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Abstract

Lung diseases including infections such as Pneumonia, Tuberculosis, and novel

Coronavirus (COVID-19), together with Lung Cancer are significantly widespread

and are, typically, considered life threatening. In particular, lung cancer is

among the most common and deadliest cancers with a low 5-year survival rate.

Timely diagnosis of lung cancer is, therefore, of paramount importance as it

can save countless lives. In this regard, Computed Tomography (CT) scan

is widely used for early detection of lung cancer, where human judgment is

currently considered as the gold standard approach. Recently, there has been

a surge of interest on development of automatic solutions via radiomics, as

human-centered diagnosis is subject to inter-observer variability and is highly

burdensome. Hand-crafted radiomics, serving as a radiologist assistant, requires

fine annotations and pre-defined features. Deep learning radiomics solutions,

however, have the promise of extracting the most useful features on their own

in an end-to-end fashion without having access to the annotated boundaries.

Among different deep learning models, Capsule Networks are proposed to over-
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come shortcomings of the Convolutional Neural Networks (CNNs) such as their

inability to recognize detailed spatial relations. Capsule networks have so far

shown satisfying performance in medical imaging problems. Capitalizing on

their success, in this study, we propose a novel capsule network-based mixture

of experts, referred to as the MIXCAPS. The proposed MIXCAPS architecture

takes advantage of not only the capsule network’s capabilities to handle small

datasets, but also automatically splitting dataset through a convolutional gating

network. MIXCAPS enables capsule network experts to specialize on different

subsets of the data. Our results show that MIXCAPS outperforms a single cap-

sule network and a mixture of CNNs, with an accuracy of 92.88%, sensitivity of

93.2%, specificity of 92.3% and area under the curve of 0.963. Our experiments

also show that there is a relation between the gate outputs and a couple of hand-

crafted features, illustrating explainable nature of the proposed MIXCAPS. To

further evaluate generalization capabilities of the proposed MIXCAPS architec-

ture, additional experiments on a brain tumor dataset are performed showing

potentials of MIXCAPS for detection of tumors related to other organs.

Keywords: Tumor type classification, Capsule network, Mixture of experts

1. Introduction

Lung cancer, according to recent statistics [1], is associated with the highest

mortality rate, among all different cancer types, and is considered as one of

the top three cancers, in terms of incidence. The combined 5-year survival

for lung cancer is still low [2], at 18%, because the majority of patients are

diagnosed at advanced stages [3]. What makes the early diagnosis of lung cancer

significantly challenging is the lack of sufficient visible warning symptoms and

signs in early stages of the disease. Computed Tomography (CT) scan [4] is

by far one of the most advanced and effective techniques used for lung cancer

diagnosis. However, even the CT scans may not reveal convincing signs that can

contribute to early diagnosis of lung cancer. In other words, Imaging features

of nodule such as size, shape, and attenuation that play an important role
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in identifying the cancer may not be immediately accessible to the unaided

eye [5]. More importantly, human-centered diagnosis is subject to inter-observer

variability, meaning that radiologists can have different judgments, depending

on their previous experience. Finally, investigating the test results and coming

into an inclusive decision can be extremely time-consuming and burdensome [6].

Radiomics analysis [7, 8, 9], referring to the extraction of several quantita-

tive and semi-quantitative features from the medical images, is one of the most

successful approaches towards automatizing the cancer diagnosis/prediction pro-

cess [10]. Features extracted in the radiomics analysis are aimed at capturing

different properties of the nodules, such as their shape and texture. Such fea-

tures have shown association with the nodule malignancy, its stage, and even

the patient’s survival time. Radiomics is often categorized in two groups of

hand-crafted [11, 12, 13, 14] and deep learning-based. The former category in-

volves extraction of a set of pre-defined features that are further processed and

analyzed by a statistical or Machine Learning (ML) model. Despite showing

satisfactory results in different tasks [15, 16], hand-crafted radiomics is limited

to the features defined by the radiologists and as such there is no guarantee

that the features contribute to the problem at hand. Furthermore, since hand-

crafted Radiomics features are extracted from the annotated Region of Interest

(ROI), they are still subject to inter-observer variability, and besides being time-

consuming, their performance highly depends on the accuracy of the provided

annotations [17]. In other words, extra effort is required to enhance the anno-

tations and select features that are more descriptive and robust [18].

