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Abstract

Region Proposal Network (RPN) is the cornerstone of
two-stage object detectors, it generates a sparse set of
object proposals and alleviates the extrem foreground-
background class imbalance problem during training.
However, we find that the potential of the detector has
not been fully exploited due to the IoU distribution imbal-
ance and inadequate quantity of the training samples gen-
erated by RPN. With the increasing intersection over union
(IoU), the exponentially smaller numbers of positive sam-
ples would lead to the distribution skewed towards lower
IoUs, which hinders the optimization of detector at high
IoU levels. In this paper, to break through the limitations
of RPN, we propose IoU-Uniform R-CNN, a simple but ef-
fective method that directly generates training samples with
uniform IoU distribution for the regression branch as well
as the IoU prediction branch. Besides, we improve the per-
formance of IoU prediction branch by eliminating the fea-
ture offsets of RoIs at inference, which helps the NMS proce-
dure by preserving accurately localized bounding box. Ex-
tensive experiments on the PASCAL VOC and MS COCO
dataset show the effectiveness of our method, as well as its
compatibility and adaptivity to many object detection archi-
tectures. The code is made publicly available at https:
//github.com/zl1994/IoU-Uniform-R-CNN .

∗Corresponding author

1. Introduction

Recent years has witnessed the remarkable progress in
object detection thanks to the advance of the deep convolu-
tion networks [17, 31, 32, 13]. Among them, the two-stage
approach is the leading paradigm in the deep learning era of
object detection and Region Proposal Network (RPN)[28]
is the cornerstone of two-stage object detectors. It gener-
ates region proposals from a dense set of anchors and these
proposals are further refined by subsequent region-wise R-
CNN subnetwork. Specially, [21] pointed out that the RPN
alleviates the extrem foreground-background class imbal-
ance problem by filtering out the majority of negative loca-
tions and this is the central cause that the performance of
two-stage detectors is better than one-stage detectors. Al-
though RPN plays a important role in the existing model
structure, our study reveals that the potential of the two-
stage detectors has not been fully exploited due to the limi-
tations of RPN.

Figure 1 (a) shows the IoU histogram of the Region
of interests (RoIs) generated by the RPN. With the in-
crease of IoU, the number of RoIs decreases sharply, lead-
ing to the IoU distribution imbalance. As the subsequent
R-CNN takes the RoIs as training samples, the distribution
of training samples is naturally skewed towards lower IoUs.
What’s more, the total number of positive samples per im-
age is no more than 100 during the training procedure while
the total number of training samples is 512. We argue that
the IoU distribution imbalance and inadequate quantity of
the positive samples hinder the optimization of detector, es-
pecially at high IoU levels. It can be seen in Figure 1 (b),
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Figure 1. (a) IoU histogram of the RoIs generated by the RPN. (b)
Localization performance of object detectors. (c) Composition of
regression loss.

we plot the IoU of the RoIs with their corresponding GT
bounding boxes before and after regression. The localiza-
tion accuracy gains of RoIs, after the refinement of regres-
sor, are mainly concentrated at low IoU levels and it even
decays at high IoU levels. We attribute this to the loss im-
balance during training. Figure 1 (c) illustrates the compo-
sition of the regression loss during training. It can be seen
that the low IoU RoIs comprise the majority of the loss and
dominate the gradients. As a result, the detector optimized
at low IoU level is not necessarily optimal at other level,
which influence the overall performance of the detector.

In order to solve the above problems, Cascade R-CNN
[2] proposed a multi-stage object detection framework. The
detectors are trained stage by stage and the training samples
of following stages are the output of previous stage, as the
output IoU of a regressor is almost invariably better than
the input IoU, the detector can obtain enough samples at
different IoU levels, which improve the overall performance
of the detector. Although Cascade R-CNN obtained solid
improvements, the multi-stage way is not flexible enough.
Libra R-CNN [25] proposed IoU-balanced sampling, which
is a simple but effective method, to alleviate the distribution
imbalance among hard negative samples. However, because
of the exponentially vanishing high IoU samples, it is hard
to get uniform IoU distribution for positive samples by this
sampling strategy.

