
Effective Action Recognition with
Embedded Key Point Shifts

Haozhi Caoa,1, Yuecong Xua,1,∗, Jianfei Yanga,1, Kezhi Maoa,1, Jianxiong
Yinb,1, Simon Seeb,1

a50 Nanyang Avenue, 639798, Singapore
b3 International Business Park Rd, #01-20A Nordic European Centre, 609927, Singapore

Abstract

Temporal feature extraction is an essential technique in video-based action

recognition. Key points have been utilized in skeleton-based action recogni-

tion methods but they require costly key point annotation. In this paper, we

propose a novel temporal feature extraction module, named Key Point Shifts

Embedding Module (KPSEM), to adaptively extract channel-wise key point

shifts across video frames without key point annotation for temporal feature

extraction. Key points are adaptively extracted as feature points with maxi-

mum feature values at split regions, while key point shifts are the spatial dis-

placements of corresponding key points. The key point shifts are encoded as

the overall temporal features via linear embedding layers in a multi-set man-

ner. Our method achieves competitive performance through embedding key

point shifts with trivial computational cost, achieving the state-of-the-art per-

formance of 82.05% on Mini-Kinetics and competitive performance on UCF101,

Something-Something-v1 and HMDB51 datasets.

Keywords: Action Recognition, Temporal Feature, Key Point Shifts

∗Corresponding author
Email addresses: haozhi001@e.ntu.edu.sg (Haozhi Cao), xuyu0014@e.ntu.edu.sg

(Yuecong Xu), yang0478@e.ntu.edu.sg (Jianfei Yang), ekzmao@ntu.edu.sg (Kezhi Mao),
jianxiongy@nvidia.com (Jianxiong Yin), ssee@nvidia.com (Simon See)

1School of Electrical and Electronic Engineering, Nanyang Technological University.
2NVIDIA AI Tech Centre.

Preprint submitted to Elsevier August 27, 2020

ar
X

iv
:2

00
8.

11
37

8v
1

 [
cs

.C
V

]
 2

6
A

ug
 2

02
0

1. Introduction

Action recognition has attracted interest in vision and machine learning com-

munities [1, 2] thanks to its applications such as surveillance [3] and smart homes

[4]. Besides the spatial information in each video frame, videos contain addi-

tional temporal information with different properties. Thus, effective modelling

of temporal information in videos is critical for accurate action recognition. In-

tuitively, we humans could effectively recognize the temporal information of ac-

tion through the key points of actors while ignoring the unrelated environment.

Particularly, we focus on the shifts of an actor’s key points. For instance, in

Figure 1a and Figure 1b, the actors in different environments are both climbing.

We could still recognize the same action for both actors through the movement

of the actors’ feet and elbows according to key point shifts.

Previous methods used in the skeleton-based action recognition task [5, 6]

have proven the effectiveness of using key points and their shifts for recognizing

human actions, where the key points and their correspondence across frames are

provided as inputs. Skeleton data outlines the key points of actors in the video,

suppressing the influence of trivial environment information during the feature

extraction process. This increases the robustness of networks when encountering

actions with complicated backgrounds. However, additional costs, such as depth

sensors [7] or estimation algorithms [8, 9], are needed to annotate the raw video

data with human key points for supervision.

Currently, most methods for action recognition without the annotation of

key points would not utilize key point shifts information at all. Instead of learn-

ing the action’s temporal features, many of these methods may learn more about

environment knowledge. This is due to the fact that these methods tend to use

all pixels in each frame instead of key points and their shifts, while most of

the pixels correspond to the environment information which is not as important

as action information. Most of these methods fall into three categories: (1)

two-stream CNNs [10, 11, 12], (2) 3D CNNs [13, 14, 15, 16] and (3) CNNs with

learnable feature correlations [17, 18]. Two-stream CNNs model temporal fea-

2

(a) (b)

(c)

Figure 1: Illustration of using key points and their shifts for action recognition. The key point

shifts in Figure 1a and Figure 1b imply the action “Climbing” while the key point shifts on

Figure 1c imply the action “Archery”. Figure 1a and Figure 1b show that key points and

their shifts could be distributed in different locations and the distributions could be different

at each frame. Figure 1c illustrates an example of the cross-region key point shifts. Crosses

and arrows in different colours indicate key points in different regions and different key point

shifts. The pictures are best viewed in colour and zoomed in.

tures by inputting pre-computed hand-crafted features, such as optical flow, to

a CNN. 3D CNNs extract spatiotemporal features jointly by expanding convo-

lution kernels of 2D CNNs to the temporal dimension but they exhibit inferior

performances. More recently, learnable correlations of features across frames

[17, 18] are used for temporal modelling. The temporal features are extracted

by exploiting the multiplicative interactions between each pixel.

To utilize key point shifts for temporal feature extraction without key point

annotation, we propose a novel method to extract and embed key point shifts

information of each channel from the high-level feature maps. When high-level

spatial features of each frame are extracted through CNN layers, the key points

related to the action could be viewed as the points with the maximum feature

value of each channel in the high-level feature maps. In addition, in many

actions, such key points and their shifts would be distributed in different local

regions of the video frames and the distributions of key points would also be

slightly different for each frame. For example, for the action “Climbing” in

3

Figure 1b, the shift of the key points corresponding to the elbows and the feet

are located at the upper and lower parts, respectively, at the first frame, while

both key points are positioned upwards at the last frame. Therefore, to obtain

temporal information with respect to the key point shifts at different locations

and to cope with the different distributions of key points across all the frames,

we propose to split each frame into different regions adaptively with the key

points extracted at each region.

Furthermore, for some actions, the key points may not belong to the same

region across all the frames. Figure 1c depicts such a case where the key point of

the bow locates at the lower region at the first two frames while it shifts to the

upper region at the last two frames. To extract the cross-region key point shifts

correctly, we compute shift weights to indicate the similarity between any pair

of key points across adjacent frames. The key point shifts are then calculated

as the spatial displacements between the corresponding key points in adjacent

frames according to the shift weights. The proposed temporal feature extractor

is termed as Key Point Shifts Embedding Module (KPSEM), utilizing key

point shifts extracted regionally, termed as Regional Key Point Shifts (RKPS).

Multiple RKPSs are obtained through multiple sets of Adaptive Regional Shift

Extractor (AReSE) under different region separations. The resulting RKPSs

are encoded through independent embedding layers to constitute more robust

temporal features.

In summary, the main contribution of this work is a novel temporal fea-

ture extraction module based on key point shifts: Key Point Shifts Embedding

Module (KPSEM). First, KPSEM is designed to utilize the key point shifts

for effective temporal feature extraction without key point annotation. Second,

through a multi-set embedding operation, the key point shifts are embedded as

effective temporal features of the input video. Third, the extensive experiments

on various datasets demonstrate that KPSEM can effectively model temporal

features, achieving state-of-the-art performance on the Mini-Kinetics dataset

without involving high computational cost.

4

2. Related Work

Temporal Feature Extraction. To extract temporal features effectively, earlier

works [11, 10, 12] adopt a two-stream strategy where temporal features are

extracted in parallel with the spatial features. The temporal features are ex-

tracted by feeding a stack of optical flow frames to CNNs. Typical computation

methods of optical flow include LucasKanade [19], HornSchunck [20] and TV-

L1 [21]. More recent two-stream CNNs usually apply TV-L1 [21] as the optical

flow extraction method due to its robustness and efficiency compared to other

methods. Optical flow represents temporal features accurately as it computes

pixel-level correlation information across frames. However, the application of

optical flow usually forbids end-to-end training of the network, since it requires

pre-computation of optical flow before being input to CNNs. Additionally, the

process of extracting optical flow is computationally expensive and memory in-

tensive. Therefore, more recent methods try to avoid the need for optical flow.

To address the limitations imposed by utilizing optical flow in two-stream

CNNs, later works proposed to extract temporal features jointly with spatial

features using 3D CNNs. C3D [13], I3D [15], P3D [22] and 3D-ResNet [14] all

belong to this category. C3D [13] is one of the primary works where CNN filters

are expanded to the temporal dimension. For faster training, I3D [15] directly

inflates 2D CNNs into a 3D structure through endowing filters and pooling

kernels with the temporal dimension. Additionally, P3D [22] reduces the com-

putational cost by simulating a 3D convolution filter with a spatial convolution

filter and a separate temporal convolution filter. Subsequent networks, such as

3D-ResNet [14], are deeper and larger 3D CNNs trained on the Kinetics [23] to

retrace the success of deeper 2D CNNs pretrained on ImageNet [24]. 3D CNNs

benefit from end-to-end training and require only RGB input. However, many of

these works exhibit inferior results compared to two-stream CNNs. The inferior

results could be contributed by the fact that the temporal features are extracted

through multiple pooling operations along the temporal dimension. The tem-

poral information which reflects the change in spatial information across time

5

might be lost during the multiple pooling operations. Therefore, 3D CNNs fail

to extract effective temporal features, which results in inferior performance.

