
ar
X

iv
:2

00
9.

08
60

7v
1 

 [
cs

.L
G

] 
 1

8 
Se

p 
20

20

Compact Learning for Multi-Label Classification

Jiaqi Lv1,2, Tianran Wu1,2, Chenglun Peng1,2, Yunpeng Liu1,2, Ning Xu1,2, Xin Geng1,2∗

1School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
2Key Laboratory of Computer Network and Information Integration (Southeast University),

Ministry of Education, China
{lvjiaqi, trwu, pengchenglun, yunpengliu, xning, xgeng}@seu.edu.cn

Abstract

Multi-label classification (MLC) studies the problem where each instance is associated with multi-
ple relevant labels, which leads to the exponential growth of output space. MLC encourages a popular
framework named label compression (LC) for capturing label dependency with dimension reduction. Nev-
ertheless, most existing LC methods failed to consider the influence of the feature space or misguided by
original problematic features, so that may result in performance degeneration. In this paper, we present
a compact learning (CL) framework to embed the features and labels simultaneously and with mutual

guidance. The proposal is a versatile concept, hence the embedding way is arbitrary and independent of
the subsequent learning process. Following its spirit, a simple yet effective implementation called com-

pact multi-label learning (CMLL) is proposed to learn a compact low-dimensional representation for both
spaces. CMLL maximizes the dependence between the embedded spaces of the labels and features, and
minimizes the loss of label space recovery concurrently. Theoretically, we provide a general analysis for
different embedding methods. Practically, we conduct extensive experiments to validate the effectiveness
of the proposed method.

1 Introduction

Multi-label classification (MLC) [1] is one of the mostly-studied machine learning paradigms, owing its
popularity to its capability to fit the pervasive real-world tasks. It allows each instance to be equipped
with multiple relevant labels for explicitly expressing the rich semantic meanings simultaneously. Nowadays
MLC has been the prime focus due to its vast potential applications such as image annotation [2, 3], face
recognition [4, 5], text categorization [6, 7], etc.

Formally speaking, let X ⊆ R
D be the instance space and Y = [M ] be the label space, where D is the

feature space dimension, [M ] := {1, 2, . . . ,M} and M > 2 is the number of classes. The multi-label training
set is represented as D = {(xi, Yi) ∈ X × Y}Ni=1 consisting of a D-dimensional instance xi ∈ X and the
associated label set Yi ⊆ Y. MLC aims to induce a multi-label classifier g : X → Y to assign a set of relevant
labels for the unseen instance.

It is evident that MLC can be regarded as a generalization of traditional single-label learning. However,
the generality inevitably leads to the output space grows exponentially as the number of classes increases.
Inevitably, the curse of dimensionality in the label spaces becomes one of the major concerns in MLC, which
results in many algorithms in low-dimensional space being ineffectiveness. A prominent phenomenon is the
sparsity of the label space, including label-set sparsity and hypercube sparsity [8]. The former means that the
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instances are usually associated with very few relevant labels compared to the label dimensionality, while
the latter means that compared to all possible label combinations (i.e., the power sets of the label space),
only a few are covered by the limited training data. For example, suppose an image annotation task with 50
candidate labels, an image could often be related to no more than ten objects (i.e., label-set sparsity) and the
collected training examples is far less than 250 possible label combinations (i.e., hypercube sparsity). When
the label space is considerably large, most of the conventional MLC algorithms become computationally
inefficient, let alone tends to be corrupted by noisy labeling [9]. Therefore, exponentialsized output space is
still one of the major challenges for MLC methods.

There are many attempts to address the challenge, where label compression (LC) [10, 11, 12, 13] is the
dominant strategy. LC embeds the original high-dimensional label space into a low-dimensional subspace so
as to gain a tighter label representation, followed by the association between the feature space and embedded
label space for the learning purpose. By compression, problems such as redundancy and sparsity existing
in the original label space can be alleviated to some extent, and also reduce the computational and space
complexities.

While almost all LC methods only concentrate on the embedding of labels while keeping the features
unchanged. Most of them [10, 8, 14, 15] totally ignored the influence of the features, which causes the
loss of discriminant information and hurts the specific classification purposes. There are only few initial
efforts in jointly utilizing the feature space for LC [16, 17]. However, how to learn the representative and
discriminative features is still challenging, therefore problems such as noise and redundancy may also exist in
the original features and mislead the label embedding. Correspondingly, some supervised feature embedding

(FE) methods [18, 19] have been proposed to focus on embedding the features into a new space. It is
acknowledged that the importance of the same feature in different learning tasks may be inconsistent, thus
the FE process should also be guided by the label space. The separate embedding of a single space driven
by another problematic space provokes the propagation and accumulation of errors.

In light of the above observation, in this paper, we focus on studying a general framework that co-embeds
the two spaces in the MLC case. First we argue that:

• The embedding process of the label space and the feature space should be linked to each other and
performed simultaneously;

• The embedding process of one space should be guided by another well-disposed space rather than the
original problematic space.

Such a framework is named Compact Learning (CL) in the sense that the learning is based on the two
compact spaces. Then, to this end, we propose a simple yet effective algorithm called Compact Multi-Label

Learning (CMLL). CMLL aims to learn a more compact representation for both labels and features by
maximizing the dependence between the embedded spaces of the labels and features, and simultaneously
minimizing the recovery loss from the embedded labels to the original ones. In this way, the embedding
processes of the two spaces are seamless and mutually guided, regardless of what methods are used in the
learning process. We conduct comprehensive experiments over twelve benchmark datasets to validate the
effectiveness of CMLL in improving the classification performance.

The rest of the paper is organized as follows. Section 2 briefly discusses the related work. Section 3
presents the technical details of the proposed CMLL approach. Then, Section 4 conducts some theoretical
analyses on LC and CL framework. Section 5 reports the experimental results. At last, Section 6 concludes
this paper.

2 Related Work

In this section, we mainly introduce the LC framework and review the important works in the field of LC.
LC is a popular strategy for MLC where the target is to embed the original labels into a low-dimensional
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latent space. Generally speaking, LC consists of the following three processes:
1. Encoding/embedding process: It embeds the original label vectors into a compressed space through

a specific transformation e : Y → V , where V = [m](m ≪ M) is the embedded m-dimensional label
space.

2. Learning process. It induces a multi-label classifier from the feature space to the embedded space
g′ : X → V .

3. Decoding/recovery process: It recovers the original labels from the embedded label space via a decoder
d : V → Y.

For a new instance x, the predicted labels Ŷ is: Ŷ = d(g′(x)).
Most LC methods learned the embedding labels with the feature unchanged. [10] took one of the initial

attempts to conduct LC via compressive sensing, which is time-consuming in the decoding process since it
needs to solve an optimization problem for each new instance. Unlike compressive sensing, [8] proposed a
principle label space transformation (PLST) method, which is essentially a principal components analysis
in the label space. Then, based on canonical correlation analysis [20], Conditional PLST (CPLST) [16] and
CCA-OC [21] improved PLST from the point of feature information. [22] put forward a method to maximize
the dependence between features and embedding labels. Some LC methods also apply the randomized
techniques to speed up the computing [23, 24].

Instead of adopting the linear mapping, another kind of LC methods reduced the label-space dimension-
ality via a nonlinear mapping. [15] applied the kernel trick to the label space. [25] added a trace norm
regularization to identify the low-dimensional representation of the original space. To address the unsatisfac-
tory accuracy caused by the violation of low rank assumption, [26] learned a small ensemble of local distance
preserving embeddings which non-linearly captured label correlations. [11] presented a scalable Bayesian
framework via a non-linear mapping. [27] decomposed the original label space to a low-dimensional space
to reduce the noisy information in the label space. [28] proposed a model that compresses the labels by
autoencoders and then used the same structure to decompress the labels, which is able to capture non-linear
label dependencies.

Previous researches on embedding mostly require an explicit encoding function for mapping the original
labels to the embedding labels. However, since the optimal mapping can be complicated and even inde-
scribable, assuming an explicit encoding function may not model it well. Unlike most previous works, some
methods make no assumptions about the encoding process but directly learn a code matrix. [14] proposed
a method to perform LC via boolean matrix decomposition and [17] proposed a feature-aware implicit label
space encoding method.