Deep learning-based radiomics [19, 20, 21], proposed to overcome the short-

comings of its hand-crafted counterparts, does not require a pre-knowledge

about the types of features to be utilized. In other words, deep learning-based

techniques are capable of extracting features that can best contribute to the

problem at hand in an end-to-end fashion. Furthermore, deep learning-based

radiomics does not need to be fed with the annotated ROI, which has the promise

of reducing the effect of inter-observer variability as well as the burden of seg-

menting the images. Among different deep learning techniques, Convolutional
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Neural Networks (CNNs) are more popular within the field of radiomics [22],

due to their ability to efficiently process and learn meaningful features from

medical images [23]. Performance of the CNNs, however, partly depends on

the size of the available dataset [24]. More specifically, CNNs, typically, fail

to determine the spatial relations between the image instances and identify ro-

tation or transformation of an object. As such, CNNs need to be fed with a

large dataset containing all the possible transformations of the objects. Large

datasets are, however, not typically available in medical imaging in particular

for lung cancer malignancy prediction.

Capsule networks [25], also referred to as the CapsNets, are developed aim-

ing at overcoming the aforementioned drawbacks of the CNNs. CapsNets use

capsules, instead of using individual neurons, to represent imaging instances.

CapsNets, therefore, can identify the spatial relations via their “Routing by

Agreement” process, through which capsules try to come to a mutual agreement

about the existence of the objects. In particular, CapsNet’s ability to handle

transformations is further investigated in Reference [26] for medical image seg-

mentation. In our recent studies [27, 28, 29], we showed superior performance

and capabilities of CapsNets for tumor type classification.

Capitalizing on the success of the CapsNets, in this study we propose a new

framework, referred to as the Mixture of Capsule networks (MIXCAPS), for the

task of lung nodule malignancy prediction. The proposed MIXCAPS framework

is a “Mixture of Experts” type model [30, 31, 32, 33], which has the potential to

noticeably improve the classification accuracy by integrating/coupling several

experts (individual CapsNets in the context of the proposed MIXCAPS). To be

more precise, mixture of experts solves the classification problems by splitting

the dataset into similar samples, and each expert specializes in classifying sim-

ilar instances. To the best of our knowledge, the proposed MIXCAPS is the

first CapsNet-based mixture of experts framework. The MIXCAPS model ben-

efits from the following three important properties: (i) The embedded capsule

network is capable of classifying the lung nodules without requiring availability

of a large dataset; (ii) The mixture of experts approach enables each CapsNet
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within the MIXCAPS architecture to focus on a specific subset of the nodules,

therefore, improving the overall classification performance of the model, and;

(iii) As shown in our experiments, MIXCAPS is not restricted to the task of

lung nodule malignancy prediction. In fact, it can be easily generalized to the

prediction of other tumor types such as brain cancer. The following summarizes

our contributions:

• CapsNets are utilized, for the first time, as individual experts within a

mixture of experts framework.

• A new and modified CapsNet loss function (margin loss) is developed to

reflect the loss associated with the experts and gating models.

• Output of the gating model is investigated for potential correlations with

nodule hand-crafted features to improve the potential interpretability of

the proposed MIXCAPS.

• Generalizability of the proposed MIXCAPS is illustrated via extension

and evaluation based on a separate dataset associated with a different

prediction task other than the one initially used to design the framework.

The rest of this paper is organized as follows: First, in Section 2 the previ-

ous studies on lung nodule malignancy prediction is briefly investigated. In

Section 3, the dataset and the pre-processing steps are described, along with

the proposed MIXCAPS. Results and discussions are presented in Section 4.

Finally, Section 5 concludes the paper.

2. Related Works

Generally speaking, most of the studies based on hand-crafted radiomics

follow a pre-defined set of steps [7, 8, 9]:

(i) The first step is to pre-process the images and segment the nodule;

(ii) The second and the main step is to extract hundreds of features from

the segmented nodule. These features mostly fall into three categories
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of intensity-based, shape-based, and texture-based features. The former

category captures basic properties of the nodule related to its histogram.