To improve the effectiveness of temporal features extracted through CNNs

while avoiding the use of optical flow, multiple methods have been proposed. A

prominent category is to utilize learnable correlations of features across frames.

Inspired by the non-local mean operation for image denoising [25, 26], Wang et

al. [17] presented the non-local operation to capture correlations on the pixel

level as the representation of the temporal features. Similarly, ARTNet [18]

is designed such that its relation branch captures the multiplicative interac-

tions between pixels across multiple frames. Recently, the correlation network

[27] utilizes correlation operators to model frame-to-frame correlation in feature

maps. The above methods model correlations between all pixels across frames

as the temporal features with end-to-end training. However, it is computation-

ally expensive to extract correlations between every single pixel. Moreover, for

pixels representing unrelated background information, their correlations might

contribute trivial to the overall video features and therefore the correlations

computed between these pixels are redundant.

In addition to using learnable feature correlations to extract temporal fea-

tures, another proposed solution is to enrich the temporal information by ex-

tracting temporal features under different frame rates. Specifically, the Slowfast

network [28] applies an additional “Fast” pathway, which is a 3D CNN stream

with a higher frame rate to capture temporal features in fine temporal resolu-

tion. Similarly, the TPN [29] extracts temporal features by aggregating features

extracted under different tempos. These methods aim to extract more temporal

information under multiple frame rates. However, they usually include multiple

sub-streams for the different frame rates, which might introduce extra network

structures and result in computation overhead.

Different from two-stream methods, our work proposed an end-to-end method

to extract frame-wise temporal information from pure RGB input. In contrast

to previous correlation extraction methods, our proposed method aims to ex-

tract the temporal information effectively by extracting key correlations instead

6

of correlations of all pixels or features. Our proposed method utilizes only re-

gional key points and computes their respective shift across successive frames.

This implies that our temporal feature extraction method is more computation

efficient with less redundant information included. Yet it still brings consistent

improvement in temporal feature extraction, supported by stable improvement

in action recognition accuracy.

Skeleton-based Action Recognition. Key points and their displacements have

been used mainly in skeleton-based action recognition [5, 6]. Most of the

skeleton-based methods take skeleton data as the input, which is generated

by devices or pose estimation algorithms in the form of 2D or 3D coordinates.

These skeleton data already possesses temporal correspondent relationship. The

utilization of skeleton-based data excludes the effect of unrelated pixels so that

the network can concentrate on the key points and their temporal correlation.

Compared to extracting correlations of all pixels or features, the introduction of

skeleton data is more effective and efficient in modelling temporal information.

However, such annotations are not available in the first place for most pub-

lic videos. The generation of skeleton data requires extra cost, such as extra

computation resources and additional recording devices. In comparison, we pro-

pose a novel method to extract key points in high-level feature maps without

the need for collecting and annotating the skeleton data for videos. Empirical

results show that our method can bring consistent improvement while resulting

in only a trivial amount of extra computational complexity without the need

for skeleton data or other key point annotation.

3. Proposed Method

The ultimate goal of our work is to extract temporal information that can

represent the frame-wise movement of spatial features. We believe that key

points represent the dominant spatial features, such as parts of human body

and objects related to the actions as shown in Figure 1. Therefore, their shifts

can be viewed as effective temporal features. We propose a novel module, Key

7

Point Shifts Extraction Module (KPSEM), which utilizes Regional Key Point

Shifts (RKPS) as a new modality to represent the temporal features of videos.

The RKPSs are extracted by multiple sets of Adaptive Regional Shift Extractor

(AReSE) and computed as the relative coordinate displacements between key

points. In this section, we first illustrate how the KPSEM is implemented with

the CNN backbone as well as its detailed structure. Subsequently, we expound

the details of the AReSE with the process of extracting RKPS, which is the

core of our proposed KPSEM .

3.1. Overall Structure

Conv

Layer 5

KPSEM

Conv

Layers

1-4
+

C
lim

b
in

g

Classifier

𝐹𝑜𝑢𝑡

𝑃𝑜𝑢𝑡

𝑉𝑜𝑢𝑡

AvgPool

𝑉𝑖𝑛

Figure 2: The overall structure of our proposed method. KPSEM extracts the temporal

features of the video through high-level spatial features F extracted from the CNN backbone.

The spatial feature output Fout and temporal feature output Pout are concatenated and the

resulting overall video features Vout are passed through a linear classifier. KPSEM can be

inserted not only at the location shown in this figure but also after any convolution layer.

The overall structure of our network is as shown in Figure 2. Given an input

video Vin, we utilize CNN to extract its high-level feature maps, denoted as F ∈

RC×T×H×W where C, T , H, W are the number of channels, the length of frames,

the spatial height and the width of the feature maps, respectively. Our proposed

KPSEM extracts temporal features from F by embedding RKPSs which are

the weighted coordinate differences extracted by AReSE. The temporal features

from KPSEM concatenate with the spatial features from CNN and the overall

video features pass through the linear classifier. The spatial feature output

from the CNN is denoted as Fout ∈ RCs while the temporal feature output of

KPSEM is denoted as Pout ∈ RCp . Here Cs, Cp denote the number of channels

of the spatial feature output and that of temporal feature output fromKPSEM ,

8

respectively. Subsequently, the overall video features Vout are computed by:

Vout = Fout ⊕ Pout, (1)

where ⊕ denotes the concatenation operation along the channel dimension. The

combined Vout ∈ R(Cs+Cp) passes through the final classifier. It is worth noting

that while the KPSEM is inserted after Conv4 in Fig 2, the KPSEM is an

isolated block which can be inserted at any other location.

3.2. Key Point Shifts Embedding Module (KPSEM)

𝑃𝑜𝑢𝑡𝑨𝑹𝒆𝑺𝑬

Multi-Set

Linear

Multi-Set Embedding

Set-wise

Summation Dimension

Reduction

𝑅𝐾𝑃𝑆s

Figure 3: Details of KPSEM . From the high-level features F extracted by CNN, G RKPSs

are extracted by G sets of AReSEs. Each RKPS is linearly projected to a higher dimension

vector separately. The resulting multi-set embedding is then processed through a set-wise

summation to combine all the information from the different sets. The overall temporal

feature output is obtained through a final dimension reduction process.

Our proposed KPSEM module extracts the overall temporal features by

embedding the Regional Key Point Shifts (RKPS) obtained through AReSE

(cf. Section 3.3). The AReSE performs an adaptive region separation on high-

level feature maps and subsequently extracts the RKPS based on the region

separation. Different region separations generate different RKPSs. To enhance

the robustness of KPSEM , we adopt multiple sets of AReSEs, each of which

performs region separation and RKPS extraction independently. Formally, the

RKPSs are computed as:

RKPSg = AReSEg(F), g = 1, 2, ...G, (2)

where RKPSg is the gth RKPS extracted by the gth set of AReSE, denoted

as AReSEg. G is the total number of sets of AReSEs. The resulting RKPSs

9

are of size C× (T − 1)×G×2. The details about how AReSE extracts RKPS

is illustrated in Section 3.3.

Subsequently, inspired by the multi-head attention introduced in [30], in-

stead of going through a shared linear embedding layer, the G sets of RKPSs

are linearly projected to dimension de separately. This independent embedding

operation ensures that our proposed KPSEM can gain more abundant rep-

resentation from different RKPSs. A set-wise summation is then utilized to

aggregated information across all the RKPSs. More specifically, given G sets

of RKPSs, the multi-set embedding is computed as:

M(RKPSs) =

G∑
g=1

Lg(RKPSg), (3)

whereM denotes the multi-set embedding operation. RKPSg is the gth RKPS

computed by AReSEg, while Lg is the gth linear projection for the correspond-

ing RKPSg. The subsequent set-wise summation across all G RKPSs directly

merges all embeddings. Ultimately, after a dimension reduction procedure, the

overall temporal features are obtained.

We notice that the multi-set mechanism mentioned above plays an important

role in theKPSEM module. The utilization of multiple sets of AReSE provides

the overall framework with different adaptive regional feature maps. This allows

the network to find better local splits with more representative key points. The

separated linear embedding layer for each RKPS ensures the abundance of

embedded information obtained from the different RKPSs. Next, we illustrate

how the proposed AReSE conducts adaptive region separation and key point

shift extraction in details.

3.3. Adaptive Regional Shift Extractor (AReSE)

As mentioned in Section 1, key point shifts can represent the temporal move-

ment of dominant features of each channel. We propose a novel module named

Adaptive Regional Shift Extractor (AReSE) to extract key point shifts from

high-level feature maps as our temporal features. To cope with the different

key point distributions illustrated as Figure 1b and preserve local information,

10

𝑅𝐾𝑃𝑆

(a) Adaptive Regional

SeparationT

H

W

(c) Key Point Shift Computation

×

(i) Adaptive

AvgPool

(ii) Temporal

AvgPool

(b) Key Point Extraction

(d) Regional Weight Computation

𝐹𝑎

𝐼, 𝑉

𝑊𝑅

𝑆

Figure 4: Details of AReSE applied to a single channel. Here each frame is split into K = 4

regions. The high-level features F extracted by CNN is first separated adaptively, forming

the adaptive regional feature maps Fa. The key point coordinates I and feature values V

are then extracted from each region at each channel. The key point shifts S are computed

as the weighted coordinate shift of corresponding regional key points across adjacent frames.