Quite different from the approach of existing LC methods, we propose CMLL following the spirit of
CL. There are several quite related works have been proposed. From now on, we discuss the main differ-
ences between our proposal with them, and later in Section 5, we experimentally validate our superiority.
One is canonical correlated autoencoder (C2AE) proposed in [12], which performed joint feature and label
embedding by deriving a deep latent space. The learned latent embedding space is shared by feature and
label, thus C2AE restricted the embedded features and labels to have the same dimension. And the tasks
of label embedding and multi-label prediction are integrated into the same framework. Another related
work is co-hashing (CoH) proposed in [29], which also learned a common latent hamming space to align the
input and output for applying k-nearest neighbor (kNN) for predicting. Both of these two methods can be
categorized as CL, but they are coupled with some specifical learning algorithms. While in our work, CMLL
learns two respective subspaces for the features and the label. The classifier learned in the learning process
is independent of the encoder and the decoder, so that any parametric or non-parametric learning model is
compatible. In addition, the compression ratio of the two space in C2AE and CoH are mutual influenced
and restricted. Different from them, CMLL produces respective compressed representations, which is more
flexible on the compression ratio of each space.

3



3 Proposed Algorithm

The procedures of CMLL are quite similar to that of LC, bur CMLL needs to simultaneously learn another
mapping for features, i.e., e′ : X → U , where U = R

d is the embedded d-dimensional feature space (d ≤ D).

For an unseen instance xu, the corresponding recovered relavant labels Ŷu outputed by CMLL are: Ŷu =
d(g(e′(xu))), where g : U → V is a multi-label classifier.

In most cases, the classifier learned by a MLC system is a real-valued function [1] f : X → R
c
+, where

f(x) can be regarded as the confidences of the labels being the relevant labels of x. Specifically, given
a multi-label example (x, Y ), if i ∈ Y, j /∈ Y , the i-element in f(x) should be larger than the j-element
in f(x). Note that the multi-label classifier g(·) can be derived from the real-valued function f(·) via:
g(x) = I(f(x), δ) = {i|f(x)i > δ}, where δ ∈ (0, 1) is a threshold and f(x)i is the i-element of f(x).

3.1 The Objective of CMLL

As mentioned above, for boosting the performance, we should make the instances more predictable in the
learning process and the embedded label vectors more recoverable in the decoding process. In this section,
we propose a simple yet effective instantiation CMLL of CL framework.

It has been widely acknowledged that strong correlation usually leads to better predictability, hence
CMLL maximizes the dependence between the embedded label space V and the embedded feature space U .
At the same time, CMLL minimizes the recovery loss from Y to V . Let X ∈ R

N×D be the feature matrix
and Y ∈ {0, 1}N×M be the corresponding label matrix. Given the training dataset S = {X,Y }, we denote
Ω(V ,Y ) as the recovery loss and Θ(V ,U) as the measure of dependence, where V N×m is the embedded
label matrix and UN×d is the the embedded feature matrix. Then, the objective can be formulized as follows.

max
U ,V

αΘ(V ,U) − Ω(V ,Y ), (1)

where α is a hyper-parameter that balances the importance of the dependence and the recovery loss. Next
we discuss these two terms in Eq. 1 respectively with the concrete form.

CMLL utilizes Hilbert-Schmidt Independence Criterion (HSIC) [30, 19] as its dependence measurement
due to its simple form and theoretical properties such as exponential convergence. HSIC calculates the
squared norm of the cross-covariance operator over the domain X × Y in reproducing kernel Hilbert spaces.
An empirical estimate of HSIC can be described as:

HSIC(X ,Y) = (N − 1)−2 tr[HKHL], (2)

where tr[·] denotes the trace of a matrix, H = I − 1
N
eeT , eN×1 is an all-one vector, and IN×N is the unit

matrix. Kij = k(xi,xj) = 〈φ(xi), φ(xj)〉 and Lij = l(yi,yj) = 〈ϕ(yi), ϕ(yj)〉, where 〈·〉 represents the inner
product operation, k(·) and l(·) are the kernel functions, and φ(·) and ϕ(·) are the corresponding mapping
functions. Dropping the normalization term of HSIC and applying it to CMLL, the measure of dependence
can be represented as:

Θ(V ,U) = tr[HKHL], (3)

where K = UU t and L = V V t. Here we first consider the linear embedding of features in CMLL, i.e. let
U = XP , where PD×d is the learnt projection matrix. The kernel version of CMLL with non-linear feature
embedding will also be derived later. Constraining the basis of the projection matrix to be orthonormal, we
derive:

Θ(V ,U) = tr[HXPP tXtHV V t]

s.t. P tP = I.
(4)
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As to the second term of Eq. (1), in order to minimize the loss of recovery, CMLL searches a decoding
matrix Wm×M through the ridge regression [31] to conduct a linear decoding. That is,

Ω(V ,Y ,W ) =‖ Y − V W ‖2F +λ ‖ W ‖2F , (5)

where ‖ · ‖F means the Frobenious norm and λ is the coefficient of the regularization term that avoids overfit-
ting. Given the specific V and Y , the goal is to find the W to minimize Ω(V ,Y ,W ). To avoid redundancy
in the embedded label space, we assume that the components of the embedded space are orthonormal and
uncorrelated, i.e., V tV = I. Then, let the partial derivative of Ω(V ,Y ,W ) with respect to W be zero:

∂Ω

∂W
=

tr[Y Y t +WW tV tV − 2W tV tY + λW tW ]

∂W
= 2V tV W − 2V tY + 2λW = 0.

(6)

We can obtain:

W = (V tV + λI)−1V tY =
1

1 + λ
V tY . (7)

Substituting Eq. (7) into Eq. (5) and dropping unrelated items, we yield:

Ω(V ,Y ) = −
1

1 + λ
tr[Y tV V tY ]

s.t. V tV = I.
(8)

Then substituting Eq. (8) and Eq. (4) into Eq. (1), the terms in the objective can be derived as follows.

α tr[HUU tHV V t] +
1

1 + λ
tr[Y tV V tY ]

⇔α(1 + λ) tr[V tHUU tHV ] + tr[V tY Y tV ]

⇔ tr[V t(βHUU tH + Y Y t)V ],

(9)

where β = α(1 + λ) is the normalized balance parameter. Adding the corresponding constraints, the learning
objective becomes:

max
V ,P

tr[V t(βHXPP tXtH + Y Y t)V ]

s.t. V tV = I, P tP = I.
(10)

3.2 Solution for CMLL

We solve Eq. (10) by alternating minimization. In each iteration, fixing one of {P ,V } and updating the
other with coordinate ascent [31], in which way a close-form solution can be obtained during each iteration.

To be specific, when P is fixed, the problem can be converted into an eigen-decomposition problem after
applying the Lagrangian method. Let A = (βHUU tH + Y Y t), the eigen-decomposition problem can be
specified as:

max
V

m∑

j=1

γj

s.t. AV.j = γjV.j , V t
.iV.j = I(i = j),

(11)

where V.j is the j-th column of V , and γj means the eigenvalue. The optimal V consists of m normalized
eigenvectors corresponding to the top m largest eigenvalues of A. Notice that m is usually much smaller
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than M , so we can utilize some iterative approaches such as Arnoldi iteration [32] to speed computation,
which can reach a minimal computational complexity of O(Nm2). When V is fixed, the optimal P consists
of d normalized eigenvectors corresponding to the top d largest eigenvalues of B = XtHV V tHX.

The procedures of CMLL are summarized in Algorithm 1. It is interesting to note that if we replace V

with Y in B, regardless of the embedding for the labels, the solution for P is actually the same as MDDM
[19], a typical FE method for MLC. And if we replace U with X in A, a standard LC algorithm regardless
of the embedding for the features can be derived, which we named as CMLLy. Both MDDM and CMLLy

can be viewed as the special case of CMLL.

Algorithm 1 CMLL

Input: Training dataset S = {X,Y }, testing feature matrix Xtest, parameter β, λ, dimensionality of the
embedded label space m and feature space d, maximal iteration count maxc, toleration tol.

Output: Predicted label matrix Ŷpre.
1: Initialize j = 0,V 0

N∗m, P 0
D∗d with a random matrix.

2: Get Γ0 = tr[V 0(βHXP 0(P 0)tXtH + Y Y t)V 0].
3: repeat

4: Get Aj+1 = βHXP j+1(P j+1)tXtH + Y Y t, then obtain V j+1 via eigen-decomposition.
5: Get Bj+1 = XtHV j+1(V j+1)tHX, then obtain P j+1 via eigen-decomposition.
6: Get Γj+1 using P j+1 and V j+1

7: Compute ∆ = |Γj+1 − Γj | / (Γj).
8: Let j = j + 1, P = P j ,V = V j .
9: until (j > maxc) or (∆ < tol)

10: Compute W = 1
1+λ

V tY .
11: Learn the classifier: g : XP → V .
12: Conduct prediction: Vpre = g(XtestP ).

