
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. 

This is a postprint version of the following published document:

Sevilla, C., Gómez, V. & Olmos, P. M. (2021). Sparse 
semi-supervised heterogeneous interbattery bayesian 
analysis. Pattern Recognition, 120, 108141.

DOI: 10.1016/j.patcog.2021.108141 

© 2021 Elsevier Ltd. 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.patcog.2021.108141


Sparse Semi-supervised Heterogeneous Interbattery

Bayesian Analysis

Carlos Sevilla-Salcedo∗, Vanessa Gómez-Verdejo, Pablo M. Olmos∗∗
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Abstract

The Bayesian approach to feature extraction, known as factor analysis (FA),
has been widely studied in machine learning to obtain a latent representation
of the data. An adequate selection of the probabilities and priors of these
bayesian models allows the model to better adapt to the data nature (i.e.
heterogeneity, sparsity), obtaining a more representative latent space.

The objective of this article is to propose a general FA framework capable
of modelling any problem. To do so, we start from the Bayesian Inter-Battery
Factor Analysis (BIBFA) model, enhancing it with new functionalities to be
able to work with heterogeneous data, to include feature selection, and to
handle missing values as well as semi-supervised problems.

The performance of the proposed model, Sparse Semi-supervised Het-
erogeneous Interbattery Bayesian Analysis (SSHIBA), has been tested on
different scenarios to evaluate each one of its novelties, showing not only a
great versatility and an interpretability gain, but also outperforming most of
the state-of-the-art algorithms.
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1. Introduction

Feature Extraction (FE) is used to transform data into a new low di-
mensional latent space while removing correlations and noisy components
[1], what has made it play an important role in the Machine Learning (ML)
community. In particular, one method that has been increasingly used in
this context is Canonical Correlation Analysis (CCA) [2], which constructs
the latent space from the correlation between different views. Despite being
commonly used for a single input and output views [3, 4], its formulation
allows to combine multiple views of the data to improve the extraction of the
latent features [5, 6, 7] , what is commonly known as multi-task or multi-view
learning.

FE algorithms have been adapted to the Bayesian framework, introducing
a probabilistic model able to correlate all involved views and latent low-
dimensional variables [8, 9]. This new formulation, known as Factor Analysis
(FA), has been used in multi-tasks problems such as biomarkers design and
classification [10], person and digit classification [11] or modelling functional
neuroimaging data [12].

Bayesian algorithms have the additional advantage of facilitating the in-
clusion of constraints on the model by defining particular priors over the
model variables. For example, the distribution of the latent variables of a FA
algorithm can be redefined to impose sparsity on the number of latent factors
[13, 14]. This way, the model is capable of automatically determining which
latent factors are relevant and eliminate the useless ones. Other approaches
include Feature Selection (FS) so that the model is capable of learning the
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feature relevance during its training [15, 16]. Furthermore, the probabilistic
design allows modelling real data via continuous distributions or categorical
data with discrete distributions, hence capturing the real data nature. Most
methods developed for Bayesian FA centre around working with real data,
whereas there are not many studies about more specific data. In particular,
[17] presents an algorithm that combines FA with sparsity in the latent space,
as well as working with categorical data. By treating the categorical data
as whole numbers, the data distribution fits better the original data [18].
Conversely, multilabelled methods consider the correlation between labels to
model them [19] improving the final results [20, 21].

Another advantage of probabilistic modelling is that we can naturally
deal with missing data. In semi-supervised multi-task learning, the model
learns from the available information (available views) for every data point
and, with that, missing views are integrated out. In this respect, some al-
gorithms combine this semi-supervised approaches with the sparsity in the
data distribution to model words’ labels [22] or with modelling multi-label
and categorical data [23]. Other methods [24] propose a semi-supervised ex-
tension of a Deep Generative Model to obtain a more informative model.
Or, some models, such as [25] and [26], combine a semi-supervised learning
with a Bayesian Principal Component Regression to model soft sensors for
industrial applications. Among the different approaches in the literature for
FA and their extensions, the Bayesian Inter-Battery FA model (BIBFA) [27]
has specially attracted our attention since it provides a framework for FA
where one can work with multiple data views and sparsity over the latent
factors to automatically select the number of latent variables. However, we
miss some functionalities in the model to really have a versatile framework
able to face any real problem.

In this paper, we overcome some of the limitations of the BIBFA model
by introducing the following extensions: (1) We endow the model with fea-
ture selection capabilities. Our proposal combines the sparsity over the
latent space with sparsity over the input feature space by means of a double
ARD prior, providing an automatic selection of both latent factors and input
features. (2) SSHIBA is able to handle heterogeneous views in which data
views can be either real-valued vectors, binary vectors (multi-label observa-
tions), or categorical variables, widening the spectre of problems that can be
faced. (3) A semi-supervised scheme which allows to work with unlabelled
data as well as missing data. All these proposed extensions of the algo-
rithm can be combined with each other in any way into a robust framework

3



named Sparse Semi-supervised Heterogeneous Inter-battery Bayesian Anal-
ysis (SSHIBA) to provide an adapted solution for any scenario according to
the needs of the problem.

These proposed extensions have been analysed in terms of performance
and interpretability comparing to BIBFA as well as other state-of-the-art
algorithms, proving that the model is able to combine the new proposed
functionalities with good performance results. An exemplary notebook, in-
cluding the complete code of the proposed method, is available at https:

//github.com/sevisal/SSHIBA.git.
The article is organised as follows. Section 2 reviews the BIBFA algo-

rithm presented in Klami et al. [27]. Section 3 includes a generalised for-
mulation including the proposed extensions. This section just presents the
probabilistic model and the inference learning, all mathematical development
is described in the Supplementary Material. Section 4 analyses the model
performance over a set of different scenarios designed to evaluate the differ-
ent functionalities proposed. Finally, Section 5 gives some final remarks and
conclusions.

2. Related Work: Bayesian Inter-Battery Factor Analysis

In this section we briefly review the Bayesian Inter-Battery Factor Anal-
ysis (BIBFA) model, presented in [27]. Before introducing the probabilistic
formulation of this model, we first introduce the notation used. Given a ma-
trix A of dimensions I × J , ai,: represents the i-th row, a:,j represents the
j-th column, and ai,j the i-th element of the j-th column of the matrix. In
case there of multiple data views, A(m) represents the matrix A of view m
and A{M} represents all the matrices A of the views in the set M.

