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Abstract—Recognizing pedestrian attributes is an important task in the computer vision community due to it plays an important role in
video surveillance. Many algorithms have been proposed to handle this task. The goal of this paper is to review existing works using
traditional methods or based on deep learning networks. Firstly, we introduce the background of pedestrian attribute recognition (PAR,
for short), including the fundamental concepts of pedestrian attributes and corresponding challenges. Secondly, we introduce existing
benchmarks, including popular datasets and evaluation criteria. Thirdly, we analyze the concept of multi-task learning and multi-label
learning and also explain the relations between these two learning algorithms and pedestrian attribute recognition. We also review
some popular network architectures which have been widely applied in the deep learning community. Fourthly, we analyze popular
solutions for this task, such as attributes group, part-based, etc. Fifthly, we show some applications that take pedestrian attributes into
consideration and achieve better performance. Finally, we summarize this paper and give several possible research directions for
pedestrian attribute recognition. We continuously update the following GitHub to keep tracking the most cutting-edge related works on
pedestrian attribute recognition https://github.com/wangxiao5791509/Pedestrian-Attribute-Recognition-Paper-List

Index Terms—Pedestrian Attribute Recognition, Multi-label Learning, Deep Learning, Convolutional Neural Network, Recurrent Neural
Network, Graph Convolutional Network, Visual Attention
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1 INTRODUCTION

P EDESTRIAN attributes, are humanly searchable semantic de-
scriptions and can be used as soft-biometrics in visual surveil-

lance, with applications in person re-identification, face verifica-
tion, and human identification. Pedestrian Attribute Recognition
(PAR) aims at mining the attributes of target people when given
a person image, as shown in Figure 1. Different from low-level
features, such as HOG, LBP, or deep features, attributes can be
seen as high-level semantic information which is more robust to
viewpoint changes and viewing condition diversity. Hence, many
tasks in computer vision integrate the attribute information into
their algorithms to achieve better performance, such as person
re-ID, and person detection. Although many works have been
proposed on this topic, however, pedestrian attribute recognition
is still an unsolved problem due to challenging factors, such as
viewpoint change, low illumination, low resolution, and so on.

Traditional pedestrian attribute recognition methods usually
focus on developing robust feature representation from the per-
spectives of hand-crafted features, powerful classifiers, or attribute
relations. Some milestones including HOG [1], SIFT [2], SVM [3]
or CRF model [4]. However, the reports on large-scale benchmark
evaluations suggest that the performance of these traditional algo-
rithms is far from the requirement of realistic applications.

Over the past several years, deep learning has achieved an
impressive performance due to its success in automatic feature
extraction using multi-layer nonlinear transformation, especially
in computer vision, speech recognition, and natural language
processing. Several deep learning-based attribute recognition al-
gorithms have been proposed based on these breakthroughs, such
as [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
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Figure 1. Pedestrian attribute recognition is a key element in video
surveillance. Given a person’s image, pedestrian attribute recognition
aims to predict a group of attributes to describe the characteristic of this
person from a pre-defined attribute list. For example, the attributes of
a man in the red bounding box are: short hair, with paper bag, black
trousers, etc.

[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33].

Although so many papers have been proposed, until now,
there exists no work to make a detailed survey, comprehensive
evaluation, and insightful analysis of these attribute recogni-
tion algorithms. In this paper, we summarize existing works on
pedestrian attribute recognition, including traditional methods and
popular deep learning-based algorithms, to better understand this
direction and help other researchers quickly capture the main
pipeline and latest research frontier. Specifically speaking, we
attempt to address the following several important issues: Firstly,
what is the connection and difference between traditional and
deep-learning-based pedestrian attribute recognition algorithms?
We analyze traditional and deep learning-based algorithms from
different classification rules, such as part-based, group-based, or
end-to-end learning; Secondly, how do the pedestrian attributes
help other related computer vision tasks? We also review some
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Figure 2. The structure of this survey on pedestrian attribute recognition.

person attributes guided computer vision tasks, such as person
re-identification, object detection, and person tracking, to fully
demonstrate the effectiveness and wide applications in many other
related tasks; Thirdly, how to better leverage deep networks for
pedestrian attribute recognition and what is the future direction of
the development of attribute recognition? By evaluating existing
person attribute recognition algorithms and some top-ranked base-
line methods, we make some useful conclusions and provide some
possible research directions.

The rest of this paper is organized as follows: In Section 2,
we briefly introduce the problem formulation of pedestrian at-
tribute recognition and some challenging factors. In Section 3,
we list some popular benchmarks for this task and report the
corresponding recognition performance of baseline methods. After
that, we review existing methods in Section 4 and Section 6
from different categories. We also divide these methods into
eight domains, including global-based, local parts based, visual
attention based, sequential prediction based, newly designed loss
function based, curriculum learning based, graphic model based,
and other algorithms. In Section 7, we show some examples
that can integrate attributes into consideration and achieve better
performance. Finally, we summarize this paper and provide some
possible research points for this direction in Section 8. To better
visualize and understand the structure of this paper, we give a
figure as shown in Figure 2.

2 PROBLEM FORMULATION AND CHALLENGES

Given a person image I , pedestrian attribute recognition aims to
predict a group of attributes ai to describe the characteristics of
this person from a pre-defined attribute list A = {a1, a2, ..., aL},
as shown in Figure 1. This task can be handled in different ways,
such as multi-label classification, and binary classification. Also,
many algorithms and benchmarks have been proposed. However,
this task is still challenging due to the large intra-class variations

Figure 3. Some challenging factors in pedestrian attribute recognition.

in attribute categories (appearance diversity and appearance ambi-
guity [34]). As shown in Figure 3, we list challenging factors that
may obviously influence the final recognized performance:
Multi-views. The images taken from different angles by the
camera lead to viewpoint issues for many computer vision tasks.
The body of a human is not rigid, which further makes the person
attribute recognition more complicated.
Occlusion. Part of the human body are occluded by other person
or things will increase the difficulty of a person’s attribute recog-
nition. Because the pixel values introduced by the occluded parts
may make the model confused and lead to wrong predictions.
Unbalanced Data Distribution. Each person has different at-
tributes, hence, the number of attributes is variable which leads
to unbalanced data distribution. It is widely acknowledged that
current machine learning algorithms may not perform optimally
on these datasets.
Low Resolution. In practical scenarios, the resolution of images is
rather low due to the high-quality cameras being rather expensive.
Hence, the person’s attribute recognition needs to be done in this
environment.
Illumination. The images may taken from any time in 24 hours.
Hence, the light condition may be different at different times. The
shadow may also taken in the person’s images and the images
taken from nighttime may be totally ineffective.
Blur. When a person is moving, the images taken by the camera
may blur. How to recognize a person’s attributes correctly in this
situation is a very challenging task.

3 BENCHMARKS

Unlike other tasks in computer vision, for pedestrian attribute
recognition, the annotation of the dataset contains many labels
at different levels. For example, hairstyle and color, hat, glass,
etc. are seen as specific low-level attributes and correspond to
different areas of the images, while some attributes are abstract
concepts, such as gender, orientation, and age, which do not
correspond to certain regions, we consider these attributes as
high-level attributes. Furthermore, human attribute recognition is
generally severely affected by environmental or contextual factors,
such as viewpoints, occlusions and body parts, In order to facilitate
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the study, some datasets provide perspective, parts bounding box,
occlusion, etc.

By reviewing related works in recent years, we have found
and summarized several datasets which are used to research
pedestrian attribute recognition, including PETA [34], RAP [35],
RAP-2.0 [36], PA-100K [18], WIDER [16], Market-1501 [37],
DukeMTMC [37], Clothing Attributes Dataset [38], PARSE-
27K [5] [39], APiS [40], HAT [41], Berkeley-Attributes of People
dataset [8] and CRP dataset [42]. Details of the attribute labels of
these datasets can be found on our project page due to the limited
space in this paper.

