR and dictionary update. Specifically, the initialization training dictionary

DH is generally obtained by randomly sampling the training sample set. Thus,

the first step is to fix DH , and the sparse coefficient AH =
{
αH
i

}mH

i=1
can then

be obtained by the SR method. The second step is to fix AH , and the updated

dictionary DH can then be solved by the dictionary update method. The first

and second steps of the iteration are done until convergence is reached.

3.2.1. Sparse representation

From the above, it can be seen that the solution to (5) is an iterative opti-

mization process, assuming that in the i-th iteration, xH
t is a randomly selected

image patch from the training set, and αH
t is the coefficient of xH

t obtained

by the (t− 1)-th updated dictionary DH
t−1 through the SR algorithm. Because

the contrast-weighted term λ2

∥∥∥WT
i DH

∥∥∥2

2
in (5) is independent of the sparse

coefficient αH
i , the sparse coefficient a in the i-th iteration can be expressed as

αH
t , arg min

αH
t ∈Rk

1

2

∥∥∥xH
t −DH

t−1α
H
t

∥∥∥2

2
+ λ1

∥∥αH
t

∥∥
1
, (6)

The SR problem of the above fixed dictionary is the l1-regularized linear

least square problem. In this paper, the LARS-Lasso algorithm [42] is used to

solve this problem.

3.2.2. Dictionary update

After the SR step of the t-th iteration, the sparse coefficient
{
αH
i

}t
i=1

of the

image patch
{
xH
i

}t
i=1

after training is obtained. In the t-th iteration, with fixed

αH
i , the dictionary can be updated using the following optimization function
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according to (5):

DH
t , arg min

DH
t ∈Rn×k

1

t

t∑
i=1

(
1

2

∥∥∥xH
i −DH

t−1α
H
t

∥∥∥2

2
+ λ1

∥∥αH
t

∥∥
1

+ λ2

∥∥∥WTDH
t−1

∥∥∥2

2

)
,

(7)

where DH
t is the discriminant dictionary obtained after the t-th iterative learn-

ing.

Because the patch coordinate descent algorithm [43] has the advantages of

no parameters and no need for any learning rate adjustment, we updated each

atom of the dictionary using this algorithm. For example, the j-th atom dH
j,t

for updating the dictionary in the t-th iteration is calculated by

dH
j,t = dH

j,t−1 −
σ

t

∂

∂dH
j

[
t∑
i=1

(
1

2

∥∥∥xH
i − D̂

H

j,tα
H
i

∥∥∥2

2
+ λ1

∥∥αH
i

∥∥
1

+λ2

∥∥∥WT
j D̂

H

j,t

∥∥∥2

2

)]
|dH

j,t−1

.

(8)

For convenience, let

M =

t∑
i=1

(
1

2

∥∥∥xH
i − D̂

H

j,tα
H
i

∥∥∥2

2
+ λ1

∥∥αH
i

∥∥
1

+ λ2

∥∥∥WT
j D̂

H

j,t

∥∥∥2

2

)
. (9)

In Eq. 8, σ is the learning rate of gradient descent, and D̂
H

j,t = [dH
1,t,d

H
2,t, · · · ,

dH
j,t,d

H
j+1,t−1, · · · ,d

H
k,t−1], Note that the only variable that must be updated is

dH
j,t in D̂

H

j,t. After Eq. 8 for the current iteration, the previous j atoms, that

is,
{

dH
1,t,d

H
2,t, · · · ,d

H
j,t

}
, are updated. Using the trace Tr (•) of the matrix to

represent the l2-norm and then expressing it as the derivative of dH
j , Eq. 9 can

be rewritten as

∂

∂dH
j

(M)|dH
j,t−1

=
1

2

∂

∂dH
j

Tr

[(
D̂

H

j,t

)T
D̂

H

j,tB
H
t

]
− ∂

∂dH
j

Tr

[(
D̂

H

j,t

)T
CH
t

]
+

∂

∂dH
j

Tr

[
λ2tW

T
j D̂

H

j,t

(
D̂

H

j,t

)T
Wj

]
,

(10)

where BH
t and CH

t are defined as
∑t
i=1 α

H
i

(
αH
i

)T
and

∑t
i=1 xH

(
αH
i

)T
, which
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Table 1: Summary of the CDL algorithm

Algorithm 1. Online discriminant dictionary learning algorithm based on weighted contrast

Input: Vectorised training patches XH ∈ Rn×m.