2.1. BIBFA Generative model

The overall goal of BIBFA [27] is to jointly project different data repre-
sentations, defined as “views”, into a discriminative low-dimensional space.
Unlike, previous FA models, BIBFA can automatically tune effective dimen-
sionality of the projected space through automatic relevance determination
(ARD) priors over the projecting matrices [28]. Assume x

(m)
n,: ∈ R1×Dm

is the m-th view of the n-th data point with n = 1, . . . , N (each view

is a Dm-dimensional row vector). If M = {1, 2, . . . ,M}, then x
{M}
n,: =

{x(1)
n,: ,x

(2)
n,: , . . . ,x

(M)
n,: } is the complete n-th observation. Then, the joint prob-

ability density function (pdf) of the BIBFA model can be defined as follows:

4

https://github.com/sevisal/SSHIBA.git
https://github.com/sevisal/SSHIBA.git


x(1)
n,:

x(m)
n,:

x(M)
n,:

View 1
Global variables

View m
Global variables

View M
Global variables

zn,:

N

(a) Multi-view model.
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Figure 1: Plate diagram for the BIBFA graphical model. Gray circles denote observed vari-
ables, white circles unobserved random variables. The nodes without a circle correspond
to the hyperparameters.

zn,: ∼ N (0, IKc) (1)

w
(m)
:,k ∼ N

(
0,
(
α

(m)
k

)−1

IKc

)
(2)

x(m)
n,: | zn,: ∼ N (zn,: W

(m)T , τ (m)−1
IDm) (3)

α
(m)
k ∼ Γ

(
aα

(m)

, bα
(m)
)

(4)

τ (m) ∼ Γ
(
aτ

(m)

, bτ
(m)
)

(5)

where IKc is an identity matrix of dimension Kc, zn,: ∈ R1×Kc is the low-
dimension latent variable for the n-th data point1, Γ(a, b) is a Gamma distri-

bution with parameters a and b, w
(m)
:,k is the k-th column of matrix W(m) (of

dimensions Dm×Kc), and up-script (m) corresponds to the m-th view. The

Gamma distribution over α
(m)
k enables the model to enforce zero values in

1Note we work with row-vectors.
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order to maximise the model likelihood given our data. Hence, we say that
(2) and (4) form an ARD prior for each of the columns of matrix W(m). The
BIBFA graphical model is presented in Figure 1(a). A closer look on how
BIBFA models the generation of each data view is provided in Figure 1(b).

In light of the structure found in the posterior distribution of the W(m)

matrices, in terms of patterns of columns that are almost all zeros, one can
identify common latent factors (elements of zn,:) across all views, specific
ones only necessary to explain certain views, or irrelevant ones that are not
used to explain any view. In [27], the latter are removed during inference
using a threshold across all views. We adopt the same strategy, as we will
later discuss.

2.2. BIBFA Variational Inference

Once the BIBFA generative model is defined, we can evaluate the poste-
rior distribution of all the model variables given the observed data, which is
unfeasible due to the intractability of computing the marginal likelihood of
the data, i.e. the normalising factor in Baye’s rule. In [27], the authors rely
on an approximate inference approach through mean-field variational infer-
ence [29], where a lower bound to the posterior distribution is maximised, and
a fully factorised variational family is chosen to approximate the posterior
distribution as

p(Θ|X{M}) ≈
M∏

m=1

(
q
(
W(m)

)
q
(
τ (m)

) Kc∏
k=1

q
(
α

(m)
k

)) N∏
n=1

q(zn,:) (6)

where Θ comprises all random variables (rv) in the model.
The mean-field posterior structure along with the lower bound results in

a feasible coordinate-ascent-like optimization algorithm in which the optimal
maximization of each of the factors in (6) can be computed if the rest remain
fixed using the following expression

q∗(θi) ∝ EΘ−i [log p(Θ,x1,:, . . . ,xN,:)] , (7)

where Θ−i comprises all rv but θi. This new formulation is in general fea-
sible since it does not require to completely marginalize Θ from the joint
distribution.

Table 1 shows the BIBFA mean-field factor update rules derived in [27]
using (7). For a compact notation, we stuck in matrix Z, of dimensionN×Kc,
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the latent projection of all data points and <> represents the mean value of
the rv.

Variable q∗ distribution Parameters

zn,: N
(
zn,: |µzn,: ,ΣZ

) µzn,: =
M∑

m=1

〈τ (m)〉X(m)〈W(m)〉ΣZ

Σ−1
Z = IKc +

M∑
m=1

〈τ (m)〉〈W(m)T W(m)〉

W(m)
Dm∏
d=1

N
(
w

(m)
d,: |µw

(m)
d,:
,ΣW(m)

) µ
w

(m)
d,:

= 〈τ (m)〉X(m)T〈Z〉ΣW(m)

Σ−1
W(m) = diag(〈α(m)〉) + 〈τ (m)〉〈ZT Z〉

α
(m)
k

Γ
(
α

(m)
k |a

α
(m)
k
, b
α
(m)
k

) a
α
(m)
k

= Dm
2

+ aα
(m)

b
α
(m)
k

= bα
(m)

+ 1
2
〈W(m)T W(m)〉k,k

τ (m) Γ
(
τ (m) |aτ (m) , bτ (m)

) aτ (m) = DmN
2

+ aτ
(m)

bτ (m) = bτ
(m)

+ 1
2

N∑
n=1

Dm∑
d=1

x
(m)
n,d

2

−Tr
{
〈W(m)〉〈ZT〉X(m)

}
+1

2
Tr
{
〈W(m)T W(m)〉〈ZT Z〉

}
Table 1: Updated q distributions for the different rv of the graphical model. These ex-
pressions have been obtained using the update rules of the mean field approximation (7).
See [27] for further details.

2.3. Predictive model

The BIBFA model is also limited by the fact that it does not incorporates
a semi-supervised setting, in which missing views can be properly handled.
The authors rely on a training phase where the posterior distribution of the
global variables of the model is computed w.r.t. complete data (i.e. no
missing views), to then estimate the distribution of missing views in a test
set using a predictive distribution.

