2010.10637v2 [cs.CV] 5Jun 2021

arXiv

Mutual Information Regularized Identity-aware Facial Expression
Recognition in Compressed Video

Xiaofeng Liu?, Linghao Jin®?, Xu Han“’ and Jane You¢

“Harvard University, Cambridge, MA, USA
b John Hopkins University, Baltimore, MD, USA

“Dept. of Computing, The Hong Kong Polytechnic University, Hong Kong

ARTICLE INFO

Keywords:

Facial Expression Recognition
Mutual Information
Disentangled Representation
Compressed Video

ABSTRACT

How to extract effective expression representations that invariant to the identity-specific attributes is
a long-lasting problem for facial expression recognition (FER). Most of the previous methods process
the RGB images of a sequence, while we argue that the off-the-shelf and valuable expression-related
muscle movement is already embedded in the compression format. In this paper, we target to ex-
plore the inter-subject variations eliminated facial expression representation in the compressed video
domain. In the up to two orders of magnitude compressed domain, we can explicitly infer the expres-
sion from the residual frames and possibly extract identity factors from the I frame with a pre-trained
face recognition network. By enforcing the marginal independence of them, the expression feature
is expected to be purer for the expression and be robust to identity shifts. Specifically, we propose a
novel collaborative min-min game for mutual information (MI) minimization in latent space. We do
not need the identity label or multiple expression samples from the same person for identity elimina-
tion. Moreover, when the apex frame is annotated in the dataset, the complementary constraint can
be further added to regularize the feature-level game. In testing, only the compressed residual frames
are required to achieve expression prediction. Our solution can achieve comparable or better perfor-
mance than the recent decoded image-based methods on the typical FER benchmarks with about 3
times faster inference.

1. Introduction

The video modality is increasingly important in many
computer vision applications [1, 2]. Considering the natural
dynamic property of the human face expression [3], many
works propose to explore spatio-temporal features of facial
expression recognition (FER) from the videos. Recently,
deep neural networks (DNN) have achieved significant progress
for image-based facial expression recognition [4], while the
processing of expression video is still challenging.

Although the multi-frame series can inherit richer in-
formation and the temporal-correlation between consecutive
frames can typically be useful for FER, the video also intro-
duced a lot of redundancy. The signal-to-noise ratio (SNR)
in FER videos is exceptionally low due to the slight muscle

activity [5, 4].

The typical spatio-temporal FER DNNs explore the spa-
tial and temporal clues in a series of frames to extract the e ) ) )
facial expression-related information [5]. The recursive neu-
ral network (RNN), 3D convolutional, and non-local net-
works are the most frequently used network backbones [6,
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7]. Unfortunately, using DNN to process many consecu-

tive frames can be computationally costly. It can be hard
to scalable for the long videos [8, 4]. Furthermore, for some

Figure 1: lllustration of the typical video compression and the
scheme of conventional FER methods, which first decode the
video and then feed it into a FER network.
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networks, such as RNNs, modeling long-term dependence
can be difficult [2]. Many FER techniques, in particular, are
able to achieve good performance using image-based FER
with decision-level fusion, which completely lost the tem-
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poral dependence. This suggests the temporal cues can be
hard to explore in the low SNR FER videos with the con-
ventional solutions [9, 10].

We argue that the compressed domain can be suitable for
the FER task for four reasons. 1) the consecutive frames in
video modality have many uninformative and repeating pat-
terns, which may drown the “interesting” and “true" signal
[11]. With the standard video compression algorithms, the
compression ratio can usually be hundred times [12]. Ma-
nipulating on the compressed domain can significantly re-
duce the cost of computation and memory. 2) the typical
compression methods (e.g., MPEG-4, H.264, and HEVC)
break the video to the I frame (intracoded frames) with the
first image, and follows several P frames (predictive frames)
which encoded as the “change" or “movement" [13], as shown
in Figure. 1. The fundamental of expression is the action of
the face muscle.. Many FER systems, in reality, are based
on the action unit framework [14].

As a result, compressed P frames will inherit off-the-
shelf but useful expression-related factors, and their pattern
is substantially simpler than raw images. 3) our compressed
domain exploration can also be effective since it focuses on
the “true" signals rather than processing the repeatedly near-
duplicates [15]. 4) Since the to-be-processed data is trans-
mitted in compressed format, the decoding procedure is not
needed in the real-world mission.

Furthermore, the FER task has long suffered from the
high inter-subject variation caused by identity discrepancies
in facial attributes [16, 8]. The learned features may capture
more identity-related information than expression-related in-
formation, and are not purely related to the FER task. Notic-
ing that the P frames may contain the relative location of
face key points, which can be related to the identity [17].
Metric learning is a standard approach for extracting iden-
tity from the expression representation [16, 8, 4]. Inspired
by the adversarial disentanglement, [18, 19] propose to ren-
der the identity removed face, which is inspired by adversar-
ial disentanglement (GAN). These researchs, on the other
hand, concentrate on image-based FER. [3] extend the met-
ric learning [8] for video data by explicitly substitute the im-
age with the video features, without taking into account the
video’s characteristics. Furthermore, these methods neces-
sitate the use of the identity label and multiple expressions
of the same person, which significantly restricts their appli-
cability to the in-the-wild FER task [20].

In this paper, we target to exploit the identity informa-
tion from the I frame using a pre-trained face recognition
network, e.g., FaceNet [21]. Their identity embeddings are
remarkably reliable, since they achieve high accuracy over
millions of identities [22], and robust to a broad range of
nuisance factors such as expression, pose, illumination and
occlusion variations.