13: Perform decoding: Ŷpre = I(VpreW , δ).

3.3 Kernelization for CMLL

We can utilize kernel tricks to extend CMLL to the non-linear case, denoted by k-CMLL. Assume the
projection matrix P can be spanned by kernel feature vectors, i.e. P = Φ(X)RN×d, where Φ(X) =
[φ(x1), φ(x2), ..., φ(xN )], and φ(.) is the projection function corresponding to the kernel and R is the matrix
of the corresponding linear combination coefficients.

Let q(xi,xj) = 〈φ(xi), φ(xj)〉 be the chosen kernel function and Q = Φ(X)tΦ(X) be the kernel matrix.
Then, U = Φ(X)tP = QR, K = UU t = QRRtQ, and the constraint P tP = RtQR = I. So the objective
of the kernel CMLL becomes:

max
O,R

tr[V t(βHQRRtQH + Y Y t)V ],

s.t. V tV = I, RtQR = I.
(12)

The solution for k-CMLL is similar to that of the linear case. When R is fixed, the optimal V consists of
the top m eigenvectors of A′ = βHQRRtQH +Y Y t. And when V is fixed, the optimal R consists of the
top d generalized eigenvectors of B′ = QHV V tHQ and Q. Given an unseen instance x, the projection is
z = P tφ(x) = Rtq(X,x), where q(X,x) = [q(x1,x), q(x2,x), · · · , q(xN ,x)]t.
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4 Theoretical Analysis

This section will conduct a general theoretical analysis for different embedding strategies and compare them
basing on the proposed Theorem 1.

Theorem 1. Given an instance x in a multi-label dataset S, denote y as its true label vector, and ŷ as

its predicted real-valued label vector obtained via a specific embedding framework. Assume a fixed threshold

δ ∈ (0, 1) is used in the final step to binarize ŷ. Denote nmis as the number of misclassified labels, then nmis

is upper-bounded by:

nmis ≤ τ‖ ŷ − y ‖
2
, τ = max {

1

δ2
,

1

(1− δ)2
}.

Proof. Denote ŷi as the i-th dimension of ŷ, and yi as the i-th dimension of y, then

nmis =

M∑

i=1

I(ŷi ≥ δ)I(yi = 0) + I(ŷi < δ)I(yi = 1) (13)

≤

M∑

i=1

(ŷi − yi)
2
I(yi = 0)

δ2
+

(ŷi − yi)
2
I(yi = 1)

(1− δ)2

≤
M∑

i=1

max{
1

δ2
,

1

(1 − δ)2
} (ŷi − yi)

2

= τ‖ ŷ − y ‖
2
.

Notice that when δ = 0.5, the condition of Eq. (13) inequality taking mark of equality is satisfied so that
τ reaches the minimum value 4. For MLC problem, it is a common practice that FE, LC and CL all binarize
the real-valued output by I(·, δ). From now on, we can make an preliminary analysis on the error upper
bounds of these different embedding frameworks based on Theorem 1. Assume that h : U → Y, a natural
result inferred directly from the Theorem 1 is that:

ZFE = τ ‖ h(e′(x))− y ‖
2
,

ZLC = τ ‖ d(g′(x))− y ‖
2
,

ZCL = τ ‖ d(g(e′(x)))− y] ‖
2
,

where ZFE , ZLC , ZCL are the error upper bound, i.e., the number of misclassified labels for the instance x by
FE, LC, CL, respectively. The common purpose is to minimize the error bound by a embedding framework.

While in practical implementation, LC usually formalizes ZLC as an equivalent form:

Z ′

LC = τ‖ [d(g′(x))− d(e(y))] + [d(e(y)) − y] ‖
2
, (14)

because directly minimizing the original ZLC is not intuitional and feasible when designing a concrete
algorithm [8, 16, 22, 17, 15]. That is, LC tries to make the encoded labels e(y) more predictable for x

and more recoverable to y. We can specify this general error bound for a specific method. For example,
substituting the concrete form of PLST to Eq. (14) yields:

ZPLST = 4 ‖ [g′(x)− yO]Ot + [yOOt − y] ‖
2
, (15)
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where OM×m is the orthonormal projection matrix learnt by PLST. Note that ZPLST derived above can be
transformed into the form derived in [8] through some equivalent conversion.

Similarly, ZCL can be formalized as follows:

Z ′

CL = τ‖ [d(g(e′(x)))− d(e(y))] + [d(e(y))− y] ‖
2
. (16)

Compared to FE and LC, CL considers the transformation for both label and feature space simultaneously,
and thus provides a greater possibility as well as a more flexible and superior way to make upper bound
tighter. Think of a specific example CMLL, the error bound can be expressed as:

4 ‖ [g(u)− vtW ] + [vtW − y] ‖
2
. (17)

The derivation process of CMLL shows that CMLL indeed takes both terms into account, i.e., minimizes the
first term by maximizing the dependence between the two embedded spaces, and at the same time minimizes
the recovery loss that measures how well vtW approximates y. Besides, CL can also degenerate to FE or
LC when necessary, as the example of special cases of CMLL (i.e. MDDM and CMLLy) indicates.

The upper bound derived here seems loose because it aims at embedding strategies rather than any
concrete algorithm. There are few research on the analysis of the framework of embedding yet, although
many related methods have been proposed. This section makes an initial attempt to analyze the reasonability
of CL as well as LC and FE, on which existing LC methods can be explained/derived based. It provides
guidance on the aspects that should be considered when designing a new CL or LC algorithm.

5 Experiments

5.1 Datasets

Aiming to validate the effectiveness of CMLL, we conduct experiments on a total of twelve public real-world
multi-label datasets, which show obvious label sparsity. The dataset of espgame collected here is organized
by [17], and other small-scale datasets (the number of examples is less than 5000) can be downloaded from
Mulan 1 and Meka 2. In addition, the extreme multi-label learning [33] which aims to learn relevant labels
from an extremely large label set is a possible application domain of LC, thus, we also adopt two extreme
classification datasets Mediamill and Delicious 3. Table 1 summarizes the detailed characteristics of these
datasets, which are organized in ascending order of the number of examples. Cardinality means the average
number of relevant labels per instance, Density is the ratio of Cardinality to the number of classes, and
Distinct is the number of distinct label combinations contained in the dataset. As indicated by quite small
values of Density and Distinct compared to all the possible label combinations (i.e. 2#Label), all datasets
suffer from evident hypercube sparsity or label-set sparsity in the label space.

5.2 Setups

We compare CMLL with its special cases CMLLy, one FE algorithm MDDM [19], one state-of-the-art large-
scale multi-label learning algorithm POP [33], and five well-established LC algorithms: PLST [8], CPLST
[16], FaIE [17], DMLR [22] and C2AE [12].

The hyper-parameters of the baselines were selected according to the suggested parameter settings in origi-
nal papers. The balance parameter of CMLL, CMLLy, FaIE, DMLR was selected from {10−5, 10−4, ..., 104, 105}.

1http://mulan.sourceforge.net/datasets-mlc.html
2http://meka.sourceforge.net/#datasets
3http://manikvarma.org/downloads/XC/XMLRepository.html
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Table 1: Characteristics of the real-world multi-label datasets.

Datasets #Label #Feature #Example Feature Type Cardinality Density Distinct Domain

plant 12 440 978 numeric 1.079 0.090 32 biology

msra 19 898 1,868 numeric 6.315 0.332 947 images

enron 53 1,001 1,702 nominal 3.378 0.064 753 text

llog 74 1,004 1,460 nominal 1.128 0.015 286 text

bibtex 159 1,836 5,000 nominal 2.397 0.015 2,127 text

eurlex-sm 201 5,000 5,000 numeric 2.224 0.011 1,236 text

bookmarks 208 2,150 5,000 nominal 2.016 0.010 1,840 text

corel5k 374 499 5,000 nominal 3.522 0.009 3,175 images

eurlex-dc 412 5,000 5,000 numeric 1.296 0.003 859 text

espgame 1,932 516 5,000 numeric 4.689 0.002 4,734 images

Delicious 983 500 16,105 numeric 19.020 0.002 15,806 text

Mediamill 101 120 43,907 numeric 4.376 0.004 6,555 vedio

POP used Binary Relevance as the base classifier. The hyper-parameter λ of CMLL and CMLLy was se-
lected from {0, 10−3, 10−1}, and tol = 10−5, maxc = 50. And δ = 0.5 in the final step for binarizing the
real-valued outputs. Besides, we also compared our kernel versions k-CMLL and k-CMLLy with the baselines
(except PLST and POP that can hardly be extended to the kernel version) and C2AE, which adopted the
DNN architectures. And the RBF kernel was applied. Following the previous works [8, 22], we used the
ridge regression and the kernel ridge regression to train the learning model for linear case and kernel case,
respectively. We denote ORI to represent the classifier learning from the original spaces as the baseline. The
regulation parameter of the ridge regression is selected from {10−5, 10−4, ..., 10−1}.