The regional weights WR are generated by performing adaptive average pooling and temporal

average pooling operations to indicate the importance of a region. The RKPS is computed

as the weighted key point shifts weighted by the regional weights.

we first adaptively separate the feature maps into multiple regions. The key

points and their shifts are subsequently extracted from each region to generate

Regional Key Point Shifts (RKPS). In this section, we illustrate how the pro-

posed AReSE extracts RKPS step by step, including (a) Adaptive Separation

of Feature Maps, (b) Key Point Extraction, (c) Key Point Shift Computation

and (d) Regional Weight Computation as shown in Figure 4.

Adaptive Separation of Feature Maps. Taking the high-level features F as the

input, the AReSE first separates each frame of feature maps into K regions.

Instead of manually setting the boundaries between the regions, the splits of the

different regions at each frame are trainable and adaptive in order to adjust to

the different key point distributions in each frame. Figure 4 shows an example

of adaptive separation of K = 4 regions, where regions are separated by a single

separation centre. For a sequence of T frames, we denote the stack of geometric

centres of the feature maps F as O ∈ RT×2, with Oi being the geometric center

of the ith frame located at (xi, yi). O splits the original feature maps F into K

equal regions. The corresponding stack of adaptive separation centres, denoted

as Oa ∈ RT×2, is computed by adding an adaptive bias, which is obtained from

11

each frame through a Multilayer Perceptron (MLP). The adaptive separation

centres Oa are computed by:

Bi = Ii(Fi) = (∆xi,∆yi) (4)

Oai = Oi +Bi, (5)

where Oi and Oai are the geometric centre and the adaptive separation point

of the ith frame Fi ∈ RC×H×W , respectively. Bi is the adaptive bias of the

ith frame Fi. Ii is the MLP which generates the adaptive bias Bi. The MLPs

are trained jointly with the network. Given the adaptive separation centers Oa,

the high-level features are then separated into K × T regions, resulting in the

adaptive regional feature maps Fa consisting of
{
Fa

(1,1), · · · , Fa(T,K)
}

of sizes{
C ×H(1,1) ×W (1,1), · · · , C ×H(T,K) ×W (T,K)

}
as in Figure 4(a).

The separation of feature maps provides regional key points with local char-

acteristics. If the split of each frame is fixed, different key points that are

spatially close to each other may locate within the same region. In such cases,

key points except the one with the maximum feature value would be ignored.

Since the adaptive separation directly affects the resulting key points, we utilize

multi-set of AReSE as mentioned in Section 3.2 to generate more key points un-

der different region separations. The multi-set operation improves the diversity

of feature map separation and therefore improves the robustness of extracted

temporal features.

Key Point Extraction. Given the high-level feature map of region r located at

channel c of frame f denoted as Fr, the maximum point is extracted as the key

point since the maximum feature value point represents the area of raw pixels

with key spatial information. Given Fr ∈ RHr×Wr , the coordinate as well as the

feature value of the key point are extracted as:

Ir = arg max
(h,w)

Fr(h,w) = (xmaxr , ymaxr) (6)

Vr = max(Fr) = Fr(x
max
r , ymaxr), (7)

where Ir ∈ R2 is the coordinate of the key point at the region r of the feature

map. Vr is the feature value of the key point.

12

Note that the key point extraction is operated at each channel in prac-

tice. In another word, given a region FR ∈ RC×Hr×Wr with multiple channels,

the key point extraction generates C key points in total, each of which repre-

sents the spatial location of the key feature in its own channel and therefore

we can compute the movement of these key features independently in subse-

quent procedures. Given the adaptive regional feature maps Fa consisting of{
Fa

(1,1), · · · , Fa(T,K)
}

, the key point extraction results in key point coordinates

I ∈ RK×C×T×2 and key point values V ∈ RK×C×T indicated as the points with

darker color in Figure 4(b).

Key Point Shift Computation. Given the key point 2D coordinates I and their

respective feature values V , we compute the regional key point shifts across

adjacent frames by two steps, including spatial location difference computation

and shift weight computation.

There are many cases where corresponding key points may not belong to

the same region across adjacent frames (e.g. Figure 1c). To cope with these

situations, we first find the spatial location difference between any pair of re-

gional key points in adjacent frames. The key point shifts are then computed

as the weighted sum of the location differences based on the correlation of the

key points. This ensures that the computed shift are indeed extracted between

two corresponding key points. Given any two key points Ii,α, Ii+1,β where α,

β are two regions located at frames i, i + 1, respectively, the spatial location

difference of these two key points is computed as:

∆i,α,β = Ii+1,β − Ii,α, (8)

where ∆i,α,β is the spatial location difference between key points Ii+1,β and

Ii,α. In practice, the spatial location computation is operated across any ad-

jacent frames at each channel. Therefore, given the key point coordinates

I ∈ RK×C×T×2, the resulting stack of spatial location differences ∆ of size

Kr ×Kn × C × (T − 1)× 2 contains all channel-wise spatial location differences

between any two key points in adjacent frames. Here we use Kr and Kn to re-

13

fer the region dimension in the current and the next frame for spatial location

differences ∆, respectively, with their values both equal to K.

The key point shifts are then obtained through attending to the spatial

location differences of corresponding key points, which should have the strongest

correlation. Formally, given the spatial location differences between any two

adjacent frames i and i+ 1 denoted as ∆i ∈ RKr×Kn×2, the key point shifts Si

are weighted sums of ∆i across Kn. Here the shift weight Wi,α,β is related to

the correlation between the key points located at region α at the recent frame i

and the key point located at region β at the next frame i+ 1. The shift weight

indicates the probability of the key points at Ii,α of the recent frame falling

at the location Ii+1,β at the next frame. Given the stack of spatial location

differences ∆i ∈ RKr×Kn×2, the shift weight and the key point shifts at the

region α of the recent frame is computed by:

Wi,α,β = Gn
(

1

|Vi,α − Vi+1,β |+ 0.1

)
(9)

Si,α =
∑
β∈Kn

Wi,α,β ·∆i,α,β , (10)

where Vi,α, Vi+1,β are the feature values of key points in the region α at the

recent frame i and the region β at the next frame i + 1 , respectively. The Gn
is the softmax function along the Kn dimension. The above equations show

that the correlation between any two key points across adjacent frames is com-

puted by the reciprocal of the difference between their feature values. Similar to

the spatial location difference computation mentioned in Equation 8, the shift

weight computation is also applied to all channels and all frames. Given the spa-

tial location differences ∆ ∈ RKr×Kn×C×(T−1)×2, the resulting key point shifts

S ∈ RK×C×(T−1)×2 are obtained from the weighted stack of spatial location

differences ∆ summed across the Kn dimension per channel.

Regional Weight Computation. In many videos, the temporal features of the

action would be located in a certain region of the video frames. It is therefore

reasonable to attend to a certain region while extracting key point shifts. Here

an attention mechanism is designed to represent the relative significance of re-

14

gions across each pair of adjacent frames based on its regional average value.

Formally, given the adaptive regional feature maps Fa, the regional weight WR

is computed by:

WR = Gk(PT (PR(Fa))). (11)

This implies that the regional weight WR ∈ RK×C×(T−1) is computed as the

average values of Fa over the same region for two adjacent frames. The PR is

an adaptive average pooling operation along the spatial dimension to generate

the mean values of each adaptively split region. Whereas the PT is an average

pooling operation across adjacent frames with the kernel size set to 2 along the

temporal dimension. The Gk is the softmax function along the K dimension.

The computed weightWR represents the attention level to the key point shifts by

considering regional feature values across adjacent frames. The resulting RKPS

is generated as the weighted key point shifts S, weighted by the regional weight

WR. Formally, given the key point shifts S and the regional weight WR, the

RKPS is computed as:

RKPS = WR � S, (12)

where � is the element-wise multiplication. The overall RKPS ∈ RK×C×(T−1)

is therefore the overall weighted key point shifts of corresponding key points

across two adjacent frames of the input feature map F .

As mentioned in Section 3.2, there are multi-set of AReSEs in KPSEM ,

each of which generates RKPS based on its own adaptive region separation.

Our experiments as shown in Section 4.4 indicate that while the multi-set

AReSEs can further increase the performance compared to a single AReSE,

using a single AReSE in KPSEM can also improve the performance compared

to the baseline model.