Assume we use the mean field variational method to approximate the
posterior distribution of the BIBFA model parameters Θ w.r.t. a fully ob-
served training database D, i.e. q∗(Θ) ≈ p(Θ|D). For a test data point x∗,:
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with observed views contained in the set Min and missing views in the set
Mout, the BIBFA predictive model is as follows. First, the marginal posterior
distribution of the latent projection z∗,: given x

{Min}
∗,: is computed

p
(
z∗,: |x{Min}

∗,:
)

=

∫
p(x{Mout}

∗,: | z∗,:,Θ)p
(
z∗,: |x{Min}

∗,: ,Θ
)
p(Θ|D)dΘdx{Mout}

∗,:

=

∫
p
(
z∗,: |x{Min}

∗,: ,Θ
)
p(Θ|D)dΘ, (8)

where note that the integration w.r.t. x
{Mout}
∗,: is straightforward as it always

integrates to one. Regarding the second term, we can either use Monte Carlo
Integration by sampling from q∗(Θ) or use a point estimate for Θ (e.g. mean
or mode computed from q∗(Θ)). In both cases, once Θ is fixed, observe that

p
(
z∗,: |x{Min}

∗,: ,Θ
)
∝ p
(
x{Min}
∗,: | z∗,:,Θ

)
p(z∗,:), (9)

is also Gaussian with mean 〈z∗,:〉 and covariance matrix Σz∗,: given by

Σ−1
z∗,: = IKc +

∑
m∈Min

(
τ (m) W(m)T ,W(m)

)
(10)

〈z∗,:〉 =
∑

m∈Min

(
τ (m) x(m)

∗,: W(m)
)
Σz∗,:

We can now write the expression of the distribution of the output views
x
{Mout}
∗,: as follows:

p
(
x{Mout}
∗,: |x{Min}

∗,: ,Θ
)

=
∏

m∈Mout

p
(
x(m)
∗,: |x{Min}

∗,: ,Θ
)
, (11)

where

p
(
x(m)
∗,: |x{Min}

∗,: ,Θ
)

=

∫
p
(
x(m)
∗,: | z∗,:,Θ

)
p
(
z∗,: |x{Min}

∗,: ,Θ
)
d z∗,: (12)

where p
(
x

(m)
∗,: | z∗,:,Θ

)
is defined in (3). Using again the properties of the

Gaussian distributions we get p
(
x

(m)
∗,: |x{Min}

∗,: ,Θ
)

= N
(
x

(m)
∗,: |µx

{Mout}
∗,:

,Σ
x
{Mout}
∗,:

)
,
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where

Σ
x
{Mout}
∗,:

= τ {Mout}−1
IDm + W{Mout}Σz∗,: W

{Mout}T (13)

µ
x
{Mout}
∗,:

= z∗,: W
{Mout}T (14)

These equations complete the standard BIBFA variational model pre-
sented in [27], which works in a simple context in which the data matrices
are composed of real numbers and can only work with the predictive ap-
proach. Next section presents a generalized version of this model overcoming
these limitations.

3. The proposed model: SSHIBA

This section presents the Sparse Semi-supervised Heterogeneous Inter-
batery Bayesian Analysis (SSHIBA) method. SSHIBA generalises BIBFA in
several aspects that we sequentially introduce:

1) Feature selection: in addition to being able to automatically select
the adequate number of latent variables, by adding a double ARD
prior over the matrices W(m), SSHIBA provides automatic relevant
determination of both latent factors and input features for each view.

2) Heterogeneous views: in contrast to standard BIBFA, which only
considers continuous real-valued observations, SSHIBA is able to prop-
erly incorporate binary and categorical variables. In this way, the model
can handle diverse data types in the different views.

3) Semi-supervised learning: besides, SSHIBA provides the possibility
of training the model in a semi-supervised fashion, properly handling
data points with partial observations (missing views).

These proposed extensions of the method can be combined with each
other in any specific way, e.g. combining a multidimensional binary view
in which we want to infer some unknown values, as well as doing feature
selection. Furthermore, in order to avoid hand-crafted data normalisation,
the proposed generative probabilistic model also includes a bias term per
view that is learned via variational inference. Namely, in the BIBFA model
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above, we include the following terms:

x(m)
n,: | zn,: ∼ N (zn,: W

(m)T + b(m), τ (m)−1
IDm) (15)

b(m) ∼ N (0, IDm) (16)

In the following subsections we detail the above mentioned SSHIBA fea-
tures. The mathematical derivations of the variational machinery in each
case have been moved to the Supplementary Material.

3.1. Feature selection in the SSHIBA model

For this first extension of the method, we propose to redefine the priors
of matrix W(m) so that it is able to automatically select both the relevant
latent factors and the relevant input features that are used by the model.

3.1.1. Generative model for feature selection

We propose a double ARD prior over the W(m) matrices, with a different
prior for each entry of W(m):

w
(m)
d,k ∼ N

(
0,
(
γ

(m)
d α

(m)
k

)−1
)

(17)

γ
(m)
d ∼ Γ

(
aγ

(m)

, bγ
(m)
)

(18)

Note that the variance of w
(m)
d,k is the product of two variables: a row-wise

prior over W(m), i.e. α
(m)
k , which was already present in the BIBFA model

and is used to perform latent variable selection, and a column-wise prior over
W(m), i.e. γ

(m)
d which induces sparsity along the elements of such columns,

allowing interpretable results by means of feature selection. With the prod-
uct in (17), we provide the model with the flexibility to find the structural
sparsity patterns in W(m) that maximise the evidence. Figure 2 shows the
graphical model of SSHIBA (assuming still real-valued observations).

3.1.2. Variational inference

When we augment the BIBFA model presented in Section 2.1 with the
double ARD method summarized by equations (17) and (18), we equivalently
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Figure 2: SSHIBA’s feature selection graphical model.

need to expand accordingly the mean-field posterior distribution, namely

p(Θ|X{M}) ≈
M∏

m=1

(
q
(
W(m)

)
q
(
b(m)

)
q
(
τ (m)

) Kc∏
k=1

q
(
α

(m)
k

) Dm∏
d=1

q
(
γ

(m)
d

)) N∏
n=1

q(zn,:). (19)

Table 2 shows the update rules obtained by applying the mean-field update
rule in (7) to this new model. A detailed calculation of these expressions can
be found in the Supplementary Material.

Since variable γ(m) provides a measure of importance for each feature
(higher γ(m), lower importance), the model is now capable of providing a
measure of the relevance of each feature. In other words, this version allows
the model to provide an online feature ranking or feature selection for any
input data, improving the interpretability of the results.