Denoting µ = d
D
, ν = m

M
the feature and the label compression ratio, all LC methods run with µ ranging

from 10% to 100% with the interval of 10% while MDDM runs with ν similarly. CMLL and C2AE run
with both ν and µ. That means, CMLL needs to run with 100 ratio pairs (10 × 10) in total while C2AE
run with 20 ratio pairs (10 + 10). Because C2AE essentially conducts non-linear embedding by utilizing the
DNN structure and learns a shared embedded space for both labels and features, while CMLL learns two
sub-spaces for labels and features respectively.

To measure the performance, we use seven widely adopted metrics in multi-label classification, including
Average Precision, micro-F1, Ranking Loss and One Error. The concrete definition of these metrics can be
found in [1]. For Mediamill and Delicious, we supplement two metrics popularly used in extreme multi-label
learning: Precision@3 and nDCG@3.

5.3 Results

The experimental results of CMLL and k-CMLL compared with the comparing methods are shown in Table 2
and Table 3 respectively. For each metric, “↓” indicates the smaller the better while “↑” indicates the larger
the better. We perform five-fold cross-validation on each dataset, and use paired t-test at 10% significance
level. The mean results with standard deviation are reported and the best performance is highlighted
in boldface. •/◦ represents whether CMLL or k-CMLL is significantly better/worse than the comparing
methods. We can observe that across all metrics, CMLL ranks 1st in the most cases in both linear and
non-linear cases.

As Table 2 and Table 3 show, with a suitable compression ratio, most embedding methods can achieve
better performance than the baseline ORI. This indicates that there are indeed some problems such as
sparsity and noise existing in both the original spaces, which leads to performance decline if not tackled
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Table 2: Experimental results of CMLL with baselines.

Average Precision ↑

Methods ORI PLST CPLST DMLR FaIE CMLLy MDDM POP CMLL

plant 0.4756±0.0263• 0.4873±0.0299• 0.4848±0.0274• 0.4859±0.0250• 0.4813±0.0282• 0.5399±0.0311 0.5587±0.0294 0.5256±0.0707 0.5733±0.0252

msra 0.7433±0.0129• 0.7733±0.0107• 0.7689±0.0117• 0.7766±0.0129• 0.7782±0.0113• 0.7820±0.0112• 0.7933±0.0090 0.7315±0.0134• 0.7997±0.0100

enron 0.5039±0.0111• 0.5183±0.0162• 0.5170±0.0160• 0.5196±0.0110• 0.5218±0.0123• 0.6228±0.0119• 0.6767±0.0205 0.6360±0.0867 0.6965±0.0153

llog 0.2235±0.0274• 0.2429±0.0314• 0.2412±0.0320• 0.2760±0.0328• 0.2722±0.0344• 0.3413±0.0378• 0.4264±0.0216 0.1532±0.0563• 0.3717±0.0283

bibtext 0.5278±0.0091• 0.5258±0.0077• 0.5280±0.0079• 0.5281±0.0086• 0.5259±0.0078• 0.5241±0.0039• 0.5287±0.0091• 0.5676±0.0069 0.5828±0.0050

eurlex-sm 0.3972±0.0208• 0.3998±0.0209• 0.3998±0.0209• 0.3979±0.0208• 0.4289±0.0219• 0.5706±0.0119• 0.7299±0.0198• 0.3419±0.0058• 0.7565±0.0084

bookmark 0.3086±0.0059• 0.3043±0.0065• 0.3030±0.0059• 0.3054±0.0064• 0.3051±0.0061• 0.3161±0.0064• 0.3804±0.0060• 0.4024±0.0088 0.4080±0.0078

corel5k 0.2892±0.0029• 0.2900±0.0035• 0.2908±0.0039• 0.2932±0.0030• 0.2916±0.0035• 0.2925±0.0035• 0.2995±0.0057 0.0900±0.0076• 0.3028±0.0070

eurlex-dc 0.3982±0.0315• 0.4031±0.0304• 0.4031±0.0304• 0.4511±0.0240• 0.5031±0.0305• 0.6118±0.0254• 0.6911±0.0215• 0.4616±0.0089• 0.7588±0.0144

espgame 0.2171±0.0081 0.2171±0.0081 0.2173±0.0081 0.2175±0.0082 0.2169±0.0081 0.2169±0.0081 0.2175±0.0083 0.0141±0.0006• 0.2177±0.0080

Delicious 0.3338±0.0029• 0.3443±0.0024• 0.3450±0.0025• 0.3337±0.0030• 0.3337±0.0029• 0.3485±0.0028• 0.3514±0.0025 0.2101±0.0039• 0.3543±0.0030

Mediamill 0.7193±0.0031• 0.7217±0.0033• 0.7200±0.0031• 0.7218±0.0035• 0.7195±0.0034• 0.7171±0.0035• 0.7193±0.0031• 0.5389±0.0096• 0.7302±0.0031

micro-F1 ↑

Methods ORI PLST CPLST DMLR FaIE CMLLy MDDM POP CMLL

plant 0.2644±0.0312 0.2644±0.0312 0.2646±0.0288 0.2460±0.0256• 0.2663±0.0319 0.2991±0.0458 0.2652±0.0322 0.2222±0.0247• 0.2993±0.0190

msra 0.6471±0.0134• 0.6644±0.0076• 0.6606±0.0126• 0.6605±0.0125• 0.6641±0.0118• 0.6677±0.0118 0.6757±0.0081 0.5942±0.0135• 0.6817±0.0096

enron 0.4045±0.0057• 0.4480±0.0105• 0.4473±0.0138• 0.4437±0.0121• 0.4579±0.0109• 0.4995±0.0119• 0.5278±0.0057 0.4913±0.0410 0.5335±0.0147

llog 0.1390±0.0094• 0.1710±0.0177• 0.1726±0.0178• 0.1754±0.0180• 0.1724±0.0196• 0.1926±0.0223• 0.2289±0.0114 0.0942±0.0292• 0.2483±0.0175

bibtext 0.3942±0.0107◦ 0.3910±0.0101◦ 0.3939±0.0117◦ 0.3921±0.0106◦ 0.3914±0.0099◦ 0.3764±0.0072• 0.3940±0.0102◦ 0.3566±0.0039• 0.3683±0.0104

eurlex-sm 0.1181±0.0073• 0.1225±0.0078• 0.1225±0.0078• 0.1204±0.0072• 0.2220±0.0080• 0.2327±0.0094• 0.3235±0.0079 0.3393±0.0152 0.3350±0.0125

bookmark 0.1616±0.0094• 0.1879±0.0080• 0.1882±0.0073• 0.1927±0.0091• 0.1879±0.0081• 0.2218±0.0100• 0.2163±0.0085• 0.2176±0.0060• 0.2386±0.0092

corel5k 0.1032±0.0050• 0.1002±0.0064• 0.0998±0.0070• 0.1017±0.0047• 0.1523±0.0051◦ 0.1258±0.0044 0.1201±0.0046 0.1456±0.0084◦ 0.1266±0.0048

eurlex-dc 0.0527±0.0035• 0.0545±0.0035• 0.0545±0.0035• 0.0889±0.0057• 0.1745±0.0039• 0.2486±0.0107• 0.2588±0.0034• 0.2251±0.0015• 0.3735±0.0183

espgame 0.0863±0.0054 0.0863±0.0055 0.0858±0.0048 0.0859±0.0050 0.0861±0.0052 0.0863±0.0051 0.0833±0.0036 0.0098±0.0003• 0.0860±0.0055

Delicious 0.1614±0.0033• 0.1639±0.0041• 0.1620±0.0041• 0.1615±0.0033• 0.1608±0.0032• 0.1635±0.0033• 0.1607±0.0030• 0.2120±0.0031◦ 0.2002±0.0032

Mediamill 0.5315±0.0021• 0.5351±0.0022• 0.5353±0.0021• 0.5354±0.0022• 0.5356±0.0022• 0.5367±0.0023• 0.5315±0.0020• 0.4682±0.0043• 0.5427±0.0019