Output: The learned dictionary DH ∈ Rn×k.

Initialization: The contrast-weighted matrix WT is obtained by Eq. 4;

Randomly select the samples in the training set to fill DH
0 ;

Set BH
0 ∈ Rk×k and CH

0 ∈ Rn×k to zero matrices;
Regularization parameter λ1 and λ2 ;
Number of iterations T .

1. For t = 1 to T do

2. Randomly select the image patches XH from the training set xH
t ∈ Rk×1.

3. Sparse coding:

Obtained αH
t ∈ Rk×1 by solving Eq. 6 with LARS-Lasso [60] algorithm.

4. Update BH
t and CH

t :

BH
t =

∑t
i=1 α

H
i

(
αH
i

)T
= BH

t−1 + αH
t

(
αH
t

)T
,

CH
t =

∑t
i=1 xH

i

(
αH
i

)T
= CH

t−1 + xH
(
αH
t

)T
.

5. Dictionary update:
For t = 1 to T do

dH
j,t = dH

j,t−1 − 1

BH
j

(j,j)

(
D̂

H

j,tb
H
j,t − cH

j,t

)
− 2λ2σWjW

T
j d

H
j,t−1,

End For

6. Obtain the discriminant dictionary DH
t =

[
dH

1,t,d
H
2,t, · · · ,d

H
k,t

]
for the current iteration.

7.End For

8.Return:The learned dictionary DH = DH
T .

refer to storing all the information of the sparse coefficients and sparsely repre-

sented image patches of all previous iterations, respectively. According to the

derivative calculation rule of the matrix trace, Eq. 10 can be expressed as

∂

∂dH
j

(M)|dH
j,t−1

= D̂
H

j,tb
H
j,t − cH

j,t + 2λ2tWjW
T
j dH

j , (11)

where bH
j,t and cH

j,t represent the j-th columns of BH
j,t and CH

j,t respectively.

Thus Eq. 8 can be rewritten as

dH
j,t = dH

j,t−1 −
σ

t

(
D̂

H

j,tb
H
j,t − cH

j,t

)
− 2λ2σWjW

T
j dH

j,t−1. (12)

According to [17], the σ/t in Eq. 12 can be expressed approximately as

1/BH
j (j, j) . When all the atoms

{
dH
j,t

}k
j=1

are updated, the dictionary DH
t

completes the t-th learning.

In summary, after the iterative SR and dictionary update steps, we obtain

salient and non-salient dictionaries. Table 1 summarizes our CDL algorithm.
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3.3. Saliency image generation

This subsection describes the saliency measurement criteria based on SR

coefficients and reconstruction errors.

3.3.1. Saliency measure based on sparse representation coefficients

In the saliency detection process, the saliency of each pixel can be measured

to a certain extent by the representation coefficient of an image patch centered

on the pixel, where the different representation coefficients of the image patch

xi are calculated by the discrimination dictionary DH through the following

formula:

αHi = arg min
1

2

∥∥∥xi −DHαHi

∥∥∥2

2
+ λ1

∥∥αHi ∥∥1
, (13)

where λ1 has same meaning as λ in Eq. 3. As shown in Fig. 2, when using the

salient dictionary for sparse reconstruction, non-salient image patches obtain

their SR coefficients with high energy, while salient image patches obtain their

SR coefficients with lower energy. This is because the salient dictionary has high

contrast with non-salient image patches, and the saliency image patches have

low contrast. On the basis of this observation, we define the saliency measure

of a pixel as:

SA(i) = 1− exp

(
−
∥∥αNi ∥∥2

2
−
∥∥αPi ∥∥2

2

2η2
A

)
, (14)

where αNi and αPi represent the representation coefficients obtained by Eq. 13

for the image patch centered on pixel i, and ηA is a scalar parameter, which is

set to 1 in the experiment.

3.3.2. Saliency measurement based on reconstruction error

Reconstruction error is widely used in saliency detection based on SR. Gen-

erally speaking, an image patch has a larger relative reconstruction error for the

discriminant dictionary, so it will have a greater saliency value. Therefore, we
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Figure 2: Comparison of SR coefficients using salient dictionary. (a) SR coefficients of salient
patches. (b) SR coefficients of non-salient patches.

define the saliency measure of pixels based on SR coefficients as:

SR(i) = 1− exp

−min
αNi

∥∥xi −DNαNi
∥∥

2,1
−min

αPi

∥∥xi −DPαPi
∥∥

2,1

2η2
R

 , (15)

where xi is the image patch centered on a pixel i , DN and DP represent the

non-salient and salient dictionary, respectively, αNi and αPi are the represen-

tation coefficients obtained by the discriminant dictionary, and ηR is the scale

parameter and is set to 1 in the experiment.