3.1 Datasets
PETA dataset [34] is constructed from 10 publicly available
small-scale datasets used to research person re-identification. This
dataset consists of 19000 images, with resolution ranging from
17×39 to 169×365 pixels. Those 19000 images include 8705 per-
sons, each annotated with 61 binary and 4 multi-class attributes,
and it is randomly partitioned into 9,500 for training, 1,900 for
verification, and 7,600 for testing. One notable limitation is that
the samples of one person in PETA dataset are only annotated once
by randomly picking one exemplar image and therefore share the
same annotated attributes even though some of them might not
be visible and some other attributes are ignored. Although this
method is reasonable to a certain extent, it is not very suitable for
visual perception.
PARSE27K [5], [39] dataset derives from 8 video sequences of
varying lengths taken by a moving camera in a city environment.
Every 15th frame of the sequences was processed by the DPM
pedestrian detector [51]. It contains 27,000 pedestrians and has a
training (50%), validation (25%), and test (25%) split. Each sam-
ple is manually annotated with 10 attribute labels which include
8 binary attributes such as is male?, has bag on left shoulder?,
and two orientation attributes with 4 and 8 discretizations. In the
PARSE-27K dataset, an attribute is called N/A label when it can
not be decided because of occlusion, image boundaries, or any
other reason.
RAP [35] dataset is collected from real indoor surveillance sce-
narios and 26 cameras are selected to acquire images, it contains
41585 samples with resolution ranging from 36×92 to 344×554.
Specifically, there are 33268 images for training and the remains
for testing. 72 fine-grained attributes (69 binary attributes and 3
multi-class attributes) are assigned to each image of this dataset.
Three environmental and contextual factors, i.e., viewpoints, oc-
clusion styles, and body parts, are explicitly annotated. Six parts
(spatial-temporal information, whole body attributes, accessories,
postures and actions, occlusion, and parts attributes) are consid-
ered for attribute annotations.
RAP-2.0 [36] dataset comes from a realistic High-Definition
(1280 × 720) surveillance network at an indoor shopping mall
and all images are captured by 25 cameras scenes. This dataset
contains 84928 images (2589 person identities) with resolution
ranging from 33 × 81 to 415 × 583. Every image in this dataset
has six types of labels, which are the same as the RAP dataset and
have 72 attribute labels. All samples were divided into three parts,
of which 50957 for training, 16986 for validation, and 16985 for
testing.
HAT [41] dataset originates in the popular image sharing site
Flickr. This dataset includes 9344 samples, of which 3500, 3500,
and 2344 images are for training, validation, and testing respec-
tively. Every image in this dataset has 27 attributes and shows

a considerable variation in pose (standing, sitting, running, turned
back, etc.), different ages (baby, teen, young, middle-aged, elderly,
etc.), wearing different clothes (tee-shirt, suits, beachwear, shorts,
etc.) and accessories (sunglasses, bag, etc.).
APiS [40] dataset comes from four sources: KITTI [44] dataset,
CBCL Street Scenes [45] (CBCLSS for short) dataset, INRIA [1]
database and SVS dataset (Surveillance Video Sequences at a train
station). A pedestrian detection approach [52] was performed to
automatically locate candidate pedestrian regions, false positives,
and those too-small images were deleted, and finally, 3661 images
were obtained each image larger than 90 pixels in height and 35
pixels in width. Each image is labeled with 11 binary attributes,
such as male, long hair, and 2 multi-value attributes, including
upper body color and lower body color. The ambiguous indicates
whether the corresponding attribute is uncertain or not. This
dataset is separated into 5 equal-sized subsets, the performance
is evaluated with 5-fold cross-validation, and the 5 results from
the 5 folds are further averaged to produce a single performance
report.
Berkeley-Attributes of People (BAP) [8] dataset comes from
the H3D [46] dataset and the PASCAL VOC 2010 [47] training
and validation datasets for the person category, the low-resolution
versions used in PASCAL are replaced by the full resolution
equivalents on Flickr. All images were split into 2003 training,
2010 validation, and 4022 test images by ensuring that no cropped
images of different sets come from the same source image and
by maintaining a balanced distribution of the H3D and PASCAL
images in each set. Each image was labeled with nine attributes.
A label was considered as ground truth if at least 4 of the 5
annotators agreed on the value of the label. When an attribute
is not determined to be present or absent, it is annotated as
”unspecified”.
PA-100K [18] dataset is constructed by images captured from 598
real outdoor surveillance cameras, it includes 100000 pedestrian
images with resolution ranging from 50 × 100 to 758 × 454 and
is to-date the largest dataset for pedestrian attribute recognition.
The whole dataset is randomly split into training, validation, and
test sets with a ratio of 8:1:1. Every image in this dataset was
labeled by 26 attributes, and the label is either 0 or 1, indicating
the presence or absence of corresponding attributes respectively.
WIDER [16] dataset comes from the 50574 WIDER images [43]
that usually contain many people and huge human variations, a
total of 13789 images were selected. Each image was annotated
with a bounding box but no more than 20 people (with top
resolutions) in a crowd image, resulting in 57524 boxes in total
and 4+ boxes per image on average. Each person is labeled with
14 distinct attributes, resulting in a total of 805336 labels. This
dataset was split into 5509 training, 1362 validation, and 6918 test
images.
Market1501-attribute [53] dataset is collected by six cameras in
front of a supermarket in Tsinghua University. There are 1,501
identities and 32,668 annotated bounding boxes in this dataset.
Each annotated identity is present in at least two cameras. This
dataset was split into 751 training and 750 test identities, corre-
sponding to 12936 and 19732 images respectively. The attributes
are annotated at the identity level, every image in this dataset is
annotated with 27 attributes. Note that although there are 7 and 8
attributes for lower-body clothing and upper-body clothing, only
one color is labeled as yes for an identity.
DukeMTMC-attribute [53] is collected in Duke University.
There are 1812 identities and 34183 annotated bounding boxes in
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Table 1
An overview of datasets proposed for pedestrian attribute recognition (# denotes the number of corresponding item).

Dataset #Pedestrians #Attributes Source Project Page

PETA [34] 19000 61 binary and 4
multi-class attributes outdoor & indoor URL

RAP [35] 41585 69 binary and 3
multi-class attributes indoor URL

RAP-2.0 [36] 84928 69 binary and 3
multi-class attributes indoor URL

PA-100K [18] 100000 26 binary attributes outdoor URL
WIDER [16] 13789 14 binary attributes WIDER images [43] URL

Market-1501 [37] 32668 26 binary and 1
multi-class attributes outdoor URL

DukeMTMC [37] 34183 23 binary attributes outdoor URL

PARSE-27K [5], [39] 27000 8 binary and 2
multi-class orientation attributes outdoor URL

APiS [40] 3661 11 binary and 2
multi-class attributes

KITTI [44] ,
CBCL Street Scenes [45],
INRIA [1] and SVS

URL

HAT [41] 9344 27 binary attributes image site Flickr URL

CRP [42] 27454 1 binary attributes and
13 multi-class attributes outdoor URL

CAD [38] 1856 23 binary attributes and 3
multi-class attributes

image site
Sartorialist* and Flickr URL

BAP [8] 8035 9 binary attributes H3D [46] dataset
PASCAL VOC 2010 [47] URL

MARS-Attributes [48] 20,478 tracklets (1,261 people) 20 attributes MARS URL
DukeMTMC-VID-Attributes [48] 4,832 tracklets (1,402 people) 18 attributes DukeMTMC-VID URL
UAV-Human [49] 22,263 7 attributes outdoor URL
UPAR [50] - 40 attributes PA100K, PETA, RAPv2, and Market1501 URL

the DukeMTMC-attribute dataset. This dataset contains 702 iden-
tities for training and 1110 identities for testing, corresponding to
16522 and 17661 images respectively. The attributes are annotated
at the identity level, every image in this dataset is annotated with
23 attributes.
CRP [42] is captured in the wild from a moving vehicle. The
CRP dataset contains 7 videos and 27454 pedestrian bounding
boxes. Each pedestrian was labeled with four types of attributes,
age (5 classes), sex (2 classes), weight (3 classes), and clothing
type (4 classes). This dataset is split into a training/validation set
containing 4 videos, with the remaining 3 videos forming the test
set.
Clothing Attributes Dataset (CAD) [28] was collected from
Sartorialist † and Flickr. The dataset contains 1856 images, with
26 ground truth clothing attributes collected using Amazon Me-
chanical Turk. All labels are arranged in the order from image 1
to 1856. Some label entries are “NaN”, meaning the 6 human
workers cannot reach an agreement on this clothing attribute.
There are 26 attributes in total, including 23 binary-class attributes
(6 for pattern, 11 for color, and 6 miscellaneous attributes) and 3
multi-class attributes (sleeve length, neckline shape, and clothing
category). This dataset was split by leave-1-out for training and
testing.
UAV-Human [49] dataset is recorded using a UAV which involves
7 attributes, and 22,263 person images. This dataset also provides
annotations for action recognition.
UPAR [50] dataset is built by combining existing four well-
known person attribute recognition datasets, including PA100K,
PETA, RAPv2, and Market1501. 40 important binary attributes
over 12 attribute categories are considered when providing 3,3M
additional annotations for this dataset.
Video-based PAR datasets. There are two video-based PAR
datasets proposed by Chen et al. in the year 2019, includ-

†http://www.thesartorialist.com

ing MARS-Attributes and DukeMTMC-VID-Attributes [48]. As
shown in Table 1, the MARS-Attributes contains 20,478 track-
lets from 1,261 people, which involves 20 attributes. The
DukeMTMC-VID-Attributes contains 4,832 tracklets from 1,402
people and covers 18 attributes.

