
Tight lower bounds for Dynamic Time Warping

Geoffrey I. Webb

Monash University, Clayton, Victoria, 3800, Australia

François Petitjean

Monash University, Clayton, Victoria, 3800, Australia

Abstract

Dynamic Time Warping (DTW) is a popular similarity measure for aligning and
comparing time series. Due to DTW’s high computation time, lower bounds
are often employed to screen poor matches. Many alternative lower bounds have
been proposed, providing a range of different trade-offs between tightness and
computational efficiency. LB Keogh provides a useful trade-off in many ap-
plications. Two recent lower bounds, LB Improved and LB Enhanced, are
substantially tighter than LB Keogh. All three have the same worst case com-
putational complexity—linear with respect to series length and constant with
respect to window size. We present four new DTW lower bounds in the same
complexity class. LB Petitjean is substantially tighter than LB Improved,
with only modest additional computational overhead. LB Webb is more effi-
cient than LB Improved, while often providing a tighter bound. LB Webb
is always tighter than LB Keogh. The parameter free LB Webb is usually
tighter than LB Enhanced. A parameterized variant, LB Webb Enhanced,
is always tighter than LB Enhanced. A further variant, LB Webb∗, is useful
for some constrained distance functions. In extensive experiments, LB Webb
proves to be very effective for nearest neighbor search.

Keywords: dynamic time warping, lower bound, time series

1. Introduction

Dynamic Time Warping (DTW) is a time series similarity measure. From
its origins in speech recognition [1], it has spread to a broad spectrum of further
uses, recent examples of which include gesture recognition [2], signature verifi-
cation [3], shape matching [4], road surface monitoring [5], neuroscience [6] and
medical diagnosis [7]. DTW measures similarity by summing pairwise-distances

Email addresses: geoff.webb@monash.edu (Geoffrey I. Webb),
francois.petitjean@monash.edu (François Petitjean)

Extended preprint of a paper accepted for publication in Pattern Recognition.
© 2021. This manuscript version is made available under the CC-BY-NC-ND
4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

ar
X

iv
:2

10
2.

07
07

6v
3

 [
cs

.L
G

]
 2

 M
ar

 2
02

1

http://creativecommons.org/licenses/by-nc-nd/4.0/.

0.0 0.2 0.4 0.6 0.8 1.0
LB_Keogh Tightness

0.0

0.2

0.4

0.6

0.8

1.0

LB
_W

eb
b

Ti
gh

tn
es

s
LB_Webb is tighter here

LB_Keogh is tighter here

Figure 1: Relative tightness of LB Webb
and LB Keogh

0.0 0.2 0.4 0.6 0.8 1.0
LB_Improved Tightness

0.0

0.2

0.4

0.6

0.8

1.0

LB
_W

eb
b

Ti
gh

tn
es

s

LB_Webb is tighter here

LB_Improved is tighter here

Figure 2: Relative tightness of LB Webb
and LB Improved

between points in two series. However, it allows flexibility in which points are
aligned, to adjust for the way related events may unfold at different paces.

In such applications, lower bounding is often employed to discard potential
candidate matches without need to compute the full DTW measure [10]. Nu-
merous such lower bounds have been derived [11, 12, 13, 14, 15, 16]. These pro-
vide differing trade-offs between computational cost and tightness, ranging from
loose constant time LB Kim [12] to the relatively tight LB New [14], which
requires O(` ·w) memory and O(` · logw) time to compute a lower bound for a
pair of series, where ` is the length of the series and w is the window size. These
differing trade-offs will each be useful in different applications. The tighter the
bound, the less frequent the need to compute the full DTW distance. However,
the more compute resource needed to compute the bound, the lower the saving
if DTW is not computed.

This paper presents four new bounds. To the best of our knowledge, the
first of these new bounds, LB Petitjean, is the tightest known DTW lower
bound that has linear complexity with respect to series length and constant
complexity with respect to window size. The second, LB Webb, belongs to
the same complexity class, but is nonetheless substantially faster. Less tight
than LB Petitjean, LB Webb is always tighter than LB Keogh, often sub-
stantially so (see Figure 1), and usually tighter than the previous tightest
lower bound in the complexity class, LB Improved (see Figure 2). The third,
LB Webb Enhanced, is a variant of LB Webb that may be useful in the con-
text of large window sizes. The fourth, LB Webb∗, is a variant of LB Webb
suited to some specific pairwise distance distance functions.

The paper is organized as follows. Section 2 describes DTW. Section 3
describes key existing bounds. Section 4 introduces the first of the new bounds,
LB Petitjean and Section 5 the second, LB Webb and its variants, LB Webb∗

and LB Webb Enhanced. We provide proofs that they are DTW lower
bounds and algorithms for calculating them. Section 6 presents experimen-
tal evaluation of the utility of these bounds. We first compare their tightness to

2

2 4 6 8 10
Time Steps

4

2

0

2

4

Va
lu

es 4
0

0

9

1 1

4

25

4
0

1 0 4

Series A
Series B
Alignments

Figure 3: DTW warping path for time series A = 〈−1, 1,−1, 4,−2, 1, 1, 1,−1, 0, 1〉 and B =
〈1,−1, 1,−1,−1,−4,−4,−1, 1, 0,−1〉 with window w = 1 and δ(Ai, Bj) = (Ai − Bj)2. Each
alignment is labeled with the distance between the elements that are aligned. The DTW
distance is the sum of these distances (52).

that of key existing bounds. We next compare their practical value for nearest
neighbor search. We end with discussion and conclusions.

2. Problem description

DTW is a similarity measure for aligning and comparing time series [1].
DTW finds the global alignment of time series A = 〈A1, . . . , A`〉 and B =
〈B1, . . . , B`〉, as illustrated in Figure 3. For ease of exposition, we assume A
and B are of the same length. However, it is trivial to extend this work to
the case of different length series. A warping path of A and B is a sequence
A = 〈A1, . . . ,AP 〉 of alignments. Each alignment is a pair Ak = (i, j) indicating
that Ai is aligned with Bj . A must obey the following constraints:

• Boundary Conditions: A1 = (1, 1) and AP = (`, `).

• Continuity and Monotonicity: for any Ak = (i, j), 1 < k ≤ P , Ak−1 ∈
{(i−1, j), (i, j−1), (i−1, j−1)}.

The cost DTW(A,B) for series A and B is the minimal cost of any warping
path and is given in Equation 1, where δ(Ai, Bj) represents the cost of aligning
the two elements. Two common such functions are δ(Ai, Bj) = |Ai − Bj | and
δ(Ai, Bj) = (Ai −Bj)

2. DTW(A,B) = D(A`, B`).

D(Ai, Bj) =



δ(Ai, Bj) if i = 1 ∧ j = 1

δ(Ai, Bj) +D(Ai, Bj−1) if i = 1 ∧ 1 < j ≤ `

δ(Ai, Bj) +D(Ai−1, Bj) if 1 < i ≤ ` ∧ j = 1

δ(Ai, Bj) + min

 D(Ai−1, Bj−1),

D(Ai, Bj−1),

D(Ai−1, Bj)

 if 1 < i ≤ ` ∧ 1 < j ≤ `.

(1)

3

A

B

-1
1

1

-1

-1

1

4

-1

-2

-1

1

-4

1

-4

1

-1

-1

1

0

0

1

-1

4
0

0
4
0

0
4
0

9
25
25

1
1
4

4
25
25

25
25
4

25
4
0

0
4
1

1
0
1

1
4

Figure 4: A cost matrix for calculating DTW with window w = 1.

The path with minimal cost can be found using dynamic programming by build-
ing a cost matrix D. Each cell (i, j) of the matrix records the minimum cost of
aligning 〈A1, . . . , Ai〉 and 〈B1, . . . , Bj〉.

Windowing adds a further constraint, that Ai may only be aligned with Bj

if i− w ≤ j ≤ i + w, where w ∈ N is the window. DTWw(A,B) = Dw(A`, B`)
where,

Dw(Ai, Bj) =



δ(Ai, Bj) if i = 1 ∧ j = 1

δ(Ai, Bj) +D(Ai, Bj−1) if i = 1 ∧ 1 < j ≤ w + 1

δ(Ai, Bj) +D(Ai−1, Bj) if 1 < i ≤ w + 1 ∧ j = 1

δ(Ai, Bj) + min

[
D(Ai−1, Bj−1),

D(Ai, Bj−1)

]
if i = j + w ∧ 1 < j ≤ `

δ(Ai, Bj) + min

[
D(Ai−1, Bj−1),

D(Ai−1, Bj)

]
if 1 < i ≤ ` ∧ j = i+ w

δ(Ai, Bj) + min

 D(Ai−1, Bj−1),

D(Ai, Bj−1),

D(Ai−1, Bj)

 if 1 < i < j + w

∧ 1 < j < i+ w.

Figure 4 shows the cost matrix corresponding to the warping path with
window w = 1 illustrated in Figure 3.

The time complexity of calculating DTW with window w is O(` ·w). While
this is linear on both ` and w, when both are relatively large the total computa-
tion can be prohibitive for the many repetitions that are entailed by operations
such as nearest neighbor search. To this end, it is often desirable to employ
lower bounds, such as the popular LB Keogh with complexity O(`). These
allow some potential nearest neighbors to be discarded without recourse to the
expensive process of computing DTW.

4

2 4 6 8 10
Time Steps

4

2

0

2

4

Va
lu

es
9

4 4 1

Series A
Series B
Envelope of B
Distances in bound

Figure 5: Illustration of LB Keogh with w = 1 and δ(Ai, Bj) = (Ai − Bj)2. The gray lines
represent the distances LB Keogh captures.

3. Key existing bounds

LB Keogh [11] employs a pair of derived series called the envelopes. Given
window w, the upper, US , and lower, LS , envelopes of time series S are series
representing the maximum and minimum values of S within the window for
each point in S.