3.4. Saliency map fusion

In the field of information fusion, information fusion methods can achieve

better results than a single information source as long as there are appropriate

fusion criteria. The traditional pixel-level saliency map fusion method generates

a fused image through the weighted sum of multiple saliency maps, which can

be expressed as:

Sfused (x, y) =

N∑
n=1

Wn (x, y)Sn (x, y) , (16)
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where N is the number of saliency maps to be fused, Sn (x, y) is the pixel

intensity of the n-th saliency map at (x, y), and Wn (x, y) is the weight of the

importance of pixel Sn (x, y) at (x, y). Therefore, the key to fusion is designing

a reasonable weight.

With this in mind, and based on the observation of the cumulative histogram

of pixel intensity (the histogram integral along the pixel intensity axis as shown

in Fig. 3), we propose a weight function to suppress the background region and

highlight the foreground region in the fusion of saliency maps.

Fig. 3 shows an example of a cumulative histogram of a coefficient repre-

sentation map, a reconstruction error map to be fused, and an optimized fusion

map. The cumulative histogram in the optimized fusion map increases sharply

at the beginning; in other words, there are a significant number of pixels in this

interval, and the intensity of the surrounding pixels has a small change with

a larger gradient than that of the saliency image to be fused. In the middle

region of pixel intensity (0.2 to 0.8), the cumulative histogram changes slowly,

indicating that there are relatively few pixels in this region, and the surrounding

pixel intensity has a greater change that has a smaller gradient compared with

the saliency maps to be fused. The analysis for the interval where the pixel

intensity is close to 1 follows the same rule as above. Therefore, when the pixels

are in the range of a cumulative histogram with a large gradient, they need to

be given a higher weight during image fusion. Formally, we can express this

Optimizatized

Reconstruction

Representation

Figure 3: Cumulative histogram comparison of different saliency maps.
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observation as:

Wn (x, y) =
Gradn (In (x, y))∑N

n=1Gradn (In (x, y)) + ϕ
, (17)

where ϕ prevents the occurrence of a very small positive number with zero

denominators, and Gradn (In (x, y)) is the gradient of the cumulative histogram

at pixel intensity In (x, y). Because the cumulative histogram is the statistical

information of all pixels, the gradient in Eq. 17 is not the local gradient around

the pixel; we call it the global gradient. Using the weights obtained above,

we can fuse several saliency maps obtained by representation coefficients and

reconstruction errors according to Eq. 16.

4. Experiments

In this section, we first introduce the constructed RS image dataset and three

other popular datasets containing natural images, and then explain the dictio-

nary training strategy, evaluation metrics and implementation details. Finally,

we compare the proposed method with nine state-of-the-art methods.

4.1. Experimental setup

4.1.1. Datasets

To the best of our knowledge, no publicly available dataset of optical RS

images can be used for road detection. Therefore, we collected 300 optical RS

images to build a dataset for road saliency detection, which we called “2RSOD”,

and manually annotated each image, pixel-wise. Most of the original optical RS

images were collected from Google Earth, and the rest were collected from exist-

ing optical RS image datasets, including DOTA [44] and NWPU VHR-10 [45].

This 2RSOD dataset is challenging because the spatial resolutions of the images

are diverse, including 300 × 300 , 500 × 500 and 1024 × 1024. Further, image

backgrounds tend to be complicated and cluttered, often including buildings,

trees, rivers, and shadows. The sizes, numbers, and shapes of the salient objects

also vary. Some sample images from the constructed 2RSOD dataset are shown
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Table 2: Summary of evaluation metrics

Metric Mathematical Expression

Precision-Recall (PR) ↑ Precision (P ) :
|S∩G|
|S| , Recll (R) :

|S∩G|
|G|

F-measure(Fβ) ↑ Fβ =
(
1 + β2

)
P∗R

β2P+R
, β2 = 0.3

S-measure(Sα) ↑ S = α ∗ S0 + (1− α) ∗ Sr, α = 0.5

E-measure(Eξ) ↑ E = 1
W∗H

∑W
i=1

∑H
i=1 φFM (i, j)