3.2 Evaluation Criteria
Zhu et al. [40] evaluate the performance of each attribute classifi-
cation with the Receiver Operating Characteristic (ROC) and the
Area Under the average ROC Curve (AUC) which are calculated
by two indicators, the recall rate and false positive rate. The recall
rate is the fraction of the correctly detected positives over the
total amount of positive samples, and the false positive rate is the
fraction of the misclassified negatives out of the whole negative
samples. At various threshold settings, a ROC curve can be drawn
by plotting the recall rate vs. the false positive rate. In addition,
the Area Under the average ROC Curve (AUC) is also used by
Zhu et al. [40] so as to make a clearer performance comparison.

Deng at al. [34] adopt the mean Accuracy (mA) to evaluate
the attribute recognition algorithms. For each attribute, mA calcu-
lates the classification accuracy of positive and negative samples
respectively and then gets their average values as the recognition
result for the attribute. Finally, a recognition rate is obtained by
taking average overall attributes. The evaluation criterion can be
calculated through the following formula:

mA =
1

2N

L∑
i=1

(
TPi

Pi
+
TNi

Ni
) (1)

where L is the number of attributes. TPi and TNi are the number
of correctly predicted positive and negative examples respectively,
Pi and Ni are the number of positive and negative examples
respectively.

The above evaluation criteria treat each attribute independently
and ignore the inter-attribute correlation which exists naturally in

http://mmlab.ie.cuhk.edu.hk/projects/PETA.html
http://rap.idealtest.org/
https://drive.google.com/file/d/1hoPIB5NJKf3YGMvLFZnIYG5JDcZTxHph/view
https://drive.google.com/drive/folders/0B5_Ra3JsEOyOUlhKM0VPZ1ZWR2M
http://mmlab.ie.cuhk.edu.hk/projects/WIDERAttribute.html
https://github.com/vana77/Market-1501_Attribute
https://github.com/vana77/DukeMTMC-attribute
https://www.vision.rwth-aachen.de/page/parse27k
http://www.cbsr.ia.ac.cn/english/APiS-1.0-Database.html
https://jurie.users.greyc.fr/datasets/hat.html
http://www.vision.caltech.edu/~dhall/projects/CRP/
https://purl.stanford.edu/tb980qz1002
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/
https://github.com/yuange250/MARS-Attribute
https://github.com/yuange250/MARS-Attribute
https://github.com/SUTDCV/UAV-Human
https://github.com/speckean/upar_challenge
http://www.thesartorialist.com
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multi-attribute recognition problems. Li at al. [35] call the above
solution as label -based evaluation criteria and propose using the
example-based evaluation criteria inspired by a fact that example-
based evaluation captures better the consistency of prediction on
a given pedestrian image [54]. The example-based evaluation
criteria which are widely used include four metrics: accuracy,
precision, recall rate, and F1 score, as defined below:

Accexam =
1

N

N∑
i=1

|Yi ∩ f(xi)|
|Yi ∪ f(xi)|

(2)

Prexexam =
1

2N

N∑
i=1

|Yi ∩ f(xi)|
|f(xi)|

(3)

Recexam =
1

2N

N∑
i=1

|Yi ∩ f(xi)|
|Yi|

(4)

F1 =
2 ∗ Precexam ∗Recexam
Precexam +Recexam

(5)

where N is the number of examples, Yi is the ground truth
positive labels of the i -th example, f (x ) returns the predicted
positive labels for i -th example. | · | means the set cardinality.

4 REGULAR PIPELINE FOR PAR
The pedestrian attributes in practical video surveillance may con-
tain dozens of categories, as defined in many popular benchmarks.
Learning each attribute independently is one intuitive idea, but
it will make the PAR redundant and inefficient. Therefore, the
researchers prefer to estimate all the attributes in one model and
treat each attribute estimation as one task. Due to the elegance and
efficiency of multi-task learning, it draws more and more attention.
On the other hand, the model takes the given pedestrian image as
input and outputs corresponding attributes. PAR also belongs to
the domain of multi-label learning. In this section, we will give a
brief introduction on the regular pipeline for pedestrian attribute
recognition from these two aspects, i.e., the multi-label learning
and multi-task learning.

4.1 Multi-task Learning
To handle one specific task in the machine learning community,
a traditional solution is to design an evaluation criterion, extract
related feature descriptors, and construct single or ensemble
models. It uses the feature descriptors to optimize the model
parameters and achieve the best results according to evaluation
criteria to improve the overall performance. This pipeline may
achieve satisfying results on a single task, however, it ignores
the other tasks which may bring further improvements for the
evaluation criterion.

In the real world, many things are correlated. The learning
of one task may rely on or constrain the others. Even one task
is decomposed, but the sub-tasks still have correlations to some
extent. Processing a single task independently is prone to ignore
such correlations, thus, the improvement of final performance
may meet the bottleneck. Specifically, the pedestrian attributes
are correlated with each other, such as gender and clothing style.
On the other hand, supervised learning needs massive annotated
training data which is hard to collect. Therefore, the most popular
approach is to joint learning multi-tasks to mine the shared feature
representation. It has been widely applied in multiple domains,
such as natural language processing, and computer vision.

Figure 4. The illustration of Hard (left sub-figure) and Soft (right sub-
figure) parameter sharing for multi-task learning in deep neural networks
[55].

With the development of deep learning, many efficient algo-
rithms are proposed by integrating multi-task learning and deep
neural networks. To fully understand the reasons behind the
efficiency of MTL, we need to analyze its detailed mechanism.
According to the study of Ruder et al. [55], the reasons can be
concluded as following five points: implicit data augmentation,
attention focusing, eavesdropping, representation bias, regulariza-
tion. For the details of these reasons, please refer to their original
paper. Generally speaking, there are two kinds of approaches in
deep learning based multi-task learning, i.e. the hard and soft
parameter sharing. The hard parameter sharing usually takes the
shallow layers as shared layers to learn the common feature repre-
sentations of multiple tasks and treats the high-level layers as task-
specific layers to learn more discriminative patterns. This model is
the most popular framework in the deep learning community. The
illustration of hard parameter sharing can be found in Figure 4
(left sub-figure). For the soft parameter sharing multi-task learning
(as shown in Figure 4 (right sub-figure)), they train each task
independently but make the parameters between different tasks
similar via the introduced regularization constraints, such as L2

distance [56] and trace norm [57].
Therefore, it is rather intuitive to apply the multi-task learning

for pedestrian attribute recognition and many algorithms are also
proposed based on this framework [5] [6] [6] [7] [8] [9] [10] [11].

4.2 Multi-label Learning
For the multi-label classification algorithms, the following three
kinds of learning strategy can be concluded as noted in [54]:
1). First-order strategy, is the simplest form and could directly
transform the multi-class into multiple binary-classification prob-
lems. Although it achieves better efficiency, this strategy can not
model the correlations between multi-labels which leads to bad
generic; 2). Second-order strategy, takes the correlations between
each label pair and achieves better performance than first-order
strategy; 3). High-order strategy, considers all the label relations
and implements a multi-label recognition system by modeling the
influence of each label on others. This approach is generic but
with high complexity which may be weak at processing large-
scale image classification tasks. Therefore, the following two
approaches are frequently used for model construction: i.e. the
problem transformation and algorithm adaptation. The visualiza-
tion of some representative multi-label learning algorithms can be
found in Figure 5, as noted in [54].

To simplify the multi-label classification using problem trans-
formation, existing widely used frameworks can be adopted. Some
representative algorithms are: 1). binary relevance algorithm [58],
which directly transforms the multi-label into multiple binary
classification problems and finally fuses all the binary classifiers
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Figure 5. Categorization of representative multi-label learning algo-
rithms reviewed in [54].

together for multi-label classification. This approach is simple and
intuitive, but neglects the correlations between multiple labels; 2).
classifier chain algorithm [59], the basic idea of this algorithm
is to transform the multi-label learning problem into a binary
classification chain. Each binary classifier is dependent on its
previous one in the chain; 3). calibrated label ranking algorithm
[60], which considers the correlations between paired labels and
transforms the multi-label learning into a label ranking problem;
4). random k-Labelsets algorithm [61], it transforms the multi-
label classification problem into sets of multiple classification
problems, the classification task in each set is a multi-class
classifier. And the categories the multi-class classifiers need to
learn are the subset of all labels.

Different from problem transformation, the algorithm adap-
tation directly improve existing algorithm and apply on multi-
label classification problem, including: 1). multi-label k-nearest
neighbor, ML-kNN [62], adopt the kNN techniques to handle the
multi-class data and utilize the maximum a posteriori (MAP) rule
to make prediction by reasoning with the labeling information
embodied in the neighbors. 2). multi-label decision tree, ML-DT
[63], which attempts to deal with multi-label data with a decision
tree, an information gain criterion based on multi-label entropy is
utilized to build the decision tree recursively. 3). ranking support
vector machine, Rank-SVM [64], adopt the maximum margin
strategy to handle this problem, where a set of linear classifiers
are optimized to minimize the empirical ranking loss and enabled
to handle non-linear cases with kernel tricks. 4). collective multi-
label classifier, CML [65], adapt maximum entropy principle to
deal with multi-label tasks, where correlations among labels are
encoded as constraints that the resulting distribution must satisfy.