US
i = max

max(1,i−w)≤j≤min(`,i+w)
(Sj)

LS
i = min

max(1,i−w)≤j≤min(`,i+w)
(Sj)

LB Keoghw(A,B) =
∑̀
i=1


δ(Ai,UB

i) if Ai > UB
i

δ(Ai,LB
i) if Ai < LB

i

0 otherwise

This bound is illustrated in Figure 5.
A tighter bound is provided by LB Improved [13]. This bound augments

LB Keogh by capturing not only distances from series A to the envelope of B,
but also some distances from B that are not captured by LB Keogh. It uses the
envelopes of a further derived series called the projection of A. The projection
Ωw(A,B) of A onto B is a sequence such that for all i, 1 ≤ i ≤ `,

Ωw(A,B)i =


UB

i if Ai > UB
i

LB
i if Ai < LB

i

Ai otherwise

LB Improved = LB Keoghw(A,B)+
∑̀
i=1


δ(Bi,UΩw(A,B)

i) if Bi > UΩw(A,B)
i

δ(Bi,LΩw(A,B)
i) if Bi < LΩw(A,B)

i

0 otherwise

.

This bound is illustrated in Figure 6.

5

2 4 6 8 10
Time Steps

4

2

0

2

4

Va
lu

es
9

4 4 1

4 9

1

Series A
Series B

1(A, B)
Envelope of 1(A, B)
Distances in bound

Figure 6: Illustration of LB Improved with w = 1 and δ(Ai, Bj) = (Ai − Bj)2. The gray
lines represent the distances LB Improved captures.

A recently derived bound, LB Enhanced [16], melds two strategies for
establishing a lower bound. It uses the strategy of summing distances to an
envelope employed by both LB Keogh and LB Improved. It adds to this
a constant time operation applied to the start and end of the series, where
alignments are more constrained. It employs the concept of a band. This is a
continuous path through the cost matrix from a cell at the top or right of the
accessible region to a cell at the bottom or left. The sum of the minimum values
in any collection of non-overlapping bands forms a DTW lower bound. Two key
forms of band are the left bands

Lw
i ={(max(1, i−w), i), (max(1, i−w) + 1, i), . . . , (i, i),

(i, i− 1), . . . , (i,max(1, i−w)}

and the right bands

Rw
i ={(min(`, i+w), i), (min(`, i+w) + 1, i), . . . , (i, i),

(i, i− 1), . . . , (i,min(`, i+w)}.

The use of each of these types of bands to calculate a lower bound in isolation
is illustrated in Figures 7 and 8.

LB Enhanced uses just the k leftmost left bands and rightmost right bands,
as these are the smallest bands and hence will usually contribute most to the
lower bound. The distance between these bands is bridged using LB Keogh,
as illustrated in Figure 9.

LB Enhancedk
w(A,B) =

k∑
i=1

[
min(Lw

i) + min(Rw
`−i+1)

]

+

`−k∑
i=k+1


δ(Ai,UB

i) if Ai > UB
i

δ(Ai,LB
i) if Ai < LB

i

0 otherwise

6

A

B

-1
1

1

-1

-1

1

4

-1

-2

-1

1

-4

1

-4

1

-1

-1

1

0

0

1

-1

4
0

0
4
0

0
4
0

9
25
25

1
1
4

4
25
25

25
25
4

25
4
0

0
4
1

1
0
1

1
4

4
0 4

0
40
0 4

0
40
0 25

9
250
25 1

1
11
4 25

4
254
25 25

25
2525
4 4

25
44
0 4

0
40
1 0

1
00
1 4

1
41

Figure 7: The cost matrix for calculating a lower bound using left bands with w=1 and
δ(Ai, Bj) = (Ai − Bj)2. Alternating colors distinguish successive bands. The sum over all
bands of the minimum distances for that band provides a lower bound (39).

A

B

-1
1

1

-1

-1

1

4

-1

-2

-1

1

-4

1

-4

1

-1

-1

1

0

0

1

-1

4
0

0
4
0

0
4
0

9
25
25

1
1
4

4
25
25

25
25
4

25
4
0

0
4
1

1
0
1

1
4

4 04
0

0
4 04
0

0
4 94
00 25 125

25
1
1 41
4
1

25 2525
25
25

25 2525
44 4 04

0
0
4 14
1

1
0 10
1
0

444

Figure 8: The cost matrix for calculating a lower bound using right bands with w=1 and
δ(Ai, Bj) = (Ai − Bj)2. Alternating colors distinguish successive bands. The sum over all
bands of the minimum distances for that band provides a lower bound (36).

A

B

-1
1

1

-1

-1

1

4

-1

-2

-1

1

-4

1

-4

1

-1

-1

1

0

0

1

-1

4
0

0
4
0

0
4
0

9
25
25

1
1
4

4
25
25

25
25
4

25
4
0

0
4
1

1
0
1

1
4

4
0 4

0
40 0

4
0

9
25
25

9
1
1
4

4
25
25

4
25
25
44

25
4
0

0
4
1 0 10

1
0

444

Figure 9: The cost matrix for calculating LB Enhanced2
1(A,B) with k=2, w=1 and

δ(Ai, Bj) = (Ai − Bj)2. Alternating colors distinguish successive bands. The vertical bands
represent the regions bridged by LB Keogh. For the vertical bands in gray LB

i ≤ Ai ≤ UB
i

and hence the values cannot contribute to the bound. The minimum value in each other band
is set in bold. The sum of all these minimum distances provides a lower bound (25).

7

2 4 6 8 10
Time Steps

4

2

0

2

4

Va
lu

es 4 4

9

4 4

Series A
Series B
Envelope of B
Distances in bound

Figure 10: Illustration of LB Enhanced with w = 1, k = 1 and δ(Ai, Bj) = (Ai −Bj)2. The
gray lines represent the distances LB Enhanced captures.

4. The LB Petitjean lower bound

For some elements of A and B, LB Improved can identify a boundary
on the region that LB Keogh can reach (the envelope of the projection) and
add distances from elements in B to this boundary. Consider an ideal case
where the warping path connects Ai and Bj and LB Improved can incorpo-
rate δ(Ai,UB

i) + δ(UB
i , Bj), such as alignment (A6, B7) in Figure 3 and the

LB Improved illustration in Figure 6. With δ(Ai, Bj) = (Ai−Bj)
2, the warp-

ing path for these points costs δ(Ai, Bj) = 25 > δ(Ai,UB
i) + δ(UB

i , Bj) = 4 + 9,
which is the allowance by LB Improved. We present LB Petitjean, a tighter
variant of LB Improved that uses a stronger strategy for adding to LB Keogh
an allowance for points in B that cannot be reached by the distances included in
LB Keogh. It also exploits the constraints on alignments at the start and end
of the series, employing a strategy similar to LB Enhanced. LB Petitjean
uses the following observations.

Observation 1. For any alignment (Ai, Bj), if Bj > UΩ
j then either Ai <

LB
i ≤ Bj ≤ UB

i or LB
i ≤ Ai ≤ Bj ≤ UB

i .

Proof 1. For Ai to be aligned with Bj it is necessary that i − w ≤ j ≤ i + w.
Hence LB

i ≤ Bj ≤ UB
i (note, B indexed by j, the index with which Ai is aligned,

but bounds indexed by i). It cannot be that Ai > Bj because that would require
that Ωi < Ai, which can only happen if Ai > UB

i , in which case Ωi = UB
i which

entails that UΩ
j ≥ UB

i which contradicts that Bj > UΩ
j .

Observation 2. By the same reasoning as Observation 1, for any alignment
(Ai, Bj), if Bj < LΩ

j then either Ai > UB
i ≥ Bj or UB

i ≥ Ai ≥ Bj ≥ LB
i .

LB Petitjean uses these observations to derive tighter bounds than
LB Improved. Returning to the ideal case, where the warping path con-
nects Ai and Bj and LB Improved can incorporate δ(Ai,UB

i) + δ(UB
i , Bj),

LB Petitjean can instead incorporate the greater amount of δ(Ai,UB
i) +

δ(LA
j , Bj)− δ(UB

i ,LA
j). For alignment (A6, B7) in Figure 3 this is 21. B7 = −4

must align with one of A6, A7 or A8, all of which have value 1. Thus, the value of

8

A

B

-1

1

4

-1

-2

-1

1

-4

1

-4

1

-1

-1

1

4

0

0

9

9

25

25

64

64

9

1

1

4

4

1

0

4

4

25

25

4

0

4

4

25

25

4

0

4

25

25

4

0

9

9

0

4

Figure 11: The limited number of potential minimal cost start and end paths of length three.

its alignment must equal (1−−4)2 = 25. However, the LB Keogh bound may
already have incorporated an allowance for this alignment of up to the distance
between the furthest point in A to which B7 might be aligned, UA

7 = 1, and
the closest point in the envelope of B that is within the window of any point to

which B7 could be aligned, LΩ7(A,B)
7 = −1. This allowance for the largest pos-

sible value from LB Keogh for an alignment with B7, δ(UA
7 ,L

Ω7(A,B)
7) = 4 is

subtracted from the distance that is added to the bound, resulting in 25−4 = 21.
LB Petitjean further exploits the tight constraints on the first and last

few alignments in any warping path. This additional mechanism, called the left
and right paths, is inspired by LB Enhanced. It incorporates the minimum
of each of the possible first and last three sequences of alignments in the path,
an even tighter mechanism than that of LB Enhanced. The length of these
initial and final paths are limited to three because there are just seven such
options involving just six distances, as illustrated in Figure 11. If these paths
are increased to length 4, the number of alternatives leaps to 21. The most
efficient manner to compute start and end paths of any greater length than
three would almost certainly be to use the same dynamic programming process
used to find the full path, an operation of the same complexity as directly finding
the path and hence of little practical utility for calculating a lower bound.