4. Experiments

In this section, we present our evaluation results of the proposed work. The

evaluation is conducted through action recognition experiments on four public

15

benchmark datasets, namely Mini-Kinetics [31], UCF101 [32], Something-

Something v1 [33] and HMDB51 [34]. We present state-of-the-art results on

Mini-Kinetics dataset, and competitive performances on UCF10, Something-

Something v1 and HMDB51 datasets. We also present detailed ablation study

performed on HMDB51 [34] dataset to verify our design. We further provide

heat maps as well as key point shifts visualization of our proposed framework

to justify the effectiveness of our proposed work.

72.5

73.1

74.0

72.4

71.5

72.0

72.5

73.0

73.5

74.0

74.5

Conv2 Conv3 Conv4 Conv5

Accuracy vs Position of KPSEM on HMDB51

A
cc

u
ra

cy
 (

%
)

Position of KPSEM

(a)

72.1

74.0

73.2

72.8

71.0

71.5

72.0

72.5

73.0

73.5

74.0

74.5

1 4 9 16

Accuracy vs Number of Splits per frame on HMDB51

A
cc

u
ra

cy
 (

%
)

Number of Splits per Frame

(b)

72.8

73.3

74.0
73.8

73.7 73.7

72.2

72.4

72.6

72.8

73.0

73.2

73.4

73.6

73.8

74.0

74.2

4 6 8 10 16 24

Accuracy vs Number of Sets of AReSE on HMDB51

A
cc

u
ra

cy
 (

%
)

Number of Sets

(c)

72.3

72.9

74.0

73.2

72.5

71.0

71.5

72.0

72.5

73.0

73.5

74.0

74.5

16 20 24 28 32

Impact of Dimension of Linear Embedding Layer

A
cc

u
ra

cy
 (

%
)

Dimension of Linear Embedding Layer

(d)

Figure 5: Experiments for best settings of KPSEM with MFNet [35]. The experiments are

conducted on HMDB51 split-1 with a small batch size of 16. (a) Accuracy vs. the position of

KPSEM on HMDB51, with KPSEM placed at the end of each Conv layer. (b) Accuracy vs.

the number of splits per frame on HMDB51. (c) Accuracy vs. the number of sets of AReSE

on HMDB51. (d) Accuracy vs. dimension of the linear embedding layer. Our implementation

obtains a 70.8% accuracy with MFNet, which is much lower than that reported in [35] mainly

due to the much smaller batch size. All settings surpass the baseline by at least 1.3%.

16

4.1. Experimental Settings

We conduct experiments on four benchmark datasets of action recogni-

tion: Mini-Kinetics, Something-Something v1, UCF101 and HMDB51. Mini-

Kinetics is a subset of the Kinetics [23] dataset, with 200 of its categories. It

contains 80K training data and 5K validation data. Something-Something

v1 [33] contains 108,499 videos from 174 human-object-interaction action classes,

consisted with 86,017 training, 11,522 validation and 10,960 test videos. UCF101

[32] contains 13,320 videos from 101 action categories. HMDB51 [34] contains

51 action categories including a total of 7,000 videos. For UCF101 and HMDB51

datasets, we follow the experiment settings as in [35, 13, 14] that adopt the three

train/test splits for evaluation. We report the average top-1 accuracy over the

three splits. Our proposed module for temporal feature extraction can be used

with any CNN networks. To obtain the state-of-the-art result on Mini-Kinetics

and competitive results on UCF101, Something-Something v1 and HMDB51,

we instantiate MFNet [35] thanks to its superior performance on Kinetics. The

variant of MFNet combined with KPSEM is referred to as MF-KPSEM.

Our experiments are implemented using PyTorch [36]. Following the im-

plementation in [35], the input is a frame sequence with each frame of size

224×224. Our KPSEM extracts the temporal features from the output of the

Conv4 layer of MFNet. We choose to split each frame into K = 4 splits and

adopt G = 8 sets based on empirical results in Figure 5. The output dimension

of the linear embedding layer is set as 24. This setting exhibits the ultimate

results as shown in Figure 5. To accelerate training, we utilize the pretrained

model of MFNet [35] trained on Kinetics [23]. The stochastic gradient descent

algorithm [37] is used for optimization, with the weight decay set to 0.0001 and

the momentum set to 0.9. Our initial learning rate is set to 0.005. A more

detailed settings analysis is illustrated in Section 4.4.

4.2. Detailed Implementation of KPSEM

As mentioned in Section 3, our proposed KPSEM utilizes MFNet as the

backbone CNN network. Here we present a more detailed implementation of

17

conv1

bn&relu
pool1 conv4 conv5

Average

pool
conv3conv2 bn & relu

KPSEM

cat
Linear

Classifier

Video

Input

Action

Class

3x16x224x224 16x16x112x112
384x8x14x14

768
192x8x28x2816x16x56x56 768x8x7x796x8x56x56

672

(a)

Adaptive

Regional

Feature Map

2D Conv

Layer × 2

384x8x8x14x14

Flatten

(4)x384x8x8x{2}

×

Set-wise

Sum

Key Points

Coordinates

Spatial

Average Pool

Reshape
Linear

Embedding

(4x4)x384x7x8

(4x4)x384x7x8x{2}

Temporal

Average Pool
SoftMax

Weighted

Sum

×

Key Points

Correlation with

SoftMax

Spatial Location

Differences ∆ 𝑆
Temporal

Feature

Output

𝑅𝐾𝑃𝑆

(4)x384x8x8 (4)x384x7x8

384x7x8x{8}
384x7x8x{24} 384x7x{24} 672

Multi-set Embedding

96x7x{6}

High-level

Feature Map

(From Conv4)

Multiple Sets of 𝐴𝑅𝑒𝑆𝐸

𝑊𝑅

2D

AvgPool

96x7

Dimension Reduction

(b)

Figure 6: Detailed implementation of (a) our action recognition framework MF-KPSEM,

utilizing MFNet as the backbone for spatial feature extraction, with our proposed KPSEM

for temporal feature extraction; and (b) more detailed implementation of KPSEM with 8

sets of AReSEs. For (a), the figures above or below the blocks are the output size of the

respective blocks expressed in C × T × H × W . Here C is the number of channels, T, H

and W are the length of time, height and width of the features. For (b), the figures below

the blocks are the output size of the respective blocks. The number within the parentheses

corresponds to the dimension reflecting the split of frames K, while the number within the

braces corresponds to the key point shifts or its embedding. The other figures are expressed

in the order of C×T ×G×H×W . Here C is the number of channels, T , G, H and W are the

length of time, number of sets for AReSEs (cf. Section 3.3), height and width of the features.

The black path is the path to extract spatial features with MFNet. Whereas the blue path is

the path to extract temporal features with KPSEM . Figures are best viewed zoomed in.

the overall framework of MF-KPSEM, shown in Figure 6a, and the detailed

implementation of our proposed KPSEM as shown in Figure 6b.

We follow the implementation in [35] where the input is a frame sequence

of 16 frames, with each frame of size 224× 224. As mentioned in Section 3.1 of

our paper, the input of KPSEM is the output of Conv4 layer of MFNet [35],

which is of size 384 × 8 × 14 × 14. To obtain the temporal feature output,

KPSEM first computes the 8 RKPSs obtained through 8 sets of AReSEs.

Each set of AReSEs performs different region separations, splitting the high-

level feature maps from the output of Conv4 layer adaptively. All the RKPSs

18

go through a reshape process before going through the multi-set embedding

operation. Each RKPS is linearly projected separately to a dimension size of

24 as mentioned in Section 4.1. To obtain the overall feature output, a series

of dimension reduction operation is utilized after the set-wise summation of the

linear embeddings. Specifically, two 2D convolution layers with a kernel size of

(1, 3) and a stride (1, 2) are first utilized to reduce the embedding from the size

of 24-d to 6-d. Subsequently, the result passes through a 2D average pooling

layer and then flattened to produce the final temporal feature output. It is

worth noticing that in addition to reducing embedding size, we also reduce the

channels from the size of 384-d to 96-d to discard the non-salient embeddings.

The size of the temporal feature output is of 672-d.

4.3. Results and Comparison

Table 1 shows the comparison of top-1 accuracy on Mini-Kinetics, UCF101,

Something-Something v1 and HMDB51 datasets with other state-of-the-art

methods including:

1. Two-stream CNN methods: MARS [38], Residual Frame with two-stream

input (ResFrame TS) [39] and I3D with two-stream input (I3D TS) [15].

2. 2D CNN & 3D CNN methods: C3D [13], I3D with RGB input [15],

(2+C1)D [40], S3D [31], MFNet [35], ECO [41], ECOLite [41], TSM [42]

and TSN [12].

3. CNN with learnable feature correlations: TBN [43], Res50-NL [17], Res50-

CGD [44], Res50-CGNL [45], I3D-NL [17] and I3D-NL-GCN [46].