Finally, note that once global rv are sampled from q∗(Θ), the predictive
model remains the same w.r.t. the BIBFA predictive model in Section 2.3.
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Variable q∗ distribution Parameters

zn,: N
(
zn,: |µzn,: ,ΣZ

) µzn,: =
M∑

m=1

(
〈τ (m)〉

(
X(m)−1N〈b(m)〉

)
〈W(m)〉

)
ΣZ

Σ−1
Z = IKc +

M∑
m=1

〈τ (m)〉〈W(m)T W(m)〉

W(m)
Dm∏
d=1

N
(
w

(m)
d,: |µw

(m)
d,:
,Σ

W
(m)
d

) µW(m) = 〈τ (m)〉
(
X(m)−1N〈b(m)〉

)T
〈Z〉ΣW(m)

Σ−1

W
(m)
d

= diag(〈α(m)〉)〈γ(m)
d 〉+ 〈τ (m)〉〈ZT Z〉

b(m) N
(
b(m) |µb(m) ,Σb(m)

) µb(m) = 〈τ (m)〉
N∑

n=1

(
x

(m)
n,: −〈zn,:〉〈W(m)T〉

)
Σb(m)

Σ−1

b(m) =
(
N〈τ (m)〉+ 1

)
IDm

α(m)
Kc∏

k=1

Γ
(
α

(m)
k |a

α
(m)
k
, b
α
(m)
k

) a
α
(m)
k

= Dm
2

+ aα
(m)

b
α
(m)
k

= bα
(m)

+ 1
2

Dm∑
d=1

〈γ(m)
d 〉〈w

(m)
d,k w

(m)
d,k 〉

τ (m) Γ
(
τ (m) |aτ (m) , bτ (m)

)
aτ (m) = DmN

2
+ aτ

(m)

bτ (m) = bτ
(m)

+ 1
2

N∑
n=1

Dm∑
d=1

x
(m)
n,d

2

−Tr
{
〈W(m)〉〈ZT〉X(m)

}
+ 1

2
Tr
{
〈W(m)T W(m)〉〈ZT Z〉

}
−

N∑
n=1

x
(m)
n,: 〈b(m)T〉+

N∑
n=1

〈zn,:〉〈W(m)T〉〈b(m)T〉+ N
2
〈b(m) b(m)T〉

γ(m)
Dm∏
d=1

Γ
(
γ

(m)
d |a

γ
(m)
d
, b
γ
(m)
d

) a
γ
(m)
d

= Kc
2

+ aγ
(m)

b
γ
(m)
d

= bγ
(m)

+ 1
2

Kc∑
k=1

〈α(m)
k 〉〈w

(m)
d,k w

(m)
d,k 〉

Table 2: Distribution q of the different rv of the graphical model for feature selection
together with the different distribution parameters. Where 1N is a row vector of ones of
dimension N .

3.2. Heterogeneous data: Multidimensional binary views

This section introduces another model extension, in this case, to model
any of data views as a multidimensional binary observation. For example,
this extension can be used to model the output view of a multi-label classi-
fication problem.

3.2.1. Generative model

To accommodate the model for binary views, we incorporate the Bayesian
logistic regression model presented in [30], as it is summarised in the graph-

ical model of Figure 3. x
(m)
n,: is now unobserved but still keeps the same

conditional distribution (15); i.e. x
(m)
n,: is still a Dm-real valued vector fol-

lowing a Gaussian distribution given zn,:. Furthermore, we introduce a new
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Figure 3: SSHIBA graphical model for multi-dimensional binary views.

observed variable binary vector t
(m)
n,: , also of dimension Dm, whose conditional

distribution given x
(m)
n,: is a product of logistic regression terms

p
(
t(m)

n,: |x(m)
n,:

)
=

Dm∏
d=1

p
(

t
(m)
n,d | x

(m)
n,d

)
(20)

p
(

t
(m)
n,d | x

(m)
n,d

)
= σ

(
x

(m)
n,d

)t
(m)
n,d
(

1− σ(x
(m)
n,d )
)1−t

(m)
n,d

= ex
(m)
n,d t

(m)
n,d σ

(
− x

(m)
n,d

)
, (21)

where σ(a) = (1 + e−a)−1. Following [30], to develop the variational machin-
ery, we will use the following lower bound on the logistic regression condi-
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tional probability

p
(

t
(m)
n,d | x

(m)
n,d

)
= ex

(m)
n,d t

(m)
n,d σ

(
− x

(m)
n,d

)
≥

ex
(m)
n,d t

(m)
n,d σ

(
ξ

(m)
n,d

)
e
−

x
(m)
n,d

+ξ
(m)
n,d

2
−λ

(
ξ
(m)
n,d

)(
x
(m)2

n,d − ξ(m)
n,d

2
)

(22)

where λ(a) = 1
2a

(
σ(a)− 1

2

)
, and ξ

(m)
n,d is a variational parameter optimized by

maximizing the evidence lower bound as shown in Section B of the Supple-
mentary Material. Using (22), we can lower bound p

(
T(m) |X(m)

)
as follows

p
(
T(m) |X(m)

)
≥ h

(
X(m), ξ

)
=

N∏
n=1

Dm∏
d=1

σ(ξ(m)
n,d

)
e

x
(m)
n,d t

(m)
n,d −

x
(m)
n,d

+ ξ
(m)
n,d

2
−λ

(
ξ
(m)
n,d

)(
x
(m)2

n,d − ξ(m)
n,d

2
). (23)

3.2.2. Variational inference

Given the graphical model in Figure 3, the mean-field variational family
is as follows

p
(
Θ|T{Mt},X{Mr}

)
≈

q(Z)
∏

mt∈Mt

(
N∏
n=1

q
(
x(mt)

n,:

)) M∏
m=1

q
(
W(m)

)
q
(
b(m)

)
q
(
α(m)

)
q
(
τ (m)

)
q
(
γ(m)

)
,

(24)

whereMt is the set of views in which we want to have the multidimensional
binary data and Mr are the rest of the views. The details about the vari-
ational updates can be found in Appendix B. Note that, conditioned to a
fixed X(mt), the model is equivalent to the case of real-valued observations
and, hence, most of the mean-field updates remain almost the same. We only
have to replace in Table 1 and 2 x

(mt)
n,: (or the stacked data matrix X(m)T) by

its mean 〈x(mt)
n,: 〉 (〈X(m)T〉) w.r.t. q

(
x

(mt)
n,:

)
for each data point. Regarding

this latter term, the variational update-rule is given in Table 3.
Unlike the predictive distribution when only real views are implemented,

the predictive distribution in SSHIBA with multi-dimensional binary obser-
vations requires approximate inference (e.g. variational inference or Monte
Carlo) to estimate the posterior latent distribution in (8) w.r.t. to the ob-
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Variable q distribution Parameters

x
(mt)
n,: N

(
x

(mt)
n,: |µx

(mt)
n,:

,ΣX(mt)

) µ
x
(mt)
n,:

=
(

t
(mt)
n,: −1

2
+ 〈τ (mt)〉〈zn,:〉〈W(mt)T〉+ 〈b(mt)〉

)
Σ

x
(mt)
n,:

Σ−1
X(mt)

= 〈τ (mt)〉I + 2Λ
ξ
(mt)
n,:

Table 3: Mean-field update rule for the q
(
x
(mt)
n,:

)
distribution in (24), where Λξn,:

is a

diagonal matrix for which the diagonal elements are λ(ξn,1), λ(ξn,2), . . . , λ(ξn,Dm
). This

distribution only affects the views modelled as multidimensional binary data.

served data. This case can be directly reformulated from the semi-supervised
SSHIBA model presented in Section 3.4, and hence we omit it from here.