Using the identity feature as the anchor, we can explic-
itly enforce the marginal independence of our identity and
expression feature. Instead of the complicated adversarial
training [23] for disentanglement, we adopt the mutual infor-
mation (MI) as the statistical measure of the independence

of these two representations [24]. The MI of two random
variables can usually be intractable to directly and precisely
measure in a high-dimensional space [25]. Recently, some
of the works illustrate that mutual information can be dif-
ferentiable approximated [26]. We propose to minimize the
differentiable MI measure as the objective. Practically, it can
be a latent space min-min game of an encoder-discriminator
framework, which follows a collaborative fashion rather than
adversarial competition. We note that GAN is notorious for
its unstable model collapse [27], while our MI regularization
is concise and efficient.

This work extends our previous work [28] in the follow-
ing significant ways:

» A novel expression and identity disentanglement frame-
work based on practical mutual information minimization,
which follows a min-min game with the joint and marginal
distribution sampling.

» We demonstrate the generality of our framework in more
FER dataset, i.e., MMI, carry out all experiments using the
novel MIC framework.

* Moreover, the systematical cross-dataset evaluation, sen-
sitivity analysis, and identity feature extraction analysis are
provided.

The main contributions of this paper are summarized as
follows:

» We propose to inference expression from the residual
frames, which explores the off-the-shelf yet valuable expres-
sion related muscle movement in the up to two orders of
magnitude compressed domain.

« Targeting for the identity-aware video-based FER, the
independence of expression and identity representations from
P frames and I frame are enforced with the differentiable M1
measure.

« The separability of expression and identity representa-
tions is maximized by a min-min game with the joint and
marginal distribution sampling, which does not rely on the
unstable adversarial game to achieve identity elimination.

We evidenced its effectiveness on several video-based
FER benchmarks with much faster inference. The promis-
ing performance evidenced its generality and scalability.

2. Related Works

Video-based FER has been thoroughly researched, since fa-
cial expression is a natural and universal means for human
communication [5, 29]. Considering that the expression is
essentially a dynamic action which should take minute mus-
cle movements through time into account [30]. Tradition-
ally, the handcrafted features are utilized to represent the
spatio-temporal cues and for FER. Frame aggregation and
spatiotemporal FER networks are being developed in par-
allel with the exponential growth of deep learning. Frame
aggregation approaches may make use of image-based FER
networks by conducting frame-wise aggregation at the decision-
level [9] or feature-level [10].

The essential temporal correlation, on the other hand, is
not investigated. Instead, the spatio-temporal FER networks
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Figure 2: The illustration of our Mutual Information Regular-
ized in Compressed Video (MIC) framework for identity-aware
FER in the compressed video domain. Dec and Cls indicate
decoder and classifier, respectively.

use sequential frames to utilize both the spatial/textural and
temporal information [31]. Furthermore, cascaded networks
suggest integrating CNN-learned perceptual vision represen-
tations with RNNs for variable-length video [32, 33]. More-
over, by using a non-local network for video processing, the
number of potential connections and the corresponding com-
putation costs grow exponentially to the number of frames.
The 3D convolutional has shared kernel-weights along the
time axis, which has also been widely used for video-based
FER [34, 35].

However, recent studies have only looked at the image

domain, and the spatiotemporal FER does not outperform
aggregation methods substantially [5]. To the best of our
knowledge, this is the first effort to investigate the compressed
video FER, which is orthogonal to these advantages and can
be conveniently added to each other.
Video compression convert the digital video into a specific
format that is suitable for recording and distribution of this
video [12]. Conventionally, the H.264/MPEG-4 and the Ad-
vanced Video Coding are the typical algorithms [11]. Typ-
ically, the video sequence is divided into several Group Of
Pictures (GOP) by the video codecs. In a GOP, there is an
I frame and follow by several P frames. Specifically, the I
frame is a self-contained RGB frame with full visual rep-
resentation, while the P frame is the inter frames that hold
motion vectors and residuals w.r.t. the previous frame [13].
The motion vector can be used as an alternative to the optical
flow [36, 37], which needs to decode the RGB images.

The recent action recognition method [15] proposes to

aggregate | frame, residuals, and motion vectors in the com-
pressed domain, without the RGB image decoding. Although
FER shares some similarities with action recognition, the
movement range and use of I frame can be vastly different.
In action recognition [15], the I frame is directly used to pre-
dict the action and combine with the result of P frames. In
contrast, the I frame in FER usually be a neutral face (differ-
ent from the video label). Furthermore, the low-resolution
motion vector can not well encode the expression.
Mutual-information has a long history in unsupervised learn-
ing. The infomax principle [25], as prescribed for neural
networks, advocates maximizing the MI between network
input and output. This can be the fundamental of many ICA
algorithms, which can be nonlinear [38] but are often hard
to adapt for use with deep networks. Recently, some of the
works proposed to achieve unsupervised learning with MI.
[39] proposes a generative adversarial network to minimize
MI with positive and negative samples for Independent Com-
ponent Analysis (ICA). It introduces a strategy to draw sam-
ples from the joint distribution and the product of marginal
distributions and proposed to train an encoder and a discrim-
inator to minimize the Jansen-Shannon divergence. More-
over, it has recently been shown that the GAN framework can
be extended not only to maximize or minimize MI but also
to explicitly compute it using the Mutual Information Neural
Estimation (MINE) proposed in [26]. In [40], the DeepInfo-
Max (DIM) is proposed to learn the representations based on
both local and global information. In [41], Deep Graph In-
fomax (DGI) extends this approach to graph-structured data.

Inspired by these works, we are targeting to utilize the

MI as the justified measure of independence, and minimize
it directly as our disentanglement objective.
Eliminating identity can benefit to extract more “pure" ex-
pression feature [16, 8]. We note that previous identity-aware
FER methods usually explicitly require the identity labels
of FER datasets to sample the triplets [16, 8, 3], while the
identity label is not common in FER. In contrast, our solu-
tion does not relies on the identity label of FER samples, but
utilizes the easily available face recognition dataset.