Our state-of-the-art performance is achieved by instantiating MFNet, de-

noted as MF-KPSEM. For the experiments as presented in Table 1, the batch

size is set to 64 for Mini-Kinetics as well as Something-Something v1 datasets,

80 for UCF101 dataset and 128 for HMDB51 dataset, respectively. The exper-

iments are conducted using two NVIDIA Quadro RTX8000 GPUs.

The performance results in Table 1 show that our network achieves the

state-of-the-art result on the Mini-Kinetics with only a minor increase in the

19

Method Mini-Kinetics UCF101 STH-STH v1 HMDB51 # Params FLOPs

Two-stream CNNs

MARS [38] 73.5% 98.1% 53.0% 80.9% - -

ResFrame TS [39] 73.9% 90.6% - 55.4% - -

I3D (TS) [15] 78.7% 97.9% - 80.2% 25.0M >107.9G

2D CNNs & 3D CNNs

C3D [13] 66.2% 85.2% - - 33.3M -

I3D (RGB) [15] 74.1% 95.4% 45.8% 74.5% 12.06M 107.9G

(2+C1)D [40] 75.74% 96.9% - 75.2% 7.3M 31.9G

S3D [31] 78.0% 96.8% 48.2% 75.9% 8.77M 43.47G

MFNet [35] 78.35% 96.0% 43.0% 74.6% 8.0M 11.1G

ECO [41] - 94.8% 41.4% 72.4% 47.5M 64G

ECOLite [41] - - 46.4% - 150M 267G

TSM [42] - 95.9% 49.7% 73.5% 48.6M 98G

TSN [12] - 94.2% 19.5% 69.4% 10.7M 16G

CNN with learnable

feature correlations

TBN [43] 69.5% 93.6% - 69.4 11.4M -

Res50-NL [17] 77.53% 82.88% - - 27.66M 19.67G

Res50-CGD [44] 77.56% 84.06% - - 25.58M 17.88G

Res50-CGNL [45] 77.76% 83.38% - - 27.2M 19.16G

I3D-NL [17] - - 44.4% - 27.2M 19.16G

I3D-NL-GCN [46] - - 46.1% - 27.2M 19.16G

Ours MF-KPSEM 82.05% 97.4% 48.1% 77.7% 8.11M 11.21G

Table 1: Comparison of top-1 accuracy, number of parameters and computational cost in

FLOPs with state-of-the-art methods on Mini-Kinetics, UCF101, Something-Something v1

and HMDB51 datasets. MF-KPSEM instantiates MFNet as the backbone CNN.

92.67

62.91

38.37 38.37

52.8

64.17

91.3

68.18

77.27

85.71 85.41

76.19

86.96

68

45.55

52.17

86.5

56.14

30.81 30.75

44.83

52.03

78.26

54.55

63.63

71.43 72.59

61.9

69.66

48

22.72
26.08

0

10

20

30

40

50

60

70

80

90

100

KPSEM MFNet

Figure 7: Detailed comparison of accuracy per class on Mini-Kinetics. Here we present the

accuracies of 16 classes where MF-KPSEM outperforms by a margin of at least 6%.

number of parameters and required computational cost. Our proposed MF-

KPSEM achieves a relative 4.73% increase in recognition accuracy over our

baseline method, at a cost of a mere 1.38% increase in parameters and 1%

extra FLOPs. Our method surpasses the previous state-of-the-art method which

20

High Kick

KPSEM (Ours)

High Kick 60.12

Capoeira 25.65

Side kick 6.00

MFNet

Capoeira 54.65

Breakdancing 42.44

High Kick 0.85

Situp

KPSEM (Ours)

Situp 45.58

Stretching Leg 23.07

Somersaulting 22.29

MFNet

Somersaulting 66.21

Stretching Leg 14.00

Situp 11.25

Snowboarding

KPSEM (Ours)

Snowboarding 53.11

Ski Jumping 30.09

Kite Surfing 3.32

MFNet

Ski Jumping 30.29

Windsurfing 18.73

Snowboarding 6.85

Tobogganing

KPSEM (Ours)

Tobogganing 51.87

Ski Jumping 39.41

Snowboarding 7.43

MFNet

Ski Jumping 73.64

Snowboarding 19.07

Tobogganing 3.98

Kitesurfing

KPSEM (Ours)

Kite Surfing 49.03

Jet Skiing 25.58

Surfing Water 14.09

MFNet

Surfing Water 42.54

Jet Skiing 21.26

Windsurfing 9.49

Stretching Leg

KPSEM (Ours)

Stretching Leg 83.05

Yoga 16.86

Situp 0.0385

MFNet

Yoga 62.87

Situp 35.66

Stretching Leg 0.59

(a) (b) (c) (d) (e) (f)

Catch/Throw Baseball

KPSEM (Ours)

Catch/Throw Baseball 23.64

Hitting Baseball 18.29

Juggling Balls 8.91

MFNet

Catch/Throw Softball 25.42

Lunge 21.68

Juggling Balls 10.48

Catch/Throw Softball

KPSEM (Ours)

Catch/Throw Softball 91.44

Javelin Throw 3.77

High Jump 1.86

MFNet

Javelin Throw 93.3

Catch/Throw Softball 5.17

High Jump 0.3

Somersaulting

KPSEM (Ours)

Somersaulting 84.07

Crawling Baby 14.23

Pushing Cart 0.98

MFNet

Crawling Baby 50.67

Somersaulting 38.81

Breakdancing 10.24

Ski Jumping

KPSEM (Ours)

Ski Jumping 71.17

Skiing 25.15

Snowboarding 1.68

MFNet

Skiing 49.5

Ski Jumping 46.97

Snowboarding 2.23

Squat

KPSEM (Ours)

Squat 90.67

Deadlifting 5.97

Clean and Jerk 1.55

MFNet

Deadlifting 43.86

Clean and Jerk 37.89

Squat 13.60

Snatch Weight Lifting

KPSEM (Ours)

Snatch Weight Lifting 53.16

Clean and Jerk 46.77

Lunge 0.03

MFNet

Clean and Jerk 56.66

Snatch Weight Lifting 43.32

Squat 0.01

(g) (h) (i) (j) (k) (l)

Figure 8: Twelve examples taken from the 16 classes presented in Figure 7. The numbers on

the right of each class show the probability of the class from the classifier in percentages. We

show three classes with the highest probability. The class with the highest probability is the

result of the top-1 classification.

utilizes learnable feature correlations through the CGNL module by 4.29%, with

a much lighter network and requires lower computational cost. It is noted that

the number of parameters in MF-KPSEM exceeds that of (2+C1)D, which is

built on top of DenseNet [47] that is characterized by its small parameter size.

However, our method exceeds theirs by 6.31% in accuracy with 64.86% reduced

FLOPs.

For the other three datasets, our MF-KPSEM also performs competitively,

gaining a 1.4% increase for UCF101, 5.1% increase for Something-Something

v1 and 3.1% for HMDB51 compared to our baseline network. For UCF101 and

HMDB51 datasets, our proposed MF-KPSEM performs slightly poorer than

the two-stream CNN MARS [38], trailing by 0.7% for UCF101 and 3.2% for

HMDB51. Yet our approach does not utilize optical flow as our input during

both training and inference, which means a significant reduction in memory

and computational cost. For Something-Something v1, while our MF-KPSEM

performs slightly inferior compared to S3D [31] and TSM [43], our MF-KPSEM

21

is a much lighter network with smaller parameter size and requires less com-

putational cost. Specifically, the parameters of our MF-KPSEM are 7.5% and

83.3% less than those of S3D and TSM, respectively. For computational cost,

MF-KPSEM requires 74.2% fewer FLOPS compared to S3D and 88.6% fewer

FLOPS compared to TSM. Despite the obvious gap of parameters and FLOPS,

our MF-KPSEM still performs competitively for Something-Something v1, with

a minor 0.1% and 1.8% gap in accuracy compared to S3D and TSM, respectively.

We further investigate the improvement over different actions and present

a more detailed comparison of performance between our proposed MF-KPSEM

network and the baseline MFNet network. Figure 7 shows the accuracy of

16 classes from the Mini-Kinetics dataset, where our network outperforms the

original network by a noticeable margin of over 6%. Many of the examples

in these classes are characterized by the fact that the frames in each of these

examples would appear similar to other action classes. Therefore, the temporal

features showing how the action evolves is the key to correctly classifying these

examples.

Figure 8 present 12 examples from the 16 classes mentioned in Figure 7,

all of which are better classified through the proposed MF-KPSEM. It could

be observed that the spatial features of the given examples, or more intuitively

the appearance of the frames in the given examples, could not provide effective

representation for accurate action recognition. For example, for Video (a) in

Figure 8, the actor is seen rolling up herself. Such a scenario could be present

in the action class “Somersaulting”, in which actors would roll themselves up

to turn upside down. It could also be presented in the action class “Situp”,

where the rolling up is followed by the actor rolling backwards to roll up again.