Ranking Loss ↓

Methods ORI PLST CPLST DMLR FaIE CMLLy MDDM POP CMLL

plant 0.3292±0.0166• 0.3109±0.0193• 0.3261±0.0174• 0.3276±0.0239• 0.3250±0.0189• 0.2594±0.0221• 0.2123±0.0240 0.2441±0.0567 0.2099±0.0156

msra 0.1938±0.0103• 0.1677±0.0105• 0.1742±0.0118• 0.1663±0.0116• 0.1642±0.0109• 0.1611±0.0105• 0.1531±0.0061 0.2208±0.0117• 0.1463±0.0081

enron 0.2672±0.0108• 0.2596±0.0102• 0.2592±0.0110• 0.2615±0.0119• 0.2642±0.0071• 0.1475±0.0104• 0.1382±0.0064• 0.1255±0.0145 0.1209±0.0093

llog 0.2567±0.0306• 0.2610±0.0276• 0.2637±0.0306• 0.2585±0.0271• 0.2625±0.0295• 0.1538±0.0283• 0.1661±0.0151• 0.1345±0.0385 0.1163±0.0158

bibtext 0.1325±0.0082• 0.1319±0.0080• 0.1319±0.0073• 0.1318±0.0079• 0.1319±0.0080• 0.0873±0.0069 0.1020±0.0081• 0.0421±0.0071◦ 0.0834±0.0062

eurlex-sm 0.2396±0.0107• 0.2386±0.0088• 0.2386±0.0087• 0.2397±0.0103• 0.1504±0.0102• 0.0887±0.0083• 0.0524±0.0119 0.0979±0.0125• 0.0481±0.0022

bookmark 0.2563±0.0072• 0.2577±0.0066• 0.2581±0.0060• 0.2571±0.0057• 0.2602±0.0071• 0.1710±0.0068 0.2044±0.0071• 0.1493±0.0042 0.1642±0.0032

corel5k 0.2096±0.0044• 0.1937±0.0047 0.1957±0.0053 0.1943±0.0040 0.1988±0.0035• 0.1944±0.0045 0.1964±0.0070 0.4630±0.0079• 0.1880±0.0059

eurlex-dc 0.1841±0.0110• 0.1838±0.0095• 0.1839±0.0096• 0.1943±0.0126• 0.0941±0.0111• 0.0442±0.0112 0.0477±0.0089 0.1486±0.0053• 0.0390±0.0026

espgame 0.2439±0.0024• 0.2436±0.0026• 0.2386±0.0035• 0.2422±0.0025• 0.2450±0.0030• 0.2445±0.0027• 0.1926±0.0032 0.2858±0.0035• 0.1932±0.0025

Delicious 0.1755±0.0026 0.1710±0.0010• 0.1654±0.0008 0.1656±0.0026 0.1634±0.0024 0.1681±0.0023 0.1652±0.0025 0.3608±0.0043• 0.1651±0.0024

Mediamill 0.0587±0.0008 0.0589±0.0007• 0.0599±0.0006• 0.0590±0.0008• 0.0598±0.0010• 0.0585±0.0009 0.0587±0.0008 0.2272±0.0120• 0.0576±0.0009

One Error ↓

Methods ORI PLST CPLST DMLR FaIE CMLLy MDDM POP CMLL

plant 0.7099±0.0337• 0.7089±0.0350• 0.7058±0.0374• 0.6986±0.0335• 0.7058±0.0365• 0.6547±0.0393 0.6362±0.0389 0.6649±0.0820 0.6270±0.0252

msra 0.1304±0.0166• 0.1015±0.0205• 0.0972±0.0097• 0.0791±0.0166• 0.0844±0.0167• 0.0796±0.0174 0.0646±0.0160 0.0507±0.0129 0.0576±0.0142

enron 0.4454±0.0234• 0.4471±0.0209• 0.4483±0.0223• 0.4318±0.0187• 0.4295±0.0221• 0.2930±0.0236• 0.2524±0.0308 0.3535±0.2583 0.2462±0.0215

llog 0.8526±0.0302• 0.8451±0.0334• 0.8476±0.0353• 0.8418±0.0428• 0.8460±0.0388• 0.7371±0.0423 0.7294±0.0282 0.9900±0.0096• 0.6898±0.0352

bibtext 0.3950±0.0134• 0.3996±0.0088• 0.3952±0.0087• 0.3978±0.0102• 0.3998±0.0084• 0.3728±0.0082 0.3542±0.0128 0.3522±0.0094 0.3656±0.0085

eurlex-sm 0.6600±0.0253• 0.6576±0.0239• 0.6576±0.0239• 0.6592±0.0253• 0.6586±0.0259• 0.4059±0.0267• 0.2626±0.0234• 0.6326±0.0186• 0.2306±0.0105

bookmark 0.7156±0.0051• 0.7188±0.0098• 0.7234±0.0062• 0.7200±0.0072• 0.7186±0.0061• 0.6650±0.0095• 0.6642±0.0066• 0.5800±0.0142 0.6198±0.0151

corel5k 0.6464±0.0084 0.6532±0.0093 0.6534±0.0086 0.6448±0.0100 0.6468±0.0107 0.6454±0.0098 0.6442±0.0114 0.8620±0.0110• 0.6370±0.0158

eurlex-dc 0.6944±0.0329• 0.6914±0.0339• 0.6914±0.0339• 0.6140±0.0266• 0.5916±0.0332• 0.4458±0.0131• 0.3450±0.0246• 0.7312±0.0062• 0.3028±0.0189

espgame 0.5622±0.0166 0.5622±0.0166 0.5624±0.0173 0.5618±0.0168 0.5622±0.0166 0.5626±0.0162 0.5624±0.0161 0.9911±0.0031• 0.5604±0.0152

Delicious 0.3687±0.0127• 0.3691±0.0093• 0.3688±0.0086• 0.3692±0.0125• 0.3510±0.0123 0.3542±0.0122 0.3583±0.0131 0.4069±0.0162• 0.3386±0.0135

Mediamill 0.1337±0.0032 0.1322±0.0040 0.1320±0.0036 0.1317±0.0045 0.1319±0.0044 0.1315±0.0037 0.1337±0.0032 0.1374±0.0035• 0.1307±0.0035

Precision@3 ↑
Methods ORI PLST CPLST DMLR FaIE CMLLy MDDM POP CMLL

Delicious 0.5676±0.0055• 0.5613±0.0042• 0.5617±0.0046• 0.5672±0.0052• 0.5666±0.0050• 0.5737±0.0051 0.5774±0.0051 0.4350±0.0100• 0.5873±0.0053

Mediamill 0.6682±0.0036 0.6700±0.0033 0.6697±0.0031 0.6699±0.0033 0.6697±0.0034 0.6692±0.0039 0.6682±0.0035 0.7633±0.0053◦ 0.6722±0.0032

nDCG@3 ↑
Methods ORI PLST CPLST DMLR FaIE CMLLy MDDM POP CMLL

Delicious 0.5805±0.0069• 0.5833±0.0047 0.5836±0.0050 0.5801±0.0066• 0.5791±0.0063• 0.5764±0.0065• 0.5805±0.0067• 0.4471±0.0113• 0.5904±0.0067

Mediamill 0.7508±0.0036 0.7527±0.0037 0.7525±0.0034 0.7527±0.0038 0.7525±0.0039 0.7521±0.0041 0.7508±0.0036 0.8234±0.0051◦ 0.7536±0.0034
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Table 3: Experimental results of k-CMLL with baselines.