The typical solution for FER is metric learning. Our MI
regularization is also related to the triplet loss [21], which
maximizes the Euclidean or cosine distance between two
identities. With the development of GAN, adversarial train-
ing also can be utilized for disentanglement [23, 24]. In-
stead, we consider the mutual information to be a more mean-
ingful divergence to capture complex non-linear relationships,
between the identity and expression representations. Be-
sides, the identity label is required in these methods [16, 8,
3]. We can also choose adversarial training [23, 24] as a
baseline to achieve identity elimination in our framework.
We note that the adversarial game is notorious for its unsta-
ble model collapse [27], while our solution follows a collab-
orative way.

Several adversarial disentanglement works demonstrate
that simply separate the input may result in the extracted fea-
ture has no meaningful information [24, 23, 42, 43]. The
reconstruction of input can explicitly enforce the disentan-
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gled factors to be complementary to each other. However,
reconstructing the video can be hugely underconstrained.

3. Methodology

We propose to develop an efficient video-based FER frame-

work that operates directly on the compressed domain. The
overall framework is shown in Figure. 2, which is consisted
of four core modules. The pre-trained identity branch and
FER branch (frame embedding network ff, aggregation mod-
ule, and Classifier) work on the I frame and undecoded P
frames, respectively. The dependence of identity and ex-
pression representations is then measured using a differen-
tiable mutual information regularization module. Further-
more, when the apex frame is annotated, the complementary
constraint can be applied to stabilize the early stage training.

3.1. Modeling Compressed Representations

To illustrate the format of the input video, we choose the
MPEG-4 as an example [12]. The compressed domain has
two typical frames, i.e., I frame and P frames. Specifically,
the I frame I € R"***3 is a complete RGB image. We use h
and w to denote its height and width, respectively. Besides,
the P frame at time ¢t P! € R"™“>3 can be reconstructed
with the stored offsets, called residual errors AT € R/*wx3
and motion vectors 77 € R"¥wX2,

Noticing that the motion vectors 7* has a much lower
resolution, since their values within the same macroblock
are identical. Considering the micro-movements of facial
expression in each frame, the low resolution 7 usually not
helpful for the FER. For P frame reconstruction P/ = P'” Tl, +

Aﬁ, where index all the pixels and P® = I. Then, 77 and
A" are processed by discrete cosine transform and entropy-
encoded.

The majority of compression algorithms are programmed
primarily to minimize file size, and the encoded format can
vary greatly from RGB images in terms of statistical and
structural properties. As a consequence, a specially built
processing network is needed to manage the compressed for-
mat. Considering the structure of residual images A’ are
much simpler than the decoded images, it is possible to uti-
lize simpler and faster CNNs f : R?W3 — R312 (0 ex-
tract the feature of each frame [6, 44, 1]. Practically, we
follow the CNN in the typical CNN-LSTM FER structure
[44, 6, 1], but with fewer layers to explore the information in
A'. Noticing that f, is shared for all frames, and only needs
to store one f in processing.

Besides, most existing action recognition methods with
compressed video [15] independently concatenate the paired
A" and T at each time step and predict an action score of
each P-frame. The temporal cues and their development pat-
terns are important for the FER task [5]. We simply choose
the LSTM in [44] to model the sequential development of
residual frames and summarize the information to an expres-
sion feature z . Since our LSTM is applied to 512-dim fea-
tures, the computation burden is largely smaller than work
on the raw images. Noticing that more advanced RNN, 3D

Algorithm 1 Training scheme of our framework

1: Initialize network parameters of fr, LSTM, cls, Ty
and Dec.

2: while Not Converged do

3: Randomly sample n compressed FE videos.

4 Extract expression and identity feature zg and z;.

5: Draw n (zg, zy) for the joint distribution.

6 Draw n z; for the marginal distribution.

7 Evaluate lower bound M I (zE'/;)n

8

9

= 1% T(zg.z;,0) = log(c ¥ eTGer0),
: Calculate the cross entropy loss for n samples
1 n C
10: Lop ==Y {=2 Y log(Cls(zg).)}.

n

11: Reconstruct [ Apex USING Zp and z;.
12: Calculate the cross entropy loss for n samples
1 A
13: El = n Z:‘:l ”IApex - IApex”%'
14: Compute gradients and update network parameters.

15: Cls « VL

16 fpandLSTM « VLp+VaMI(zg:z,),+ VL.
1. Ty« VMI(z:z)),

18: Dec < VL,.

CNN, or attention networks can potentially be utilized to
replace our LSTM model to further boost the performance
[34, 35, 45].

For the I frame with raw image format, we simply use
the FaceNet [21] pre-trained on millions of identities [22]
as our identity feature extractor f; : R™®3 — 7, where
z; € R!924 denotes the identity feature. We note that Z
and z; do not need to have the same dimension for MI Regu-
larization. Several datasets’ FER videos begin with a neutral
expression, which may help with identity recognition.

3.2. MI regularization

To eliminate the identity-related factors in our FER rep-
resentation, we propose to utilize the identity feature from
pre-trained face recognizer z; as anchor, and explicitly in-
spect the information w.r.t. z; in zj.

Achieving the disentanglement of different factors re-
quires two major objectives, i.e., 1) each factor has its spe-
cific information, and 2) does not incorporate the informa-
tion of the other factors [23, 24]. For example, z; can achieve
1) using the conventional C.E. loss minimization w.r.t. the
expression label y, and z; is from the pre-trained identity ex-
tractor, which inherently has identity information. However,
how to explicitly measure the dependency between these fac-
tors and minimize this metric to achieve the latter objective
can be challenging.