The class of this action could only be determined through the temporal fea-

tures, which are the change of the actor’s position. In this video, the actor is

rolling backwards after this scenario. The actual change of the actor’s position

suggests that the action should be classified as “Situp”. If only spatial features

are utilized as in the case of MFNet, the video would be instead classified as

“Somersaulting” due to the multiple frames showing the actor rolled up. This

22

clearly shows the importance of temporal features in accurate action recognition

and the effectiveness of our KPSEM in extracting effective temporal features.

Model Accuracy

MFNet 70.8%

MF-KPSEM 74.0%

Single Key Point 72.1%

(a) Separation of Feature Maps

Model Accuracy

MFNet 70.8%

MF-KPSEM 74.0%

Fixed Regions 72.5%

(b) Adaptive Regions

Model Accuracy

MFNet 70.8%

MF-KPSEM 74.0%

One Set of AReSE 72.4

(c) Multiple Sets of AReSE

Model Accuracy

R3D [16] 62.0%

R3D-KPSEM 65.8%

(d) KPSEM with R3D

Table 2: Ablations of KPSEM utilizing MFNet on HMDB51 split-1. The ablation is per-

formed with a small batch size of 16. The networks with variants of KPSEM that utilize (a)

only 1 single key point per frame, (b) only fixed regions per frame and (c) with only 1 set of

AReSE is compared with the proposed KPSEM , and (d) different backbone networks.

4.4. Ablation Study and Visualization

In this section, we justify our proposed design of KPSEM through ablation

study and visualization of results. Specifically, we examine the performance of

our KPSEM in four scenarios and justify the need for high-level feature maps

as input for KPSEM , multiple key points per frame, adaptive regions in each

frame and multiple sets of AReSE. Additionally, we combine our KPSEM

with another baseline network R3D to justify the robustness of KPSEM . We

further examine the effectiveness of KPSEM by visualizing heatmaps and the

extracted key points with their corresponding shift. The split-1 of HMDB51

dataset is adopted for all ablation studies, trained with a batch size of 16 on a

single NVIDIA TITAN Xp GPU.

Position of KPSEM . Our proposed KPSEM module utilizes high-level fea-

ture maps as the input for extracting key point shifts. Figure 5a compares

23

the result when KPSEM is added to different stages of MFNet. KPSEM is

added right after the respective layers. Though improvements have been made

for all networks utilizing KPSEM regardless of the position, the improvement

achieved when KPSEM is added after Conv2 is 1.5% smaller than that when

KPSEM is added after Conv4. One possible explanation is that the repre-

sentation level of the feature maps after Conv2 layer is lower than that of the

feature maps after Conv4 layer. This indicates that points with higher feature

values from Conv2 layer may be more relevant to pixels with higher values rather

than key points. Pixels with higher values may not be key points as they may

correspond to the white background pixels. This indicates that the key point

shifts extracted from Conv2 feature maps may be semantically less representa-

tive than those extracted from Conv4 feature maps, thus resulting in inferior

performances. We also observe a sharp drop in performance when KPSEM is

positioned after Conv5 layer. We believe that this is because of the small spatial

size of Conv5 feature maps (7×7). The Conv5 feature maps are therefore insuf-

ficient to provide spatial information of the key points, decreasing the accuracy

of the extracted key point shifts. This ends up in the inferior performance when

KPSEM is positioned after Conv5 layer.

Separation of Feature Maps. As mentioned in Section 3.2, frames are split such

that localized key points distributed across each frame are preserved. We justify

the need for multiple key points per frame by comparing with the variant of

KPSEM where only a single global key point utilized for each frame at each

channel. As indicated in Table 2a, the use of multiple key points (in this case 4

key points) per frame boosts the performance by 1.9%. This demonstrates the

effectiveness of extracting multiple regional key points across each frame. The

results are consistent with that shown in Figure 5b, where all results are higher

than the result using only a single key point.

However, more splits per frame do not guarantee higher accuracy. The result

in Figure 5b shows that splitting each frame with K = 9 or K = 16 regions

results in a slight decrease in performance compared to that of splitting K = 4

24

regions per frame. The slightly worse performance for higher K settings could be

explained by higher region number results in smaller regions, which may result

in regions with only the background being split out. The key points extracted

from regions corresponding to the background and their related key point shifts

would be redundant. The resulting temporal features would therefore be less

effective and result in inferior classification accuracies.

Adaptive Separation of Feature Maps. Also mentioned in Section 3.2, fixed splits

for each frame may result in different key points located within the same fixed

region. To mitigate this drawback of fixed splits, we split each frame adaptively

to obtain an optimal region separation solution for key point extraction. We

justify the need for adaptive splits by comparing with the variant of KPSEM

utilizing fixed splits for each frame. For this variant of KPSEM , the split

of each set of AReSE is randomly initialized, while other network settings

including the number of sets and the number of splits remain the same as the

default settings of our proposed KPSEM . After initialization, the splits of each

frame are fixed during the training process. Results in Table 2b demonstrate

that a 1.5% increase in accuracy is achieved through splitting frames adaptively.

This validates that adaptive splitting could result in better temporal features.

Multiple Sets of AReSE. To extract more key points while avoiding over split-

ting each frame, we proposed to use multiple sets of AReSE in Section 3.2 and

Section 3.3. We examine the effect of using multiple sets of AReSE with its

results as presented in Table 2c. The use of 8 sets of AReSE helps improve the

network by 1.6% over its variant which uses only a single set of AReSE. This

matches the results shown in Figure 5c, where the accuracy rises as the number

of sets of AReSE increases in general. All results using multiple AReSE outper-

form that of using a single set of AReSE. The increase justifies the effectiveness

of increasing extracted key points without over splitting each frame.

As mentioned in 3.2, the number of RKPS increases with the increasing

number of sets of AReSE. For G 6 8, a significant increase in accuracy with an

increase of G can be observed. This suggests that the increase in set number G

25

results in different RKPS, or key point shifts, extracted under different region

separations. The different key point shifts extracted by multiple sets of AReSE

constitutes more robust temporal features. It is worth noticing that the accuracy

saturates for G > 8. This suggests that a further increase in G may not result

in different region separations. The increased RKPSs may be a repetition of

previous RKPSs, which therefore may not increase the robustness of temporal

features and the classification accuracy.

KPSEM with Other Backbones. Our proposed KPSEM can be applied with

any other CNN backbones and improve their performance. To demonstrate

the robustness of our KPSEM , we have conducted another experiment on

KPSEM with a different backbone, namely the 3D variant of ResNet50 [16]

referred to as R3D [17]. R3D is constructed by inflating 2D convolution kernels

directly to 3D convolution kernels, implemented as 1×k×k kernels. Therefore,

the R3D simply aggregates the input frames and can be directly initialized from

weights pretrained on ImageNet. Our KPSEM is inserted after the res3 layer

of R3D which results in a 3.8% improvement for top-1 accuracy compared to

the baseline. The improvement which KPSEM achieves with R3D as well as

MFNet [35] justifies the robustness of our proposed KPSEM module.

Heatmaps Visualization. To investigate where the MF-KPSEM and the base-

line MFNet focus on, we visualize the heatmaps that indicate the focus of either

network on sampled frames. Specifically, the heatmaps are computed based

on Gradient-weighted Class Activation Mapping (Grad-CAM) [48]. The Grad-

CAM results are extracted from the last convolution layer of both MF-KPSEM

and the baseline MFNet. Figure 9 illustrates Grad-CAM results of four exam-

ples from the test set of split 1 of HMDB51, each of which includes four frames

sampled identically from the input 16 frames. For each sub-figure, the upper se-

quence of frames is extracted from the baseline MFNet while the lower sequence

is from MF-KPSEM. It can be observed that our proposed MF-KPSEM focuses

on the key regions relevant to the action more accurately compared to the base-

line model. Whereas the baseline MFNet sometimes focuses on irrelevant regions

26

(a) (b)

(c) (d)

Figure 9: Heatmaps of four samples of HMDB51. For each sub-figure, the upper is the

result of baseline MFNet and the lower is the result of our proposed MF-KPSEM. Figure 9a,

Figure 9b, Figure 9c and Figure 9d belong to action classes “Wave”, “Turn”, “Swing baseball”

and “Sword”, respectively. Compared to the baseline, our proposed MF-KPSEM accurately

concentrates on the key regions which are relevant to the ground-truth actions, while the

baseline model might focus on irrelevant regions instead.

which bring in redundant temporal information. For example, given the input

frames for action “Wave” as demonstrated in Figure 9a, MFNet concentrates

not only on the waving hand but also on the face of another actor which is

clearly irrelevant to the action “Wave”. In comparison, our MF-KPSEM accu-

rately focuses only on the moving hand of the actress, which are the key regions

that imply the ground-truth action.