There comes a question: For a two-stage detector, do the
training samples of R-CNN must come from the output of
RPN ? The answer is No. In this paper, instead of taking
positive samples from RPN, we propose to add controllable
jitter to each GT bounding box to directly generate posi-

IoU=0.5

IoU=0.7

score=0.60,IoU=0.9

score=0.75,IoU=0.8

(a) Before refinement (b) After refinement

Figure 2. Illustration of misalignment between predicted IoU and
localization accuracy. (a) Show two proposals that covering the
same GT bbox. The IoU of the red one is smaller than the orange
one (b) The red bbox come from behind after the refinement of
second stage. But the score of the red one is still lower than the or-
ange one, leading to the more accurate localized bbox suppressed
during NMS procedure.

tive training samples for R-CNN. So that we can simply
and effectively obtain adequate uniform distributed training
samples for not only the regression branch, but also the IoU
prediction branch [16]. Our experiments have shown that
the uniform IoU distribution, formed by generated samples,
can greatly promote the performance of the regression and
IoU prediction branch.

What’s more, as non-maximum suppression (NMS) pro-
cedure is a critical post-processing procedure to filter re-
dundant bounding boxes, IoU-Net [16] pointed out that the
misalignment between classification confidence and local-
ization accuracy may lead to accurately localized bounding
boxes being suppressed by less accurate ones in the NMS.
To solve this problem, IoU-Net proposed a IoU-prediction
branch to predict the IoU between the predicted bounding
box and the corresponding ground truth bounding box. The
predicted IoU replaces the classification score as the metric
for ranking the bounding boxes. Nevertheless, we argue that
there is still a mismatch in IoU-prediction branch. During
training, the input of the IoU predictor is the RoI feature at
the current position, and the IoU predictor outputs the pre-
dicted IoU of the RoI with its corresponding GT bounding
box. But when it comes to the test phase, the predicted IoU
is assigned to the bounding box, which has been moved to
a new position after the refinement of RoI by the regres-
sion branch. The shift of RoI position also brings feature
offset. It is the feature offset of RoI that result in a mis-
alignment between predicted IoU and localization accuracy.
It is shown in Figure 2, the red and orange dotted box are
the proposals and they cover the same GT bbox. Although
the IoU of the red box is smaller than the orange box, the
red box come from behind after the refinement of R-CNN
network. However, as the input of following branch is still
the feature at the position before the regression, the red box
score is still lower than the orange box score, which would
lead to the more accurate one be suppressed during NMS.
In our paper, we further improves the performance of IoU
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prediction branch by eliminating the feature offsets of RoIs
at inference without training. Experiments have shown it
can boost the performance of detector and the stronger the
IoU prediction branch is, the more gains it brings.

Our main contributions are summarized as follows: (1)
Our study reveals the importance of solving the limitations
of RPN and our proposed IoU-uniform R-CNN can allevi-
ate the IoU distribution imbalance and inadequate training
samples by generating samples with uniform IoU distribu-
tion. (2) We improve the performance of IoU prediction
branch by eliminating the feature offsets of RoIs at infer-
ence. (3) Our proposed method consistently obtains signif-
icant improvements over multiple state-of-the-art detectors.
Specially, without bells and whistles, it achieves 2.4 AP
improvement than Faster R-CNN (with ResNet-101-FPN
backbone) on MS COCO dataset.

2. Related Work
Development of the model architecture. Nowadays,

with the deep learning techniques have been widely ap-
plied to various computer vision tasks, convolution neural
networks (CNNs) based approaches have prevailed on ob-
ject detection task and the model architectures are also con-
stantly evolving. The CNN based detectors were first intro-
duced by R-CNN [10]. Its derivatives, Fast R-CNN [9] and
Faster R-CNN [28], further improve the speed and perfor-
mance by introducing the RoI Pooling and Region Proposal
Network (RPN) module. The method described above and
the following R-FCN [5] and Cascade R-CNN [2] can be
classified as two-stage methods. They first obtain a sparse
set of proposals and then classify and refine these proposals
at the second stage. On the other hand, single-stage de-
tectors are popularized by YOLO [26, 27] and SSD [23].
They focus on high efficiency and treat object detection
as a single shot problem. The performance gap between
two-stage methods and one-stage methods was narrowed by
RetinaNet [21]. Besides, with the help of pyramid structure
of FPN [20], the detectors enhance its feature extraction ca-
pabilities, further improving performance. Recently, as the
single-stage and two-stage detection frameworks becomes
mature, the anchor-free methods have become a new re-
search hotspot. Instead of using anchor boxes, they predict
bounding boxes in a per-pixel prediction fashion [33, 35] or
keypoint-based fashion [18, 7].