The regular pipeline of multi-label pedestrian attribute recog-
nition can be found in Figure 6. The machine learning model takes
the human image (optionally pre-processed) as input and extracts
its feature representation (such as HOG, SIFT, or deep features).
Some commonly used pre-processing techniques are normaliza-
tion, random cropping, whitening process, etc. It aims to improve
the quality of the input image, suppress the unnecessary defor-
mation, or augment the image features which may be important
for subsequent operations, to improve the generic of the trained
model. After that, they train a classifier based on extracted features
to predict corresponding attributes. Existing deep learning-based
PAR algorithm could jointly learn the feature representation and
classifier in an end-to-end manner which significantly improve the
final recognition performance.

5 DEEP NEURAL NETWORKS

In this subsection, we will review some well-known network
architectures in the deep learning community that are already or

may be used for the pedestrian attribute recognition task.
LeNet [66] is first proposed by Yann LeCun et al. in 1998.

It is first designed for handwritten and machine-printed character
recognition, as shown in the website ‡. The architecture of LeNet
can be found in Figure 7. It takes 32×32 single channel images as
inputs and uses 2 groups of convolutional + max pooling layers to
extract its features. The classification is done by 2 fully-connected
layers and outputs the distribution of numbers.

AlexNet [67] is a milestone in deep learning history which
was proposed by Alex et al. in 2012 and won the ILSVRC-
2012 with a TOP-5 test accuracy of 84.6%. AlexNet was much
larger than previous CNNs used for computer vision tasks, such
as LeNet. It has 60 million parameters and 650,000 neurons, as
shown in Figure 8. It consists of 5 convolutional layers, max-
pooling layers, Rectified Linear Units (ReLUs) as non-linearities,
three fully connected layers, and a dropout unit.

VGG [68] is a CNN model proposed by the Visual Geometry
Group (VGG) from the University of Oxford. This network uses
more convolutional layers (16, 19 layers) and also achieves good
results on ILSVRC-2013. Many subsequent neural networks all
follow this network. It first uses a stack of convolutional layers
with small receptive fields in the first layers while previous
networks adopt layers with large receptive fields. The smaller
receptive fields can reduce the parameters by a wide margin and
more non-linearities, making the learned features more discrimi-
native and also more efficient for training.

GoogleNet [70] is another popular network architecture in
the deep learning community (22 layers). Different from the
traditional sequential manner, this network first introduced the
concept of inception module and won the competition of ILSVRC-
2014. See Figure 10 for details. The GoogleNet contains a
Network in Network (NiN) layer [71], a pooling operation, a
large-sized convolution layer, and a small-sized convolution layer.
These layers can be computed in parallel and followed by 1 × 1
convolution operations to reduce dimensionality.

Residual Network [69] is first well known for its super deep
architecture (more than 1k layers) while previous networks are
rather “shallow” by comparison. The key contribution of this
network is the introduction of residual blocks, as shown in Figure
11. This mechanism can address the problem of training a really
deep architecture by introducing identity skip connections and
copying their inputs to the next layer. The vanishing gradients
problem can be handled to a large extent with this method.

Dense Network [72] is proposed by Huang et al. in 2017.
This network further extends the idea of residual network and has
better parameter efficiency, one big advantage of DenseNets is
their improved flow of information and gradients throughout the
network, which makes them easy to train. Each layer has direct
access to the gradients from the loss function and the original
input signal, leading to implicit deep supervision [73]. This helps
in training deeper network architectures.

Capsule Network [74] [75] is introduced in 2017 by Hiton et
al. to handle the limitations of standard CNN. As we all know, the
use of max pooling layers in standard CNN reduced the dimension
of feature maps generated from previous convolutional layers and
made the feature learning process more efficient. As shown in
Figure 13 (b), the two face images are similar to a CNN due to they
both contain similar elements. However, standard CNN can not
capture the difference between the two face images of the usage

‡http://yann.lecun.com/exdb/lenet/

http://yann.lecun.com/exdb/lenet/
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Figure 6. The pipeline for regular pedestrian attribute recognition algorithm.

Figure 7. Architecture of LeNet-5, a Convolutional Neural Network, here
for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

Figure 8. Architecture of AlexNet for ImageNet classification. This figure
is taken from: https://www.learnopencv.com/understanding-alexnet/.

of max pooling layers. The capsule network is proposed to handle
this issue by abandoning the max pooling layers and use a capsule
to output a vector instead of a value for each neuron. This makes it
possible to use a powerful dynamic routing mechanism (“routing-
by-agreement”) to ensure that the output of the capsule gets sent
to an approximate parent in the layer above. The utilization of
margin loss and re-construction loss for the training of the capsule
network validated its effectiveness. Some ablation studies also
demonstrate the attributes of each digit can be encoded in the
output vectors by the capsule network.

Graph Convolutional Network [76] attempt to extend the
CNN into non-grid data due to the standard convolution operation
on images/videos can not be directly used in graph-structured data.
The goal of GCN is to learn a function of signals/features on a
graph G = (V,E) which takes feature description xi for each
node i and representative description of the adjacency matrix A as
input and produces a node-level output Z. The overall architecture
of GCN can be found in Figure 14.

ReNet [77] In order to extend Recurrent Neural Networks
(RNNs) architectures to multi-dimensional tasks, Graves et al.
[78] proposed a Multi-dimensional Recurrent Neural Network
(MDRNN) architecture which replaces each single recurrent con-
nection from standard RNNs with d connections, where d is the
number of spatio-temporal data dimensions. Based on this initial
approach, Visin et al. [77] proposed ReNet architecture in which

Figure 9. Architecture of VGG-19, 34-layer plain and Residual Network-
34 for ImageNet classification. This figure is taken from the paper of
Residual Network [69].

instead of multidimensional RNNs, they have been using usual
sequence RNNs. In this way, the number of RNNs is scaled
linearly at each layer regarding the number of dimensions d of
the input image (2d). In this approach, each convolutional layer

https://www.learnopencv.com/understanding-alexnet/
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Figure 10. Architecture of GoogleNet. This figure is taken from the paper
of GoogleNet [70].

Figure 11. Residual learning: a building block. This figure is taken from
the paper of Residual Network [69].

Figure 12. A 5-layer dense block with a growth rate of k = 4. Each layer
takes all preceding feature maps as input. This figure is taken from the
paper of DenseNet [72].

(convolution + pooling) is replaced with four RNNs sweeping the
image vertically and horizontally in both directions as we can see
in Figure 15.

Recurrent Neural Network, RNN. Traditional neural net-
work is based on the assumption that all inputs and outputs are
independent of each other, however, the assumption may not be
true in many tasks, such as sentence translation. Recurrent Neural
Network (RNN) is proposed to handle the task that involves
sequential information. RNNs are called recurrent because they
perform the same task for every element of a sequence, with the
output being dependent on the previous computations. Another
way to think about RNNs is that they have a ”memory” that
captures information about what has been calculated so far. In

Figure 13. The motivation and illustration of Capsule Network.
This figure is taken from the paper of Capsule Network [74] and
the blog https://medium.com/ai%C2%B3-theory-practice-business/
understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b.

Figure 14. The illustration of Graph Convolutional Network (GCN).
This figure is rewritten based on the blog http://tkipf.github.io/
graph-convolutional-networks/

Figure 15. One layer of ReNet architecture modeling vertical and hori-
zontal spatial dependencies. This figure is adopted from [77].

theory, RNNs can make use of information in arbitrarily long
sequences, but in practice, they are limited to looking back only a
few steps.

Long Short-term Memory, LSTM is introduced to handle
the issue of gradient vanish or explosion of RNN. An LSTM has
three of these gates, to protect and control the cell state, i.e. the

https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b
https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b
http://tkipf.github.io/graph-convolutional-networks/
http://tkipf.github.io/graph-convolutional-networks/
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Figure 16. The illustration of RNN. This figure is adapted from http://
colah.github.io/posts/2015-08-Understanding-LSTMs/.

forget gate, input gate, and output gate. Specifically, we denote
the input sequences as X = (x1, x2, ..., xN ). At each position
k, k ∈ [1, N ], there is a set of internal vectors, including an input
gate ik, a forget gate fk, an output gate ok and a memory cell
ck. The hidden state hk can be computed by all these vectors, as
follows:

ik = σ(Wixk + Vihk−1 + bi), (6)

fk = σ(Wfxk + Vfhk−1 + bf ), (7)

ok = σ(Woxk + Vohk−1 + bo), (8)

ck = fk ⊙ ck−1 + ik ⊙ tanh(Wcxk + Vchk−1 + bc), (9)

hk = ok ⊙ tanh(ck) (10)

where σ is the sigmoid function, ⊙ is the element-wise multipli-
cation of two vectors, and all W∗, V∗, b∗ are weight matrices
and vectors to be learned. Please see Figure 17 (a) for detailed
information on LSTM.