While shape-based features quantify shape-related properties such as area,

diameter, and volume, texture-based ones capture the heterogeneity of the

nodule texture;

(iii) In the third step of the hand-crafted radiomics analysis, feature reduction

techniques are utilized to select the most relevant and robust features;

(iv) In the final step, extracted features are fed to a statistical or machine

learning tool to calculate the desired outcome.

For example, the study performed by authors in Reference [34] is a recent imple-

mentation of the above mentioned steps for extracting hand-crafted radiomics

for lung nodule malignancy prediction. In this study, a total of 385 features

is extracted from the annotated nodules. Consequently, based on a correlation

analysis, the non-redundant features are selected and fed to a regression model

to output the malignancy probability.

The limitations of the hand-crafted radiomics, including its dependence on

the annotated region, have caused a surge of interest in deep learning-based

radiomics, especially using CNNs [35, 36]. CNNs are powerful models for an-

alyzing images and extracting features that best contribute to the problem at

hand, through trainable filters. Furthermore, filters share weights across the

input, which significantly reduces the computational cost, compared to a fully-

connected network. CNNs have been recently used for the problem of lung

nodule malignancy prediction. While some studies [37, 38] have proposed to

adopt previously developed CNN architectures for the radiomics analysis, oth-

ers [22, 39] have designed and optimized their own specific CNN-based mod-

els. Although showing satisfying results, most of these studies had to use a

data augmentation or transfer learning strategy to compensate for the lack of

large datasets specifically for the problem of lung nodule malignancy predic-

tion. These strategies, however, are associated with more computational costs.

Furthermore, there is still no comprehensive study on the effectiveness of these
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strategies for the nodule malignancy prediction. Capsule network (CapsNet),

briefly described in the following section, is an alternative and attractive mod-

eling paradigm to address the aforementioned issues, i.e., accounting for more

variations in the input, without resorting to heavy data augmentation.

2.1. Capsule Networks

Figure 1: Routing by agreement. For the sake of simplicity number of output capsules is set

to two.

Capsule networks are constructed based on capsules, as their main build-

ing blocks. A capsule being represented by a vector consists of several neurons

representing, collectively, a specific object at a specific location. While neurons

capture the instantiation parameters of the object, the length of a capsule de-

termines the existence probability of that object. The most important property

of a capsule network, distinguishing it from CNNs, is its routing by agreement

process. Generally speaking, each Capsule i, having the instantiation parameter

vector ui, in a lower layer tries to predict the output of the capsules in the next

layer, through a trainable weight matrix Wij given by

ûj|i = Wijui, (1)

where ûj|i denotes the prediction for parent Capsule j. Through the routing

by agreement process, the predictions are evaluated in terms of their similarity

to the actual outputs. More weight is then given to the successful predictions,
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before calculating the final output sj for the capsule j, as follows

aij = sj .ûj|i, (2)

bij = bij + aij , (3)

cij =
exp(bij)∑
k exp(bik)

, (4)

and sj =
∑
i

cijûj|i, (5)

where aij shows the agreement between actual output sj and its prediction

ûj|i, and cij denotes the score assigned to the prediction based on the obtained

agreement. The routing by agreement process, summarized in Fig. 1, enables

capsule the network to recognize spatial information between image instances.

Tumor classification based on capsule networks has been investigated in sev-

eral recent studies, leading to increased performance when compared to CNNs.

Lung tumor malignancy prediction is considered in Reference [27], where a

multi-scale framework is proposed, outperforming single-scale and multi-scale

CNNs. Classifying tumors related to other organs, such as brain, using capsule

networks, has also been investigated in several studies [28, 29, 40, 41], leading

to satisfying performance. The paper makes a unique contribution in this field

by introducing a novel CapsNet architecture based on “Mixture of Experts”,

which is briefly described below.

2.2. Mixture of Experts

Mixture of experts (MoE) [31] refers to adopting several experts, each of

which is specialized on a subset of the data, to collectively perform the final

prediction task. As shown in Fig. 2, experts are separately fed with the input

data and the final output is a weighted average of all the predictions coming

from all the N active experts. The weight gi assigned to Expert i can be either a

pre-determined value, or a trainable one. One simple example of the former case

is averaging over all the experts’ predictions [33]. However, more sophisticated

approaches such as soft clustering of the input may also be adopted. In the

latter case, weights may be trained at the same time with the experts. One
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Figure 2: General framework of a mixture of experts approach.

other approach to use trainable gating weights is to concatenate the feature

vectors obtained from the individual experts and feed the resulting vector to an

external gating model to make the final decision.