MinLRPaths(A,B) =

δ(A1, B1) + δ(A`, B`)

+ min[δ(A1, B2)+δ(A1, B3), δ(A1, B2)+δ(A2, B3),

δ(A2, B2)+δ(A2, B3), δ(A2, B2)+δ(A3, B3),

δ(A2, B2)+δ(A3, B2), δ(A2, B1)+δ(A3, B2),

δ(A2, B1)+δ(A3, B1)]

+ min[δ(A`, B`−1)+δ(A`, B`−2), δ(A`, B`−1)+δ(A`−1, B`−2),

δ(A`−1, B`−1)+δ(A`−1, B`−2), δ(A`−1, B`−1)+δ(A`−2, B`−2),

δ(A`−1, B`−1)+δ(A`−2, B`−1), δ(A`−1, B`)+δ(A`−2, B`−1),

δ(A`−1, B`)+δ(A`−2, B`)]

LB Petitjean assumes that ∀x,y:Ai≤x≤y≤Bj∨Ai≥x≥y≥Bj
δ(Ai, Bj) ≥

9

δ(Ai, y) + δ(Bj , x)− δ(x, y). This is true of both δ = |Ai −Bj | and δ(Ai, Bj) =
(Ai −Bj)

2.

Theorem 1. If ∀x,y:Ai≤x≤y≤Bj∨Ai≥x≥y≥Bjδ(Ai, Bj) ≥ δ(Ai, y) + δ(Bj , x) −
δ(x, y),

LB Petitjeanw(A,B) = MinLRPaths(A,B)

+

`−3∑
i=4


δ(Ai,UB

i) if Ai > UB
i

δ(Ai,LB
i) if Ai < LB

i

0 otherwise

+

`−3∑
j=4



δ(Bj ,UA
j)− δ(UΩ

j ,UA
j) if Bj > UΩ

j > UA
j

δ(Bj ,LA
j)− δ(LΩ

j ,LA
j) if Bj < LΩ

j < LA
j

δ(Bj ,UΩ
j) if Bj > UΩ

j ≤ UA
j

δ(Bj ,LΩ
j) if Bj < LΩ

j ≥ LA
j

0 otherwise

is a lower bound on DTWw(A,B), where UΩ
i denotes UΩw(A,B)

i and LΩ
i denotes

LΩw(A,B)
i .

Proof 2.

DTWw(A,B)

=
∑

(i,j)∈A

δ(Ai, Bj) (2)

≥
∑

(i,j)∈A



δ(Ai, Bj) if i≤3 ∧ j≤3 (3)

δ(Ai, Bj) if i≥`− 2 ∧ j≥`− 2 (4)

δ(Ai,LB
i) + δ(Bj ,UA

j)− δ(UΩ
j ,UA

j) if Ai < LB
i ∧Bj > UΩ

j > UA
j (5)

δ(Ai,LB
i) + δ(Bj ,UΩ

j) if Ai < LB
i ∧Bj > UΩ

j ≤ UA
j (6)

δ(Bj ,UA
j)− δ(UΩ

j ,UA
j) if Ai ≥ LB

i ∧Bj > UΩ
j > UA

j (7)

δ(Bj ,UΩ
j) if Ai ≥ LB

i ∧Bj > UΩ
j ≤ UA

j (8)

δ(Ai,LB
i) if Ai < LB

i ∧Bj ≤ UΩ
j (9)

δ(Ai,UB
i) + δ(Bj ,LA

j)− δ(LΩ
j ,LA

j) if Ai > UB
i ∧Bj < LΩ

j < LA
j (10)

δ(Ai,UB
i) + δ(Bj ,LΩ

j) if Ai > UB
i ∧Bj < LΩ

j ≥ LA
j (11)

δ(Bj ,LA
j)− δ(LΩ

j ,LA
j) if Ai ≤ UB

i ∧Bj < LΩ
j < LA

j (12)

δ(Bj ,LΩ
j) if Ai ≤ UB

i ∧Bj < LΩ
j ≥ LA

j (13)

δ(Ai,UB
i) if Ai > UB

i ∧Bj ≥ LΩ
j (14)

0 otherwise (15)

≥ MinLRPaths(A,B) (16)

10

+

`−3∑
i=4


δ(Ai,LB

i) if Ai < LB
i (17)

δ(Ai,UB
i) if Ai > UB

i (18)

0 otherwise (19)

+

`−3∑
j=4



δ(Bj ,UA
j)− δ(UΩ

j ,UA
j) if Bj > UΩ

j > UA
j (20)

δ(Bj ,LA
j)− δ(LΩ

j ,LA
j) if Bj < LΩ

j < LA
j (21)

δ(Bj ,UΩ
j) if Bj > UΩ

j (22)

δ(Bj ,LΩ
j) if Bj < LΩ

j (23)

0 otherwise. (24)

�

Notes:
(2) repeats the definition of DTW as a sum over all alignments in A.
(16) to (24) are the clauses of Theorem 1. (16) adds MinLRPaths(A,B),

a quantity no greater than the sum of the alignments between the first three
elements of each series and between the last three elements of each. (17) to (19)
add allowances for each Ai : 4 ≤ i ≤ `−3. (20) to (24) add allowances for each
Bj : 4 ≤ j ≤ `−3.

Clauses (3) to (15) repeat the sum over all alignments (Ai, Bj) ∈ A, sepa-
rating them by the various possible combinations of a condition in (17) to(19)
with a condition in (20) to (24). Each condition implicitly includes and none of
the above. The key constraints that arise due to this ordering are made explicit.
However, it is important to keep in mind that each of (5) to (15) includes the
implicit constraint 4≤i≤`−3 ∨ 4≤j≤`−3. Clauses (3) to (15) do not include
cases with both Ai > UB

i and Bj > UΩ
j or both Ai < LB

i and Bj < LΩ
j because

these are mutually inconsistent, as per Observations 1 and 2.
For each clause in (3) to (15), the clause in (17) to (19) that will apply to

the specific Ai and the clause in (20) to (24) that will apply to the specific Bj

are uniquely determined and the addition to the sum over alignments is the
sum of the values that will be added by clauses (16) to (24) for this Ai and Bi.
As every Ai and Bi must appear in at least one alignment in A, and as the
sum of the provisions for each Ai and Bj are no greater than the corresponding
δ(Ai, Bj), LB Petitjeanw(A,B) must be a lower bound on DTW(A,B).

The following notes discuss each case in turn.

(3,4): these capture the alignments between the first three and between the
last three elements of A and B. The MinLRPaths(A,B) on line (16)
contributes an amount not greater than the sum of these. The remaining
alignments can include elements in {A1, . . . A3, A`−2, . . . A`, }, but only
aligned with elements outside {B1, . . . B3, B`−2, . . . B`}, and vice versa.

(5): this captures alignments (Ai, Bj) where Ai will be covered by case (17)and
Bj will be covered by (20). Ai < LB

i ` Ωi = LB
i ≤ UΩ

j . As Bj > UΩ
j > UA

j ,

δ(Ai, Bj) ≥ δ(Ai,UΩ
j) + δ(Bj ,UA

j)− δ(UΩ
j ,UA

j) (25)

11

2 4 6 8 10
Time Steps

4

2

0

2

4

Va
lu

es 4 4 41

4
21

9

4 4

Series A
Projection of B
Series B
Envelope of Projection
Distances shared with Improved
Additional distances in bound

Figure 12: Illustration of LB Petitjean1 with δ(Ai, Bj) = (Ai − Bj)2. The dark gray lines
represent the points where LB Petitjean1 captures greater value than LB Improved. The
medium gray lines are values also captured by LB Improved.

≥ δ(Ai,LB
i) + δ(Bj ,UA

j)− δ(UΩ
j ,UA

j).

(6): this captures alignments (Ai, Bj) where Ai will be covered by case (17)
and Bj will be covered by (22). Ai < LB

i ` Ωi = LB
i ≤ UΩ

j . As Bj > UΩ
j ,

δ(Ai, Bj) > δ(Ai,UΩ
j) + δ(Bj ,UΩ

j)

≥ δ(Ai,LB
i) + δ(Bj ,UΩ

j).

(7): this captures alignments (Ai, Bj) where Ai will be covered by case (19)
and Bj will be covered by (20).

Bj > UA
j ` δ(Ai, Bj) ≥ δ(Bj ,UA

j) ≥ δ(Bj ,UA
j)− δ(UΩ

j ,UA
j).

(8): this captures alignments (Ai, Bj) where Ai will be covered by case (17)
and Bj will be covered by (22). Ai ≥ LB

i ∧ Bj > UΩ
j ` Ωi = Bi ≤ UΩ

j .
Hence,

δ(Ai, Bj) > δ(Bj ,UΩ
j)

(9): this captures alignments (Ai, Bj) where Ai will be covered by case (19)
and Bj will be covered by (24).

Ai ≤ LB
i ` δ(Ai, Bj) > δ(Ai,LB

i).

(10-14): these are equivalent to (5-9), addressing clauses (21) and (23) in place of
(20) and (22) and exchanging upper envelopes for lower and vice versa.

(15): this captures alignments (Ai, Bj) where Ai will be covered by case (19)
and Bj will be covered by (24), both of which add zero to the lower bound.

This bound is illustrated in Figure 12.
When an observation holds irrespective of window size we omit the subscript

from LB Petitjean.