Figure 17. The illustration of LSTM and GRU Unit. This figure is adapted
from http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

GRU. A slightly more dramatic variation on the LSTM is the
Gated Recurrent Unit, or GRU, introduced by [79]. It combines the
forget and input gates into a single “update gate.” It also merges
the cell state and hidden state and makes some other changes. The
resulting model is simpler than standard LSTM models and has
been growing increasingly popular. The detailed GRU Unit can be
found in Figure 17 (b).

Recursive Neural Network (RvNN) [80] As noted in §, a
recursive neural network is a kind of deep neural network created
by applying the same set of weights recursively over a structured
input, to produce a structured prediction over variable-size input
structures, or a scalar prediction on it, by traversing a given
structure in topological order. RvNNs have been successful, for in-
stance, in learning sequence and tree structures in natural language
processing, mainly phrase and sentence continuous representations
based on word embedding. The illustration of RvNN can be found
in Figure 18.

Sequential CNN. [81], [82] Different from regular works
that use RNN to encode the time series inputs, the researchers
also study CNN to achieve more efficient operation. With the
sequential CNN, the computations over all elements can be fully
parallelized during training to better exploit the GPU hardware

§https://en.wikipedia.org/wiki/Recursive neural network

Figure 18. The illustration of Recursive Neural Network (RvNN).

and optimization is easier since the number of non-linearities is
fixed and independent of the input length [81].

Figure 19. The illustration of all convolutional networks for sequential
modeling. This figure is adapted from [83].

External Memory Network. [84] The visual attention mech-
anism can be seen as a kind of short-term memory that allo-
cates attention over input features they have recently seen, while
an external memory network could provide long-term memory
through the read-and-write operation. It has been widely used in
many applications such as visual tracking [85], visual question
answering [86], [87].

Figure 20. The illustration of external memory network. This figure is
adapted from DNC [84].

Deep Generative Model. In recent years, deep generative
models achieved great development and many popular algorithms
have been proposed, such as VAE (variational auto-encoder) [88],
GAN (generative adversarial networks) [89], CGAN (conditional

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://en.wikipedia.org/wiki/Recursive_neural_network
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generative adversarial network) [90]. The illustration of these
three models can be found in Fig. 21. We think the strategy of
attribute-based pedestrian image generation can handle the issue
of low resolution, and unbalanced data distribution and augment
the training dataset significantly.

6 THE REVIEW OF PAR ALGORITHMS

In this section, we will review the deep neural network-based PAR
algorithms from the following eight aspects: global-based, local
parts-based, visual attention-based, sequential prediction-based,
newly designed loss function-based, curriculum learning-based,
graphic model-based, and others algorithms.

6.1 Global Image-based Models
In this section, we will review the PAR algorithms which consider
global image only, such as ACN [5], DeepSAR [6], DeepMAR
[6], MTCNN [7].

6.1.1 ACN (ICCVW-2015) [5]
This paper proposes a multi-branch classification layer for each
attribute learning with the convolutional network. As shown in Fig.
22, they adopt a pre-trained AlexNet as a basic feature extraction
sub-network and replace the last fully connected layer with one
loss per attribute using the KL-loss (Kullback-Leibler divergence-
based loss function). The specific formulation can be described as
follows:

KL(P ||Q) =
N∑
i

P (xi)log
Q(xi)

P (xi)
(11)

where Q is the neural network’s prediction and P is the binary
attribute’s state in reality.

In addition, they also propose a new dataset named PARSE-
27k to support their evaluation. This dataset contains 27000
pedestrians and is annotated with 10 attributes. Different from
the regular person attribute dataset, they propose a new category
annotation, i.e., not decidable (N/A). Because for most input
images, some attributes are not decidable due to occlusion, image
boundaries, or any other reason.

6.1.2 DeepSAR and DeepMAR (ACPR-2015) [6]
This paper introduces a deep neural network for person attribute
recognition and attempts to handle the following two issues that
exist in traditional methods: 1). Hand-crafted features used in
existing methods, like HOG, color histograms, and LBP (local
binary patterns); 2). Correlations between attributes are usually
ignored. The authors propose two algorithms i.e. DeepSAR and
DeepMAR in this paper, as shown in Fig. 23. They adopt AlexNet
as their backbone network and obtain the DeepSAR by changing
the output category defined in the last dense layer into two. The
softmax loss is adopted to compute the final classification loss.

Although the DeepSAR can use deep features for binary
classification. However, it did not model the correlations between
human attributes which may be the key to further improving
the overall recognition performance. Therefore, they propose the
DeepMAR which takes a human image and its attribute label
vectors simultaneously and jointly considers all the attributes via
sigmoid cross entropy loss:

Lce = − 1

N

N∑
i=1

L∑
l=1

yillog(P̂il) + (1− yil)log(1− p̂il) (12)

p̂il =
1

1 + exp(−xil)
(13)

where p̂il is the estimated score for the l’th attribute of sample xi.
yil is the ground truth label.

In addition, they also consider the unbalanced label distribu-
tion in practical surveillance scenarios and propose an improved
loss function as follows:

Lwce = − 1

N

N∑
i=1

L∑
l=1

wl(yillog(P̂il) + (1− yil)log(1− p̂il))

(14)
wl = exp(−pl/σ2) (15)

where wl is the loss weight for the lth attribute. pl denote
the positive ratio of lth attribute in the training dataset. σ is a
hyperparameter.

6.1.3 MTCNN (TMM-2015) [7]

This paper proposes a joint multi-task learning algorithm for
attribute estimation using CNN, named MTCNN, as shown in
Fig. 24. The MTCNN lets the CNN models share visual knowl-
edge among different attribute categories. They adopt multi-task
learning on the CNN features to estimate corresponding attributes.
In their MTL framework, they also use rich information groups
because knowing any a priori information about the statistical
information of features will definitely aid the classifiers. They use
the decomposition method to obtain shareable latent task matrix L
and combination matrix S from total classifier weights matrix W ,
and thus flexible global sharing and competition between groups
through learning localized features, i.e., W = LS. Therefore,
the objective function (named MTL squared maxing hinge loss) is
formulated as follows:

min
L,S

M∑
m=1

Nm∑
i=1

1

2
[max(0, 1− Y i

m(Lsm)TXi
m)]2+

µ

K∑
k=1

G∑
g=1

||sgk||2 + γ||L||1 + λ||L||2F

(16)

where (Xi
m, Y

i
m)Nm

i=1 is the training data, Nm is the number of
training samples of the mth attribute. K is the total latent task
dimension space. The model parameter of mth attribute category
is denoted as Lsm.

They employ the Accelerate Proximal Gradient Descent
(APG) algorithm to optimize both L and S in an alternating
manner. Therefore, the overall model weight matrix W can be
obtained after obtaining the L and S.

Summary: According to the aforementioned algorithms [5]
[6] [6] [7], we can find that these algorithms all take the whole
images as input and conduct multi-task learning for PAR. They all
attempt to learn more robust feature representations using feature
sharing, end-to-end training or multi-task learning squared maxing
hinge loss. The benefits of these models are simple, intuitive, and
highly efficient which are very important for practical applications.
However, the performance of these models is still limited due to
the lack of consideration of fine-grained recognition.

6.2 Part-based Models

In this subsection, we will introduce the part-based algorithms
that could jointly utilize local and global information for more
accurate PAR. The algorithms are including: Poselets [8], RAD
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Figure 21. The illustration of VAE, GAN, and CGAN.

Figure 22. The illustration of ACN [5].

Figure 23. The overall pipeline of DeepSAR and DeepMAR [6].

Figure 24. The pipeline of Mutli-task CNN [7].

[9], PANDA [10], MLCNN [11], AAWP [12], ARAP [13], Deep-
CAMP [14], PGDM [15], DHC [16], LGNet [17].

6.2.1 Poselets (ICCV-2011) [8]

The motivation of this paper is that we can train attribute classifiers
simply if we can isolate image patches corresponding to the same
body part from the same viewpoint. However, directly using object
detectors was not reliable for body parts localization at that time
(before the year 2011) due to its limited ability. Therefore, the
authors adopt the poselets [46] to decompose the image into a
set of parts, each capturing a salient pattern corresponding to a
given viewpoint and local pose. This provides a robust distributed
representation of a person from which attributes can be inferred
without explicitly localizing different body parts.

Figure 25. The overview of Poselets at test time [8].