Imbalance problems in object detection. Nowadays,
as the model architecture becomes mature, more and more
research has resort to improve the training process of the
detector. Under such circumstance, the sample imbalance
problems during training have attracted growing attentions.
[24] review the deep-learning-era object detection litera-
ture and identify 8 different imbalance problems. Numer-
ous studies have also shown that mitigating sample im-
balance, especially the Forground-Background imbalance,

would bring significant gains to the performance of the de-
tector. For example, in order to alleviate the Forground-
Background imbalance, Focal loss [21], Gradient Harmo-
nizing Mechanism (GHM) [19] solves it by a soft sampling
way, which suppresses the gradient originating from easy
positives and negatives. And SSD [23], OHEM [29] restrict
the imbalance by hard example mining. However, the IoU
distribution imbalance has received relatively less attention
in object detection. Cascade R-CNN [2] tried to solve this
problem by a cascade framework. RoIs were iteratively re-
fined and the detector can obtain enough sample at different
IoU levels ultimately. Libra R-CNN [25] proposed IoU-
balanced sampling to alleviate the IoU distribution imbal-
ance among hard negative samples.

Improvement of Duplicate Removal. Duplicate Re-
moval is an essential postprocessing procedure of object
detectors for removing duplicated bounding boxes. Its effi-
cacy heavily affects the final performance. The most widely
used algorithm is non-maximum suppression (NMS). It iter-
atively selects proposals according to the confidence score
(usually the classification score) and suppresses overlapped
proposals. However, the classification score is not accu-
rate enough to guarantee preserving the most accurate de-
tection results. Instead of directly eliminating overlapped
proposals, Soft-NMS [1] decays the bounding box scores
and Softer NMS [14] averages the selected boxes in a softer
way. Fitness NMS [34] introduces the localization infor-
mation while ranking the bounding box into ranking con-
fidence. Different from existing NMS algorithms, Prime
sample [3] investigates the sample importance and make
the classifier more prone to give high scores to high IoU
proposals. IoU-Net [16] claims that it is not proper to use
classification scores as the ranking criterion, it proposed a
IoU-prediction branch to predict the IoU between the pre-
dicted bounding box and the corresponding ground truth.
The predicted IoU replaces the classification score as the
metric for ranking the bounding boxes.

3. Methodology

In this section, we will illustrate the proposed IoU-
uniform R-CNN for object detection. As our goal is to
break through the limitations of RPN during the training
of detectors, we first replace the RoI training samples with
generated samples to obtain more powerful regressor and
IoU predictor. Furthermore we simply tune loss weight of
different IoU intervals to control the balance of regression
loss composition. Then we propose to eliminate the fea-
ture offsets of RoI during the inference of IoU-prediction
branch. With more powerful regressor and IoU predictor,
IoU-uniform R-CNN achieves superior performance. All
components will be elaborated below.
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Figure 3. The average localization improvement of proposals from
different IoU intervals after refinement.

3.1. Generate positive samples with uniform IoU
distribution

We first revisit the pipeline of two-stage approach. As
illustrated in Figure 4 (a), the Region Proposal Networks
(RPN) generates a sparse set of proposals that should cover
all forground objects while filtering out the majority of neg-
ative locations. Then at the second stage, a region-wise
subnetwork is designed to refine these proposals by further
classification and regression. The whole network is trained
end-to-end and the region-wise subnetwork takes the output
of RPN as training samples. The region-wise subnetwork is
expected to do it well among different quality proposals but
things go athwart. Figure 3 shows the average localization
improvement of proposals from different IoU intervals af-
ter refinement. We can find that, with the increase of IoU,
the gain of refinement get smaller and the performance even
get worse at high IoU levels. As discussed in section 1, the
performance imbalance may come from the loss imbalance
during training. As most of the train samples are from low
IoU levels (IoU<0.7), the low IoU RoIs comprise the ma-
jority of the loss and dominate the gradients.