Visualizing Extracted Key Points and Their Shift. To further investigate the

behaviour of our proposed MF-KPSEM, we visualize six examples over the ex-

tracted key points and their corresponding shift as shown in Figure 10. Our

proposed MF-KPSEM could locate key points and their shifts for each action,

such as the elbows and feet of the actor for “Climbing” in Figure 10a. The shift

27

(a) Visualizing Action “Climbing” (b) Visualizing Action “Archery”

(c) Visualizing Action “Sit-up” (d) Visualizing Action “High Kick”

(e) Visualizing Action “Kick Ball” (f) Visualizing Action “Tobogganing”

Figure 10: Extracted key points and their corresponding shift from MF-KPSEM for six videos.

Crosses coloured differently indicate that they are located in different regions. Arrows in

different colours indicate the respective key point shifts. Figure 10a, Figure 10b and Figure 10e

are videos from HMDB511 dataset and the others are from Mini-Kinetics. Figure best viewed

in colour and zoomed in.

marked in arrows match with the actual moves of the actor for the action, which

justify the use of key point shifts for extracting temporal features. In addition,

in Figure 10c, the key point shifts of red crosses indicate that the actor is mov-

ing back and forth. These key point shifts describe the characteristic of action

sit-up and distinguish it from other similar actions such as rolling forward or

lying down. Additionally, in Figure 10d, the key point shifts of red and white

crosses indicate that the foot shift intensively from the bottom to the top of the

video, which is the characteristic of the high kick. It shows that the key point

shifts can be applied as the temporal information to differentiate actions from

actions.

The MF-KPSEM is also shown to be able to capture corresponding key

points and thus computing their shifts even when key points would alter their

28

location dramatically across regions. Among the samples, Figure 10a, Figure 10c

and Figure 10e exhibit the cases where key points remain in the same region

across frames. Whereas Figure 10b, Figure 10d and Figure 10f show the pos-

sibility that key points could move to another region in the next frame. Take

Figure 10c and Figure 10d as examples for these two scenarios. Key points of

“Sit-up” in Figure 10c shift within the same regions while the ones of “High

kick” in Figure 10d may shift to a different region in a certain frame. This

justifies the need for finding corresponding key points across the frame before

extracting the key point shifts in AReSE as mentioned in Section 3.3.

5. Conclusion and Future Works

In this work, we propose a novel method for extracting the temporal fea-

tures of a video effectively. The new KPSEM exploits key point shifts for

temporal feature extraction without additional key point annotation. The over-

all temporal features encode the key point shifts through linear embedding.

Our method obtains state-of-the-art result on Mini-Kinetics when instantiating

MFNet, with low additional computational cost compare to other temporal fea-

ture extraction methods. We further justify the design and the robustness of

our KPSEM module through detailed ablation experiments.

In the future, improvements on explicit key point selection without key point

annotation could be further explored. Current key point selection method is

effective with trivial computational cost. However, in some cases, it may extract

key points irrelevant to the actors or objects of the action. More comprehensive

key point selection methods can be developed to further improve extracted

temporal features without key point annotation.

References

[1] L. Minh Dang, K. Min, H. Wang, M. Jalil Piran, C. Hee Lee, H. Moon,

Sensor-based and vision-based human activity recognition: A comprehen-

29

sive survey, Pattern Recognition 108 (2020) 107561. doi:10.1016/j.

patcog.2020.107561.

[2] L. Lo Presti, M. La Cascia, 3d skeleton-based human action classifica-

tion: A survey, Pattern Recognition 53 (2016) 130 – 147. doi:10.1016/j.

patcog.2015.11.019.

[3] T. Xiang, S. Gong, Activity based surveillance video content modelling,

Pattern Recognition 41 (7) (2008) 2309 – 2326. doi:10.1016/j.patcog.

2007.11.024.

[4] J. Yang, H. Zou, H. Jiang, L. Xie, Device-free occupant activity sensing

using wifi-enabled iot devices for smart homes, IEEE Internet of Things

Journal 5 (5) (2018) 3991–4002. doi:10.1109/JIOT.2018.2849655.

[5] Y. Li, R. Xia, X. Liu, Learning shape and motion representations for view

invariant skeleton-based action recognition, Pattern Recognition 103 (2020)

107293. doi:10.1016/j.patcog.2020.107293.

[6] C. Si, Y. Jing, W. Wang, L. Wang, T. Tan, Skeleton-based action recog-

nition with hierarchical spatial reasoning and temporal stack learning net-

work, Pattern Recognition 107 (2020) 107511. doi:10.1016/j.patcog.

2020.107511.

[7] A. Shahroudy, J. Liu, T. Ng, G. Wang, Ntu rgb+d: A large scale dataset

for 3d human activity analysis, in: 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016, pp. 1010–1019. doi:10.

1109/CVPR.2016.115.

[8] C. Li, Z. Cui, W. Zheng, C. Xu, J. Yang, Spatio-temporal graph convolu-

tion for skeleton based action recognition, 2018.

URL https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/

17103

[9] Z. Cao, T. Simon, S. Wei, Y. Sheikh, Realtime multi-person 2d pose es-

timation using part affinity fields, in: 2017 IEEE Conference on Com-

30

http://dx.doi.org/10.1016/j.patcog.2020.107561
http://dx.doi.org/10.1016/j.patcog.2020.107561
http://dx.doi.org/10.1016/j.patcog.2015.11.019
http://dx.doi.org/10.1016/j.patcog.2015.11.019
http://dx.doi.org/10.1016/j.patcog.2007.11.024
http://dx.doi.org/10.1016/j.patcog.2007.11.024
http://dx.doi.org/10.1109/JIOT.2018.2849655
http://dx.doi.org/10.1016/j.patcog.2020.107293
http://dx.doi.org/10.1016/j.patcog.2020.107511
http://dx.doi.org/10.1016/j.patcog.2020.107511
http://dx.doi.org/10.1109/CVPR.2016.115
http://dx.doi.org/10.1109/CVPR.2016.115
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17103
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17103
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17103
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17103

puter Vision and Pattern Recognition (CVPR), 2017, pp. 1302–1310.

doi:10.1109/CVPR.2017.143.

[10] C. Feichtenhofer, A. Pinz, R. P. Wildes, Spatiotemporal multiplier networks

for video action recognition, in: Proceedings of the IEEE conference on

computer vision and pattern recognition, 2017, pp. 4768–4777. doi:10.

1109/CVPR.2017.787.

[11] K. Simonyan, A. Zisserman, Two-stream convolutional networks for action

recognition in videos, in: Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, K. Q. Weinberger (Eds.), Advances in Neural Information Pro-

cessing Systems 27, Curran Associates, Inc., 2014, pp. 568–576.

[12] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, L. Van Gool, Tem-

poral segment networks for action recognition in videos, IEEE Transactions

on Pattern Analysis and Machine Intelligence 41 (11) (2019) 2740–2755.

doi:10.1109/TPAMI.2018.2868668.

[13] D. Tran, L. Bourdev, R. Fergus, L. Torresani, M. Paluri, Learning spa-

tiotemporal features with 3d convolutional networks, in: Proceedings of

the IEEE international conference on computer vision, 2015, pp. 4489–

4497. doi:10.1109/ICCV.2015.510.

[14] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, M. Paluri, A closer look

at spatiotemporal convolutions for action recognition, in: Proceedings of

the IEEE conference on Computer Vision and Pattern Recognition, 2018,

pp. 6450–6459. doi:10.1109/CVPR.2018.00675.

[15] J. Carreira, A. Zisserman, Quo vadis, action recognition? a new model and

the kinetics dataset, in: proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2017, pp. 6299–6308. doi:10.1109/CVPR.

2018.00685.

[16] K. Hara, H. Kataoka, Y. Satoh, Can spatiotemporal 3d cnns retrace the

31

http://dx.doi.org/10.1109/CVPR.2017.143
http://dx.doi.org/10.1109/CVPR.2017.787
http://dx.doi.org/10.1109/CVPR.2017.787
http://dx.doi.org/10.1109/TPAMI.2018.2868668
http://dx.doi.org/10.1109/ICCV.2015.510
http://dx.doi.org/10.1109/CVPR.2018.00675
http://dx.doi.org/10.1109/CVPR.2018.00685
http://dx.doi.org/10.1109/CVPR.2018.00685

history of 2d cnns and imagenet?, in: Proceedings of the IEEE conference

on Computer Vision and Pattern Recognition, 2018, pp. 6546–6555.

[17] X. Wang, R. Girshick, A. Gupta, K. He, Non-local neural networks, in: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, 2018, pp. 7794–7803. doi:10.1109/CVPR.2005.38.

[18] L. Wang, W. Li, W. Li, L. Van Gool, Appearance-and-relation networks for

video classification, in: Proceedings of the IEEE conference on computer

vision and pattern recognition, 2018, pp. 1430–1439. doi:10.1109/CVPR.

2018.00155.

[19] B. D. Lucas, T. Kanade, An iterative image registration technique with

an application to stereo vision, in: P. J. Hayes (Ed.), Proceedings of the

7th International Joint Conference on Artificial Intelligence, IJCAI ’81,

Vancouver, BC, Canada, August 24-28, 1981, William Kaufmann, 1981,

pp. 674–679.