Actually, the mutual information (MI) is the exact met-
ric to measure the amount of information obtained about one
random variable through observing another random variable.

dP
ZEEL g (1

MI(ZE§ZI)=/ logw zpz;
E I

EXT

where z and z; are the random variables follows the distri-

bution £ and T respectively. P indicates the joint prob-
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Figure 3: The illustration of the compressed and decoded frames in CK+ dataset.

ability distribution of (z, z;), P, = [;dP, . andP, =
Je dP_ . are the marginals. P, ® P, is the product of
the marginals.

MI minimization explicitly enforces the joint distribu-
tion to be equal to the product of marginals, which leads to
the statistical independence of two vectors. Instead, the MI
maximization can result in two vectors have the same infor-
mation, and the MI is simply equal to the entropy of a vari-
able.

We propose to utilize the mutual information neural es-
timator (MINE) [26] to provide the unbiased estimation of
MI on n independent and identically distributed (i.i.d.) sam-
ples. It is linearly scalable w.r.t. dimensionality and sample
size, by leveraging a gradient descent over neural network
Ty : €XTI — R. MINE proposes to approximate MI by ex-
ploiting a lower bound based on the Donsker-Varadhan rep-
resentation of the Kullback-Leibler divergence. Therefore,
the neural information measure can be formulated as

MI(zg;zp), = P {[EPQEz, (Tol - log([E[ng@ng [eT"])} )

)

Given the distribution P, u%g denotes the empirical distri-
bution associated to n i.i.d. samples. Since the supremum is
taken over all functions of T, the two expectations are finite.
Then, the MI in Eq. (2) can be estimated as follows:

MI(ZE;ZI)n=//[FD;EZI(ZE’ZI)T(ZE’ZI’Q)

‘1°g(/ / P2 (zp)P! (zple"CrEr0)) (3)

Besides, we leverage Monte-Carlo integration to avoid
computing the integrals to compute M I(zg; zy), as

n n

L T(zp21,0) ~ log(s Y e Ce10) )
i=1 i=1

where Z7 is sampled from the marginal distribution. Note
that (zp, z;) are sampled from the joint distribution I, , .
Then, we can evaluate the bias corrected gradients (e.g., mov-
ing average) [26].

The estimated M I(z; z;) is used as the supervision to
update the FER branch. By utilizing MI regularization, the
adversarial discriminator [46, 23, 24] is no longer needed in
our new framework, which makes the balance of each mod-
ule easier. Note that we need the additional neural network
T, to measure the MI, but it is collaboratively trained with

the FER branch to maximize the discrepancy between the
two features. Essentially, we are playing a min-min game in-
stead of a min-max game. Therefore, it is easier to stabilize
the training (compared to adversarial training).

Besides, MI is a symmetric measure, while the condi-
tional entropy H (z;|zp) = H(z;) — M 1(z;; z) optimized
in conventional disentanglement works [23, 24] is asymmet-
ric and essentially we should calculate both H(z;|zf) and
H(z;|z) as supervision signal [23, 24].

To maximize the discrepancy of zg and z;, we can also
apply the adversarial disentanglement solutions [23, 24]. Nev-
ertheless, with the above-mentioned limitations, such meth-
ods can be hard to optimize and lead to inferior performance.

3.3. Complementary constraint

Many FER datasets follow a well-defined collection pro-
tocol, which usually starts from the neutral face and then
develops to an expression. Specifically, the video in CK+
[47, 14] consists of a sequence that shifts from the neutral
expression to an apex facial expression. The last frame usu-
ally is the apex frame, which has the most strong expression
intensity. Actually, the image-based FER methods select
the last three frames to construct their training and testing
datasets. Similarly, in MMI [48], the video frames usually
start from the neutral face and develop to the apex around
the middle of the video, and returning back to the neutral at
the end of the video. Noticing that the apex frame (i.e., last
frame in CK+ or middle frame in MMI) can clearly incorpo-
rate both the identity and expression information. Therefore,
we are possible to utilize the apex frame as a reference of re-
construction, and simply apply the £, loss.

£1 = ”IApex_IAApex”g (5)

where T Apex = Dec(zy,zp). The complementary restric-
tion is not necessary for our system since the FER loss is
heavily weighted in the FER branch. It requires to main-
tain sufficient information w.r.t. expression and not easy
to have nothing meaningful. However, the complementary
constraint does helpful for the convergence in the early stage.
When the apex is annotated, we only need to decode the apex
frame in the decoded image domain at the start of a few train-
ing epochs.

3.4. Overall objectives
We have three to be minimized objectives, i.e., cross-
entropy loss, mutual information and £ loss, which works
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Figure 4: The illustration of the compressed and decoded frames in MMI dataset.

collaboratively to update each module. The expression clas-
sification is the main task of the FER. We choose the typ-
ical cross-entropy loss Lop = — ch=1 v log(Cls(zg),) to
ensure z contains sufficient expression information and fi-
nally have a good performance on C-class expression clas-
sification. We use y, and Cls(zp).indicate the ¢ class
probability of the label and classifier softmax predictions re-
spectively. Since the FER branch can be updated with all of
the losses, we assign the balance parameter « € [0, 1] and
p € [0, 1] to mutual information and £, loss minimization
objectives, respectively. Specifically, we update our f5 and
LSTM modules with

Lop+aMI(zg:z)), + PL, (©6)

For the MI estimator Ty, we update it with M T (;g;;)n.
Moreover, the decoder module Dec is updated with £,. The
detailed training flow is shown in Algorithm 1. We note that
only the FER branch, i.e., fp, LSTM and Cls, is used for
testing.