3.3. Heterogeneous data: Categorical observations

This section presents how SSHIBA works with categorical observations.

3.3.1. Generative model

We incorporate the multinomial probit in [31]. In this case, the structure
is similar to the one followed by the multidimensional binary case of Figure
3 but, in the categorical case, t

(m)
n (assuming that the m-th view corresponds

to a categorical variable) is an integer scalar that takes values in the set
{0, . . . , Dm − 1}, being Dm the number of classes. The multinomial probit

relates x
(m)
n,: with t

(m)
n as follows:

t(m)
n = i if x

(m)
n,i = max

1≤d≤Dm

(
x

(m)
n,d

)
. (25)

If we set the noise parameter τ (m) = 1, in [31] it is shown that we can

express p
(

t
(m)
n = i| zn,:,W

(m)
)

as follows:

p
(
t(m)
n = i| zn,:,W

(m)
)

= Ep(u)

[∏
j 6=i

(
Φ
(
u+ y

(m)
n,i −y

(m)
n,j

))]
(26)

where y
(m)
n,: = zn,: W

(m)T , p(u) ∼ N (0, 1), and Φ(·) is the standard Gaus-
sian cumulative distribution function (cdf). Expectations w.r.t. p(u) can be
effectively approximated using Monte Carlo, as they only require sampling
from an uni-dimensional standard Gaussian.
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Figure 4: SSHIBA graphical model for categorical views.

3.3.2. Variational inference

Deriving mean-field update for the categorical views closely follows the
methodology in [31], so we omit further details from here. Given the mean-
field variational family in (24) (assuming now that Mt is the set of views
that correspond to categorical observations), the mean-field update of the

term q
(
x

(mt)
n,:

)
is summarized in Table 3. The mean-field update for the rest

of the terms are provided in previous sections (as in the multi-dimensional

binary case, we replace X(m)T by 〈X(m)T〉). Observe that, given t
(m)
n , q

(
x

(mt)
n,:

)
corresponds to a truncated Gaussian distribution. Again, we note that a
predictive model will be easily formulated from the semi-supervised case
presented in the next subsection.
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Variable q distribution Parameters

x
(mt)
n,:

1
ξn,:
N
(
x

(mt)
n,: |〈y(mt)

n,: 〉, I
)
× 〈x(mt)

n,i 〉 = 〈y(mt)
n,i 〉 −

∑
j 6=i

(
〈y(mt)

n,j 〉 − 〈x
(mt)
n,j 〉

)
δ
(

x
(mt)
n,i > x

(mt)
n,j ∀i 6= j

) 〈x(mt)
n,j 〉 = 〈y(mt)

n,j 〉 − 1
ξn,:

Ep(u)

[
Nu
(
〈y(mt)

n,j 〉 − 〈y
(mt)
n,i 〉, 1

)
∏

k 6=i6=j

(
Φ
(
u+ 〈y(mt)

n,i 〉 − 〈y
(mt)
n,k 〉

))]
Table 4: q distribution of the different rv of the graphical model for the

categorical scheme, where 〈y(mt)
n,: 〉 = 〈zn,:〉〈W(m)T〉 + 〈b(m)〉 and ξn,: =

Ep(u)

[∏
j 6=i

(
Φ
(
u+ 〈y(mt)

n,i 〉 − 〈y
(mt)
n,j 〉

))]
and assuming that t

(m)
n = i. This distribution

only affects the views modelled as categorical data.

3.4. Semi-supervised SSHIBA

The last main contribution of the paper is to show how missing-views can
be incorporated into SSHIBA training (e.g. variational inference) following
an unsupervised fashion, in which there is no need for a predictive distribution
since both “training” and “test” data are jointly fused by the model, which
simply considers as unobserved both the views in the test data that we aim
at predicting and the missing values in both “training” and “test” sets.

In the case the m-th view corresponds to a real-variable, we denote by
X̃(m) (in contrast to X(m)) to the set of data points for which this view is
missing. Similarly, if the m-th corresponds to a multi-dimensional binary
variable or categorical variable, the set of data points for which this view
is missing is denoted by T̃(m) (in contrast to T(m)). Note that the SSHIBA
graphical model summarized in Figures 2, 3, and 4 remains unaltered, we
simply have white dots instead of grey dots for those data points for which
the corresponding view is unobserved.

3.4.1. Variational inference

Missing views are handled as any other rv in the model and hence during
variational inference our goal is now to approximate the joint posterior dis-
tribution of the parameters of the model Θ and the missing data views (X̃(m)

or T̃(m)). Following the mean-field method, we again assume a variational
family that factorizes across all elements in Θ and all data points in X̃(m) or
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T̃(m):

p(Θ, T̃{Mt}, X̃{Mr}|T{Mt},X{Mr}) ≈

q(Z)
∏

mt∈Mt

(
q(T̃{Mt})

N∏
n=1

q
(
x(mt)

n,:

))

×
∏

mr∈Mr

q(X̃{Mr})
M∏

m=1

(
q
(
W(m)

)
q
(
α(m)

)
q
(
τ (m)

)
q
(
γ(m)

))
.

(27)

The mean-field update for all factors in (27) be found in Appendix C and
the final distributions are shown in in Table 5.

Version Variable q distribution Parameters

Regression X̃(m)
N∏

n=1

N
(
x

(m)
∗,: |µx

(m)
∗,:
,ΣX̃(m)

) µX̃(m) = 〈Z̃〉〈W(m)〉T

ΣX̃(m) = 〈τ (m)〉−1IDm

Multidimensional T̃(m)
N∏

n=1

N
(
t̃

(m)
n,: |〈̃t(m)

n,: 〉,ΣT̃(m)

) µ
t̃
(m)
n,:

= σ
(
〈X̃(m)〉

)
ΣT̃(m) = e〈X̃

(m)〉(
1+e〈X̃

(m)〉
)2

Categorical t̃(m)
N∏

n=1

N
(

t̃
(m)
n |〈t̃(m)

n 〉,Σt̃(m)

) 〈t̃(m)
n 〉 = 〈ỹ(mt)

n,j 〉 − 1
ξn,:

Ep(u)

[
Nu
(
〈ỹ(mt)

n,j 〉 − 〈ỹ
(mt)
n,i 〉, 1

)
∏

k 6=i6=j

(
Φ
(
u+ 〈ỹ(mt)

n,i 〉 − 〈ỹ
(mt)
n,k 〉

))]
Table 5: q distribution of the different rv of the graphical model for the semi-supervised
scheme. The table shows what are the different parameters of the distributions. The

first parameter is the mean and the second one is the variance. Where 〈ỹ(mt)
n,: 〉 =

〈z̃n,:〉〈W(m)T〉+ 〈b(m)〉.