12

A variant of LB Petitjean that omits the left and right paths,

LB Petitjean NoLRw(A,B) =

∑̀
i=1


δ(Ai,UB

i) if Ai > UB
i

δ(Ai,LB
i) if Ai < LB

i

0 otherwise

+
∑̀
i=1



δ(Bi,UA
i)− δ(UΩ

i ,UA
i) if Bi > UΩ

i > UA
i

δ(Bi,LA
i)− δ(LΩ

i ,LA
i) if Bi < LΩ

i < LA
i

δ(Bi,UΩ
i) if Bi > UΩ

i ≤ UA
i

δ(Bi,LΩ
i) if Bi < LΩ

i ≥ LA
i

0 otherwise

is tighter than LB Improved because if Bj > UΩ
j > UA

j then LB Improved

will add δ(Bj ,UΩ
j) to the bound whereas LB Petitjean adds the greater

amount δ(Bj ,UA
j)−δ(UΩ

j ,UA
j). Similarly, when Bj < LΩ

j < LA
j , LB Petitjean

also adds a greater amount. However, it is possible, but rare in practice, for
LB Petitjean to be less tight than LB Petitjean NoLR and hence possible
for it to be less tight than LB Improved.

We present pseudocode for calculating LB Petitjean in Algorithm 1.
LB Petitjean requires calculation of envelopes around both series as well as
around the projection. While the envelopes for the training data can be com-
puted in advance of nearest neighbor search, and the envelope on the query
need only be computed once, an envelope on the projection needs to be com-
puted for each query-training data pair. This can be computed in O(`) time
[13], and hence LB Petitjean has O(`) complexity. Its computation is similar
to LB Improved, the major additional overhead being need to compute an
envelope on the query and the need to compute two distances for some elements
of B rather than one. However, while the complexity is O(`), the constants are
large and the additional tightness of the bound relative to LB Keogh will only
compensate for the additional computation in the most demanding of cases.

5. The LB Webb lower bound

An approximation of LB Petitjean can be computed without recourse to
the projection or its envelopes. This more efficient variant, LB Webb, uses the
concept that an element Bj is free above UA if all elements Ai within its window

are within the envelope of B or cannot access above LUA

.

F↑(j) = ∀i(4 ≤ i ≤ `−3∧j−w ≤ i ≤ j+w)→ (LB
i ≤ Ai ≤ UB

i ∨Ai < LB
i ≤ LUA

i).

Similarly, an element Bj is free below LA if all elements Ai within its window

are within the envelope of B or cannot access below ULA

.

F↓(j) = ∀i(4 ≤ i ≤ `−3∧j−w ≤ i ≤ j+w)→ (LB
i ≤ Ai ≤ UB

i ∨Ai > UB
i ≥ ULA

i).

13

Algorithm 1 Algorithm for computing LB Petitjean

procedure LB Petitjean(series A, series B, lower envelope of A LA, upper
envelope of A UA, lower envelope of B LB , upper envelope of B UB , window
w, # left-right bands k, abandon value a)

b← MinLRPaths(A,B)
for i← 4 to `− 3 do . Compute the LB Keogh bridge.

if Ai > UB i then
b← b+ δ(Ai,UB i)
Pi ← UB i

else if Ai < LB i then
b← b+ δ(Ai,LB i)
Pi ← LB i

else
Pi ← Ai

end if
if b > a then return b

end for
(LP,UP)← compute envelopes(P) . Linear time algorithm [13].
for i← 4 to `− 3 do . Allow for Bi that LB Keogh could not reach.

if Bi > UP i > UAi then
b← b+ δ(Bi,UAi)− δ(UPi, UAi)

else if Bi < LP i < LAi then
b← b+ δ(Bi,LAi)− δ(LPi, LAi)

else if Bi > UP i then
b← b+ δ(Bi,UP i)

else if Bi < LP i then
b← b+ δ(Bi,LP i)

end if
if b > a then return b

end for
return b

end procedure

14

4 5 6
Time Steps

0

2

4

Va
lu

es

Series A
Series B
Lower envelope of A
Envelope of B
Distances in bound for A
Safe distance for B

Figure 13: Illustration of free below LA. B5 is free below LA when w = 1 because none of
the distances included in allowance for Ai within its window extend beyond LA. A4 and A6

are both within the envelope of B, and so do not contribute to the bound. A5 is above UB ,
so contributes δ(A5,UB

5). However, as UB
5 > LA

5 , it does not extend beyond LA. Note, for

computational efficiency, LB Webb uses ULA
rather than LA, as if Ai ≥ UB

i ≥ ULA

i then the

allowance for Ai cannot extend beyond LA
j for any j within the window of i. Hence, it is safe

to include allowance from Bj to LA
j when this is true for all Ai within the window of j.

This is illustrated in Figure 13. If Bj is free above UA, then LB Keogh does

not reach above LUA

j within Bj ’s window and hence δ(Bj ,LUA

j) can be added

to LB Keogh. Respectively, if Bj is free below LA, then δ(Bj ,ULA

j) can be
added to LB Keogh.

LB Webb uses only the envelopes of A and B, an envelope on the envelope
of B and a simple record with respect to each point Bi of whether it is free
above UA or below LA. The latter can be generated as a simple side effect of
the calculation of the LB Keogh bridge.

Theorem 2. If ∀x,y:Ai≤x≤y≤Bj∨Ai≥x≥y≥Bj
δ(Ai, Bj) ≥ δ(Ai, y) + δ(Bj , x) −

δ(x, y),

LB Webbw(A,B) = MinLRPaths(A,B)

+

`−3∑
i=4


δ(Ai,UB

i) if Ai > UB
i

δ(Ai,LB
i) if Ai < LB

i

0 otherwise

+

`−3∑
i=4



δ(Bi,UA
i) if F↑(i) ∧Bi > UA

i

δ(Bi,LA
i) if F↓(i) ∧Bi < LA

i

δ(Bi,UA
i)− δ(ULB

i ,UA
i) if ¬F↑(i) ∧Bi > ULB

i > UA
i

δ(Bi,LA
i)− δ(LUB

i ,LA
i) if ¬F↓(i) ∧Bi < LUB

i < LA
i

0 otherwise

is a lower bound on DTWw(A,B), where ULB

i denotes ith value of the upper

envelope of the lower envelope of B and LUB

i denotes ith value of the lower
envelope of the upper envelope of B and k is an integer 0 ≤ k ≤ `/2.

Proof 3.

DTWw(A,B)

15

=
∑

(i,j)∈A

δ(Ai, Bj)

≥
∑

(i,j)∈A



δ(Ai, Bj) if i≤3 ∧ j≤3 (26)

δ(Ai, Bj) if i≥`−2 ∧ j≥`−3 (27)

δ(Ai,UB
i) + δ(Bj ,LA

j) if Ai > UB
i ∧ F↓(j) (28)

δ(Ai,LB
i) + δ(Bj ,UA

j) if Ai < LB
i ∧ F↑(j) (29)

δ(Bj , Ai) + δ(Ai,UB
i)− δ(UB

i , Ai) if Ai > UB
i ∧Bj < LUB

j < LA
j (30)

δ(Bj , Ai) + δ(Ai,LB
i)− δ(LB

i , Ai) if Ai < LB
i ∧Bj > ULB

j > UA
j (31)

δ(Ai, Bj) if Ai > UB
i (32)

δ(Ai, Bj) if Ai < LB
i (33)

δ(Ai, Bj) otherwise (34)

≥ MinLRPaths(A,B) (35)

+

`−3∑
i=4


δ(Ai,UB

i) if Ai > UB
i (36)

δ(Ai,LB
i) if Ai < LB

i (37)

0 otherwise (38)

+

`−3∑
j=4



δ(Bj ,UA
j) if F↑(j) ∧Bj > UA

j (39)

δ(Bj ,LA
j) if F↓(j) ∧Bj < LA

j (40)

δ(Bj ,LA
j)− δ(LUB

j ,LA
j) if Bj < LUB

j < LA
j (41)

δ(Bj ,UA
j)− δ(ULB

j ,UA
j) if Bj > ULB

j > UA
j (42)

0 otherwise (43)

Notes.

(26,27): these capture the alignments between the first three and between the
last three elements of A and B. The MinLRPaths(A,B) on line (35)
contributes an amount not greater than the sum of these.

(28): this captures alignments where Ai > UB
i ≥ LA

j > Bj and (36) will add

δ(Ai,UB
i) and (40) will add δ(Bi,LA

i), which sum to less than δ(Ai, Bj).

(29): this captures alignments where Ai < LB
i ≤ UA

j < Bj and (36) will add

δ(Ai,LB
i) and (40) will add δ(Bi,UA

i), which sum to less than δ(Ai, Bj).

(30): this captures alignments for which (36) and (41) will be counted.

(31): this captures alignments for which (37) and (42) will be counted.

(32): this captures alignments for which (36) and (43) will apply.

(33): this captures alignments for which (37) and (43) will apply.

(34): this captures alignments for which (38) and one of (39), (40), (41) or (42)
will apply.

16

2 4 6 8 10
Time Steps

4

2

0

2

4

Va
lu

es 4 4 41
21

9

4 4

Series A
Lower Upper B
Lower Envelope of A
Series B
Distances shared with Improved
Additional distances in bound

Figure 14: Illustration of LB Webb1 with δ(Ai, Bj) = (Ai − Bj)2. The dark gray lines rep-
resent the points where LB Webb1 captures greater value than LB Improved. The medium
gray areas are those captured by all of LB Keogh, LB Improved and LB Webb1.

(35): MinLRPaths(A,B) equals the minimum value of a path through the first
and last three elements of A and B. It cannot be greater than the value
of the alignments at (a) and (28).

(36): this adds the distance from Ai to the upper envelope of B for elements Ai

that have alignments captured at (28), (30) and (32).

(37): this adds the distance from Ai to the lower envelope of B for elements Ai

that have alignments captured at (29), (31) and (33).

(38): this adds zero for elements Ai that fall within the envelope of B, whose
alignments are captured at (34).

(39): this applies to elements Bj for which all alignments (Ai, Bj) are of type
(29) or (34). If (29), (37) added δ(Ai,LB

i) and δ(Ai, Bj) ≤ δ(Ai,LB
i) +

δ(Bj ,UA
j) so it is safe to add the latter term. If (34) then (36) applied,

no allowance was added for Ai and hence it is also safe to add δ(Bj ,UA
j).