Since we are using the neural network T} for mutual in-
formation estimation, it is scalable, flexible, and completely
trainable via back-propagation. Moreover, the decoder for
reconstruction is used for complementary constraints. In
contrast, FLF [23, 24] uses a discriminator and a decoder for
adversarial disentanglement and complementary constraint.
Considering the Ty in MIC and discriminator in FLF [23, 24]
has a similar structure, there is no significant difference for
the network complexity. The mutual information calculation
with Eq. 4 has the complexity of O(n), where n is the num-
ber of sampled data. The linear complexity can be simple
for implementation. Conventionally, the fast computation of
MI is limited to discrete variables [49]. For the continuous
random variables, its complexity is quadratic to the number
of samples, which is not desired for a loss function.

4. Experiments

In this section, we first detail our experimental setup,
present a quantitative analysis of our model, and finally com-
pare it with state-of-the-art methods. The good FER accu-
racy and high inference speed in testing demonstrate its ef-
fectiveness.

4.1. Description of the datasets
CK+ Dataset [47, 14] is referring to the Cohn-Kanade AU-
Coded Expression dataset, which is a widely accepted FER

[ Method | Accuracy | Landmarks | Ave Test |
PHRNN-MSCNN (2017) [50] 98.50 7 -
C3D-GRU (2019) [51] 97.25 x -
CTSLSTM (2019) [52] 93.9 v -
(N+M)-tuplet (2019) [3] 93.90 v 12fps
SC (2019) [53] 97.60 v -
G2-VER (2019) [54] 97.40 x -
LBVCNN (2019) [45] 97.38 x -
NST (2020) [55]F 99.69 X -
Mode VLSTM (2019) [44] 97.42 x Tifps
MIC 98.95 X 35fps
MIC-MI 97.84 X 35fps
MIC-MI+4Adv[23] 98.78 X 35fps
MIC-T 98.72 X 35fps
MIC+T! 98.93 X 29fps
FAN+ResNet18* (2019) [7] 99.69 X 10fps
MIC+ResNet6 99.71 X 31fps

Table 1

Experimental results on the CK+ dataset. Note that in order
to make the comparison fair, we do not consider image-based
and 3D geometry based experiment setting and models [8,
16, 4].*Additional FER+ dataset is used. tAdditional body
language dataset is used.

benchmark [5, 45]. The video is collected in a restricted en-
vironment, in which the participate subjects are facing the
recorder with an empty background. The video in CK+ con-
sists of a sequence that shifts from the neutral expression to
an apex facial expression. The last frame usually is the apex
frame, which has the most strong expression intensity. The
expression included in this dataset is anger, contempt, dis-
gust, fear, happiness, sadness, and surprise. There are 327
facial expression videos collected from 118 subjects. Fol-
lowing the previous works, we use subject independent 10-
folds cross-validation [5, 3].

Many FER datasets follow a well-defined collection pro-
tocol, which usually starts from the neutral face and develops
to an expression. Specifically, the image-based FER meth-
ods select the last three frames to construct their training and
testing datasets. In Fig. 3, we show the compressed and de-
coded frames in CK+ dataset. Similarly, in MMI [48], the
video frames usually start from the neutral face and develop
to the apex around the middle of the video, and returning
back to the neutral at the end of the video. Noticing that
the apex frame (i.e., last frame in CK+ or middle frame in
MMI) can clearly incorporate both the identity and expres-
sion information. Therefore, we are possible to utilize the
apex frame as a reference of reconstruction, and simply ap-
ply the £ loss.
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Figure 5: The illustration of the compressed and decoded frames in AFEW dataset.

[ Method [ 1D accuracy [ MI ]
Mode variational LSTM (2019) [44] 28.4 1.57
MIC 0.8 0.01
MIC-MI 5.7 1.22
MIC-MI+Adv[23] 1.4 0.08
MIC-i 0.9 0.10
MIC+T! 0.8 0.09

Table 2

Comparison of the identity eliminating on CK+ dataset w.r.t.
the identity recognition accuracy using zj, and the mutual
information between z; and z,.

MMI Dataset [48] consist of a total of 326 facial expression
videos from 32 participants. There are 213 labeled videos
with the expression label angry, disgust, fear, happy, sad,
and surprise. The video frames start from the neutral face.
Then the expression is developed to the apex in the middle
of video, and returning back to the neutral at the end of the
video. In our experiments, we follow the previous works to
use subject independent 10-folds cross-validation [5, 3]. In
Fig. 4, we show the compressed and decoded frames in the
MMI dataset.

AFEW Dataset [20] is more close to the uncontrolled real-
world environment. It is consists of video clips of movies
[56]. The video in AFEW has a spontaneous facial expres-
sion. The AFEW has seven expressions: anger, disgust,
fear, happiness, sadness, surprise, and neutral. Following
the evaluation protocol in EmotiW [57], there are training,
validation, and testing sets. Since its testing label is not
available, we follow the previous work to use the valida-
tion set for comparison [44]. Noticing that the validation set
is not used in the training stage for the parameter or hyper-
parameter tuning. In Fig. 5, we show the compressed and
decoded frames in the AFEW dataset.

4.2. Implementation details

We preprocess video frames and augment the data ac-
cording to [44, 6, 1] for fair comparison. For these three
datasets, the videos only have one GOP and do not need
to segment the video. We utilize the Pytorch deep learn-
ing platform for our framework. In the training stage, on all
datasets, we set the batch size to 48. All of the modules use
the Adam optimizer with momentum 0.9, and a weight de-
cay of le-5 for 100 training epochs. On the CK+ and MMI
datasets, the learning rate is initialized to le-1, and be mod-
ified to le-2 for the 30"" epoch. For the AFEW dataset, we
initialize the learning rate to le-4, and modify it to 8e-6 for

the 30" epoch and le-7 for the 60" epochs.