Adaptive threshold (Fadp) ↑ Thr = 2
W∗H

∑W
i=1

∑H
i=1 S (i, j)

Mean absolute error (MAE M) ↓ MEA = 1
W∗H

∑W
i=1

∑H
i=1 |S (i, j)−G (i, j)|

Note: ↑ & ↓ denote larger and smaller is better.
S:saliency image So:target perception structure [49]
G:corresponding annotation map φ:enhanced contrast matrix [50]
|·|:calculates the number of nonzero entries W :width of the image
Sr:similarity measurement of the region[49] H:height of the image

in Fig. 4. In addition, we evaluate CDL on three other benchmark natural

image datasets, including ECSSD [46] with 1000 images, PASCAL-S [47] with

850 images, and DUT-OMRON [48] with 5168 images.

Figure 4: Sample images from the constructed 2RSOD dataset. The first row shows the
optical RS images. The second row provides the pixel-wise annotations.

4.1.2. Evaluation metrics

To quantitatively evaluate the performance of various methods, we adopt

six evaluation metrics. Table 2 summarizes these metrics.

4.1.3. Parameter settings

All parameter settings related to our experiment are summarized in Table

3. For 2RSOD and the other three natural image datasets, we select 240 images

from each as the training sets for the discriminant dictionaries, and the remain-

ing images as the test sets. For the dictionary learning of our proposed CDL

algorithm, we sample 480 salient and non-salient image patches of size 80× 80

17



Table 3: Parameter settings in our method

Process Parameter Description Value

Training patch size 16× 16
Dictionary atom size m 256× 1

Dictionary learning Number of atoms in the dictionary k 1× 1024
Regularisation parameter λ1 0.02
Regularisation parameter λ2 0.02

Scalar parameter ηA 1
Saliency detection Scalar parameter ηR 1

Positive value ϕ 0.001

λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10
0

0.2

0.4

0.6

0.8

1

S-measure
adpE-measure
adpF-measure

(a)

λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(b)

Figure 5: Quantitative comparison of various values of λ2. (a) S-measure, adaptive F-measure
and E-measure values. (b) MAE values.

from the training set as training patches. During of dictionary training, follow-

ing the empirical settings in article [17], we down-sample the training patch into

an image patch of size 16× 16 as the input, so that the number of pixels m of

the learned dictionary atom is 256, and the number of atoms in the dictionary

k is set to 4 ×m . In Eq. 5, the regularization parameter λ1 is set to 1.2/
√
m

to weight the reconstruction error and sparsity, and the learning rate σ is set

to 0.02 in dictionary learning (Eq. 12) to obtain a more discriminative dictio-

nary. Further, we use various values λ0 = 0.001, λ1 = 0.005, λ2 = 0.01, λ3 =

0.02, λ4 = 0.03, λ5 = 0.04, λ6 = 0.05, λ7 = 0.06, λ8 = 0.07, λ9 = 0.09, λ10 = 0.1

for testing with respect to λ2. The experimental results are shown in Fig. 5,

according to which the parameter λ2 in Eq. 12 is adjusted to 0.05.
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0

0.02
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0.1

0.12

0.14

0.16

(b)

Figure 6: Quantitative comparison of various verification methods. (a) S-measure, adaptive
F-measure and E-measure values. (b) MAE values.

4.2. Verification and analysis

In this subsection, we first use the 2RSOD dataset to demonstrate the ef-

fectiveness of the CDL-based model, then compare our proposed model with

state-of-the-art methods on four datasets, and finally analyze some failure cases

in our method.

4.2.1. Effectiveness analysis based on CDL model

In this subsection, we analyze and verify the effectiveness of the proposed

CDL-based saliency detection model on the 2RSOD dataset from the following

four aspects:

A. Effectiveness of contrast-weighted terms

The contrast-weighted term in Eq. 7 is used to optimize the atoms update

during the learning process of the discriminant dictionary. We set it to 1 to

verify its effectiveness, as shown in N-CW in Fig. 6 (a).

B. Effectiveness of constructing a discriminant dictionary

Discriminant dictionaries have their own features for the SR of images. To

verify the effectiveness of the discriminant dictionary for saliency detection, we

use the single salient dictionary (S-SD) or single non-salient dictionary (S-NSD)

for saliency detection.