The MoE concept has been widely used in medical imaging. The simple

averaging scenario is investigated in References [42] and [43] for retinal vessel

detection from fundus images and breast cancer detection from histology images,

respectively. Trainable gating weights are studied in Reference [44], where hand-

crafted and CNN-based features are combined to detect breast cancer from

pathology images. The scenario where gating weights are trained at the same

time with the experts is investigated in Reference [32] for breast cancer diagnosis.

In particular, CNN experts are combined using weights coming from an external

gating network. The gating network itself is a CNN, taking the same inputs as

the experts, and outputting the probability of each expert being responsible for

each particular input. Our proposed MIXCAPS, which is based on the same

gating scenario as Reference [32], is explained in the next section, along with

its incorporated data pre-processing approach.

3. The Proposed MIXCAPS Framework

In this section, first we present the dataset used to design and develop the

proposed MIXCAPS. Afterwards, the pre-processing approach, and the pro-

posed MIXCAPS framework are described.
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3.1. Data and Pre-processing Approach

The lung nodule malignancy dataset is adopted from the Lung Image Database

Consortium (LIDC) and Image Database Resource Initiative (IDRI) dataset [45,

46, 47]. This dataset consists of CT scans from 1, 018 subjects. All the images

are labeled and annotated by one to four radiologists. Labels include non-

nodule, nodule less than 3 mm in size, and nodules with malignancy scores of

1 to 5, where larger numbers denote higher possibility of malignancy. In this

study, we discarded all the cases with average malignancy score of 3 which dic-

tates an indeterminate malignancy. Consequently, we regrouped labels 1 and

2 as benign nodules, and labels 4 and 5 as malignant nodules. Therefore, we

ended up having a binary classification problem with a total of 2, 283 nodules.

It is worth mentioning that we included all the annotations provided by all the

radiologists as separate nodules. However, the malignancy scores are the av-

erage over all the provided scores. For each nodule, we extracted a 3D patch

from the center of the nodule (center slice and the two immediate neighbors).

Patches are extracted to fit the nodule boundary provided by the radiologists.

However, to have fixed size inputs, all patches were zero-padded to 80× 80 (the

largest possible width and height based on the training data).

3.2. The MIXCAPS Architecture

The proposed capsule network-based mixture of experts for lung nodule ma-

lignancy prediction, referred to as the MIXCAPS, is shown in Fig 3. The 3D

nodule patches are the inputs to two capsule network experts, as well as the

convolutional gating network. The two experts, as shown in Fig 3, consist of

two convolutional layers, the last of which is reshaped to form a capsule layer.

This capsule layer is followed by a routing by agreement and the final capsule

layer. The outputs of the two experts, denoted by o1 and o2, represent the

class (benign and malignant) probabilities. The gating network, consisting of

a convolutional and two fully connected layers, determines the contribution of

each expert, denoted by g1 and g2, for a specific input through a Softmax layer,

11



as follows

g1 =
exp (G1)

exp (G1) + exp (G2)
, g2 =

exp (G2)

exp (G1) + exp (G2)
, (6)

where G1 and G2 are pre-activation outputs. The Softmax layer ensures that g1

and g2 sum to one. These contributions are multiplied by o1 and o2 to calculate

the final prediction o as follows

o = g1o1 + g2o2. (7)

Output vector o encompasses the probability of benign and malignant classes,

denoted by o(0) and o(1), respectively. In other words

o = [o(0), o(1)]T . (8)

where superscript T denotes transpose operator. Originally, margin loss is pro-

posed for the training of the capsule networks. In this study, we adopt the same

loss function with the difference that the loss l is calculated over the final output

of the MIXCAPS instead of the individual capsule networks, as follows

l(0) = T (0) max(0,m+ − o(0))2 + λ(1− T (0)) max(0, o(0) −m−)2, (9)

l(1) = T (1) max(0,m+ − o(1))2 + λ(1− T (1)) max(0, o(1) −m−)2, (10)

l = l(0) + l(1), (11)

where l(0) and l(1) denote the losses associated with the benign and malignant

classes, respectively. m+, λ, and m− are hyper-parameters. Terms T (0) and

T (1) are the ground-truth labels for benign and malignant classes, respectively.