A natural solution for alleviating the imbalance is to re-
sample or tune the loss weight of different IoU intervals.
However, as the quantity gap between low IoU level and
high IoU level is too wide and the number of positive sam-
ples is not enough (no more than 100 positive samples per
image), it is hard to get uniform IoU distribution for posi-
tive samples by resampling strategy. And it is also hard to
determine appropriate weights to balance the composition
of regression loss.

In this paper, in order to obtain samples with uni-
form IoU distribution for region-wise subnetwork, we pro-
pose to directly generate training samples around each GT
bounding box, instead of taking proposals from RPN. We
first divide the IoU into N intervals and then we gen-
erate samples for each bounding box at each interval by
adding controllable jitters. Given an image with K an-
notated ground-truths, a bounding box is represented by
b = (bx, by, bw, bh, bx). A generated sample is determined
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(b) IoU uniform R-CNN

Figure 4. The architectures of different frameworks.

by:
b′x = bx + bw ∗ random offset x
b′y = by + bh ∗ random offset y
b′w = bw ∗ random w
b′h = bh ∗ random h

(1)

In order to obtain enough samples from limitted num-
ber of attempts, the random range among intervals depends
on the IoU level of generated RoI samples. Precisely, for
obtaining higher IoU samples, the random range should
get smaller. Besides, to guarantee the validity of gener-
ated samples, we only keep the RoIs which has the maxi-
mum IoU over the current GT bounding box. As we keep
M samples for each IoU interval per GT bouding box, the
overall number of the training samples for one image is
K ∗ N ∗ M and we obtain a totally uniform IoU distri-
bution at last. To this end, our training pipeline is shown in
Figure 4 (b), the generated IoU uniformly distributed sam-
ples are used to train not only the regression branch but also
the IoU-prediction branch. The following experiments will
show it can greatly promote the performance of both the re-
gression and IoU prediction branch. As for the classification
branch, it still take the output of RPN as training samples,
for the big difference of RoI distribution between training
and test stage is harmful to the performance of classifiers.

Although the number of samples for among different IoU
intervals is now the same, we can still find the regression
loss imbalance. It may caused by the initialization. As the
layers are randomly initialized with normal distributions,
where the mean is set to 0 and standard deviation 0.001.
The size of the output value of regression branch is con-
centrated around 0 at the beginning. For the regression is
trained to predict the offset between RoI and GT bounding
box, This initialization will lead to the the low IoU sam-
ples dominate total loss in early training because the offset
of low IoU RoI is natural bigger then high IoU ones. As
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the imbalance problem has been largely mitigated and we
already have enough training samples for all IoU intervals,
tuning the regression weights according to the IoU of pro-
posals have becoming feasible and easy. The weighted re-
gression loss is shown in Equ. 2, L is the commonly used
smooth L1 loss. The main idea of the reweighting strategy
is to down-weight training samples with low IoU and up-
weight samples with high IoU. With the further ease of the
imbalance problem, we obtain more robust model for accu-
rate localization.

Lreg =

N∑
j

M∑
i

wj ∗ L(di, d̂i) (2)

3.2. Eliminating the feature offsets of RoIs

The IoU-prediction branch [16] was proposed to predict
the localization confidence for each detected bounding box
and it is more sensitive to localization accuracy. Thus, the
feature offsets of RoIs can not be neglected. It is shown
in Figure 5, to eliminate the feature offsets, we set the out-
put bounding box of the region-wise subnetwork as the new
RoI and obtain the new RoI features by RoIAlign pooling
[12]. Then the new RoI feaures was sent to the region-wise
subnetwork again to obtain the ultimate IoU prediction re-
sult. It is the twice feature extraction of RoIs at inference
that help us to eliminate the feature offsets of RoIs without
training.