19



C. The validity of significance measures for joint representation

coefficients and reconstruction errors

To improve the expression of outliers in the coefficients of the SR, we combine

representation coefficients and reconstruction errors as a measure of saliency

detection. To verify the effectiveness of the joint saliency measure, we use the

single representation coefficient (S-RC) and the single reconstruction error (S-

RE) as the saliency measurements.

D. Effectiveness of saliency map fusion method based on global

gradient optimization

To improve the use of correct information in multiple saliency maps, we

proposed a saliency map fusion method based on global gradient optimization.

We compare the saliency of this proposed optimization method with the equal

weight fusion (EWF) method as a verification of the effectiveness of our method.

Fig. 6 shows that the proposed saliency detection method based on CDL

is superior to the above effectiveness verification methods, in terms of several

evaluation metrics of. The figure also shows the importance and contribution

of the various parts that make up the proposed method.

4.2.2. Comparison with state-of-the-art methods

We compare the proposed algorithm with nine state-of-the-art SOD meth-

ods, including three traditional methods (LPS [51] DSG [52], WMR [30]), three

methods related to SR (SMD [25], RSR-LC [27], RDR [26]), and three lat-

est deep learning-based methods (BMPM [34], BASNet [35], PAGE [36]). All

results are either generated by the source code or provided by the author.

A. Visual comparison

As shown in Fig. 7, most of the comparison methods perform poorly on

2RSOD. On the other hand, the proposed method is competitive on three natu-

ral image datasets. Further observation shows that, for the images with simple

backgrounds and prominent foregrounds (for example: the second and sixth

rows in Fig. 7), all methods have better detection results. However, for im-

ages with complex backgrounds (for example: the first row in Fig. 7) that
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contain shadows, buildings, and so on, the comparison methods do not have

satisfactory results. Moreover, because most of the salient road regions of the

images in the 2RSOD dataset are linked to image boundaries, the accuracies of

saliency detection methods based on boundary priors (for example, WMR [30],

SMD [25], RSR-LC [27], RDR [26]) were also affected. In contrast, the pro-

posed method can effectively separate the salient object from the background

and obtains good detection results for images with complex scenes or similar

foreground and background.

Image GT CDL BASNet PAGE BMPM RDR RSR-LC SMD WMR DSG LPS

Figure 7: Visual comparisons of various methods.

B. Quantitative comparison

To fully compare the proposed method with the above models, the detailed

experimental results in terms of four metrics are listed in Table 4. In addition,

Fig. 8 shows the standard PR curves and the F-measure curves on the four

datasets, which can be used to evaluate the holistic performance of models.

As shown in the above experimental results, our proposed method is highly

competitive under all six metrics, especially on the 2RSOD dataset. At the

same time, the method proposed in this paper is significantly better than the

saliency detection method related to SR.
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Table 4: Quantitative evaluation. The mean F-measure, S-measure and MAE of different
saliency detection methods on 2RSOD and three benchmark datasets. The best four results
are highlighted in red, blue, green and purple. † & ‡ denote methods based on SR and deep
learning. “PAS-S” & “DUT-O” represent datasets PASCAL-S and DUT-OMRON.

LPS DSG WMR SMD† SRS-LC† RDR† BMPM‡ PAGE‡ BASNet‡ CDL

Metric [51] [52] [30] [25] [27] [26] [34] [36] [36] (ours)

2
R

S
O

D M ↓ 0.114 0.146 0.237 0.154 0.229 0.123 0.172 0.169 0.128 0.063

Fβ ↑ 0.493 0.492 0.326 0.468 0.224 0.474 0.442 0.403 0.485 0.794

Sα ↑ 0.660 0.641 0.530 0.633 0.503 0.646 0.607 0.587 0.628 0.813

Eξ ↑ 0.811 0.709 0.629 0.772 0.729 0.818 0.734 0.701 0.743 0.901

E
C

S
S
D

[4
6
]

M ↓ 0.169 0.146 0.162 0.141 0.257 0.198 0.044 0.042 0.037 0.061

Fβ ↑ 0.629 0.701 0.669 0.725 0.422 0.549 0.894 0.906 0.880 0.879

Sα ↑ 0.700 0.773 0.754 0.795 0.592 0.641 0.911 0.912 0.916 0.884

Eξ ↑ 0.768 0.823 0.820 0.839 0.702 0.756 0.914 0.920 0.921 0.898

P
A

S
-S

[4
7
]