4. Results

In this section we present experimental results that demonstrate the abil-
ity of SSHIBA to capture the statistical properties of real databases, while
comparing it with some state-of-the-art algorithms. The implementation of
this project was done using Python 3.7 and the different baselines where
implemented using packages from Scikit-learn [32].

Regarding SSHIBA, in all experiments we implement automatic latent
factor selection, also referred as pruning. For this purpose, during the infer-
ence learning we remove the k-th column of W(m), ∀m, if all the elements of
w

(m)
:,k , across all the views, are lower than the pruning threshold set to 10−6.
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To determine the number of iterations of the inference process, we used a
convergence criteria based on the evolution of the lower bound. In particu-
lar, we stop the algorithm either when LB[−2] > LB[−1](1 − 10−8), where
LB[−1] is the lower bound at the last iteration and LB[−2] at the previous
one, or when it reaches 5 ∗ 104 iterations. SSHIBA is trained 10 times with
random initialisation and we kept the model with the best lower bound.

4.1. Database description

As the presented model is appealing in a wide range of contexts, we
included several databases of different nature (different sizes, dimensions,
types of variables, ...) to demonstrate its potential.

First of all, we used three multi-label databases from different domains
available in the Mulan repository [33]: yeast is a genetic database [34],
scene is a landscape image database [35] and birds is an audio recordings
database [36]. For these three databases, we stuck the multi-label informa-
tion in one single view and the rest of numeric features in another view.
We also worked with the a database that includes categorical observations,
the AVIRIS database [37] is composed of 220 Band Hyperspectral Image of
agronome farms, where we used the categorical labels as one view and the
rest of numeric features as another

Additionally, we use the Labeled Faces in the Wild (LFW) dataset [38]
consisting of face photographs of different people. We used a version of
the dataset with aligned faces obtained by [39] to work with images under
the same conditions. At the same time, the images have been cropped to
eliminate undesirable information and resized to reduce the computational
cost of training the models, having images of 60×40 pixels. Once the images
were processed we decided to work with two different problems:

� Face recognition: It consists in identifying the person, between the
7 people with most images in the dataset, to whom the image corre-
sponds. We will refer to this version as LFW.

� Multi-label attributes: Here we need to determine whether an im-
age has certain attributes or not. These attributes, obtained by [40],
correspond to different physical information related to the people in
the photographs, such as gender, hair colour or wearing glasses. We
will refer to this version as LFWA.
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Database Domain Samples Features Labels

yeast genes 2,417 103 14
scene landscapes images 2,407 294 6
AVIRIS hyperspectral images 21,025 220 16
birds audio 645 260 19
LFW faces images 1,277 2,400 7
LFWA faces images 22,343 2,400 73

Table 6: Summary of the main characteristic of the databases used in this work.

The characteristics of all the databases mentioned above are summarized in
Table 6.

We used training and test partitions to train the model and measure the
performance respectively. In particular, both the scene and yeast databases
are already divided into train and test sets, around a 50% and 60% train data
respectively. In the case of the LFW databases as well as AVIRIS, both were
split using 70% train / 30% test partitions.

4.2. Baseline or state-of-art methods

To analyse the different versions of the method in comparison to some
contextual results, we decided to include some state-of-the-art algorithms to
obtain reference scoring. In particular, we have used the following methods:

• Canonical Correlation Analysis (CCA) is a supervised feature extrac-
tion method which finds a latent space for the data. Due to the paral-
lelisms with our method, we decided to used this algorithm as one of
the baselines to compare to.

• Principal Component Analysis (PCA) is a non-supervised feature ex-
traction algorithm that we decided to combine with Logistic Regression
to carry out feature extraction and predictions.

• As all the problems to solve involve classification tasks, we have in-
cluded Logistic regression (LR) as a state-of-the-art method widely
used as a classifier.

• To compare our results to those of a neural network, we used a Multi-
Layer Perceptron (MLP) with one hidden layer.
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• We also included the base method presented in [27], BIBFA. As they
indicate in the paper, we added a final thresholding process to obtain
a label prediction.

10 folds Cross-Validation (CV) was used to adjust the regularization pa-
rameter for the logistic regression, MLP and ridge regression. The number
of latent factors (Kc) of the PCA has been set to those who explain 95% of
the variance and for CCA Kc is C − 1 (where C is the number of classes).

Finally, as we work with both multi-label and multiclass datasets, we
decided to use the balanced Multiclass Area Under the Curve (AUC) metric
to compare the performance of the different methods. It is calculated as
AUCmc = 1

N

∑
c(Nc × AUCc), where N is the total number of samples, Nc

is the number of samples of class c and AUCc is the AUC of class c with
respect to the rest of the classes.

4.3. SSHIBA for heterogeneous prediction

In this first set of experiments, we use yeast, scene, birds (multi-label),
and AVIRIS (categorical) to test the ability of SSHIBA to perform predic-
tion over a multi-label/categorical view. To carry out the estimation of the
test labels we used the standard predictive approach described in Section
2.3. Furthermore, all these results have been calculated using the complete
dataset (Table 7), as well as a reduced version consisting of a 20% of the
original data (Table 8). For the reduced version, we use the iterative strat-
ifier presented in [41] to have splits with the minority categories properly
represented.