Ideally, we expect the IoU score of bbox candidates to re-
place the classification score as the suppression criterion of
NMS algorithm, but the IoU score of numerous background
bounding box is not credible enough during test, because
IoU-prediction branch is only trained by positive samples
whose IoU is above 0.5. However, the messy situation of
background samples would bring much trouble to the train-
ing procedure of IoU-prediction branch and influence the
accuracy on those high IoU bounding boxes which play a
key role in driving the detection performance. Therefore, it
is inappropriate to train the IoU-prediction branch by both
positive and negative samples. To remedy this, we set the
multiplication of the IoU score and classification score as
the final score of the suppression criterion of the NMS al-
gorithm, for the classification branch can help to suppress
the background bboxes with low classification score.

4. Experiments
We comprehensively evaluate our method on two widely

used benchmarks for the object detection task: MS COCO
[22] and PASCAL VOC [8]. In particular, MS COCO is a
large scale dataset with 80 object categories. It consists of
115k images for training (train-2017), 5k images for vali-
dation (val-2017), 20k for testing without provided annota-
tions. We use the train split for training and report the per-
formance on validation and test-dev split. PASCAL VOC is

another dataset for evaluating our method. We use the union
of VOC2007 and VOC2012 trainval as training set, which
contains 16551 images and objects from 20 pre-defined cat-
egories annotated with bounding boxes. We evaluate our
models on the VOC 2007 test set.

4.1. Implementation details

For fair comparisons, all experiments are implemented
based on PyTorch and mmdetection toolbox [4]. ResNet-
50 and ResNet-101 [13] are adopted as backbones in our
experiments. We use 2 GTX 1080Ti GPUs and 2 images
per GPU in all experiments. On mmdetection, the default
learning rate is set as 0.02 and 0.01 for MS COCO and PAS-
CAL VOC, respectively, with a batch size of 16 (8 GPUs
and 2 images per GPU). As only 2 GPUs are available, we
are supposed to divide the learning rate by 4 according to
the Linear Scaling Rule [11]. However, considering the
increase in the number of positive samples, we choose to
double the learning rate. Thus the learning rate is initial-
ized as 0.01 and 0.005 for MS COCO and PASCAL VOC
respectively. We use the SGD as the optimizer for model
learning and train all models for 12 epochs. All other hyper-
parameters follow the settings in mmdetection if not specif-
ically noted.

As for the hyper-parameters of generating RoI samples,
we set N = 4,M = 64. It means that we split the IoU
range into 4 intervals: [0.5, 0.6), [0.6, 0.7), [0.7, 0.8), [0.8,
1.0) and each GT bounding box will generate 64 samples.
For the regression loss weight for different IoU intervals,
w1 = 1.0,w2 = 1.5,w3 = w4 = 3.0, We also tried
larger N and split the IoU range into more elaborate inter-
vals but did not obtain noticeable improvements.

4.2. Main results

Experiments on PASCAL VOC. The original evalua-
tion metric of PASCAL VOC is to calculate the mAP at 0.5
IoU threshold. As our methods is mainly designed to allevi-
ate the performance imbalance among different IoU levels,
we extend the original metric to the COCO-style criterion
which calculates the average AP across IoU thresholds from
0.5 to 0.95 with an interval of 0.05. We evaluate the valid-
ity of our proposed method on two state-of-the-art object
detectors: Faster R-CNN and Cascade R-CNN. From Table
1, we can see that the performance improvement on Faster
R-CNN is obvious, 5.2 and 4.8 points higher with the back-
bone of 50 and 101 layers respectively. We can also find that
even though both of Cascade R-CNN and our method solve
the same IoU distribution imbalance problem in different
ways, our method still raises their performance. These re-
sults further demonstrate the compatibility and adaptivity of
our method. Further analysing the performance on different
IoU thresholds, we can observe that most of the improve-
ments come from the high IoUs, which is in accordance
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Table 1. Main results on PASCAL VOC 2007 test set
Backbone Detector Our method AP AP50 AP60 AP70 AP80 AP90

ResNet-50-FPN

Faster R-CNN No 50.2 79.1 75.6 63.4 42.4 10.8
Faster R-CNN Yes 55.4 79.8 75.9 67.2 51.6 23.0

Cascade R-CNN No 54.9 79.2 74.3 66.2 51.7 23.2
Cascade R-CNN Yes 56.1 77.8 74.1 66.1 53.4 29.4