(40): this applies to elements Bj for which all alignments (Ai, Bj) are of type
(28) or (34). If (28), (36) added δ(Ai,UB

i) and δ(Ai, Bj) ≤ δ(Ai,UB
i) +

δ(Bj ,LA
j) so it is safe to add the latter term. If (34) then (36) applied, no

allowance was added for Ai and hence it is also safe to add δ(Bj ,LA
j).

(41): this applies to elements Bj for which at least one alignment is of type (30).
δ(Ai,UB

i) is added at (36), leaving δ(Bj , Ai) − δ(UB
i , Ai) ≤ δ(Bj ,LA

j) −
δ(LUB

j ,LA
j).

(42): this applies to elements Bj for which at least one alignment is of type (31).
δ(Ai,LB

i) is added at (37), leaving δ(Bj , Ai) − δ(LB
i , Ai) ≤ δ(Bj ,UA

j) −
δ(ULB

j ,UA
j).

(43): this applies to elements of B for which all alignments are of type (34).

LB Webb is illustrated in Figure 14. Pseudocode is presented in Algorithm 2.
It is more efficient to compute than either LB Improved or LB Petitjean.
It is tighter than LB Keogh and LB Enhanced and often tighter than
LB Improved. It is less tight than LB Petitjean.

17

Algorithm 2 Algorithm for computing LB Webb

procedure LB Webb(series A, series B, lower envelope of A LA, upper

envelope of A UA, lower envelope of B LB , upper envelope of B UB , lower

envelope of UB LUB , upper envelope of LB ULB , window w, # left-right

bands k, abandon value a)

b← MinLRPaths(A,B)

c↑← w . Count of the number of F↑ elements to the left of i.

c↓← w . Count of the number of F↓ elements to the left of i.

F ↑← 〈false〉w . true if F↑(i). Initialize all elements as false.

F ↓← 〈false〉w . true if F↓(i). Initialize all elements as false.

for i← k + 1 to `− k do . Compute the LB Keogh bridge.

if Ai > UB i then

b← b+ δ(Ai,UB i)

c↑← 0; c↓← c↓ +1

else if Ai < LB i then

b← b+ δ(Ai,LB i)

c↓← 0; c↑← c↑ +1

else

c↑← c↑ +1; c↓← c↓ +1

end if

if c↑> 2× w then F↑(i)← true

if c↓> 2× w then F↓(i)← true

if b > a then return b

end for

for i← max(1, `− k − c↑ +w) to ` do . Remaining free elements.

F↑(i)← true

end for

for i = max(1, `− k − c↓ +w) to ` do . Remaining free elements.

F↓(i)← true

end for

for ← k + 1 to `− k do. Allow for Bi that LB Keogh could not reach.

if F↑(i) ∧Bi > UAi then

b← b+ δ(Bi,UAi)

else if F↓(i) ∧Bi < LAi then

b← b+ δ(Bi,LAi)

else if Bi > ULB i ≥ UAi then

b← b+ δ(Bi,UAi)− δ(ULB i,UAi)

else if Bi < LUB i ≤ LAi then

b← b+ δ(Bi,LAi)− δ(LUB i,LAi)

end if

if b > a then return b

end for

return b

end procedure

18

5.1. LB Webb∗

In some cases a simplified variant of LB Webb can be deployed. Where
δ(Ai, Bj) = |Ai −Bj |, LB Webbw(A,B) =

LB Webb∗w(A,B) = MinLRPaths(A,B)

+

`−3∑
i=4


δ(Ai,UB

i) if Ai > UB
i

δ(Ai,LB
i) if Ai < LB

i

0 otherwise

+

`−3∑
i=4



δ(Bi,UA
i) if F↑(i) ∧Bi > UA

i

δ(Bi,LA
i) if F↓(i) ∧Bi < LA

i

δ(Bi,ULB

i) if ¬F↑(i) ∧Bi > ULB

i > UA
i

δ(Bi,LUB

i) if ¬F↓(i) ∧Bi < LUB

i < LA
i

0 otherwise

LB Webb∗(A,B) does not require that ∀x,y:Ai≤x≤y≤Bj∨Ai≥x≥y≥Bj
δ(Ai, Bj) ≥

δ(Ai, y) + δ(Bj , x)− δ(x, y) and is a lower bound for DTW where δ(Ai, Bj) in-
creases monotonically with |Ai−Bj |. This is the class of δ for which LB Keogh,
LB Improved and LB Enhanced are lower bounds of DTW.

5.2. LB Webb Enhanced

As the DTW window increases in size, lower bounds based on envelopes,
such as LB Keogh, LB Improved, LB Petitjean and LB Webb, are likely
to decline in tightness due to each point in the envelope representing a maximum
or minimum over an ever increasing proportion of a whole series. In this case,
the method underlying LB Enhanced is likely to excel, as it does not use
envelopes. To this end, a parameterized variant of LB Webb that employs the
left and right bands of LB Enhanced is likely to come to the fore.

LB Webb Enhancedk
w(A,B) =

k∑
i=1

[
min(Lw

i) + min(Rw
`−i+1)

]

+

`−k∑
i=k+1


δ(Ai,UB

i) if Ai > UB
i

δ(Ai,LB
i) if Ai < LB

i

0 otherwise

+

`−k∑
i=k+1



δ(Bi,UA
i) if F↑(i) ∧Bi > UA

i

δ(Bi,LA
i) if F↓(i) ∧Bi < LA

i

δ(Bi,UA
i)− δ(ULB

i ,UA
i) if ¬F↑(i) ∧Bi > ULB

i > UA
i

δ(Bi,LA
i)− δ(LUB

i ,LA
i) if ¬F↓(i) ∧Bi < LUB

i < LA
i

0 otherwise

19

6. Experiments

In order to assess the practical merits of the new lower bounds relative to the
prior state of the art, we compare their performance on the 85 dataset Bakeoff
Paper [17] version of the widely utilized UCR benchmark time series datasets
[18]. We use this version because of the availability of comparative results of
many techniques for it.

All experiments are performed using single threaded implementations of the
respective algorithms in Java and executed on Intel Xeon CPU E5-2680 v3
2.50GHz CPUs. In the interests of reproducible science the source code is made
available at https://github.com/GIWebb/DTWBounds.

The experiments are run in a heterogeneous grid environment. While the
amount of RAM may differ from experiment to experiment, all comparative
runs for a single dataset were performed on a single machine, ensuring that
comparative results for each dataset are commensurable even though results
between datasets may not be.

We use δ = (Ai −Bj)
2.

6.1. Tightness

We first seek to quantify the relative tightness of our new bounds relative to
LB Keogh and LB Improved. Relative tightness will vary greatly depending
on window size. To obtain an evaluation that is relevant to real world practice,
we use for each dataset the window size recommended by the archive. These
recommended window sizes are those that provide most accurate nearest neigh-
bor classification using leave-one-out cross-validation on the training set. Some
recommended window sizes are 0. There is no value in computing a linear time
lower bound for a window size of zero, as it is quicker to simply compute the
full distance. Hence we do not include these datasets in this evaluation and use
only the 60 datasets with recommended window sizes of one or more.

We compute tightness for every pair of a training (T) and a test (Q) se-
ries. We calculate the tightness of a lower bound λw(Q,T) on DTWw(Q,T) as
λw(Q,T)/DTWw(Q,T). We exclude pairs (Q,T) for which DTWw(Q,T) = 0.0.
We compare the average tightness on each dataset for each of LB Petitjean
and LB Webb against each of LB Improved and LB Keogh in Figures 1,
2 and 15 to 18. LB Petitjean is always tighter than LB Improved and
often substantially tighter. In the most extreme case, for ShapeletSim,
LB Petitjean has average tightness of 0.038 while LB Improved has av-
erage tightness of only 0.009. The advantage of LB Petitjean relative to
LB Keogh is even greater.

LB Webb is also necessarily tighter than LB Keogh. Figure 1 shows that
the advantage is often substantial. It is tighter on average than LB Improved
for 47 datasets and less tight for 13. Figure 2 shows that it is never substantially
less tight than LB Improved and is often substantially tighter.

The tightness of LB Enhanced varies with k, tending to, but not always,
growing with k. Tan et. al. [16] identify k = 8 as providing an effective trade-off

20

 https://github.com/GIWebb/DTWBounds

0.0 0.2 0.4 0.6 0.8 1.0
LB_Improved Tightness

0.0

0.2

0.4

0.6

0.8

1.0

LB
_P

et
itj

ea
n

Ti
gh

tn
es

s
LB_Petitjean is tighter here

LB_Improved is tighter here

Figure 15: Relative tightness of
LB Petitjean and LB Improved

0.0 0.2 0.4 0.6 0.8 1.0
LB_Keogh Tightness

0.0

0.2

0.4

0.6

0.8

1.0

LB
_P

et
itj

ea
n

Ti
gh

tn
es

s

LB_Petitjean is tighter here

LB_Keogh is tighter here

Figure 16: Relative tightness of
LB Petitjean and LB Keogh

0.0 0.2 0.4 0.6 0.8 1.0
LB_Enhanced8 Tightness

0.0

0.2

0.4

0.6

0.8

1.0

LB
_P

et
itj

ea
n

Ti
gh

tn
es

s

LB_Petitjean is tighter here

LB_Enhanced8 is tighter here

Figure 17: Relative tightness of
LB Petitjean and LB Enhanced8

0.0 0.2 0.4 0.6 0.8 1.0
LB_Enhanced8 Tightness

0.0

0.2

0.4

0.6

0.8

1.0
LB

_W
eb

b
Ti

gh
tn

es
s

LB_Webb is tighter here

LB_Enhanced8 is tighter here

Figure 18: Relative tightness of LB Webb
and LB Enhanced8

between tightness and computation. Both LB Petitjean and LB Webb are
always tighter than LB Enhanced8. See Figures 17 and 18.