In Table 7 we can see the performance and the number of latent factors
obtained with the different databases using all the available data. The results
provide an insight on the method, where we can see that the algorithm is
capable of providing a dimensionality reduction of the input features while
maintaining the prediction performance compared to the rest of the discrimi-
native approaches as well as extra capabilities, as we demonstrate in the rest
of experiments (feature selection, missing data imputation, multi-view learn-
ing). Furthermore, we observed that for the AVIRIS database we obtained
an AUC improvement of 0.01 when treating the data as categorical w.r.t.
binarizing the labels and using the multi-label version. Furthermore, we can
see that the inclusion of a more restrictive pruning criteria greatly reduces
the number of latent factors, while maintaining the performance in terms of
AUC.
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yeast scene AVIRIS birds
AUC Kc AUC Kc AUC Kc AUC Kc

SSHIBA 0.66 66 0.92 137 0.89 197 0.83 75
SSHIBA (lax prun.) 0.66 19 0.92 40 0.88 75 0.84 69

BIBFA 0.69 66 0.90 119 0.89 197 0.67 10
CCA 0.61 13 0.88 5 0.88 72 0.56 18

CCA + LR 0.66 13 0.87 5 0.89 72 0.56 18
PCA + LR 0.68 73 0.92 121 0.81 252 0.82 87

MLP 0.61 300 0.82 900 0.85 50 0.68 100
LR 0.67 - 0.92 - 0.89 - 0.81 -
RR 0.68 - 0.91 - 0.89 - 0.83 -

Table 7: Results of the predictive SSHIBA and the different methods under study on
multi-label and categorical databases. Results include the performance in terms of AUC
and the number Kc of latent factors. We also included a version of SSHIBA with a less
restrictive pruning criteria (lax pruning) to analyse its effect on the number of latent
factors.

yeast scene AVIRIS birds
AUC Kc AUC Kc AUC Kc AUC Kc

SSHIBA 0.65± 0.01 20± 2 0.90± 0.01 128± 2 0.87± 0.01 78± 82 0.66± 0.02 63± 5
BIBFA 0.63± 0.01 29± 1 0.90± 0.01 32± 1 0.87± 0.01 180± 10 0.62± 0.03 8± 1
CCA 0.56± 0.01 13 0.65± 0.03 5 0.87± 0.01 72 0.56± 0.06 18

CCA + LR 0.60± 0.01 13 0.65± 0.03 5 0.87± 0.01 72 0.56± 0.07 18
PCA + LR 0.65± 0.01 66± 1 0.90± 0.01 87± 2 0.82± 0.01 18± 1 0.57± 0.05 22± 2

MLP 0.59± 0.01 220± 8 0.79± 0.01 350± 167 0.77± 0.01 210± 37 0.53± 0.04 290± 120
LR 0.65± 0.01 - 0.90± 0.01 - 0.88± 0.01 - 0.55± 0.06 -
RR 0.65± 0.01 - 0.89± 0.01 - 0.87± 0.01 - 0.59± 0.06 -

Table 8: Results of the predictive SSHIBA and the different methods under study on multi-
label and categorical databases. Results include the performance in terms of AUC and
the number Kc of latent factors when 20% of the training samples are used. These results
have been calculated with a 5-fold CV, so their standard deviations are also included.
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Table 8 shows the results using 20% of the training data. Even in this
challenging setup, SSHIBA achieves competitive (if not the best) results in
all cases while still providing data dimensionality reduction. In particular,
we highlight the results in yeast, where SSHIBA achieves the smallest latent
dimension among the best performing methods, and in birds, where SSHIBA
stands out of all methods. Also note how SSHIBA is able to significantly
achieve a smaller latent space w.r.t. BIBFA in AVIRIS. We conjecture that
the ability of SSHIBA to treat each data type according to its true nature
(binary/categorical) explains the robustness of the method in the low sample-
size regime.

For the previous results, we have set a less conservative pruning criteria
in the SSHIBA model, resulting in a number of latent factors that in some
cases could be reduced without harming the performance. If we wanted to
analyse the complexity of the model as a predictor/classifier, we would have
to take into account two things:

1. The pruning criteria: in our previous results we have set a latent factor
can be pruned when there is no value higher than 10−6 for any feature k
in any projection matrix W(m), resulting in a smaller fraction of pruned
factors. We can increase this pruning criteria by setting it to a higher
value and, therefore, reducing the number of latent factors.

2. The latent factors that affect the prediction/classification: we can anal-
yse the sparse weight matrices W(m) to find which latent factors are
relevant for each view. From this premise we can state that the latent
variables that are not relevant for the output view, w

(mout)
:,k ≈ 0, will not

influence the prediction. Hence only a subset of the latent variables are
going to be used for the prediction, namely the latent variables com-
mon to the input and output view and the ones private to the output
view.

In Figure 5 we analyze the results on these two issues. Firstly, we have
set the pruning threshold to a considerably lower value, a restrictive pruning.
This reduces the number of latent factors (for instance, in scene is reduced
from 137 to 40) while maintaining the performance in terms of AUC in the
four databases, as we saw in Table 7. Secondly, by inspecting the weight
matrices W(m), we can analyze the relevance of each latent factor for the
different views. In Figure 5 we represent the relevance of each latent factor
as well as which view it is relevant to. We can conclude that not all the
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latent factors are used for both views, some are only relevant for a specific
view. This can translate into a further reduction of the latent factors needed
for the prediction of the test data, as we will only need the common factors
and those related to the output view. Therefore we have that for yeast the
effective prediction latent factors are reduced from 66 to 12, scene from 137
to 21, for AVIRIS from 197 to 63 and for birds from 75 to 18.

Finally, we can conclude that the results obtained in this section prove
that the model provides a performance equivalent to the best of the baselines
we are comparing to. This is done while also providing a selection of the most
relevant features, automatic imputation of any missing value in the data as
well as allowing to combine and correctly model different types of data in
different views to combine their information and enhance the performance of
the model.

4.4. Feature selection with SSHIBA

This section focuses on the extension of our model to allow feature se-
lection, as presented in Section 3.1. To do so, we use the categorical and
multi-label databases LFW and LFWA. With these experiments we aim to
visually analyse the feature relevances, as well as the latent space learnt by
the model and how it describes the data.

Figure 6 shows each of the columns of the matrix W(1) learned by the
model in both databases (recall that each column of this matrix has the same
dimension as the images). The columns are ordered using the value of the
variable α(1), since it provides the relevance of each latent factor. Note that
each column of the matrix is capturing a face shape, and these faces will
be combined for data reconstruction. In both Figure 6a and Figure 6b, we
can see how, as we advance through the faces, we reach a point in which
the images become more blurry and less informative, around the sixth row
and corresponding to a value of α(1) ≈ 0.3. It is around this point that we
could start pruning and removing the irrelevant latent factors which do not
provide significant information.

Besides, these images reveal how the model adapts to the learning task.
E.g., in the case of Figure 6a we can see how the model pay more attention to
the different individuals and some latent-faces can be related to some labels:
the first latent-face seems to be dedicated to George W. Bush and the second
one to Hugo Chavez. On the other hand, in Figure 6b latent faces tend to
focus on face regions associated to different attributes, such as, the eyes area
or the forehead.
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(a) yeast

(b) scene

(c) AVIRIS

(d) birds

Figure 5: Analysis of the learnt latent factors over the different views.
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(a) LFW database. (b) LFWA database.