Average Precision ↑

Methods k-ORI k-CPLST k-DMLR k-FaIE k-CMLLy k-MDDM C2AE k-CMLL

plant 0.5894±0.0385 0.5907±0.0375 0.5985±0.0383 0.5917±0.0388 0.5928±0.0387 0.6185±0.0250 0.6277±0.0280 0.6460±0.0396

msra 0.8087±0.0107 0.8090±0.0105 0.8282±0.0073 0.8231±0.0090 0.8174±0.0068 0.8197±0.0111 0.8135±0.0100 0.8209±0.0103

enron 0.7001±0.0180 0.7005±0.0177 0.7001±0.0180 0.6722±0.0166 0.6930±0.0155 0.7091±0.0151 0.6856±0.0535 0.7125±0.0116

llog 0.4269±0.0253• 0.4269±0.0253• 0.4269±0.0273• 0.4276±0.0251• 0.4290±0.0254• 0.4675±0.0280 0.3770±0.0130• 0.4755±0.0207

bibtext 0.5957±0.0051• 0.6220±0.0069◦ 0.5948±0.0064• 0.5969±0.0058• 0.5970±0.0059• 0.6030±0.0060 0.6204±0.0072◦ 0.6060±0.0042

eurlex-sm 0.8011±0.0157• 0.8006±0.0170• 0.8011±0.0157• 0.8112±0.0158• 0.8010±0.0157• 0.8060±0.0161 0.7773±0.0359• 0.8265±0.0150

bookmark 0.4067±0.0088• 0.4067±0.0088• 0.4129±0.0105• 0.4070±0.0089• 0.4072±0.0088• 0.4288±0.0052• 0.3999±0.0106• 0.4582±0.0074

corel5k 0.3035±0.0050• 0.3036±0.0050• 0.3083±0.0055• 0.3038±0.0046• 0.3034±0.0049• 0.3307±0.0060 0.3169±0.0019• 0.3321±0.0084

eurlex-dc 0.7578±0.0079• 0.7547±0.0076• 0.7576±0.0079• 0.7585±0.0077• 0.7580±0.0077• 0.7521±0.0102• 0.7411±0.0180• 0.7799±0.0130

espgame 0.2298±0.0065 0.2298±0.0064 0.2298±0.0065 0.2293±0.0065 0.2293±0.0063 0.2336±0.0069 0.2286±0.0022 0.2346±0.0072

Delicious 0.3576±0.0198• 0.3567±0.0099• 0.3702±0.0174• 0.3527±0.0202• 0.3587±0.0184• 0.3742±0.0236 0.3596±0.0025• 0.3863±0.0041

Mediamill 0.7226±0.1789 0.7213±0.0282• 0.7696±0.1142 0.7063±0.0399• 0.7811±0.1248 0.7857±0.0864 0.6861±0.0073• 0.7802±0.0711

micro-F1 ↑

Methods k-ORI k-CPLST k-DMLR k-FaIE k-CMLLy k-MDDM C2AE k-CMLL

plant 0.3237±0.0447 0.3268±0.0432 0.3284±0.0479 0.3261±0.0468 0.3280±0.0432 0.3430±0.0454 0.3680±0.034 0.3526±0.0294

msra 0.6711±0.0083• 0.6712±0.0084• 0.6837±0.0081• 0.6840±0.0088• 0.6831±0.0074• 0.6889±0.0114 0.6708±0.0084• 0.7004±0.0114

enron 0.5849±0.0062• 0.5852±0.0064• 0.5849±0.0062• 0.5857±0.0060• 0.5851±0.0060• 0.6037±0.0119• 0.6512±0.0310 0.6582±0.0115

llog 0.1512±0.0183 0.1512±0.0183 0.1512±0.0182 0.1513±0.0185 0.1612±0.0184 0.1566±0.0247 0.2829±0.0199◦ 0.1733±0.0150

bibtext 0.3512±0.0075• 0.3680±0.0104• 0.3489±0.0064• 0.3520±0.0055• 0.3521±0.0055• 0.3985±0.0069 0.3996±0.0081 0.4069±0.0075

eurlex-sm 0.5580±0.0205• 0.5578±0.0205• 0.5580±0.0205• 0.5586±0.0204• 0.5581±0.0205• 0.6564±0.0159 0.6061±0.0106• 0.6555±0.0164

bookmark 0.2019±0.0057• 0.2019±0.0057• 0.2268±0.0075• 0.2020±0.0056• 0.2027±0.0057• 0.2106±0.0063• 0.2657±0.0103 0.2378±0.0053

corel5k 0.1146±0.0056• 0.1146±0.0056• 0.1166±0.0050• 0.1149±0.0054• 0.1147±0.0057• 0.1431±0.0012• 0.1685±0.0057 0.1702±0.0064

eurlex-dc 0.4648±0.0160• 0.4647±0.0160• 0.4663±0.0161• 0.4659±0.0161• 0.4651±0.0161• 0.5489±0.0199 0.4847±0.0015• 0.5554±0.0181

espgame 0.1039±0.0049 0.1040±0.0047 0.1039±0.0049 0.1040±0.0048 0.1039±0.0049 0.1062±0.0064 0.1178±0.0131◦ 0.1063±0.0078

Delicious 0.1795±0.0133• 0.1780±0.0073• 0.1876±0.0162• 0.1851±0.0199• 0.2050±0.0220• 0.1900±0.0034• 0.3416±0.0019◦ 0.2361±0.0029•
Mediamill 0.5405±0.0983• 0.5415±0.0382• 0.5611±0.0675 0.5331±0.0263• 0.5429±0.1306 0.5913±0.0247 0.5556±0.0049• 0.5927±0.0199

Ranking Loss ↓

Methods k-ORI k-CPLST k-DMLR k-FaIE k-CMLLy k-MDDM C2AE k-CMLL

plant 0.1771±0.0312 0.1756±0.0300 0.1701±0.0257 0.1761±0.0314 0.1756±0.0312 0.1666±0.0232 0.1578±0.0194 0.1495±0.0294

msra 0.1435±0.0075• 0.1433±0.0073• 0.1176±0.0058◦ 0.1234±0.0066 0.1182±0.0058 0.1275±0.0087 0.1113±0.0073◦ 0.1289±0.0088

enron 0.0973±0.0138• 0.0969±0.0138• 0.0973±0.0138• 0.1012±0.0129• 0.1000±0.0128• 0.1011±0.0120• 0.0833±0.0139 0.0816±0.0037

llog 0.1758±0.0293• 0.1757±0.0292• 0.1787±0.0301• 0.1764±0.0297• 0.1762±0.0279• 0.1467±0.0170 0.1249±0.0141 0.1362±0.0149

bibtext 0.0939±0.0109 0.0980±0.0090• 0.0933±0.0105 0.0936±0.0108 0.0934±0.0107 0.0819±0.0083 0.0565±0.0721◦ 0.0798±0.0091

eurlex-sm 0.0221±0.0084 0.0266±0.0078 0.0219±0.0085 0.0219±0.0084 0.0221±0.0086 0.0210±0.0049 0.0240±0.1171 0.0202±0.0061

bookmark 0.1604±0.0071• 0.1604±0.0071• 0.1662±0.0088• 0.1603±0.0072• 0.1509±0.0075 0.1584±0.0060• 0.1527±0.0279 0.1447±0.0050

corel5k 0.1941±0.0068• 0.1440±0.0068 0.1566±0.0078 0.1741±0.0070• 0.1640±0.0068 0.1937±0.0052• 0.1321±0.0240 0.1523±0.0119

eurlex-dc 0.0416±0.0042 0.0374±0.0053 0.0409±0.0041 0.0417±0.0039 0.0417±0.0042 0.0361±0.0084 0.0451±0.0418 0.0357±0.0046

espgame 0.0253±0.0065 0.0251±0.0065 0.0256±0.0067 0.0255±0.0065 0.0256±0.0066 0.0249±0.0070 0.0206±0.0123 0.0232±0.0071

Delicious 0.1746±0.0468 0.1630±0.0135 0.1701±0.0371 0.2053±0.0531 0.1684±0.0560 0.1689±0.0373 0.1232±0.0012 0.1599±0.0318

Mediamill 0.0671±0.0027• 0.0644±0.0051 0.0634±0.0014• 0.0663±0.0054 0.0624±0.0056 0.0666±0.0024• 0.0659±0.0034• 0.0599±0.0021

One Error ↓

Methods k-ORI k-CPLST k-DMLR k-FaIE k-CMLLy k-MDDM C2AE k-CMLL

plant 0.5857±0.0457 0.5836±0.0435 0.5826±0.0518 0.5867±0.0463 0.5847±0.0457 0.5458±0.0290 0.5581±0.0473 0.5407±0.0510

msra 0.0653±0.0198 0.0642±0.0180 0.0525±0.0136 0.0553±0.0057 0.0583±0.0130 0.0637±0.0166 0.0617±0.0267 0.0507±0.0099

enron 0.2290±0.0165 0.2278±0.0140 0.2290±0.0165 0.2454±0.0205• 0.2331±0.0187 0.2213±0.0196 0.2562±0.0571 0.2091±0.0169

llog 0.7145±0.0272• 0.7145±0.0272• 0.7153±0.0310• 0.7145±0.0272• 0.7154±0.0316• 0.6756±0.0328 0.7642±0.0149• 0.6625±0.0374

bibtext 0.3506±0.0043• 0.3496±0.0166 0.3442±0.0064 0.3492±0.0044• 0.3392±0.0044 0.3416±0.0050 0.3164±0.0092 0.3368±0.0090

eurlex-sm 0.1754±0.0198• 0.1788±0.0204• 0.1754±0.0198• 0.1756±0.0200• 0.1756±0.0200• 0.1514±0.0282 0.1293±0.0116 0.1261±0.0192

bookmark 0.6008±0.0077• 0.6008±0.0077• 0.5928±0.0141• 0.6006±0.0078• 0.6000±0.0080• 0.5724±0.0084 0.5430±0.0097 0.5616±0.0090

corel5k 0.6274±0.0111• 0.6268±0.0112• 0.6286±0.0087• 0.6282±0.0110• 0.6278±0.0112• 0.6138±0.0138• 0.5876±0.0142 0.5880±0.0169

eurlex-dc 0.3098±0.0112• 0.3140±0.0095• 0.3096±0.0115• 0.3088±0.0110• 0.3096±0.0113• 0.2838±0.0137 0.3012±0.0208• 0.2800±0.0163

espgame 0.5458±0.0153 0.5462±0.0157 0.5460±0.0134 0.5464±0.0140 0.5456±0.0148 0.5363±0.0123 0.5325±0.0425 0.5306±0.0091