The Fig. 25 illustrates the overall pipeline of Poselets. Specif-
ically speaking, they first detect the poselets on a given image
and obtain their joint representations by concatenating the HOG,
color histogram, and skin-mask features. Then, they train multiple
SVM classifiers which are used for poselet-level, person-level,
context-level attribute classification, respectively. The poselet-level
classifiers target to determine the presence of an attribute from a
given part of the person under a given viewpoint. The person-
level classifiers are used to combine the evidence from all body
parts and the context-level classifiers take the output of all person-
level classifiers as input and try to exploit the correlations between
the attributes. Their attribute prediction results are the output of
context-level classifiers.

The idea of poselets is also extended by combining it with a
deep neural network [91], named deep poselets. It can be used
for human body parts localization-based tasks, such as human
detection tasks [92].

6.2.2 RAD (ICCV-2013) [9]
This paper proposes a part learning algorithm from the perspective
of appearance variance while previous works focus on handling
geometric variation which requires manual part annotation, such
as poselet [8]. They first divide the image lattice into a number
of overlapping subregions (named window). As shown in Fig. 26
(a), a grid of size W × H is defined and any rectangle on the
grid containing one or more number of cells of the grid forms
a window. The proposed method is more flexible in shape, size,
and location of the part window while previous works (such as
spatial pyramid matching structure, SPM [93]) recursively divide
the region into four quadrants and make all subregions squares
that do not overlap with each other at the same level.

With all these windows, they learn a set of part detectors
that are spatially associated with that particular window. For
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each window, all corresponding image patches are cropped from
training images and represented by HOG [1] and color histogram
feature descriptors. Then, K-means clustering is conducted based
on the extracted features. Each obtained cluster denotes a specific
appearance type of a part. They also train a local part detector
for each cluster by logistic regression as an initial detector and
iteratively refine it by applying it to the entire set again and
updating the best location and scale to handle the issue of noisy
clusters.

After learning the parts at multi-scale overlapping windows,
they follow the method for attribute classification proposed in the
Poselet-based approach [8]. Specifically, they aggregate the scores
from these local classifiers with the weights given by part detection
scores for final prediction.

Figure 26. (a) The difference between RAD and spatial pyramid; (b) The
window specific part learning in RAD.

6.2.3 PANDA (CVPR-2014) [10]
Zhang et al. find the signal associated with some attributes is
subtle and the image is dominated by the effects of pose and
viewpoint. For the attribute of wear glasses, the signal is weak at
the scale of the full person and the appearance varies significantly
with the head pose, frame design, and occlusion by the hair. They
think the key to accurately predicting the underlying attributes
lies in locating object parts and establishing their correspondences
with model parts. They propose to jointly use global image and
local patches for person attribute recognition and the overall
pipeline can be found in Fig. 27 (a) and (b).

As shown in Fig. 27 (a), they first detect the poselets [8] and
obtain parts of the person. Then, they adopt the CNN to extract
the feature representations of the local patches and the whole
human image. If the poselet is not detected, they simply leave
the feature to zero. Hence, their model could leverage both the
power of convolutional nets for learning discriminative features
from data and the ability of poselets to simplify the learning

Figure 27. Overview of Pose Aligned Networks for Deep Attribute Mod-
eling (PANDA). One convolutional neural net is trained on semantic part
patches for each poselet and then the top-level activations of all nets
are concatenated to obtain a pose-normalized deep representation. The
final attributes are predicted by a linear SVM classifier using the pose-
normalized representations. This figure is adapted from PANDA [10].

task by decomposing the objects into their canonical poses. They
directly feed the combined local and global features into the linear
classifier which is an SVM (Support Vector Machine) for multiple
attributes estimation.

Fig. 27 (b) illustrates the detailed architecture, this network
takes the poselet RGB patch 56 × 56 × 3 as input and outputs
the response score of each attribute with corresponding fully
connected layer (fc layer). The feature extraction module contains
four groups of convolutional/pooling/normalization layers and the
output of these groups are 28×28×64, 12×12×64, 6×6×64
and 3× 3× 64, respectively. Then the input image is mapped into
a feature vector whose dimension is 576-D with a fully connected
layer. They set a fc layer for each attribute whose output dimension
is 128.

The advantage of this work, it adopts deep features rather than
shallow low-level features which can obtain more powerful feature
representation than previous works. In addition, it also processes
the human image from the perspective of local patches and global
images, which can mine more detailed information than those
works that only consider the whole image. These two points all
improve the person’s attribute recognition significantly. However,
we think the following issues may limit the final performance
of their procedure: 1). the parts localization, i.e. the accuracy of
poselets, which may be the bottleneck of their results; 2). they do
not use an end-to-end learning framework for the learning of deep
features; 3). Their poselet also contains background information,
which may also influence the feature representation.

6.2.4 MLCNN (ICB-2015) [11]

This paper proposes a multi-label convolutional neural network to
predict multiple attributes together in a unified framework. The
overall pipeline of their network can be found in Fig. 28. They
divide the whole image into 15 overlapping patches and use a
convolutional network to extract its deep features. They adopt
corresponding local parts for specific attribute classification, such
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Figure 28. The pipelines of MLCNN [11].

as the patch 1, 2, 3 are used for hairstyle estimation. They utilize
the softmax function for each attribute prediction.

In addition, they also use the predicted attributes to assist per-
son re-identification. Specifically, they fuse the low-level feature
distance and attribute-based distance as the final fusion distance to
discriminate whether given images have the same identity.

6.2.5 AAWP (ICCV-2015) [12]
The AAWP is introduced to validate whether parts could bring
improvements in both action and attribute recognition. As shown
in Fig. 29 (1), the CNN features are computed on a set of
bounding boxes associated with the instance to classify, i.e. the
whole instance, the oracle or person detector provided and poselet-
like part detector provided. The authors define three human body
parts (head, torso, and legs) and cluster the key points of each
part into several distinct poselets. This part detectors are named
deep version of poselets due to the utilization of deep feature
pyramid, rather than low-level gradient orientation features used
in traditional poselets [8], [94]. In addition, the authors also
introduce task-specific CNN fine-tuning and their experiments
show that a fine-tuned holistic model (i.e. no parts) could already
achieve comparable performance with a part-based system like
PANDA [10]. Specifically, the whole pipeline can be divided into
two main modules, i.e. the part detector module and fine-grained
classification module, as shown in Fig. 29 (2) and (3) respectively.

For the part detector module, they design their network by
following the object detection algorithm RCNN [95] which con-
tains two stages, i.e. the feature extraction and part classification.
They adopt a multi-scale fully convolutional network to extract
the image features. More specifically, they first construct a color
image pyramid and obtain the pool5 feature for each pyramid
level. Then, they adopt part models to obtain the corresponding
score, as shown in Fig. 29 (2). Therefore, the key problem lies in
how to achieve accurate part localization given these feature map
pyramids. To handle the localization of parts, the authors designed
three body areas (head, torso, and legs) and trained part detectors
with linear SVMs. The positive training data is collected from
PASCAL VOC 2012 with a clustering algorithm. In the testing
phase, they keep the highest scoring part within a candidate region
box in an image.

For the task of part-based classification discussed in their
paper, i.e. the action and attribute recognition. They consider four
different approaches to understanding which design factors are im-
portant, i.e. no parts, instance fine-tuning, joint fine-tuning, and 3-
way split. The detailed pipeline for the fine-grained classification
can be found in Fig. 29 (3). Given the image and detected parts,
they use CNN to obtain fc7 features and concatenate them into
one feature vector as its final representation. Therefore, the action
or attribute category can be estimated with a pre-trained linear
SVM classifier. Their experiments on the PASCAL VOC action
challenge and Berkeley attributes of people dataset [8] validated
the effectiveness of part. In addition, they also find that as more

Figure 29. The pipelines of joint action and attribute recognition using
parts, part detector, and fine-grained classification module, respectively.
This figure is adapted from AAWP [12].

powerful convolutional network architectures are engineered, the
marginal gain from explicit parts may vanish. They think this
might be because of the already high performance achieved by
the holistic network.

This work further expands and validates the effectiveness and
necessity of parts in a wider way. It also shows more insights into
deep learning-based human attributes recognition.

6.2.6 ARAP (BMVC2016) [13]
This paper adopts an end-to-end learning framework for joint
part localization and multi-label classification for person attribute
recognition. As shown in Fig. 30, the ARAP contains the following
sub-modules: initial convolutional feature extraction layers, a key
point localization network, an adaptive bounding box generator
for each part, and the final attribute classification network for each
part. Their network contains three loss functions, i.e. the regression
loss, aspect ratio loss, and classification loss.

Specifically speaking, they first extract the feature map of
the input image, then conduct key points localization. Given
the key points, they divide the human body into three main
regions (including hard, torso, and legs) and obtain an initial part
bounding box. On the other hand, they also take the previous fc7
layer’s features as input and estimate the bounding box adjustment
parameters. Given these bounding boxes, they adopt a bilinear
sampler to extract corresponding local features. Then, the features
are fed into two FC layers for multi-label classification.