Figure 6: W(1) matrix learnt by the sparse version of SSHIBA using two different
databases. Each latent face is a column of this matrix W(1). The images include the
latent faces learned by the model and are ordered using the latent relevance variable α(1).

In Figure 7 we can see the representation of the sparsity variable, γ(1),
which indicates the relevance of each feature, i.e. the relevance of each pixel.
These two figures provide an insight into how the model adapts the results
to the problem, e.g. for the identification of 7 different subjects, Figure 7a
shows how the algorithm focuses on some specific areas, such as the forehead.
However, when looking at Figure 7b we can see that the model focuses on
different regions, relevant the characteristics the each person has, such as his
eye colour, his race or the strength of his nose lines.

Finally, we can analyse the effectiveness of the feature selection by order-
ing the features (pixels) by relevance and calculating the final model perfor-
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(a) LFW (b) LFWA

Figure 7: Gamma masks learnt by the sparse version of SSHIBA using two different
databases. The masks represent the importance of each pixel: lighter colours imply the
pixel is more relevant while darker ones represent the pixel is less relevant.

(a) LFW database. (b) LFWA database.

Figure 8: AUC results on the LFW and LFWA databases using the sparse version of
the method. These images show the AUC results using different percentages of the most
relevant values in the learnt mask. Each face shows the mask with different numbers of
features.

mance for different percentages of selected features. Figure 8 shows this AUC
evolution, where the results prove that using only around 50% of the pixels,
the model is capable of obtaining a good classification AUC. In particular,
Figure 8a shows an improvement in the performance using only 40% of the
original pixels.
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4.5. Missing data imputation with SSHIBA

This section presents the experiments we carried out using the semi-
supervised approach for the imputation of missing values. In this case, we
included random patterns of missing values in four different databases and
used SSHIBA to impute such values using semi-supervised approach. For
this experiment we used the yeast, scene, AVIRIS and birds databases. We
compare the semi-supervised approach with both the predictive method (as-
suming no missing data in the train set), and with the results obtained when
the train missing pattern is first imputed using some common imputation
techniques. In Table 9 we include the obtained results. First, note that in
the case of no missing values, the semi-supervised method (which jointly pro-
cesses the test and training data) is able to improve the predictive method,
obtaining a 0.68 AUC, which achieves the best result in Table 7. Further-
more, when we include a 50% of missing data in the train set, the use of the
semi-supervised SSHIBA with no pre-imputation method achieves the best
results, as the probabilistic model is able to handle the uncertainty of the
missing entries with no artificial imputation. This result certainly demon-
strate the superior ability of the method to capture hidden correlations in
our data, boosted by a proper modelling of each data type.

Missing Pattern Imputation Method SSHIBA
AUCs

yeast scene AVIRIS birds

No missing in train. –
Predictive 0.66 0.92 0.88 0.83

SS 0.68 0.92 0.88 0.83

50% missing in train.

Semi-Supervised

SS

0.64 0.89 0.87 0.79
Mean 0.61 0.87 0.78 0.77

Median 0.55 0.70 0.78 0.75
Most frequent value 0.48 0.52 0.77 0.74

Table 9: Results on yeast, scene, AVIRIS and birds databases of the semi-supervised and
predictive SSHIBA in comparison to different imputation techniques. Results include the
AUC values with the complete dataset and when there is a 50% of missing input data.

4.6. Multiview learning with SSHIBA

As a final experiment on the proposed SSHIBA algorithm, we tested
its potential on a multiview problem. In this case, we decided to combine
the information of the LFW and LFWA databases to have information of
both the person identity and their characteristics. This problem was also

28



solved with the previously defined baselines to compare the results. As these
methods are not compatible with multiview, we decided to incorporate the
extra information as an extra input feature.

Two views Three views
AUC Kc AUC Kc

SSHIBA 0.68 39 0.69 35
CCA 0.60 62 0.60 62
CCA + Log. Reg. 0.60 62 0.60 62
PCA + Log. Reg. 0.65 187 0.66 187
MLP 0.60 375 0.60 375
Logistic reg. 0.65 - 0.65 -
Ridge reg. 0.67 - 0.67 -

Table 10: Results on LFWA database using the data of the LFW database as an extra
view. Results include the performance in terms of AUC and the number of latent factors
when the complete LFWA dataset is used (two views) and when the data from the LFW
database is included (three views).

In Table 10 we can see the results obtained. Results include the AUC
values for all methods under study when the complete LFWA dataset is used
(Two views) and when the data from the LFW database is also incorporated
(Three views). First of all, we can notice that the SSHIBA algorithm is not
only outperforming the rest of the baseline results, but also having a signifi-
cantly lower number of latent features than the FE algorithms. Equivalently,
we can see that the addition of a new view with further information on the
data leads to a reduction on the latent features as well as an improvement
of the performance of the algorithm. The inclusion of additional information
allows the model to capture more accurate data correlations with a smaller
hidden dimensionality.

5. Conclusions

In this article we generalize the BIBFA model to create a new FA frame-
work, called SSHIBA, capable of adapting to the particularities of any learn-
ing problem. In particular, this new model includes new functionalities, such
as, being able to carry out a selection of the most relevant features while ex-
tracting latent features, modelling not only real problem but also multilabel
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and categorical ones and, at the same time, work in a semi-supervised way
with unlabelled data and missing values.

The results with SSHIBA show that, in the worst case, the performance
of the method is similar to the state-of-the-art algorithms while being able
to find a reduced latent space, having less extracted features than classical
feature extraction methods. Combining this with feature selection capabili-
ties and an adequate data modelling (multilabel, categorical, ...), we obtain
more compacted models with a gain of interpretability. Besides, the semi-
supervised version of the algorithm has been proven to perform like the pre-
dictive or even outperform it, while providing the online imputation of any
possible missing value in the data, allowing the algorithm to use a greater
amount of datasets that might have some unclassified data.

These utilities are of special interest for problems in which we are not only
interested in performance, but also in the interpretability of the results (e.g.
medical applications). Furthermore, the ability of working with multiple
views combined with modelling the data according to their characteristics
might benefit databases with different types of heterogeneous data.

In the future, this model can be adapted to work with high-dimensionality
databases by working with kernels in the dual space. This change in the for-
mulation will be able to not only enhance the computational time of datasets
with a high number of samples, but also include non-linearities in the input
data.
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