Delicious 0.3446±0.0640 0.3320±0.0321 0.3236±0.0515 0.3257±0.0464 0.3336±0.0258 0.3345±0.1174 0.3497±0.0058 0.3260±0.0617

Mediamill 0.1567±0.0045• 0.1386±0.0029 0.1439±0.0099• 0.1510±0.0039• 0.1457±0.0020• 0.1412±0.0072 0.1507±0.0131 0.1384±0.0040

Precision@3 ↑
Methods k-ORI k-CPLST k-DMLR k-FaIE k-CMLLy k-MDDM C2AE k-CMLL

Delicious 0.5739±0.0045• 0.5814±0.0029• 0.5882±0.0049• 0.5859±0.0081• 0.5887±0.0026• 0.5800±0.0033• 0.5935±0.0059• 0.6090±0.0022

Mediamill 0.6480±0.0062• 0.6576±0.0080 0.6599±0.0092 0.6400±0.0032• 0.6582±0.0080 0.6605±0.0095 0.6492±0.0038• 0.6622±0.0072

nDCG@3 ↑
k-ORI k-CPLST k-DMLR k-FaIE k-CMLLy k-MDDM C2AE k-CMLL

Delicious 0.5911±0.0087 0.5901±0.0034• 0.5970±0.0042 0.5944±0.0097 0.5950±0.0022• 0.5952±0.0058 0.6073±0.0060 0.6098±0.0075

Mediamill 0.7360±0.0098 0.7361±0.0039 0.7349±0.0066 0.7342±0.0043• 0.7489±0.0021 0.7479±0.0077 0.7285±0.0034• 0.7496±0.0034
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Figure 1: Average precision changes as parameter α varies on msra.

properly. With a more compact representation for labels (ν ≤ 100%) and features (µ ≤ 100%), CMLL
performs better than all compared LC methods (µ = 100%) and FE method (ν = 100%) in most cases.
By applying the kernel trick to extend methods to their corresponding non-linear version, each LC method
actually guides the embedding process of labels with the well transformed rather than the original features
implicitly, where k-CMLL still outperforms other methods on the whole.

5.4 Parameter Sensitivity Analysis

To explore the influence of balance parameter α in CMLL, we fix µ = ν = 50%, λ = 0 and run CMLL with
α ranging in {10−4, 10−3, ..., 103, 104}. To be convenient, we denote dep = tr[V tHXPP tXtHHV ] and
rec = tr[V tY Y tV ] as the dependence term and recovery term in objective (10). Dropping the recovery
term in (10), we can find the solutions of V and P , and then compute corresponding values of dependence
term depmax and recovery term recmin. Similarly, by only considering recover term in (10), we can find the
solution of V and calculate corresponding depmin and recmax. To obtain a comprehensive understanding,
we normalize the value of two terms by:

rec′ =
rec− recmin

recmax − recmin

, dep′ =
dep− depmin

depmax − depmin

.

The experimental results on msra with average precision are showed in Fig. 1 as an example. The curve
in Fig. 1 (a) indicates that setting α too big or too small will both result in bad performance. And it seems
that an unreasonable big α suffers more, which indicates that an encoder with good recovery ability is very
important for CMLL. Fig. 1 (b) provides the explanation for the curve trend in Fig. 1 (a). For example, the
curve of average precision drops sharply when log10(α) changes from 1 to 2. And the reason is that dep′ is
already very close to the upper bound when α = 10. As α further rises to 100, the increment of dep′ is very
limited while rec′ decreases obviously. This suggests that α do not need to be increased when dep′ is close
to its maximization, otherwise the decrement of rec′ will result in a decline of the performance. Thus we can
utilize such plot to guide the tuning process of α. To sum up, aiming to get better performance, we should
consider an appropriate trade-off between dependence term and recovery term.
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Figure 2: The average precision curve of moving the compression ratio on enron.

5.5 Analysis on the Compression Ratio

We investigate how the compression ratio influence the performance, we fix one space changeless and gradually
move the compression ration of the other space from 100% to 10%, and due to page limitation, we only display
the curve of average precision on enron in Fig. 2. It can be seen that CMLL usually achieves a better or
comparable performance, and other curves show similar results. The performance curves of metrics also
reveal the effectiveness of the proposed method.

The reason for the superiority of CMLL is that it follows the spirit of CL. CMLL links the embedding
process of the label space and the feature space to each other and guides each process by another well-
disposed space. Instead, most other embedding methods either focus on the embedding of just one space, or
guides the embedding process by original problematic space. Therefore, CMLL performs well especially in
noisy, redundant and sparse datasets. However, the embedding may bring the loss of information when we
compress the dense or non-redundant datasets into a very low dimension.

In reality, traversing every possible pair (µ, ν) to lock the best one is unaffordable. Here we give an
empirical method for that. We draw the spatial graphs of CMLL for collected datasets over various µ and
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ν. And the spatial graphs of some datasets on average precision are displayed in Fig. 3 as examples.
It can be seen that, for different ν on each dataset, the general trends of CMLL over various µ are almost

the same. Knowing this, we can first conduct CMLL with a fixed ν over various µ, and lock the best µ∗

in such situation. Then we can run CMLL with µ∗ over various ν to find the best ν∗. Finally near best
ratio pair is given as (µ∗, ν∗). One can also try some different starting ν to make the searching process more
precise. In practice, we find that the ratio pair searched by this empirical method can achieve comparable
performance to the real best one in most cases. Especially, we find that µ may have little influence on the
performance in some datasets. In other words, a very small compression ratio can perform as well as other
ratios in CMLL, which proves the existence of redundancy and shows the superiority of CMLL to reduce the
computational and space complexities.

6 Conclusion

In this paper, we provided a different insight into the MLC for fully capturing the high-order correlation
between features and labels, named compact learning. We analyzed its rationality and necessity in the
situation, where the feature space suffers from redundancy or noise, and meanwhile, the label space is
deteriorated by noise or sparsity - frequent occurrences in MLC. Following the spirit of compact learning,
a simple yet effective method termed CMLL that is compatible with flexible multi-label classifiers was
proposed. By conducting the embedding process of the features and the labels seamlessly, CMLL achieved
a more compact representation for both the spaces. We demonstrated through experiments that CMLL can
result in significant improvements for the multi-label classification.

As an initial effort towards compact learning, there are several potential ways that the current CMLL
can be further improved: (a) Except the linear embedding or its kernel version, other encoding and decoding
strategies, such as autoencoders and its extension, are worthwhile to be investigated; (b) Inspired by the
manifold learning that the local topological structure can be shared between the feature manifold and the
label manifold [34], the structure information could be utilized for CMLL; (c) CMLL provides another
possible solution to some weakly supervised learning problem, e.g., the missing label [35] or noisy label [36].

Acknowledgement

This research was supported by the National Key Research & Development Plan of China (No.2017YFB1002801),
the National Science Foundation of China (61622203), the Jiangsu Natural Science Funds for Distinguished
Young Scholar (BK20140022), the Collaborative Innovation Center of Novel Software Technology and Indus-
trialization, and the Collaborative Innovation Center of Wireless Communications Technology.

14



References

[1] M. Zhang, Z. Zhou, A review on multi-label learning algorithms, IEEE Transactions on Knowledge &
Data Engineering 26 (8) (2014) 1819–1837.

[2] F. Liu, T. Xiang, T. M. Hospedales, W. Yang, C. Sun, Semantic regularisation for recurrent image
annotation, in: Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, Hi, 2017, pp. 2872–2880.

[3] Y. Liu, K. Wen, Q. Gao, X. Gao, F. Nie, Svm based multi-label learning with missing labels for image
annotation, Pattern Recognition 78 (2018) 307–317.