6.2.7 DeepCAMP (CVPR-2016) [14]
This paper proposes a novel CNN that mines mid-level image
patches for fine-grained human attribute recognition. Specifically,
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Figure 30. The pipelines of ARAP [13].

they train a CNN to learn discriminative patch groups, named
DeepPattern. They utilize regular contextual information (see Fig.
31 (2)) and also let an iteration of feature learning and patch
clustering purify the set of dedicated patches, as shown in Fig.
31 (1).

The main insight of this paper lies in that a better embedding
can help improve the quality of the clustering algorithm in pattern
mining algorithm [96]. Therefore, they propose an iteration al-
gorithm where in each iteration, they train a new CNN to classify
cluster labels obtained in the previous iteration to help improve the
embedding. On the other hand, they also concatenate features from
both the local patch and global human bounding box to improve
the clusters of mid-level elements.

6.2.8 PGDM (ICME-2018) [15]
The PGDM is the first work that attempts to explore the structure
knowledge of the pedestrian body (i.e. pedestrian pose) for person
attributes learning. They first estimate the key points of given
human image using a pre-trained pose estimation model. Then,
they extract the part regions according to these key points. The
deep features of part regions and whole images are all extracted
and used for attribute recognition independently. These two scores
are then fused together to achieve final attribute recognition. The
visualization of pose estimation and the whole pipeline of PGDM
can be found in Fig. 32 (a) and (b) respectively.

As shown in Fig. 32 (b), the attribute recognition algorithm
contains two main modules: i.e. the main net and PGDM. The
main net is a modification of AlexNet [67], the fc8 layer is set
as same with attribute number. It takes attribute recognition as a
multi-label classification problem and adopts the improved cross-
entropy loss [97] as its objective function.

The PGDM module, its target is to explore the deformable
body structure knowledge to assist pedestrian attribute recognition.
The authors resort to deep pose estimation models rather than re-
annotating human pose information of training data. And they
embed existing pose estimation algorithms into their attribute
recognition model instead of using it as an external one. They
directly train a regression network to predict the pedestrian pose
with coarse ground truth pose information obtained from existing
pose estimation model ¶. Once the pose information is obtained,

¶The human key points list used in PGDM are: head, neck, right shoulder,
right elbow, right wrist, left shoulder, left elbow, left wrist, right hip, right
knee, right ankle, left hip, left knee, left ankle.

they transform the key points into informative regions using spatial
transformer network (STN) [98]. Then, they use an independent
neural network for feature learning from each key point-related
region. They jointly optimize the main net, PGDM, and pose
regression network.

6.2.9 DHC (ECCV-2016) [16]
This paper proposes to use deep hierarchical contexts to help per-
son attribute recognition due to the background would sometimes
provide more information than the target object only. Specifically,
the human-centric context and scene context are introduced in their
network architecture. As shown in Fig. 33, they first construct an
input image pyramid and pass them all through CNN (the VGG-
16 network is used in this paper) to obtain multi-scale feature
maps. They extract features of four sets of bounding box regions,
i.e. the whole person, detected parts of the target object, nearest
neighbor parts from the image pyramid, and global image scene.
The first two branches (the whole person and parts) are the regular
pipelines for the person attribute recognition algorithm. The main
contributions of this paper lie in the latter two branches, i.e.
the human-centric and scene-level contexts to help improve the
recognition results. Once the scores of these four branches are
obtained, they sum up all the scores as the final attribute score.

Due to the use of context information, this neural network
needs more external training data than regular pedestrian attribute
recognition tasks. For example, they need to detect the part of the
human body (head, upper, and bottom body regions) and recognize
the style/scene of a given image. They propose a new dataset
named WIDER, to better validate their ideas. Although the human
attribute recognition results can be improved significantly via this
pipeline, however, this model looks a little more complex than
other algorithms.

6.2.10 LGNet (BMVC-2018) [17]
This paper proposes a Localization Guide Network (named
LGNet) which could localize the areas corresponding to different
attributes. It also follows the local-global framework, as shown in
Fig. 34. Specifically, they adopt Inception-v2 [99] as their basic
CNN model for feature extraction. For the global branch, they
adopt the global average pooling layer (GAP) to obtain its global
features. Then, a fully connected layer is utilized to output its
attribute predictions. For the local branch, they use the 1 × 1
convolution layer to produce c class activation maps for each
image, where c is the number of attributes in the used dataset.
Given the class activation maps, they can capture an activation
box for each attribute by cropping the high-response areas of the
corresponding activation map. They also use EdgeBoxes [100] to
generate region proposals to obtain local features from the input
image. In addition, they also consider the different contributions
of extracted proposals and different attributes should focus on
different local features. Therefore, they use the class active map
for each attribute to serve as a guide to determine the importance
of the local features to different attributes. More specifically, they
compute the spatial affinity map between the proposals and class
activation boxes according to the Interaction over Union (IoU)
and linearly normalized to weight the local feature vectors for
further predictions. Finally, the global and attended local features
are fused together by element-wise sum for pedestrian attribute
prediction.

Summary: On the basis of the reviewed papers [8] [9] [10]
[11] [12] [13] [14] [15] [16] [17], it is easy to find that these
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Figure 31. The overview of DeepCAMP [14].

Figure 32. The visualization of pose estimation and pipeline of PGDM.
This figure is adapted from PGDM [15].

algorithms all adopt the joint utilization of global and fine-grained
local features. The localization of body parts is achieved via an
external part localization module, such as part detection, pose
estimation, poselets, or proposal generation algorithm. The use
of part information improves the overall recognition performance
significantly. At the same time, it also brings some shortcomings
as follows: Firstly, as an operation in the middle phase, the final
recognition performance heavily relies on the accuracy of part
localization. In other words, the inaccurate part detection results
will bring the wrong features for final classification. Secondly, it
will also need more training or inference time due to the introduc-
tion of human body parts. Thirdly, some algorithms need manual
annotated labels about part locations which further increases the
cost of manpower and money.

6.3 Attention-based Models
In this section, we will talk about person attribute recognition
algorithms using attention mechanisms, such as HydraPlus-Net

[18], VeSPA [19], DIAA [20], CAM [21].

6.3.1 HydraPlus-Net (ICCV-2017) [18]
HPNet is introduced to encode multi-scale features from multiple
levels for pedestrian analysis using multi-directional attention
(MDA) modules. As shown in Fig. 35 (2), it contains two main
modules i.e. the Main Net (M-net) which is a regular CNN, and the
Attentive Feature Net (AF-net) which includes multiple branches
of multi-directional attention modules applied to different seman-
tic feature levels. The AF-net and M-net share the same basic
convolution architectures and their outputs are concatenated and
fused by global average pooling (GAP) and fc layers. The output
layer can be the attribute logits for attribute recognition or feature
vectors for person re-identification. The authors adopt inception-
v2 [101] as their basic network.

A specific illustration of AF-net can be found in Fig. 35
(4). Given the feature maps of black 1, 2, and 3, they conduct
1 × 1 convolution operation on feature map 2 and obtain its
attention map α2. It is worth noting that, this attention module
is different from previous attention-based models which only push
the attention map back to the same block. They not only use this
attention map to attend to feature map 2 but also attend to the
adjacent features, such as feature maps 1 and 3. Applying one
single attention map to multiple blocks naturally lets the fused
features encode multi-level information within the same spatial
distribution, as shown in Fig. 35 (3).

The HP-net is trained in a stage-wise manner, in other words,
the M-net, AF-net, and remaining GAP and fc layers are trained in
a sequential way. The output layer is used to minimize the cross-
entropy loss and softmax loss for person attribute recognition and
person re-identification respectively.

6.3.2 VeSPA (ArXiv-2017) [19]
The VeSPA takes the view cues into consideration to better
estimate the corresponding attribute. The authors find that the
visual cues hinting at attributes can be strongly localized and
inference of personal attributes such as hair, backpack, shorts,
etc., are highly dependent on the acquired view of the pedestrian.
As shown in Fig. 36, the image is fed into the Inceptions (K
layers) and obtains its feature representation. The view-specific
unit is introduced to mapping the feature maps into coarse attribute
prediction ŷatt = [y1, y2, ..., yc]T . Then, a view predictor is used
to estimate the view weights ŷview. The attention weights are used
to multiply view-specific predictions and obtain the final multi-
class attribute prediction Ŷc = [y1, y2, ..., yC ]T .

The view classifier and attribute predictors are trained with
separate loss functions. The whole network is a unified framework
and can be trained in an end-to-end manner.
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Figure 33. The pipeline of DHC-network. This figure is adapted from DHC [16].

Figure 34. The visualization of pose estimation and pipeline of LGNet.
This figure is adapted from LGNet [17].

Figure 35. Some visualizations of HydraPlus-Net. This figure is adapted
from HydraPlus-Net [18].