[20] B. K. Horn, B. G. Schunck, Determining optical flow, Artificial Intelligence

17 (1) (1981) 185 – 203. doi:10.1016/0004-3702(81)90024-2.

[21] C. Zach, T. Pock, H. Bischof, A duality based approach for realtime tv-l 1

optical flow, in: Joint pattern recognition symposium, Springer, 2007, pp.

214–223. doi:10.1007/978-3-540-74936-3$_$22.

[22] Z. Qiu, T. Yao, T. Mei, Learning spatio-temporal representation with

pseudo-3d residual networks, in: proceedings of the IEEE International

Conference on Computer Vision, 2017, pp. 5533–5541. doi:10.1109/ICCV.

2017.590.

[23] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-

narasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al., The kinetics

human action video dataset, arXiv preprint arXiv:1705.06950.

[24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-

scale hierarchical image database, in: 2009 IEEE conference on computer

32

http://dx.doi.org/10.1109/CVPR.2005.38
http://dx.doi.org/10.1109/CVPR.2018.00155
http://dx.doi.org/10.1109/CVPR.2018.00155
http://dx.doi.org/10.1016/0004-3702(81)90024-2
http://dx.doi.org/10.1007/978-3-540-74936-3$_$22
http://dx.doi.org/10.1109/ICCV.2017.590
http://dx.doi.org/10.1109/ICCV.2017.590

vision and pattern recognition, Ieee, 2009, pp. 248–255. doi:10.1109/

CVPR.2009.5206848.

[25] A. Buades, B. Coll, J.-M. Morel, A non-local algorithm for image denoising,

in: 2005 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’05), Vol. 2, IEEE, 2005, pp. 60–65.

[26] H. Li, C. Y. Suen, A novel non-local means image denoising method based

on grey theory, Pattern Recognition 49 (2016) 237–248.

[27] H. Wang, D. Tran, L. Torresani, M. Feiszli, Video modeling with corre-

lation networks, in: Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, 2020, pp. 352–361. doi:10.1109/

CVPR42600.2020.00043.

[28] C. Feichtenhofer, H. Fan, J. Malik, K. He, Slowfast networks for video

recognition, in: Proceedings of the IEEE international conference on com-

puter vision, 2019, pp. 6202–6211. doi:10.1109/ICCV.2019.00630.

[29] C. Yang, Y. Xu, J. Shi, B. Dai, B. Zhou, Temporal pyramid network

for action recognition, in: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2020, pp. 591–600. doi:

10.1109/CVPR42600.2020.00067.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in neural

information processing systems, 2017, pp. 5998–6008.

[31] S. Xie, C. Sun, J. Huang, Z. Tu, K. Murphy, Rethinking spatiotemporal

feature learning: Speed-accuracy trade-offs in video classification, in: Pro-

ceedings of the European Conference on Computer Vision (ECCV), 2018,

pp. 305–321. doi:10.1007/978-3-030-01267-0$_$19.

[32] K. Soomro, A. R. Zamir, M. Shah, Ucf101: A dataset of 101 human actions

classes from videos in the wild, arXiv preprint arXiv:1212.0402.

33

http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR42600.2020.00043
http://dx.doi.org/10.1109/CVPR42600.2020.00043
http://dx.doi.org/10.1109/ICCV.2019.00630
http://dx.doi.org/10.1109/CVPR42600.2020.00067
http://dx.doi.org/10.1109/CVPR42600.2020.00067
http://dx.doi.org/10.1007/978-3-030-01267-0$_$19

[33] R. Goyal, S. Kahou, V. Michalski, J. Materzynska, S. Westphal, H. Kim,

V. Haenel, I. Fründ, P. Yianilos, M. Mueller-Freitag, F. Hoppe, C. Thu-

rau, I. Bax, R. Memisevic, The something something video database

for learning and evaluating visual common sense, in: 2017 IEEE Inter-

national Conference on Computer Vision (ICCV), 2017, pp. 5843–5851.

doi:10.1109/ICCV.2017.622.

[34] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, T. Serre, Hmdb51: A large

video database for human motion recognition, in: Proceedings of the IEEE

International Conference on Computer Vision, 2011, pp. 2556–2563. doi:

10.1109/ICCV.2011.6126543.

[35] Y. Chen, Y. Kalantidis, J. Li, S. Yan, J. Feng, Multi-fiber networks for video

recognition, in: Proceedings of the european conference on computer vision

(ECCV), 2018, pp. 352–367. doi:10.1007/978-3-030-01246-5$_$22.

[36] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., Pytorch: An impera-

tive style, high-performance deep learning library, in: Advances in neural

information processing systems, 2019, pp. 8026–8037.

[37] L. Bottou, Large-scale machine learning with stochastic gradient descent,

in: Proceedings of COMPSTAT’2010, Springer, 2010, pp. 177–186. doi:

10.1007/978-3-7908-2604-3$_$16.

[38] N. Crasto, P. Weinzaepfel, K. Alahari, C. Schmid, Mars: Motion-

augmented rgb stream for action recognition, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2019, pp. 7882–

7891. doi:10.1109/CVPR.2019.00807.

[39] L. Tao, X. Wang, T. Yamasaki, Rethinking motion representation: Resid-

ual frames with 3d convnets for better action recognition, arXiv preprint

arXiv:2001.05661.

34

http://dx.doi.org/10.1109/ICCV.2017.622
http://dx.doi.org/10.1109/ICCV.2011.6126543
http://dx.doi.org/10.1109/ICCV.2011.6126543
http://dx.doi.org/10.1007/978-3-030-01246-5$_$22
http://dx.doi.org/10.1007/978-3-7908-2604-3$_$16
http://dx.doi.org/10.1007/978-3-7908-2604-3$_$16
http://dx.doi.org/10.1109/CVPR.2019.00807

[40] C. Cheng, C. Zhang, Y. Wei, Y.-G. Jiang, Sparse temporal causal convo-

lution for efficient action modeling, in: Proceedings of the 27th ACM In-

ternational Conference on Multimedia, 2019, pp. 592–600. doi:10.1145/

3343031.3351054.

[41] M. Zolfaghari, K. Singh, T. Brox, Eco: Efficient convolutional network

for online video understanding, in: Proceedings of the European con-

ference on computer vision (ECCV), 2018, pp. 695–712. doi:10.1007/

978-3-030-01216-8$_$43.

[42] J. Lin, C. Gan, S. Han, Tsm: Temporal shift module for efficient video

understanding, in: Proceedings of the IEEE International Conference on

Computer Vision, 2019, pp. 7083–7093. doi:10.1109/ICCV.2019.00718.

[43] Y. Li, S. Song, Y. Li, J. Liu, Temporal bilinear networks for video ac-

tion recognition, in: Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 33, 2019, pp. 8674–8681. doi:10.1609/aaai.v33i01.

33018674.

[44] X. He, K. Cheng, Q. Chen, Q. Hu, P. Wang, J. Cheng, Compact global

descriptor for neural networks, arXiv preprint arXiv:1907.09665.

[45] K. Yue, M. Sun, Y. Yuan, F. Zhou, E. Ding, F. Xu, Compact generalized

non-local network, in: Advances in Neural Information Processing Systems,

2018, pp. 6510–6519.

[46] X. Wang, A. Gupta, Videos as space-time region graphs, in: Proceedings of

the European conference on computer vision (ECCV), 2018, pp. 399–417.

doi:10.1007/978-3-030-01228-1$_$25.

[47] G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, Densely con-

nected convolutional networks, in: Proceedings of the IEEE conference

on computer vision and pattern recognition, 2017, pp. 4700–4708. doi:

10.1109/CVPR.2017.243.

35

http://dx.doi.org/10.1145/3343031.3351054
http://dx.doi.org/10.1145/3343031.3351054
http://dx.doi.org/10.1007/978-3-030-01216-8$_$43
http://dx.doi.org/10.1007/978-3-030-01216-8$_$43
http://dx.doi.org/10.1109/ICCV.2019.00718
http://dx.doi.org/10.1609/aaai.v33i01.33018674
http://dx.doi.org/10.1609/aaai.v33i01.33018674
http://dx.doi.org/10.1007/978-3-030-01228-1$_$25
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/CVPR.2017.243

[48] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Ba-

tra, Grad-cam: Visual explanations from deep networks via gradient-based

localization, International Journal of Computer Vision 128 (2) (2020) 336–

359. doi:10.1007/s11263-019-01228-7.

36

http://dx.doi.org/10.1007/s11263-019-01228-7

	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Overall Structure
	3.2 Key Point Shifts Embedding Module (KPSEM)
	3.3 Adaptive Regional Shift Extractor (AReSE)

	4 Experiments
	4.1 Experimental Settings
	4.2 Detailed Implementation of KPSEM
	4.3 Results and Comparison
	4.4 Ablation Study and Visualization

	5 Conclusion and Future Works