[4] K. Zhao, W. Chu, F. D. la Torre, J. F. Cohn, H. Zhang, Joint patch and multi-label learning for facial
action unit and holistic expression recognition, IEEE Transactions on Image Processing 25 (8) (2016)
3931–3946.

[5] N. Zhuang, Y. Yan, S. Chen, H. Wang, C. Shen, Multi-label learning based deep transfer neural network
for facial attribute classification, Pattern Recognition 80 (2018) 225–240.

[6] J. Liu, W. Chang, Y. Wu, Y. Yang, Deep learning for extreme multi-label text classification, in: Pro-
ceedings of the 40th International ACM SIGIR Conference on Research and Development in Information
Retrieval, 2017, pp. 115–124.

[7] X. Zhang, R. Henao, Z. Gan, Y. Li, L. Carin, Multi-label learning from medical plain text with convo-
lutional residual models, arXiv preprint arXiv:1801.05062.

[8] F. Tai, H. Lin, Multi-label classification with principal label space transformation, Neurocomputing
24 (9) (2012) 2508–2542.

[9] B. Wang, L. Chen, W. Sun, K. Qin, K. Li, H. Zhou, Ranking-based autoencoder for extreme multi-label
classification, arXiv preprint arXiv:1904.05937.

[10] D. Hsu, S. Kakade, J. Langford, T. Zhang, Multi-label prediction via compressed sensing, in: Advances
in Neural Information Processing Systems 22, Vancouver, Canada, 2009, pp. 772–780.

[11] P. Rai, C. Hu, R. Henao, L. Carin, Large-scale bayesian multi-label learning via topic-based label
embeddings, in: Advances in Neural Information Processing Systems 28, Montreal, Canada, 2015, pp.
3222–3230.

[12] C. Yeh, W. Wu, W. Ko, Y. F. Wang, Learning deep latent space for multi-label classification, in:
Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, CA, 2017, pp. 2838–
2844.

[13] V. Kumar, A. K. Pujari, V. Padmanabhan, V. R. Kagita, Group preserving label embedding for multi-
label classification, Pattern Recognition 90 (2019) 23–34.

[14] J. Wicker, B. Pfahringer, S. Kramer, Multi-label classification using boolean matrix decomposition, in:
ACM Symposium on Applied Computing, Trento, Italy, 2012, pp. 179–186.

[15] X. Li, Y. Guo, Multi-label classification with feature-aware non-linear label space transformation, in:
Proceedings of the 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Ar-
gentina, 2015, pp. 3635–3642.

15



[16] Y. Chen, H. Lin, Feature-aware label space dimension reduction for multi-label classification, in: Ad-
vances in Neural Information Processing Systems 25, Lake Tahoe, NV, 2012, pp. 1529–1537.

[17] Z. Lin, G. Ding, M. Hu, J. Wang, Multi-label classification via feature-aware implicit label space encod-
ing, in: Proceedings of the 31th International Conference on Machine Learning, Beijing, China, 2014,
pp. 325–333.

[18] D. R. Hardoon, S. Szedmak, J. Shawe-Taylor, Canonical correlation analysis: an overview with applica-
tion to learning methods, Neurocomputing 16 (12) (2003) 2639–2664.

[19] Y. Zhang, Z. Zhou, Multi-label dimensionality reduction via dependence maximization, ACM Transac-
tions on Knowledge Discovery from Data 4 (3) (2010) 14.

[20] L. Sun, S. Ji, J. Ye, Canonical correlation analysis for multilabel classification: A least-squares formula-
tion, extensions, and analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence 33 (1)
(2010) 194–200.

[21] Y. Zhang, J. Schneider, Multi-label output codes using canonical correlation analysis, in: Proceedings
of the 14th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, 2011,
pp. 873–882.

[22] J. Zhang, M. Fang, H. Wang, X. Li, Dependence maximization based label space dimension reduction
for multi-label classification, Engineering Applications of Artificial Intelligence 45 (2015) 453–463.

[23] A. Joly, P. Geurts, L. Wehenkel, Random forests with random projections of the output space for high
dimensional multi-label classification, in: European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases, Nancy, France, 2014, pp. 607–622.

[24] P. Mineiro, N. Karampatziakis, Fast label embeddings via randomized linear algebra, in: European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases,
Porto, Portugal, 2015, pp. 37–51.

[25] L. Jing, L. Yang, J. Yu, M. K. Ng, Semi-supervised low-rank mapping learning for multi-label classi-
fication, in: Proceedings of the 28th IEEE Conference on Computer Vision and Pattern Recognition,
Boston, MA, 2015, pp. 1483–1491.

[26] K. Bhatia, H. Jain, P. Kar, M. Varma, P. Jain, Sparse local embeddings for extreme multi-label classifi-
cation, in: Advances in neural information processing systems 28, Montreal, Canada, 2015, pp. 730–738.

[27] L. Jian, J. Li, K. Shu, H. Liu, Multi-label informed feature selection, in: Proceedings of the 25th
International Joint Conference on Artificial Intelligence, New York, NY, 2016, pp. 1627–1633.

[28] J. Wicker, A. Tyukin, S. Kramer, A nonlinear label compression and transformation method for multi-
label classification using autoencoders, in: Pacific-Asia Conference on Knowledge Discovery and Data
Mining, Auckland, New Zealand, 2016, pp. 328–340.

[29] X. Shen, W. Liu, I. W. Tsang, Q. Sun, Y. Ong, Compact multi-label learning, in: Proceedings of 32nd
AAAI Conference on Artificial Intelligence, New Orleans, LA, 2018, pp. 4066–4073.

[30] A. Gretton, O. Bousquet, A. Smola, B. Schölkopf, Measuring statistical dependence with hilbert-schmidt
norms, in: Proceedings of the 16th International Conference on Algorithmic Learning Theory, Singapore,
2005, pp. 63–77.

16



[31] T. Hastie, R. Tibshirani, J. Friedman, The Elements of statistical learning: data mining, inference, and
prediction, 2nd edition, Springer, 2004.

[32] R. B. Lehoucq, D. C. Sorensen, Deflation techniques for an implicitly restarted arnoldi iteration, SIAM
Journal on Matrix Analysis and Applications 17 (4) (1996) 789–821. doi:10.1137/S0895479895281484.

[33] T. Wei, Y. Li, Learning compact model for large-scale multi-label data, in: Proceedings of the 33rd
AAAI Conference on Artificial Intelligence, Vol. 33, Honolulu, HI, 2019, pp. 5385–5392.

[34] P. Hou, X. Geng, M. Zhang, Multi-label manifold learning, in: Proceedings of the 30th AAAI Conference
on Artificial Intelligence, Phoenix, Arizona, 2016, pp. 1680–1686.

[35] J. Lv, N. Xu, R. Zheng, X. Geng, Weakly supervised multi-label learning via label enhancement., in:
Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019,
pp. 3101–3107.

[36] G. Patrini, A. Rozza, A. K. Menon, R. Nock, L. Qu, Making deep neural networks robust to label
noise: A loss correction approach, in: Proceedings of the 30th IEEE Conference on Computer Vision
and Pattern Recognition, Honolulu, HI, 2017, pp. 1944–1952.

17

http://dx.doi.org/10.1137/S0895479895281484


Feature compression ra
tio(µ)

A
v
e

ra
g

e
 P

re
c
is

io
n

Label compression ratio(ν)

1.00.72

1.0

0.74

0.8
0.8

0.76

0.6
0.6

0.78

0.40.4

0.8

0.20.2

0.82

00

(a) msra

Label com
pression ratio(

ν )

Feature compression ratio(µ)

A
v
e

ra
g

e
 P

re
c
is

io
n

0.5

1.0

0.55

0.8

0.6

0.6

0.65

0.7

0.4

0.2

1.00.80.60 0.40.20

(b) enron

Label compression ratio(ν)

A
v
e
ra

g
e
 P

re
c
is

io
n

Feture compression ratio(µ)

0.35

1.0

0.4

0.45

0.8 1.0

0.5

0.6 0.8

0.55

0.60.4

0.6

0.4
0.2

0.2
0 0

(c) bibtex

Feature co
mpressi

on ra
tio

(µ)

Label com
pression ratio(ν)

A
v
e
ra

g
e
 P

re
c
is

io
n

0.205

1.0

0.8 .0

0.21

0.80.6

0.6
0.4

0.4

0.2

0.215

0.2

0 0

0.22

0.225

(d) esmpgame

Figure 3: The spatial graphs of CMLL over various µ and ν.
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