M ↓ 0.203 0.231 0.249 0.198 0.276 0.218 0.037 0.077 0.076 0.088

Fβ ↑ 0.425 0.446 0.428 0.514 0.269 0.382 0.803 0.810 0.775 0.765

Sα ↑ 0.580 0.595 0.587 0.661 0.496 0.564 0.840 0.835 0.832 0.823

Eξ ↑ 0.677 0.694 0.674 0.733 0.646 0.686 0.838 0.841 0.847 0.844

D
U

T
-O

[4
8
]

M ↓ 0.135 0.180 0.197 0.160 0.230 0.161 0.063 0.052 0.048 0.061

Fβ ↑ 0.530 0.520 0.504 0.537 0.296 0.442 0.698 0.777 0.791 0.762

Sα ↑ 0.678 0.663 0.650 0.690 0.546 0.624 0.809 0.854 0.866 0.840

Eξ ↑ 0.748 0.760 0.729 0.746 0.659 0.731 0.839 0.869 0.884 0.860
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Figure 8: Performance comparison with nine state-of-the-art methods over four datasets. The
first row shows a comparison of precision-recall curves. The second row shows a comparison
of F-measure curves over different thresholds.

C. Computational complexity comparison

To demonstrate the computational efficiency of the proposed method, we test

the average execution time of several state-of-the-art methods and the proposed

method on the 2RSOD dataset. These methods are run on a desktop with an

Intel Core i7-7700 CPU and RTX 2070 GPU. As shown in Table 5, the efficiency

of the CDL method based on Matlab programming can reach the average of the
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Table 5: Average execution time of several methods

Method
LPS DSG WMR SMD† SRS-LC† RDR† BMPM‡ PAGE‡ BASNet‡ CDL

[51] [52] [30] [25] [27] [26] [34] [36] [36] (ours)

Time(s) 2.21 0.83 1.56 0.91 3.32 2.48 1.26 0.12 0.68 1.52

comparison method.

4.2.3. Failure cases

Although the proposed method can accurately detect most salient road re-

gions, there are still some limitations. Fig. 9 shows that when an image contains

regions with similar appearance to the road (such as roofs, or farmland), our

proposed method incorrectly marks the background regions as the foreground.

Also, the places where the road regions would be interrupted are shown in the

third column of Fig. 9, which is inconsistent with the fact that the road has

connectivity. On the other hand, the saliency of the road should be regional and

overall, but as shown in the first and second columns of Fig. 9, there are many

scattered points with high saliency values in the inspection results. Through

the above analysis, we can construct a more robust dictionary to overcome these

problems by combining the semantic information of the image (similar to the

work of [53] and [23]) and the feature information of the target, which is one of

our future works.

5. Conclusion

In this paper, we propose a novel saliency detection method for RS im-

ages based on SR. According to the characteristics of salient and non-salient

regions, our method uses the proposed online discriminant dictionary learning

algorithm to introduce contrast-weighted items into the dictionary learning pro-

cess to construct a discriminant dictionary based on optimized contrast weighted

atoms. Under the discriminant dictionary, we combine the representation coef-

ficients and reconstruction errors of image blocks as saliency detection metrics

to generate multiple saliency maps. Considering the complementary informa-
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(a)

(b)

(c)

Figure 9: Failure cases of proposed method. (a) Original images. (b) Saliency maps obtained
by the proposed method. (c) Ground truth.

.

tion between saliency maps, we propose a saliency map fusion method based

on global gradient optimization to integrate multiple saliency maps, which fur-

ther improves the use of important information from these saliency maps. In

addition, we collected and annotated a dataset containing 300 optical RS im-

ages. Qualitative, quantitative and ablation experiments on this dataset verify

the effectiveness of the proposed method. However, we find that the detection

method may fail if an image contains high-contrast areas or has areas similar

to the foreground, and the efficiency of the algorithm needs to be improved.

In future work, we will combine the semantic information of the scene and

the feature information of the salient object, and develop a more accurate color

dictionary to improve the robustness of the multi-class saliency detection. Fur-

ther, due to the successful use of depth information in SOD, we will explore its

application in stereo paired RS data. Inspired by recent work [54] and consid-

ering the large-scale and final processing structure of RS images, we also plan

to introduce the structure co-occurrence texture (scoot) as a perceptual metric

for future SOD work.
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