6.2. Classification times with optimal windows

The utility of a lower bound for a given application is determined by the
trade-off it provides between tightness and speed. LB Petitjean requires
slightly more computation than LB Improved, while LB Webb requires sub-
stantially less. To assess the relative utilities of these trade-offs, we next test
the efficiency of nearest neighbor search utilizing these bounds, again employing
optimal window sizes and hence limiting the evaluation to the 60 datasets for
which the optimal window size is greater than zero.

We conduct two types of nearest neighbor search. Each finds for each test
series Q, arg minT∈T DTWw(Q,T), the training series T that is the nearest
neighbor to Q using DTW with the optimal window, w. The first approach,
described in Algorithm 3, tests a test series Q against each training series T in
random order, first applying the relevant lower bound and then only computing

21

Algorithm 3 Experimental procedure for nearest neighbor search with random
order

procedure RandExp(set of query series Q, set of training series T , lower
bound λ)

for Q ∈ Q do
if λ requires UQ and LQ then

Calculate and save UQ and LQ

end if
b← ∅
for T ∈ T do

if b = ∅ then
d← DTW(Q,T)
b← T

else
if λ(Q,T, b) < b then

d′ ← DTW(Q,T)
if d′ < d then

b← T
d← d′

end if
end if

end if
end for

end for
end procedure

the full distance if the lower bound is less than the best distance so far. The
second approach, described in Algorithm 4, for each query Q, first computes
the lower bound for every training series T , then sorts the training series in
ascending order and finally computes the full distances on successive training
series until the minimum distance found is less than the next lower bound.

Each approach is repeated ten times for each dataset and average results
are presented in order to smooth out variations in time due to extraneous fac-
tors and in performance due to randomization for the random order approach.

The envelopes for the training series, LT , UT , ULT

and LUT

, are precalculated
and the time for calculating these envelopes is not included in the experimental
timings. The calculation of all other envelopes is included in timings. Calcu-
lation of LΩ and UΩ is considered part of a the calculation of the bound and
must be done once for each bound calculation. In contrast, calculation of UQ,

LQ, LUQ

, ULQ

need only be done once per query series.
Note that early abandoning is used for the random order search, whereby

the lower bound calculation is abandoned as soon as the cumulative calculation
of the lower bound exceeds the distance to the nearest neighbor found so far.
This is not possible for the sorted approach, as the lower bounds are computed
before any of the full distances.

Figures 19 to 22 present the comparisons of LB Webb and LB Petitjean

22

Algorithm 4 Experimental procedure for nearest neighbor search with sorted
series

procedure SortedExp(set of query series Q, set of training series T , lower
bound λ)

for Q ∈ Q do
if λ requires UQ and LQ then

Calculate and save UQ and LQ

end if
for T ∈ T do

D[T]← λ(Q,T)
end for
d←∞
for T ∈ T in ascending order on D[T] until D[T] ≥ d do

if d =∞ then
d← DTW(Q,T)
b← T

else
if D[T] < b then

d′ ← DTW(Q,T)
if d′ < d then

b← T
d← d′

end if
end if

end if
end for

end for
end procedure

against each of LB Keogh and LB Improved. These and all subsequent rel-
ative compute-time scatter plots plot the mean of ten runs together with error
bars that show one standard deviation either side of the mean in each dimen-
sion. As the plots use log-log scale, these plots extend further to the left than
right and further below than above the point. In most cases the error bars are
not visible, as they do not extend beyond the dot centered on the mean.

LB Webb delivers faster nearest neighbor DTW search than either
LB Keogh or LB Improved for the majority of datasets under both ap-
proaches. When the training examples are processed in random order,
LB Webb delivers faster nearest neighbor DTW search than LB Keogh for
59 out of 60 datasets. The greatest difference is for the FordB dataset for which
LB Keogh takes on average 8 minutes and 4 seconds and LB Webb takes 1
minute and 12 seconds. When the training series are sorted on the lower bounds,
LB Webb is faster 52 times and LB Keogh 8. The greatest difference is again
for the FordB dataset for which LB Keogh takes on average 6 minutes and 54
seconds compared with 42 seconds for LB Webb.

LB Petitjean supports faster DTW nearest neighbor search than

23

100 101 102 103 104 105 106

LB_Keogh Average Time in Milliseconds
100

101

102

103

104

105

106

LB
_W

eb
b

Av
er

ag
e

Ti
m

e
in

 M
illi

se
co

nd
s

LB_Webb is faster here

LB_Keogh is faster here

Figure 19: Relative compute time for near-
est neighbor search in random order using
LB Webb and LB Keogh.

100 101 102 103 104 105 106

LB_Improved Average Time in Milliseconds
100

101

102

103

104

105

106

LB
_W

eb
b

Av
er

ag
e

Ti
m

e
in

 M
illi

se
co

nd
s

LB_Webb is faster here

LB_Improved is faster here

Figure 20: Relative compute time for near-
est neighbor search in random order using
LB Webb and LB Improved.

100 101 102 103 104 105 106

LB_Keogh Average Time in Milliseconds
100

101

102

103

104

105

106

LB
_W

eb
b

Av
er

ag
e

Ti
m

e
in

 M
illi

se
co

nd
s

LB_Webb is faster here

LB_Keogh is faster here

Figure 21: Relative compute time for near-
est neighbor search in sorted order using
LB Webb and LB Keogh.

100 101 102 103 104 105 106

LB_Improved Average Time in Milliseconds
100

101

102

103

104

105

106

LB
_W

eb
b

Av
er

ag
e

Ti
m

e
in

 M
illi

se
co

nd
s

LB_Webb is faster here

LB_Improved is faster here

Figure 22: Relative compute time for near-
est neighbor search in sorted order using
LB Webb and LB Improved.

24

100 101 102 103 104 105 106

LB_Keogh Average Time in Milliseconds
100

101

102

103

104

105

106

LB
_P

et
itj

ea
n

Av
er

ag
e

Ti
m

e
in

 M
illi

se
co

nd
s

LB_Petitjean is faster here

LB_Keogh is faster here

Figure 23: Relative compute time for near-
est neighbor search in random order using
LB Petitjean and LB Keogh.

100 101 102 103 104 105 106

LB_Improved Average Time in Milliseconds
100

101

102

103

104

105

106

LB
_P

et
itj

ea
n

Av
er

ag
e

Ti
m

e
in

 M
illi

se
co

nd
s

LB_Petitjean is faster here

LB_Improved is faster here

Figure 24: Relative compute time for near-
est neighbor search in random order using
LB Petitjean and LB Improved.

100 101 102 103 104 105 106

LB_Keogh Average Time in Milliseconds
100

101

102

103

104

105

106

LB
_P

et
itj

ea
n

Av
er

ag
e

Ti
m

e
in

 M
illi

se
co

nd
s

LB_Petitjean is faster here

LB_Keogh is faster here

Figure 25: Relative compute time for near-
est neighbor search in sorted order using
LB Petitjean and LB Keogh.

100 101 102 103 104 105 106

LB_Improved Average Time in Milliseconds
100

101

102

103

104

105

106

LB
_P

et
itj

ea
n

Av
er

ag
e

Ti
m

e
in

 M
illi

se
co

nd
s

LB_Petitjean is faster here

LB_Improved is faster here

Figure 26: Relative compute time for near-
est neighbor search in sorted order using
LB Petitjean and LB Improved.

25

100 101 102 103 104 105 106

LB_Enhanced* Average Time in Milliseconds

100

101

102

103

104

105

106

LB
_W

eb
b

Av
er

ag
e

Ti
m

e
in

 M
illi

se
co

nd
s

LB_Webb is faster here

LB_Enhanced* is faster here

Figure 27: Relative compute time for near-
est neighbor search in sorted order using
LB Webb and LB Enhanced with the best
performing value of k.

100 101 102 103 104 105 106

LB_Enhanced* Average Time in Milliseconds

100

101

102

103

104

105

106

LB
_W

eb
b

Av
er

ag
e

Ti
m

e
in

 M
illi

se
co

nd
s

LB_Webb is faster here

LB_Enhanced* is faster here

Figure 28: Relative compute time for near-
est neighbor search in random order using
LB Webb and LB Enhanced with the best
performing value of k.

LB Improved for the majority of datasets when the series are not sorted, due
to its improved tightness and similar compute time. When the series are sorted,
however, the slight increase in compute time sometimes outweighs the increase
in tightness. It tends to be more efficient than LB Keogh when the datasets
are unsorted, because its more expensive computations can be abandoned as
soon as the lower bound is sufficiently tight to allow a candidate to be pruned.
It tends to be less efficient than LB Keogh when the candidates are sorted on
the bound, as the bound must be calculated in full for every candidate.

We next compare LB Webb to LB Enhanced on the 60 datasets with op-
timal window size greater than zero. We first look at the case where the datsets
are first sorted by lower bound. As the performance of LB Enhanced varies
with parameter k, we test all values of k up to 16, at which point LB Enhanced
is clearly beyond its optimal setting. The total average (again over ten runs)
compute time for LB Webb is 26 minutes. LB Enhanced using the fastest
setting of k for each dataset requires on average 49 minutes to obtain the same
results. Note that this assessment does not take account of the issue of how
the optimal value for k might be predetermined. Figure 27 shows the scatter
plot of times per dataset for LB Webb relative to the best performance of
LB Enhanced for any setting of k.

The results for processing the datasets in random order are presented in
Figure 28. LB Webb is faster for 56 datasets and slower for 4. LB Webb
requires on average 54 minutes to classify all 60 test sets while LB Enhanced
with optimal k requires 1 hour and 50 minutes.

For both these tasks, LB Webb is faster and unlike LB Enhanced does
not require any parameter tuning.