All of our training/testings use an NVIDIA Titan X GPU.
We note that the calculation of the accumulated residuals
to recover the apex frame is measured on Intel E5-2698 v4
CPUs, but we do not need this operation in testing. For the
testing speed, we measure the average frame per second (fps)
according to the average running time, which is the sum of
the data pre-processing time and the FER branch forward
pass time.

Practically, our f, LSTM and Cls follow the CNN-LSTM
structure in [6, 44, 1] for fair comparison. Considering the
relatively simpler residual data, we use part of convolutional
layer for f (i.e., C1, C2 and F4 layers as in [6, 44, 1]) and
a fully connected layer for Cls (i.e., R312 — R%rR7).

FAN [7] shows the ResNet [58] can be a powerful back-
bone. To further demonstrate the generality of our frame-
work, we use the first five convolutional layers (i.e., before
the second residual block) and the first fully connected layer
in ResNet18 as our feature extractor backbone. We denote
this ResNet backbone as ResNet6.

For the CK+ and MMI dataset, we choose the last or
middle frame as the apex reference image, respectively. Since
the complementary constraint is only used to stabilize the
initial training of disentanglement, we uniformly decrease f
from 1 to 0 until the 30" epoch. Practically, we use the grid
search to find the optimal & and setitto 0.1, 0.1, 0.2 on CK+,
MMLI, and AFEW datasets, respectively.

4.3. Evaluation and ablation study
Results on CK+ dataset.

The 10-fold cross-validation performance of our proposed
method is shown in Table 1. For a fair comparison, the
image-based experiment settings are not incorporated in the
tables. Besides, only the state-of-the-art (SOTA) accuracy
obtained by the single-models (non-ensemble model) is listed.

Many models, e.g., PHRNN-MSCNN [50], CTSLSTM
[52] and SC [53], achieved the SOTA performance by uti-
lizing the facial landmarks. However, this operation highly
relies on fine-grained landmark detection, which itself is a
challenging task [5, 4], and unavoidably introduced addi-
tional computation.

Based on the mode variational LSTM [44], our proposed
MIC achieves the SOTA result without the facial landmarks,
3D face models, or optical flow. It worth noticing that the
much simpler CNN encoding network makes more residual
frames that can be processed parallel than [44]. Moreover,
our efficiency also benefits from avoiding the decompress of
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[ Method [ Accuracy | Landmarks | Ave Test |
3D CNN-DAP (2014) [59] 63.4 7
CNN+LSTM (2017) [6] 78.61 X
CTSLSTM (2019) [52] 78.40 v 8fps
Mode VLSTM (2019) [44] 79.33 x T0fps
MIC 81.29 < 32fps
MIC-MI 80.25 X 32fps
MIC-MI4+Adv[23] 80.98 x 32fps
MIC-I 80.94 X 32fps
MIC+T! 81.24 X 28fps
Table 3

Experimental results on MMI dataset. Note that in order to
make the comparison fair, we do not consider image-based and
3D geometry based experiment setting and models [8, 16, 4].

the video. Since the videos are typically stored and trans-
mitted with the compressed version, and the residuals are
off-the-shelf. As a result, the proposed compressed domain
MIC can speed up the testing about 3 times over [44], and
achieve better accuracy.

Besides, [3] is a typical metric-learning-based identity
removing method. Our solution can significantly outperform
it with respect to both speed and accuracy. Actually, the sam-
pling of tuplets usually makes the training not scalable [4],
while our identity eliminating scheme is concise and effec-
tive.

When we remove some modules from our framework,
the performances have different degrees of decline. We use
-MI and -1 to denote the MIC without MI regularizer or com-
plementary constraint, respectively. The performance drop
of MIC is significant when we remove the MI regulariza-
tion module, which further evidenced that the identity can
be a notorious factor for FER. The result also implies that
the identity can be well encoded by the face recognition net-
work and the disentanglement with mutual information is
feasible. Compared with using the conventional adversar-
ial training based disentanglement [23, 24] as an alternative
(i.e., MIC-MI+Adv), our MI regularizer is easy to train and
can converge 1.8 times faster in training.

We can also follow the action recognition method [60]
to concatenate the motion vector and residual as the input,
and denote as MIC+7". However, we do not achieve sig-
nificant performance on all datasets, but the inference speed
in testing can be slower. This may be related to the coarse
resolution of the motion vector can not well describe the fine-
grain muscle movement of the face. More appealingly, the
performance of our MIC can be further improved With the
ResNet backbone. With the simplified 6-layer ResNet, MIC
outperforms the FAN [7] w.r.t. both accuracy and process-
ing speed. Aggregation-based methods do not explore the
temporal cues and can be computational costly to compare
all possible image pairs within a set [2]. We note that the
ResNet18 used in FAN [7] is sequentially pre-trained on the
additional MSCeleb-1M face recognition dataset and FER+
expression dataset.

The confusion matrix of our proposed MIC method on
the CK+ is reported in Figure 7 (left). The accuracy for the
expression of class happiness, disgust, anger, surprise, and

100 T T T T T T
MIC MIC-MI:MIC-MHAEIV-\(IIC-I" -MIC+T‘|
80 4. 4
g
o=
g
5]
(5]
<
60 4
An Di Fe Ha sa Su
Expression

Figure 6: Experimental results on MMI dataset accuracy ac-
cording to each emotion among five networks.

contempt are almost perfect.

In Table 2, we investigate the identity eliminating per-
formance. The first metric is following [23] to use recog-
nize identity with zy. Besides, we can directly use mutual
information as the metric of independence. We can see that
the residual frame itself can incorporate much less identity
information than the decoded images as in [44], while it is
still possible to detect identity with the facial contours. The
MI regularization can explicitly remove the identity factors
and outperforms the adversarial training [23].

Results on MMI dataset.