According to Reference [31] comparing the desired output with the blend of out-

puts from the experts, leads to a strong coupling between experts and solutions

in which many experts are used for one case. However, in this study, we did not

encounter such a problem, and therefore did not adopt non-linear combinations

of the outputs.

3.3. CapsNet as a Mixture of Experts

In this subsection, we revisit the idea of the capsule networks and show how

they can be viewed within the mixture of experts framework. In other words,
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we show that a CapsNet is a series of consecutive MoE layers such that each

lower level capsule with instantiation vector ui serves as an expert to predict

the output of the capsule in the next layer with instantiation vector sj .

Recall from Section 2.1 that each capsule (among NPrC number of primary

capsules) with instantiation vector ui, for (1 ≤ i ≤ NPrC), makes predictions

ûj|i, through Eq. (1). Consequently, each capsule (among NPaC number of

parent capsules) with instantiation vector sj , for (1 ≤ i ≤ NPaC), receives

predictions from all the lower level primary capsules. Each primary Capsule i,

therefore, can be considered as an expert making predictions for all the parent

(final) capsules. Contribution of each capsule expert i to each final capsule j is

represented by cij , which is basically similar to gi in an MoE framework, with

the difference that in the conventional MoE formulation, each expert contributes

equally to all the outputs, whereas capsule experts have different contributions

to different final capsules. This is the reason why the notation of cij is used

instead of ci. The instantiation parameter of each final Capsule j is calculated

according to Eq. (5) incorporating predictions from all the experts. Another

difference between capsule experts and conventional MoE ones is that the gating

model in the latter case is typically a simple or advanced machine learning

model, whereas in the former case, routing by agreement serves as the gate to

determine contribution through Eq. (2) to (5). It is also worth noting that Eq.

(4) ensures that contributions to each final capsule j sum to one, satisfying the

requirement of an MoE approach as in Eq. (6).

Having the aforementioned discussion in mind, each CapsNet itself is a series

of mixtures of experts. In the proposed MIXCAPS, the CapsNets themselves

are utilized as single experts. Therefore. MIXCAPS can be considered as a

hierarchical MoE technique. It is also interesting to study how the calcula-

tion of cijs resembles the calculation of experts’ weights in an MoE approach.

Generally speaking, there are several solutions to an MoE problem [48]. An

Expectation Maximization (EM) algorithm is one applicable solution, through

which the experts’ weights are considered as hidden variables, whose posteriors
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are estimated in the E-step, as follows

p(zni |tn,xn) =
p(tn|zni = 1,xn)p(zni = 1|xn)

p(tn|xn)
, (12)

where binary variable zni is one when instance n is assigned to expert i, and zero

otherwise. Term p(zni |tn,xn) represents the posterior probability of zni given

input vector xn and target vector tn. Following the Bayes’ rule, this posterior

is calculated using the likelihood term p(tn|zni = 1,xn) and the prior over zni ,

denoted by p(zni = 1|xn). All the terms appearing in Eq. (12) can be calculated

through the MIXCAPS framework. The likelihood term can be replaced by

the output of the expert capsule networks o
n(1)
i , which denotes the probability

of malignancy for Instance n, based on the ith expert. The prior probability

can also be estimated using the output of the gating model gni denoting the

probability of assigning Instance n to Expert i. The posterior, therefore, can be

defined as

p(zni |tn,xn) =
gni o

n(1)
i∑M

j gnj o
n(1)
j

, (13)

where M is the number of experts.

To further shed light on the MoE view of CapsNets, it would be interest-

ing to note that the EM formulation of the MoE closely resembles the weight

update process of a multiple model (MM) [49] approach. In MM formulation,

observations are sequentially generated from different models and the goal is to

identify the contribution of each single model i given all the observations up to

the current time (Y k), as follows

p(zki |Y k) =
p(yk|zki = 1,Y k−1)p(zki = 1|Y k−1)∑M
j=1 p(y

k|zkj = 1,Y k−1)p(zkj = 1|Y k−1)
, (14)

where yk is the most recent observation. Comparing Eq. (14) with Eq. (13), it

can be seen that while the prior in an MoE approach is determined based on

the current input vector, it is calculated based on the previous observations, in

the MM case. In other words, in MM, the prior is iteratively replaced with the

posterior. The updates of coefficients in the routing by agreement process of the

CapsNet is similar to the weight updates in MM. In particular, in each round
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of the routing by agreement, the previously calculated cij serves as the prior to

compute the coefficient in the next round.