6.3. Classification times with varying window sizes

To explore how the bounds interact with varying window sizes, and to assess
whether the advantage to LB Webb is specific to the 60 datasets whose optimal

26

Comparison win/loss Total time ratio
LB Webb vs LB Keogh 62 / 23 0:09:13/0:24:39= 0.37
LB Webb vs LB Improved 85 / 0 0:09:13/3:32:25= 0.04
LB Webb vs LB Petitjean 85 / 0 0:09:13/3:32:05= 0.04
LB Webb vs LB Enhanced∗ 30 / 55 0:09:13/0:22:00= 0.42
LB Petitjean vs LB Keogh 4 / 81 3:32:05/0:24:39= 8.60
LB Petitjean vs LB Improved 56 / 29 3:32:05/3:32:25= 1.00
LB Petitjean vs LB Webb 0 / 85 3:32:05/0:09:13=22.97
LB Petitjean vs LB Enhanced∗ 4 / 81 3:32:05/0:22:00= 9.64

Table 1: Results on all UCR datasets, w = 0.01 · `

Comparison win/loss Total time ratio
LB Webb vs LB Keogh 84 / 1 1:21:45/2:58:00=0.46
LB Webb vs LB Improved 85 / 0 1:21:45/4:53:11=0.28
LB Webb vs LB Petitjean 85 / 0 1:21:45/4:43:24=0.29
LB Webb vs LB Enhanced∗ 79 / 6 1:21:45/2:06:49=0.64
LB Petitjean vs LB Keogh 22 / 63 4:43:24/2:58:00=1.59
LB Petitjean vs LB Improved 66 / 19 4:43:24/4:53:11=0.97
LB Petitjean vs LB Webb 0 / 85 4:43:24/1:21:45=3.47
LB Petitjean vs LB Enhanced∗ 11 / 74 4:43:24/2:06:49=2.23

Table 2: Results on all UCR datasets, w = 0.10 · `

window sizes are greater than zero, we here assess classification time when the
training data are sorted on the respective lower bound and the window size is a
specified percentage of series length. We use three window sizes, 1% (Table 1),
10% (Table 2) and 20% (Table 3). In each case we round fractional values up in
order to avoid windows of size zero. In each of the three tables of results, for each
pairwise comparison, we present first a win/loss summary and then the total
time taken, on average, in hours, minutes and seconds to classify the entire 85
test sets in the repository, followed by the ratio of the two times. The win/loss
summary states the number of datasets for which the first algorithm required
less time to classify the test set (wins) and the number for which the second
algorithm required less time. There are no draws. Thus, when the window size
is 1% of the total time series length (Table 1), LB Webb requires less time
than LB Keogh on 62 datasets and more on 23 and requires 9 minutes and
13 seconds to classify the entire repository, which is just 37% of the 24 minutes
and 39 seconds required by LB Keogh.

Comparison win/loss Total time ratio
LB Webb vs LB Keogh 85 / 0 3:23:09/5:25:55=0.62
LB Webb vs LB Improved 85 / 0 3:23:09/7:04:20=0.48
LB Webb vs LB Petitjean 85 / 0 3:23:09/6:45:17=0.50
LB Webb vs LB Enhanced∗ 76 / 9 3:23:09/3:51:42=0.88
LB Petitjean vs LB Keogh 29 / 56 6:45:17/5:25:55=1.24
LB Petitjean vs LB Improved 76 / 9 6:45:17/7:04:20=0.96
LB Petitjean vs LB Webb 0 / 85 6:45:17/3:23:09=1.99
LB Petitjean vs LB Enhanced∗ 15 / 70 6:45:17/3:51:42=1.75

Table 3: Results on all UCR datasets, w = 0.20 · `

27

100 101 102 103 104 105 106

LB_Enhanced* Average Time in Milliseconds

100

101

102

103

104

105

106

LB
_W

eb
b

Av
er

ag
e

Ti
m

e
in

 M
illi

se
co

nd
s

LB_Webb is faster here

LB_Enhanced* is faster here

Figure 29: Relative compute time for nearest
neighbor search in sorted order with window
size set to 1% of series length. LB Webb vs
LB Enhanced with the most effective value
of k for each dataset. LB Webb is faster for
30 datasets and slower for 55. LB Webb re-
quires on average under 9 minutes to classify
all 85 test sets while LB Enhanced requires
22 minutes.

100 101 102 103 104 105 106

LB_Enhanced* Average Time in Milliseconds

100

101

102

103

104

105

106

LB
_W

eb
b

Av
er

ag
e

Ti
m

e
in

 M
illi

se
co

nd
s

LB_Webb is faster here

LB_Enhanced* is faster here

Figure 30: Relative compute time for nearest
neighbor search in sorted order with window
size set to 20% of series length. LB Webb vs
LB Enhanced with the most effective value
of k for each dataset. LB Webb is faster
for76 datasets and slower for 9. LB Webb re-
quires on average 3 hours and 23 minutes to
classify all 85 test sets while LB Enhanced
requires 3 hours and 51 minutes.

As the window size increases from 1 to 10 to 20%, LB Webb consistently
provides an advantage relative to LB Keogh, but the magnitude of that advan-
tage decreases. Thus, at a window size of 20% of total series length, LB Webb
is faster for all datasets. At this window size, LB Webb requires 3 hours and 23
minutes on average to classify all 85 datasets in the repository while LB Keogh
requires 5 hours and 25 minutes.

LB Webb is faster than LB Improved for all datasets at all three window
sizes. The relative magnitude of the improvement decreases as window size
increases. Nonetheless, LB Webb requires only 3 hours and 23 minutes to
classify all 85 datasets at a window size of 20% of total series length compared
to 7 hours and 4 minutes for LB Improved.

LB Webb is faster than LB Enhanced at the best setting for k for only
30 out of the 85 datasets when the window size is set to 1% of series length.
Nonetheless it requires less than half the time to classify the full repository. As
illustrated in Figure 29, this is due to the losses being for datasets that require
less computation and the wins being predominantly for datasets that require
more. As the window size increases, LB Webb wins more often relative to
LB Enhanced with the optimal setting of k, but the magnitudes of the wins
and losses shrink, as illustrated in Figure 30.

LB Petitjean delivers faster nearest neighbor search than LB Improved
for the majority of datasets at all window sizes. However, the magnitudes of the
wins and losses are extremely small. Neither LB Petitjean nor LB Improved
is competitive with LB Keogh, LB Enhanced or LB Webb on these tasks.
This is because presorting does not offer any chance to early abandon lower

28

bound computation. As a result, these bounds are often computed to greater
precision than required by the task. As shown in Figure 23, LB Petitjean is
more likely to excel in contexts where early abandon can be deployed.

7. On the effect of the left and right paths

In this section we investigate the role of the left and right paths that are
incorporated in the two new bounds. To this end we compare LB Webb to
a variant, LB Webb NoLR without the left and right paths and a variant,
LB Webb Enhanced, that replaces the left and right paths with left and right
bands of the form used by LB Enhanced, presented in Section 5.2.

LB Webb NoLRw(A,B) =

∑̀
i=1


δ(Ai,UB

i) if Ai > UB
i

δ(Ai,LB
i) if Ai < LB

i

0 otherwise

+
∑̀
i=1



δ(Bi,UA
i) if F↑(i) ∧Bi > UA

i

δ(Bi,LA
i) if F↓(i) ∧Bi < LA

i

δ(Bi,UA
i)− δ(ULB

i ,UA
i) if ¬F↑(i) ∧Bi > ULB

i > UA
i

δ(Bi,LA
i)− δ(LUB

i ,LA
i) if ¬F↓(i) ∧Bi < LUB

i < LA
i

0 otherwise

Figure 31 shows the relative tightness of LB Webb and LB Webb NoLR
using the optimal window size on all 60 datasets for which the optimal window
size is greater than zero. LB Webb provides a tighter lower bound for every
dataset except wafer, for which its tightness is 0.96891 versus 0.96904 a differ-
ence of just 0.00007. For many datasets the difference is small, but for a few
datasets, where there is considerable variation in the start and end of the series,
the difference is substantial. The largest difference is for FacesUCR for which
LB Webb has tightness of 0.4639 relative to 0.2839 for LB Webb NoLR. The
average difference between the tightness of the two variants is 0.0124.

Figure 32 shows the relative tightness of LB Webb and
LB Webb Enhanced3 using the optimal window size on all 60 datasets
for which the optimal window size is greater than zero. LB Webb provides a
tighter lower bound for every dataset. However, the difference is always small.
The largest difference is for ECG5000 for which LB Webb has tightness of
0.8845 relative to 0.8724 for LB Webb Enhanced3. The average difference
between the tightness of the two variants is 0.0008.

Figure 33 shows the relative time with LB Webb and LB Webb NoLR
for nearest neighbor search using the optimal window size on all 60 datasets for
which the optimal window size is greater than zero. LB Webb is faster for all
but 6 datasets. However, the relative differences are mainly small. The biggest
difference is for ElectricDevices for which LB Webb requires 5 minutes and 39
seconds and LB Webb NoLR requires 6 minutes and 17 seconds. On average

29

0.0 0.2 0.4 0.6 0.8 1.0
LB_Webb_NoLR Tightness

0.0

0.2

0.4

0.6

0.8

1.0

LB
_W

eb
b

Ti
gh

tn
es

s

LB_Webb is tighter here

LB_Webb_NoLR is tighter here

Figure 31: Relative tightness of LB Webb
and LB Webb NoLR

0.0 0.2 0.4 0.6 0.8 1.0
LB_Webb_Enhanced3 Tightness

0.0

0.2

0.4

0.6

0.8

1.0

LB
_W

eb
b

Ti
gh

tn
es

s

LB_Webb is tighter here

LB_Webb_Enhanced3 is tighter here

Figure 32: Relative tightness of LB Webb
and LB Webb Enhanced3

100 101 102 103 104 105 106

LB_Webb_NoLR Average Time in Milliseconds
100

101

102

103

104

105

106

LB
_W

eb
b

Av
er

ag
e

Ti
m

e
in

 M
illi

se
co

nd
s

LB_Webb is faster here

LB_Webb_NoLR is faster here

Figure 33: Relative compute time for near-
est neighbor search in sorted order using
LB Webb and LB Webb NoLR. LB Webb
is faster for 54 datasets and slower for 6.
LB Webb requires on average 35 minutes
and 21 seconds to classify all 60 test sets
while LB Webb NoLR requires 37 minutes
and 20 seconds.