The evaluation results on the MMI dataset are shown in
Table 3. The performance is also consistent with the CK+
dataset, which evidenced its effectiveness and generality. All

of our methods achieve comparable performance to the landmark-

based STOA methods. It is more promising that MIC can
be significantly better than the methods without the land-
marks. Our MIC is efficient, since we explore the correlation
in video frames in the compressed domain.

In Figure 6, we give a comparison of accuracy w.r.t. each
emotion among five MIC baselines, and the confusion ma-
trix of our MIC is reported in Figure 7 (middle). There is a
good performance for the expression class of fear, happiness,
sadness, and surprise. In contrast, the accuracy of expres-
sion class anger and disgust is relatively limited. Especially,
there is a high degree of confusion between anger and dis-
guise. This may be related to the subtle movements between
these expressions are relatively in the residual frames.
Results on AFEW dataset.

The evaluation of the proposed MIC on the AFEW dataset
is shown in Table 4. We note that only the SOTA accu-
racy obtained by the single-models (non-ensemble model)
are listed for a fair comparison. Besides, the audio modality
in AFEW can be used to boost the recognition performance
[61, 62, 63]. We note that we only focus on the image com-
pression in this paper, and the audio/video data are stored
in separate tracks, but the additional modality can also po-
tentially to be added on our framework following the multi-
modal methods [61].

With the simplified mode variational LSTM-based [44]
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Figure 7: Confusion matrix of MIC on CK+, MMI and AFEW datasets with our MIC.

[ Method [ Accuracy [ Model type [ Ave Test | l Method [ Backbone [ Accuracy ]
gndirehcltiorizllL(Szg%)(%gj]ﬂ [62] g?-gg Dgna{"ic - Mode variational LSTM [44] CNN-LSTM 65.85%
enseNet- B tatic - 0,
CTSLSTM (2019) [52] 51.2 v - MIc CNN-LSTM 67'2804
C3D-GRU (2019) [51] 49.87 Dynamic - FAN [7] ResNet18-LSTM | 66.42%
DSTA (2019)F [65] 42.98 Dynamic - MIC+FAN ResNet18-LSTM | 68.53%
E-ConvLSTM (2019)7 [66] 45.29 Dynamic 4fps
NST (2020) [55]1+ 99.69 Dynamic -
Mode VLSTM (2019) [44] 51.44 Dynamic Tifps | 1able 5 o
MIC 53.18 Dynamic 34fps Comparison of the cross-dataset results. We use CK+ training
MIC-MI 52.62 Dynamic 34fps | set for training and test on MMI testing set.
MIC-MI+4-Adv[23] 53.01 Dynamic 34fps
MIC+T! 53.18 Dynamic 30fps
FAN+ResNet18* (2019) [7] 51.18 Static 9fps l Method [ Backbone [ Accuracy l
MIC+ResNet6 53.72 Dynamic 30fps
Mode variational LSTM [44] CNN-LSTM 76.32%
MIC CNN-LSTM 80.05%
Table 4 FAN [7] ResNet18-LSTM | 78.75%
Experimental results on AFEW dataset. *Additional FER+ MIC+FAN ResNet18-LSTM | 81.13%
dataset is used. T Optical flow is used. ftAdditional body
language dataset is used. Table 6

backbone, the exploration in the compressed domain can
achieve comparable or even better recognition performance.
More promisingly, our MIC can also achieve real-time pro-
cessing for the uncontrolled environment, which evidenced
its generality. We note that the typical time resolution in
FER is 24fps [6].

In addition, we note that the complementary constraint
requires the apex frame in training, which is not applicable
for the AFEW dataset. We do not apply the reconstruction
loss in the AFEW task. Although the requirement of the
apex frame imposes some limitations on the training, it does
not affect the generality of the testing or implementation of
the trained model with CK+ and MML.

Some of the works propose to improve the image-based
FER networks and combine the frame-wise scores for video-
based FER [64, 7]. The image-based FER methods [64]
achieves high performance, but [64] uses a very deep net-
work DenseNet-161 and pretrains it on the private Situ dataset.
Moreover, [64] utilize the sophisticated post-processing. Ac-
tually, an intuition of a statistic-based solution is to avoid
LSTM and speed up the processing. However, with the su-
per deep and complicated structure, their processing can be
much slower than our solution.

[62] uses VGGFace as the backbone of f and an RNN
model with LSTM units to capture the temporal dynamic

Comparison of the cross-dataset results. We use MMI training
set for training and test on CK+ testing set.

[ Method [ Backbone | Accuracy |
Mode variational LSTM [44] CNN-LSTM 52.34%
MIC CNN-LSTM 55.85%
FAN [7] ResNet18-LSTM 54.72%
MIC+FAN ResNet18-LSTM 56.43%

Table 7

Comparison of the cross-dataset results. We use AFEW train-
ing set for training and test on MMI testing set for the shared
classes.

cues of the videos. Moreover, [52, 51, 65] also propose to
modify the LSTM model for the spatial-temporal modeling.
However, all of the above solutions are applied to the de-
coded space, which requires decoding processing and needs
to handle much more complicated data. With the 6-layer
ResNet backbone as an expression feature extractor, the per-
formance of our MIC model can be further improved without
an additional FER dataset for pre-training. Overall, the pro-
posed MIC can improve the testing speed by a large margin
and can achieve the SOTA accuracy as the previous models.
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[ Method [ Backbone | Accuracy |
Mode variational LSTM [44] CNN-LSTM 64.60%
MIC CNN-LSTM 67.47%
FAN [7] ResNet18 LSTM | 66.20%
MIC+FAN ResNet18-LSTM 68.62%

Table 8

Comparison of the cross-dataset results. We use AFEW train-
ing set for training and test on CK+ testing set for the shared
classes.