4. Results and Discussion

In this section, three different experiments on lung cancer malignancy pre-

diction are presented. The main objective is to evaluate performance of the

proposed MIXCAPS framework and compare its capabilities with those of its

state-of-the-art counterparts. Results are obtained with 200 iterations of boot-

strapping, where in each iteration, 80% of the data is sampled (with replace-

ment) from the whole dataset. 20 % of the training dataset is then randomly

extracted for validation. A 95% confidence interval (CI) is calculated for all the

performance metrics. Adam optimizer with 10 epochs and batch size of 16 is

used for training.

Experiment 1 : Our first experiment is to compare the performance of the

proposed MIXCAPS with a single capsule network and a mixture of CNNs,

as shown in Table 1, where performance is measured in terms of sensitivity,

specificity, accuracy, and area under the curve (AUC). The architecture of the

single capsule network is exactly the same as the CapsNet experts. We tried to

keep the complexity as similar as possible to the MIXCAPS, when designing the

mixture of CNNs. In particular, the gating network exactly resembles that of

the MIXCAPS. The CNN experts consist of two convolutional layers with 256

filters, similar to the experts in the MIXCAPS. The convolutional layers are

followed by a dense layer with 32 neurons (the same as the dimension of the last

capsule layers), and the final softmax layer for nodule malignancy prediction. As

shown in Table 1, MIXCAPS outperforms its two aforementioned counterparts,

in terms of sensitivity, specificity, accuracy, and AUC.

Experiment 2 : In the second experiment, we compare the proposed MIXCAPS

with several well-known studies on the same dataset. Table 2 shows these stud-

ies, their methods, and the obtained results. As it can be inferred from Table 2,
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the proposed MIXCAPS outperforms all the studies in terms of accuracy and

AUC, except Reference [5]. However, it is worth mentioning that the afore-

mentioned study utilizes hand-crafted radiomics, requiring fine annotation of

the nodules, from which our proposed approach is independent. Reference [50]

has obtained a higher specificity compared to the proposed MIXCAPS. Its low

sensitivity, however, is a sign of an unbalanced classification and/or over-fitting.

Reference [51] has achieved the highest sensitivity among all the other refer-

ences. Nevertheless, no confidence interval is provided to ensure the robustness

of the result.

Figure 4: Example of nodules assigned to experts based on their volume and diameter. The

nodule on the left, which has a lower probability of belonging to the first expert, is smaller in

terms of volume and diameter compared to the nodule on the right.

Experiment 3 : Finally, we conduct an experiment to gain an insight on how

the data instances are split between the two experts. The LIDC-IDRI dataset

is accompanied by a few nodule-related properties, determined by the radiolo-

gists. These features include volume, diameter, x center of mass and y center of

mass. We calculated the correlation between the output of the gating network

and these features. While the correlations with volume and diameter are 0.58

and 0.77, respectively, we observed no correlation with the centers of mass. It

should be noted that the inputs to the proposed MIXCAPS are cropped nod-

ule regions. In other words, the model has no access to the location of the

nodule. Therefore, the almost zero correlations with the centers of the mass is

completely expected. The observed correlations between the gate outputs and

the volume and diameter imply that larger nodules have higher probabilities

of being assigned to the first expert. Fig. 4 shows two nodules in the test set.
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The left nodule, which has a volume of 496.32 and diameter of 9.823, has a low

probability of belonging to the first expert, whereas the nodule on the right,

with a volume of 6663.44 and diameter of 23.347, has a high probability of be-

ing assigned to the first expert. In other words, the first expert tends to handle

larger nodules, compared to the second expert.

Although MoE techniques are shown to be able to improve the classification

performance, they typically face an objection related to the high computational

cost at the test time. This problem, however, can be dealt with by using distilla-

tion [54]. Therefore, in our future studies, we will focus on distilling MIXCAPS

into a smaller and more time-efficient model.