ResNet-101-FPN

Faster R-CNN No 52.8 82.2 77.1 66.3 45.9 12.1
Faster R-CNN Yes 57.6 81.4 77.6 69.2 54.1 25.4

Cascade R-CNN No 57.7 81.9 77.5 68.7 56.3 25.9
Cascade R-CNN Yes 57.6 78.4 74.4 67.2 55.0 31.7

with our expectation.
Experiments on MS COCO. To further demonstrate

the generalization capacity of our approach, we also con-
duct experiments on more challenge COCO dataset. All re-
ported results follow standard COCO-style Average Preci-
sion (AP) metrics, AP50 (AP for IoU threshold 50%), AP75

(AP for IoU threshold 75%). We also include APS , APM ,
APL, which correspond to the results on small, medium and
large scales respectively. Table 2 shows the resuls on vali-
dation set, our approach brings consistent and substantially
improvement across multiple detectors with different back-
bone. Specially, it improves Faster R-CNN and Cascade
R-CNN by 2.7 and 0.5 points on ResNet-50-FPN backbone
and 2.4 and 0.4 points on ResNet-101-FPN backbone.

Comparison with state-of-the-art methods. We com-
pare IoU-uniform R-CNN with the state-of-the-art ob-
ject detection approaches on the COCO test-dev in Table
3. Without bells and whistles, it achieves 41.2 AP with
ResNet-101-FPN, which is 2.4 points higher than the base-
line. With more powerful feature extractor and base detec-
tor, IoU-uniform R-CNN achieves 42.8 AP, demonstrating
the superior performance of our method.

4.3. Analysis

We perform a thorough study on each component of our
method and explain how it works from complete statistics.

Component Analysis. To analyze the importance of
each proposed component, we report the overall ablation

studies in Table 4. We gradually add our strategies on Faster
R-CNN with ResNet-50 FPN and report the results on PAS-
CAL VOC 2007. We can learn that the generated IoU uni-
formly distributed samples empower the detector to have
more potential to make process. Each component of our
method obtain gains and the combination of them achieves
a total gain of 5.2 AP.

How dose the generated training samples affect the
regressor? To verify the improvement it brings to the re-
gressor, we first couducted a check experiment that split the
classifier and regressor into two branch and found its per-
formance drops a little, which exclude the factor of split-
ing the original branch. As shown in Figure 3, compared
with the original, our regressor significantly improves its
performance in the face of high IoU proposals. Take it a
step further, we plot the IoU histogram of bbox after the re-
finement of regressor in Figure 6. It can be seen that we
obtain more high IoU bboxes by using the IoU uniformly
distributed samples for training.

How dose the generated training samples affect the
IoU predictor? To verify the validity of training IoU pre-
dictor with IoU uniformly distributed samples, we only use
the generated samples to train the IoU predictor, and the
training samples of the regression branch still come from
the output of RPN. For comparison, we also train a model
that using the output of RPN as the training samples of IoU
predictor. It can be seen in Table 6 that the detector whose
IoU predictor was trained with the generated sample outper-
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Table 2. Main results on COCO validation set
Backbone Detector Our method AP AP50 AP75 APS APM APL

ResNet-50-FPN

Faster R-CNN No 36.4 58.4 39.1 21.5 40.0 46.6
Faster R-CNN Yes 39.1 57.7 42.2 22.5 42.6 50.7

Cascade R-CNN No 40.4 58.5 43.9 21.5 43.7 53.8
Cascade R-CNN Yes 40.9 58.1 43.9 23.1 44.1 53.7

ResNet-101-FPN

Faster R-CNN No 38.5 60.3 41.6 22.3 43.0 49.8
Faster R-CNN Yes 40.9 59.7 43.8 22.9 44.9 54.4

Cascade R-CNN No 42.0 60.3 45.9 23.2 45.9 23.2
Cascade R-CNN Yes 42.4 59.7 45.7 23.8 45.9 56.5

Table 3. Comparison with state-of-the-art detectors on COCO test-dev.