[ [ CK+ [ MMI | AFEW |
z; 1429% | 16.68% | 14.28%
Chance | 14.29% | 16.67% | 14.29%

Table 9
Facial expression recognition with the extracted identity fea-
ture from | frame.

4.4. Identity feature extraction

We adopt the pre-trained face recognizer FaceNet [21]
to extract the identity factor from the I frame. The feature
embedded with the convolutional layers and the first fully
connected layer can be robust to a broad range of nuisance
factors such as expression, pose, illumination, and occlusion
variations, since it achieves high accuracy over millions of
identities [22]. To check the expression information in the
extracted identity feature z;, we use the feature for expres-
sion classification as [23]. The results are shown in 9. We
note that achieve zero FER accuracy with z; does not mean
z; has no information about expression. Instead, approach-
ing the chance probability, i.e., uniform distribution w.r.t.
expression classes, indicates the expression is well disentan-
gled from the identity feature z; with FaceNet.

4.5. Sensitivity analysis

We use a and g to balance the MI and complementary
constraint terms and choose the best value with grid search-
ing. In Tab. 10, we provide the sensitivity analysis of using
different a in three datasets. We can see that we can achieve
the best performance on CK+ and MMI with & = 0.1. For
the AFEW dataset, the performance is relatively stable for
a from 0.15 to 0.25. We simply use 0.2 for all of our MIC
models on the AFEW dataset.

B is used to balance the complementary constraint term,
which can be helpful for stabilizing the training. In Tab. 11,
both the fixed f and linear changing § are compared. De-
creasing f from 1 to 0 for 30 or 50 epochs can usually achieve
the best performance.

4.6. Cross-database validation

Since the subjects are different across CK+ and MMI
datasets, the cross-dataset evaluation can be used to evidence
if the trained model is affected by identity [16]. In Tab. 5,
the FER model trained CK+ training sets in the previous ex-
periment is directly implemented to the MMI testing set. We
can see that our MIC can outperform the other methods with
the same backbone. In Tab. 6, we use MMI as training data

and test on CK+ dataset. The proposed MIC outperforms
the other methods with the same backbone consistently.

We note that FAN [7] uses ResNet18 as a feature extrac-
tor and sequentially pre-trained on MSCeleb-1M face recog-
nition dataset and FER+ expression dataset.

In Tab. 7 and Tab. 8, we use the training set of AFEW for
training and test on MMI and CK+, respectively. Consider-
ing the large domain shift between AFEW and MMI/CK+,
there is a significant performance drop. We note that the pro-
posed method can also achieve better performance than its
backbones [44, 7].

4.7. Critical discussion and future work

The proposed MIC framework has demonstrated its ef-
fectiveness w.r.t. accuracy and testing speed. However, MIC
highly relies on the separation of I and P frames in com-
pressed video. Although MPEG-4, H.264, and HEVC for-
mats are widely used, some of the compression solutions do
not follow the motion compensation with I and P frames. For
example, the YUV format compresses the video by consid-
ering the different changes of brightness and chromaticity.
Moreover, frame loss can be common in real-world video
transfer. How will the frame loss affect the FER performance
is underexplored.

Identity can be the most challenging variation for FER
[8], while the FER performance can also be affected by pose
and illuminations. It can be promising to take the other vari-
ations into account.

The recent work [55] proposes to utilize the additional
unlabeled face dataset to boost the performance, which can
be a powerful means for alleviating the scale issue of video-
based FER.

For the large domain gap, e.g., AFEW to MMI/CK+, the
domain adaptation methods [67, 68] can be used to achieve
better cross-dataset performance.

5. Conclusion

In this paper, we target to explore the facial expression
cues directly on the compressed video domain. We are mo-
tivated by our practical observation that facial muscle move-
ments can be well encoded in the residual frames, which can
be informative and free of cost. Besides, the video compres-
sion can reduce the repeating boring patterns in the videos,
which rendering the representation to be robust. The in-
creased relevance and reduced complexity or redundancy in
FER videos make computation much more effective. We ex-
tract the identity and expression factor from the I frame and
P frame, respectively, and explicitly enforce their indepen-
dence with concise and effective mutual information regu-
larization. When the apex frame label is available in train-
ing, the complementary constraint can further stabilize the
training. In three video-based FER benchmarks, our MIC
can improve the performance without the additional iden-
tity, face model, or facial landmarks labels. The processing
speed of the test stage is promising for real-time FER. More-
over, our mutual information regularization can potentially
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[« [ 0 [ o0L [ 005 [ o1 [ 015 | 02 [ 025 [ 03 [ 05 | 1 |
CK+ 97.84% 98.71% 98.90% 98.95% 98.95% 98.94% 98.90% 98.88% 98.54% | 98.46%
MMI 80.25% 81.02% 81.23% 81.29% 81.27% 81.26% 81.13% 81.10% 81.08% | 81.04%
AFEW | 52.62% 52.92% 53.04% 53.15% 53.18% 53.18% 53.16% 53.11% 53.07% 53.01%

Table 10

Sensitivity analysis of hyperparameter « in CK+4, MMI and AFEW datasets.

[ p [ CK+ [ MMI [ AFEW ]
Keep 1 97.87% 80.69% 52.76%
Keep 0.5 97.90% 80.98% 52.91%
Keep 0.1 97.92% 81.02% 53.05%
1-0:30 98.95% | 81.29% | 53.18%
1-0:50 98.95% | 81.26% | 53.18%
1-0:100 98.72% 81.17% 53.02%
1-0.5:30 | 97.85% 80.96% 52.88%

Table 11

Sensitivity analysis of hyperparameter g in CK+,

MMI and

AFEW datasets. Keep 1 indicates using a fixed f = 1. We
denote linear decreasing # from 1 to 0 until the 30" epoch as
1-0:30.

be a good alternative to adversarial training [23] for many
disentanglement tasks.
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