100 101 102 103 104 105 106

LB_Webb_Enhanced3 Average Time in Milliseconds

100

101

102

103

104

105

106

LB
_W

eb
b

Av
er

ag
e

Ti
m

e
in

 M
illi

se
co

nd
s

LB_Webb is faster here

LB_Webb_Enhanced3 is faster here

Figure 34: Relative compute time for near-
est neighbor search in sorted order us-
ing LB Webb and LB Webb Enhanced3.
LB Webb is faster for 41 datasets and slower
for 19. LB Webb requires on average 35 min-
utes and 21 seconds to classify all 60 test
sets while LB Webb Enhanced3 requires 35
minutes and 16 seconds.

30

LB Webb requires 35 minutes and 21 seconds to classify the entire 60 datasets
while LB Webb NoLR requires 37 minutes and 20 seconds.

Figure 34 shows the relative time with LB Webb and
LB Webb Enhanced3 for nearest neighbor search using the optimal
window size on all 60 datasets for which the optimal window size is greater
than zero. LB Webb is faster for all but 19 datasets. However, the relative
differences are all small. The biggest difference is for UWaveGestureLibraryAll
for which LB Webb requires 57 seconds and LB Webb Enhanced3 requires
1 minute and 4 seconds. On average LB Webb requires 35 minutes and 21
seconds to classify the entire 60 datasets while LB Webb Enhanced3 requires
35 minutes and 16 seconds.

In summary, the addition of the left and right paths to LB Webb almost
invariably increases tightness. When there is substantial variation in the begin-
nings and endings of the series it can increase tightness substantially. It always
increases tightness relative to using left and right bands, but in practice this
increase in tightness appears to have little impact. These results suggest that
in some applications it might be advantageous to use LB Webb Enhanced
rather than LB Webb, if an appropriate value for k can be determined.

8. Conclusions

We have derived four new DTW lower bounds. To the best of our knowl-
edge, LB Petitjean is the tightest bound that has linear time complexity with
respect to series length and is invariant to window size. LB Webb shares the
same complexity, but provides a trade-off between efficiency and tightness that
is more effective in many applications.

Both these bounds lend themselves to early abandoning. LB Petitjean
is likely to be most useful in contexts where this can be deployed, such as in
a form of nearest neighbor search where the bound is calculated immediately
before calculating DTW and thus can be abandoned if a closer candidate has
already been encountered.

Both bounds also lend themselves to cascading. This is a process by which
successive bounds providing successive trade-offs between compute time and
tightness are employed in succession. For example, Rakthanmanon and Keogh
[19] employ first the constant time LB Kim [12], followed by LB Keogh, fol-
lowed by a second evaluation of LB Keogh with the order of the two series
reversed. Reversing the order of the two series in LB Keogh will obtain a
tighter bound than applying LB Keogh in the original order in approximately
50% of cases, as the order of the series affects the bound, but neither order
is a priori superior. Both LB Petitjean and LB Webb can be deployed in
a similar manner, by first computing the constant time left and right paths,
then computing the bridging LB Keogh, before finally computing the addi-
tional final pass. This cascade provides intermediate lower bounds of successive
strength that build upon one another, using the value calculated for the looser
bound as a starting point for the tighter one and ending with a bound that is

31

likely to be substantially tighter than the best of LB Keogh under both orders.
This is a promising direction for further research.

LB Webb Enhanced is a parameterized variant of LB Webb that em-
ploys the left and right bands of LB Enhanced in place of LB Webb’s left
and right paths. This variant, with suitably large values of parameter k, may
be useful in contexts where bounds based on distance to the envelope are less
effective, such as when window sizes are large.

LB Petitjean and LB Webb require that
∀x,y∈R,R:Ai≤x≤y≤Bj∨Ai≥x≥y≥Bj

δ(Ai, Bj) ≥ δ(Ai, y) + δ(Bj , x) − δ(x, y),
a condition satisfied by the two common pairwise distance measures,
δ(Ai, Bj) = |Ai−Bj | and δ(Ai, Bj) = (Ai−Bj)

2. A further variant, LB Webb∗,
supports faster computation of LB Webb when δ(Ai, Bj) = |Ai − Bj |, and
provides a tight lower bound for DTW so long as δ(Ai, Bj) increases monoton-
ically with |Ai −Bj |, the same class of pairwise distance functions as for which
LB Keogh, LB Improved and LB Enhanced are DTW lower bounds.

LB Webb has similar tightness to LB Improved, but requires substantially
less computation. Our experiments show that it provides a highly effective
trade-off between speed and tightness in a wide variety of contexts.

9. Acknowledgment

This research has been supported by the Australian Research Council under
award DP210100072. The authors would like to also thank Prof Eamonn Keogh
and all the contributors to the UCR time series classification archive.

References

[1] H. Sakoe, S. Chiba, A dynamic programming approach to continuous
speech recognition, in: International Congress on Acoustics, Vol. 3, 1971,
pp. 65–69.

[2] H. Cheng, Z. Dai, Z. Liu, Y. Zhao, An image-to-class dynamic time warp-
ing approach for both 3d static and trajectory hand gesture recognition,
Pattern Recognition 55 (2016) 137–147.

[3] M. Okawa, Online signature verification using single-template matching
with time-series averaging and gradient boosting, Pattern Recognition 102
(2020) 107227.

[4] Z. Yasseen, A. Verroust-Blondet, A. Nasri, Shape matching by part align-
ment using extended chordal axis transform, Pattern Recognition 57 (2016)
115–135.

[5] G. Singh, D. Bansal, S. Sofat, N. Aggarwal, Smart patrolling: An efficient
road surface monitoring using smartphone sensors and crowdsourcing, Per-
vasive and Mobile Computing 40 (2017) 71–88.

32

[6] Y. Cao, N. Rakhilin, P. H. Gordon, X. Shen, E. C. Kan, A real-time spike
classification method based on dynamic time warping for extracellular en-
teric neural recording with large waveform variability, Journal of Neuro-
science Methods 261 (2016) 97–109.

[7] R. Varatharajan, G. Manogaran, M. K. Priyan, R. Sundarasekar, Wearable
sensor devices for early detection of alzheimer disease using dynamic time
warping algorithm, Cluster Computing 21 (1) (2018) 681–690.

[8] E. Chávez, G. Navarro, R. Baeza-Yates, J. L. Marroqúın, Searching in
metric spaces, ACM Computing Surveys 33 (3) (2001) 273–321.

[9] J. Z. Lai, Y.-C. Liaw, J. Liu, Fast k-nearest-neighbor search based on pro-
jection and triangular inequality, Pattern Recognition 40 (2) (2007) 351–
359.

[10] C. A. Ratanamahatana, E. Keogh, Three myths about dynamic time warp-
ing data mining, in: Proceedings of the 2005 SIAM International Confer-
ence on Data Mining, SIAM, 2005, pp. 506–510.

[11] E. Keogh, C. A. Ratanamahatana, Exact indexing of dynamic time warp-
ing, Knowledge and Information Systems 7 (3) (2005) 358–386.

[12] S.-W. Kim, S. Park, W. W. Chu, An index-based approach for similar-
ity search supporting time warping in large sequence databases, in: 17th
International Conference on Data Engineering., IEEE, 2001, pp. 607–614.

[13] D. Lemire, Faster retrieval with a two-pass dynamic-time-warping lower
bound, Pattern Recognition 42 (9) (2009) 2169–2180.

[14] Y. Shen, Y. Chen, E. Keogh, H. Jin, Accelerating time series searching
with large uniform scaling, in: Proceedings of the 2018 SIAM International
Conference on Data Mining, SIAM, 2018, pp. 234–242.

[15] B.-K. Yi, H. Jagadish, C. Faloutsos, Efficient retrieval of similar time se-
quences under time warping, in: Data Engineering, 1998. Proceedings.,
14th International Conference on, IEEE, 1998, pp. 201–208.

[16] C. W. Tan, F. Petitjean, G. I. Webb, Elastic bands across the path: A new
framework and methods to lower bound dtw, in: Proceedings of the 2019
SIAM International Conference on Data Mining, 2019, pp. 522–530.

[17] A. Bagnall, J. Lines, A. Bostrom, J. Large, E. Keogh, The great time
series classification bake off: a review and experimental evaluation of recent
algorithmic advances, Data Mining and Knowledge Discovery 31 (3) (2017)
606–660.

[18] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,
C. A. Ratanamahatana, E. Keogh, The UCR time series archive,
IEEE/CAA Journal of Automatica Sinica 6 (6) (2019) 1293–1305.

33

[19] T. Rakthanmanon, E. Keogh, Data mining a trillion time series subse-
quences under dynamic time warping, in: Twenty-Third International Joint
Conference on Artificial Intelligence, 2013, pp. 3047–3051.

34

	1 Introduction
	2 Problem description
	3 Key existing bounds
	4 The LB_Petitjean lower bound
	5 The LB_Webb lower bound
	5.1 LB_Webb*
	5.2 LB_Webb_Enhanced

	6 Experiments
	6.1 Tightness
	6.2 Classification times with optimal windows
	6.3 Classification times with varying window sizes

	7 On the effect of the left and right paths
	8 Conclusions
	9 Acknowledgment