Method backbone AP AP50 AP75 APS APM APL

YOLOv2 DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5
YOLOv3 DarkNet-53 33.0 57.9 34.4 18.3 35.4 41.9
SSD513 ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8
RetinaNet ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2

Faster R-CNN ResNet-101-FPN 38.8 60.9 42.3 22.3 42.2 48.6
Faster R-CNN by G-RMI [15] Inception-ResNet-v2 34.7 55.5 36.7 13.5 38.1 52.0
Faster R-CNN w/TDM [30] Inception-ResNet-v2-TDM 36.8 57.5 39.2 16.2 39.8 52.1
Deformable R-FCN [6] Aligned-Inception-ResNet 37.5 58.0 40.8 19.4 40.1 52.5
Mask R-CNN [12] ResNet-101-FPN 38.2 60.3 41.7 20.1 41.1 50.2
Cascade R-CNN ResNet-50-FPN 40.7 59.3 44.1 23.1 43.6 51.4
Cascade R-CNN ResNet-101-FPN 42.4 61.1 46.1 23.6 45.4 54.1
Libra R-CNN ResNet-101-FPN 40.3 61.3 43.9 22.9 43.1 51.0
IoU-Net ResNet-101-FPN 40.6 59.0 - - - -

Faster R-CNN+IoU-uniform R-CNN ResNet-50-FPN 39.0 57.8 42.0 22.4 41.9 48.7
Faster R-CNN+IoU-uniform R-CNN ResNet-101-FPN 41.2 60.1 44.3 23.6 44.1 52.2
Cascade R-CNN+IoU-uniform R-CNN ResNet-50-FPN 41.3 58.8 44.4 23.8 43.9 52.0
Cascade R-CNN+IoU-uniform R-CNN ResNet-101-FPN 42.8 60.3 46.1 24.1 45.7 54.5

Table 4. Effects of each component in our IoU-uniform R-CNN
(EFO means eliminate feature offsets). Results are reported on
PASCAL VOC 2007.
method AP AP50 AP75 Improvement

Baseline 50.2 79.1 54.7
+uniform IoU distribution 52.1 79.8 56.2 +1.9/+0.7/+1.5
+EFO(with IoU predictor) 54.4 79.5 59.6 +4.2/+0.4/+4.9
+tuning weight 55.4 79.8 59.6 +5.2/+0.7/+4.9

form the one trained with the output of RPN by 2.3 points.
With a more powerful IoU predictor, we obtain a more re-
liable metric to rank the bounding boxes, which would pro-
mote the proposal reservation in NMS. To analyse the im-
provement, we plot the recall curve for different NMS algo-
rithms in Figure 7, with the matching IoU ranging from 0.5
to 1. We can find it achieves better recall among different
IoU thresholds, indicating that it helps the NMS process to
preserve accurately localized bbox.
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Figure 6. The IoU histogram of bboxes.

Influence of uniform IoU distribution and increasing
number of samples. Although we have already shown the
validity of using generated training samples, we are still un-
able to determine whether the improvement is mainly from
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uniform distribution or just the increasing number of sam-
ples. Hence we design a experiment that we resample the
generated samples. The quantity of generated samples de-
pends on the number of original positive samples produced
by RPN. As we can see in Table 5, the IoU uniformly dis-
tributed samples can achieve 3.2 improvements of AP with
the same number of samples. If we double the quantity, the
performance can be further improved with 1.7 points. From
above results, we can identify IoU imbalance as the main
obstacle to obtain better performance of existing network
structure and we can also obtain additional gains from more
RoI samples.

Influence of tuning the regression weight. As dis-
cussed in section 3.1, we can construct a more balanced
regression loss among different IoU intervals by tuning the
loss weight of different IoU intervals. This is also supported
by our experiments. As shown in Figure 3, the performance
of regressor has been further improved.

Table 5. The results of training with different number of generated
samples on PASCAL VOC 2007 dataset

Method Num of samples AP AP50 AP75

Baseline 50.2 79.1 54.7
IoU-uniform R-CNN Equal 53.4 79.3 57.5
IoU-uniform R-CNN Double 55.1 80.3 59.5

Table 6. Studies on the effects of eliminating feature offsets and
training IoU predictor with generated samples on PASCAL VOC.