4.1. MIXCAPS for Brain Tumor Type Classification

Brain tumor is among the deadliest cancers. Determining the type of the

tumor, which is a challenging task in terms of accuracy and inter-observer vari-

ability, can significantly facilitate the control/treatment process. Therefore, we

dedicate this subsection to investigate the generalizability of the proposed MIX-

CAPS to brain tumor type classification. In a previous study [29], we proposed

a capsule network-based framework, which we referred to as the BoxCaps, for

brain tumor classification, considering not only raw magnetic resonance imaging

(MRI) inputs, but also the coarse tumor boundaries. The motivation behind

such framework was that the whole brain image contained valuable information

on the location of the tumor with respect to the brain tissue. The CapsNet,

however, tends to get distracted from the main tumor region when being fed

with all the details from the brain image. As such, we designed a modified ar-

chitecture where the output capsules were concatenated with the tumor course

boundary box. This way, the model had access to both brain tissue and tumor

region.

To investigate whether the MIXCAPS can be generalized to brain tumor

classification, we replaced the capsule experts in MIXCAPS with the previously

designed BoxCaps architecture, as shown in Fig. 5. We then tested the resulting

framework on a brain tumor dataset [55], where train, validation, and test splits
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are obtained from the same bootstrapping approach used for the LIDC-IDRI

dataset. The aforementioned dataset consists of 3, 064 images from 233 patients,

diagnosed with one of the three brain tumor types, i.e., Meningioma, Pituitary,

and Glioma. Table 3 presents the obtained results, according to which, the MoE

approach leads to higher accuracy compared to a single BoxCaps. Furthermore,

the MoE approach leads to higher sensitivity for Glioma and Pituitary, and

higher specificity for Meningioma and pituitary tumor types.

Table 3: Performance of the proposed MIXCAPS with BoxCaps as experts. Numbers in

parenthesis show the 95% confidence intervals.

MIXCAPS-BoxCaps BoxCaps

Accuracy 91.3 (91.1, 91.5) % 90.9 (90.2, 91.5) %

Sensitivity for Meningioma 77.5 (77.1, 77.9) % 80.1 (76.2, 84) %

Sensitivity for Glioma 95.9 (93.2, 98.5) % 92 (90, 94.1) %

Sensitivity for Pituitary 97.7 (97.2, 98.3) % 97.2 (95.6, 98.9) %

Specificity for Meningioma 96.1 (96, 96.1) % 94.1 (92.7, 95.5) %

Specificity for Glioma 88.7 (87.6, 89.8) % 89.8 (88.4, 91.2) %

Specificity for Pituitary 88.7 (86.2, 91.2) % 88.1 (86.9, 89.3) %

Finally, we conduct another experiment to study if the provided boundary

box is the only important factor leading to the obtained result. In other words

we need to make sure that the input images are not ignored by the model, simply

because the boundary box itself can determine the tumor type. To this end, we

gradually added zero-mean Gaussian noise to input images and calculated the

model’s accuracy. It is observed that while a noise with a standard deviation

(STD) of 0.01 does not change the accuracy, increasing STD to 0.1 and 0.5

degrades the accuracy to 84.44% and 76%, respectively. This experiment shows

that while the boundary box assists the classification, it does not replace the

input images.
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5. Conclusion and Future Direction

In this paper, we proposed a capsule network-based mixture of experts frame-

work, referred to as the MIXCAPS, for lung nodule malignancy prediction. The

proposed MIXCAPS frameworks contains two capsule network experts and a

convolutional gating network to assign instances to experts. Our obtained re-

sults show that MIXCAPS outperforms a single capsule network and a mixture

of CNNs. It has also several advantages over the previous methods. First, MIX-

CAPS utilizes capsule networks and is therefore capable of handling smaller

datasets. Second, through the MoE approach, experts get the chance to spe-

cialize on a subset of the data. Furthermore, MIXCAPS does not require fine

annotations and is independent from pre-defined hand-crafted features. Our

future directions include exploring capsule gating networks and optimizing the

number of experts, as well as focusing on MIXCAPS knowledge distillation to

improve the model’s time-efficacy.
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