Training samples Eliminating feature offsets AP

Output of RPN
No 48.7
Yes 49.9

Generated samples
No 50.2
Yes 52.2

Influence of eliminating the feature offsets. From the
results reported in Table 6, we can find its major impact
on the final performance, as the gain from IoU uniformly
distributed samples is almost offset without eliminating the
feature offsets. Figure 8 may answer the question why it
has such huge impact on the performance. The x-axis is
the IoU between the refined bbox and its matched ground-
truth, while the y-axis denotes its predicted value. We can
find in Figure 8 (a) that the predicted value is not well cor-
related with the ground truth. We attribute this to the transi-
tion of low IoU to high IoU. As the average IoU increment
for those low IoU-level candidate bbox is around 0.2, the
unupdated predicted value is far behind the ground truth.
This leads to the potential suppression of accurate located
bbox. Visualized in Figure 8 (b), the IoU estimation be-
comes more accurate after eliminating the feature offset.
It is worth mentioning that the stronger the IoU prediction
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Figure 7. Comparison among the recall curves of different NMS
algorithms with the matching IoU ranging from 0.5 to 1.

(a) GT IoU vs. predicted IoU

w/o eliminating feature offsets

(b) GT IoU vs. predicted IoU

with eliminating feature offsets

Figure 8. The correlation between the IoU of bounding boxes with
the corresponding ground-truth and the predicted IoU. Consider-
ing detected bounding boxes having an IoU (>0.5) with the corre-
sponding ground-truth.

branch is, the more gains it can bring. The gain of gen-
erated uniform samples is 2.0 points compared to 1.2 of
RPN samples. The qualitative results for comparison be-
tween the eliminating feature offsets with unequipped one
are provided in Figure 9. We can see that eliminating the
feature offsets of RoIs can help preserve more accurate de-
tection results. These further demonstrate the effectiveness
of eliminating the feature offsets of RoIs for better IoU pre-
diction.

Table 7. Ablation analysis on the number of images per GPU and
the learing rate on PASCAL VOC 2007 dataset

Num Lr AP AP50 AP60 AP70 AP80 AP90

2 0.0025 53.18 79.3 73.7 64.5 48.9 19.9
2 0.005 54.42 79.5 74.4 66.0 50.1 21.8
4 0.005 53.44 79.0 74.1 64.8 48.3 18.2
4 0.01 54.19 79.7 74.7 65.6 50.5 21.5
4 0.015 53.84 78.6 73.9 65.5 49.7 21.4

4.4. Ablation study

During training, we found that the performance of our
IoU-uniform R-CNN is sensitive to the batch size and learn-
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Figure 9. Qualitative comparison between the eliminating feature
offsets with unequipped one on MS COCO dataset. The first row
shows the results without eliminating feature offsets and use the
first time value as the final IoU prediction. The second row shows
the results with eliminating feature offsets.

ing rate. According to Linear Scaling Rule, the learning rate
is supposed to be divided by 4, as we only have 2 GPUs
available compared with the default 8 GPUs. Thus, for
Faster R-CNN with ResNet-50-FPN backbone on PASCAL
VOC, the learning rate is supposed to be 0.0025. But we
found that we can obtain better results by double the learn-
ing rate. We attribute this to the increasing training sam-
ples for regression branch. The number of original training
samples for regression branch is usually no more than 100
per image, but when we generate samples by ourselves, the
average number of samples reaches 200. We further con-
duct ablation studies on the number of images per GPU and
learning rate to determine the suitable hype-parameters. It
is shown in Table 7 that we obtain the best results by setting
the num=2 and learning rate=0.005.

5. Conclusion

In this paper, we reveal the limitations of RPN and re-
think the IoU distribution imbalance problem in object de-
tection. The proposed IoU-uniform R-CNN, a simple but
effective way, alleviates the imbalance in both the number
of samples and regression loss among different IoU inter-
vals. In particular, we first replace the RoI training samples
with generated IoU uniformly distributed samples. Then
we tune the loss weight of different IoU intervals to further
control the balance of regression loss composition. Besides,
we also point out the feature offsets of RoIs during the infer-
ence of IoU-prediction branch and solve it by updating the

feature of refined RoIs. Extensive experiments show its su-
perior performance on both PASCAL VOC and MS COCO
dataset, as well as its compatibility and adaptivity to many
object detection architectures.
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