6.3.3 DIAA (ECCV-2018) [20]

The DIAA algorithm can be seen as an ensemble method for
person attribute recognition. As shown in Fig. 37, their model
contains the following modules: multi-scale visual attention and
weighted focal loss for deep imbalanced classification. For the
multi-scale visual attention, as we can see from Fig. 37, the
authors adopt feature maps from different layers. They propose
the weighted focal loss function [102] to measure the difference
between predicted attribute vectors and ground truth:

Figure 36. The pipeline of VeSPA model. This figure is adapted from the
VeSPA model [19].

Lw(ŷp, y) = −
C∑

c=1

wc((1− σ(ŷc
p))

γ log(σ(ŷc
p))y

c+

σ(ŷc
p)

γ log(1− σ(ŷc
p))(1− yc)),

(17)

where γ is a parameter that is used to control the instance-level
weighting based on the current prediction giving emphasis to the
hard misclassified samples. wc = e−ac and ac is the prior class
distribution of cth attribute following [19].

Figure 37. The pipeline of DIAA model. This figure is adapted from the
DIAA model [20].
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In addition, they also propose to learn the attention maps
in a weakly supervised manner (only the attribute labels, no
specific bounding box annotation) to improve the classification
performance by guiding the network to focus its resources to those
spatial parts that contain information relevant to the input image.
As shown in the right part of Fig. 37, the attention sub-network
takes the feature mapWi×Hi×Fi as input and output an attention
mask with dimension Wi × Hi × C . The output is then fed to
the attention classifier to estimate the pedestrian attributes. Due
to limited supervised information for the training of the attention
module, the authors resort to the prediction variance by following
[103]. Attention mask predictions with high standard deviation
across time will be given higher weights in order to guide the
network to learn those uncertain samples. They collect the history
H of the predictions for the sth sample and compute the standard
deviation across time for each sample in a mini-batch. Hence, the
loss for the attention map with attribute-level supervision for each
sample s can be obtained by:

Lai
(ŷai

, y) = (1 + stds(H))Lb(ŷai
, y) (18)

where Lb(ŷai
, y) is binary cross entropy loss and stds(H) is

the standard deviation. Therefore, the total loss used to train this
network end-to-end is the sum of loss from the primary network
and the two attention modules.

6.3.4 CAM (PRL-2017) [21]

Figure 38. The pipeline of CAM-network [21].

In this paper, the authors propose to use and refine attention
maps to improve the performance of person attribute recognition.
As shown in Fig. 38, their model contains two main modules,
i.e. the multi-label classification sub-network and attention map
refinement module. The adopted CAM net [104] also follows the
category-specific framework, in other words, different attribute
classifiers have different parameters for the fully connected (FC)
layer. They use the parameters in the FC layer as weights to
linearly combine the feature maps in the last convolutional layer
to obtain the attention map of each object category. However, this
naive implementation of the attention mechanism could not focus
on the right regions all the time due to low resolution, over-fitting
training, et al.

To handle the aforementioned issues, they explore refining
the attention map by tuning the CAM network. They measure
the appropriateness of an attention map based on its concentra-
tion and attempt to make the attention map highlight a smaller
but concentrated region. Specifically speaking, they introduce a
weighted average layer to obtain an attention map first. Then, they
use average pooling to down-sample its resolution to capture the
importance of all the potential relevant regions. After that, they
also adopt the Softmax layer to transform the attention map into a

probability map. Finally, the maximum probability can be obtained
via the global average pooling layer.

On the basis of the maximum probability, the authors propose
a new loss function (named exponential loss function) to measure
the appropriateness of the attention heat map which can be written
as:

L =
1

N
eα(P

M
ij +βµ) (19)

where PM
ij is the maximum probability for image i and attribute

j. α and β are hyper-parameters and µ = 1/H2 is the mean value
of the probability map. H × H is the size of the attention (and
probability) map. For the training of the network, the authors first
pre-training the CAM network only by minimizing classification
loss; then, they adopt joint loss functions to fine-tune the whole
network.

Summary: The Visual attention mechanism has been intro-
duced in pedestrian attribute recognition, but the existing works
are still limited. How to design new attention models or directly
borrow from other domains still needs to be explored in this area.

6.4 Sequential Prediction-based Models

In this section, we will give a review of Sequential Prediction
based models for person attribute recognition including CNN-
RNN [22], JRL [23], GRL [24], JCM [25] and RCRA [105].

6.4.1 CNN-RNN (CVPR-2016) [22]
Regular multi-label image classification frameworks learn in-
dependent classifiers for each category and employ ranking or
threshold on the classification results, failing to explicitly exploit
the label dependencies in an image. This paper first adopts RNNs
to address this problem and combines with CNNs to learn a
joint image-label embedding to characterize the semantic label
dependency as well as the image-label relevance. As shown in
Fig. 39, the red and blue dots are the label and image embeddings,
respectively. The image and recurrent neural output embeddings
are summed and denoted with black dots. This mechanism could
model the label co-occurrence dependencies in the joint embed-
ding space by sequentially linking the label embeddings. It can
compute the probability of a label based on the image embedding
I and output of recurrent neurons xt, which can be formulated as:

s(t) = UT
l xt (20)

where xt = h(Ux
o o(t) + Ux

I I), U
x
o and Ux

I are the projection
matrices for a recurrent layer of output and image representation,
respectively. Ul is the label embedding matrix. o(t) is the output
of the recurrent layer at the time step t.

For the inference of the CNN-RNN model, they attempt to find
the sequence of labels that maximize the prior probability:

l1, ..., lk = arg max
l1,...,lk

P (l1, ..., lk|I)

= arg max
l1,...,lk

P (l1|I)× P (l2|I, l1)...P (lk|I, l1, ..., lk−1)
(21)

They adopt the beam search algorithm [106] for the top-ranked
prediction path as their estimation result. The training of the CNN-
RNN model can be achieved by cross-entropy loss function and
back-propagation through time (BPTT) algorithm.

The CNN-RNN model is very similar to deep models used
in image caption task [107] [108]. They all take one image as
input and output a series of words under the encoder-decoder
framework. The main difference is that the caption model outputs
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Figure 39. The illustration and architecture of the proposed CNN-RNN model for multi-label classification [22].

one sentence and the CNN-RNN model generates attributes (but
these attributes are also related to each other). Therefore, we can
borrow some techniques from the image caption community to
help improve the performance of pedestrian attribute recognition.

6.4.2 JRL (ICCV-2017) [23]
This paper first analyses the existing learning issues in the pedes-
trian attribute recognition task, e.g. poor image quality, appearance
variation, and little annotated data. They propose to explore
the interdependency and correlation among attributes and visual
context as extra information sources to assist attribute recognition.
Hence, the JRL model is proposed for joint recurrent learning of
attribute context and correlation, as its name shows. The overall
pipeline of JRL can be found in Fig. 40.

Figure 40. The pipeline of Joint Recurrent Learning (JRL) of attribute
context and correlation. This figure is adopted from JRL [23].

To better mine this extra information for accurate person
attribute recognition, the authors adopt the sequence-to-sequence
model to handle the aforementioned issues. They first divide the
given person image I into m horizontal strip regions and form
a region sequence S = (s1, s2, ..., sm) in top-bottom order. The
obtained region sequences S can be seen as the input sentence in
natural language processing, and can be encoded with the LSTM
network in a sequential manner. The hidden state hen of the
encoder LSTM can be updated based on the regular LSTM update
procedure, as shown in Eq. 6. The final hidden state henm can be
seen as the summary representation z = henm of the whole person
image (named as context vector). This feature extraction procedure
could model the intra-person attribute context within each person
image I .

To mine more auxiliary information to handle the appearance
ambiguity and poor image quality in a target image. The authors
resort to the visually similar exemplar training images and intro-
duce these samples to model the inter-person similarity context
constraint. They first search top-k samples that are similar to the

target image with CNN features based on the L2 distance metric
and compute its own context vector zai . Then, all the context vector
representations are ensembled as the inter-person context z∗ with
the max-pooling operation.

In the decoding phase, the decoder LSTM takes both intra-
person attribute context (z) and inter-person similarity context
(z∗) as input and output variable-length attributes over time
steps. The attribute prediction in this paper can also be seen
as a generation scheme. To better focus on local regions of
person image for specific attributes and obtain more accurate
representation, they also introduce the attention mechanism to
attend to the intra-person attribute context. For the final attribute
estimation order, they adopt the ensemble idea to incorporate the
complementary benefits of different orders and thus capture more
high-order correlation between attributes in context.

6.4.3 GRL (IJCAI-2018) [24]

GRL is developed based on JRL which also adopts the RNN model
to predict the human attributes in a sequential manner. Different
from JRL, GRL is formulated to recognize human attributes by
group step by step to pay attention to both intra-group and inter-
group relationships. As shown in Fig. 41 (1), the author divides
the whole attribute list into many groups because the attributes in
the intra-group are mutually exclusive and have relations between
inter-group. For example, BoldHair and BlackHair cannot occur
on the same person image, but they are both related to the head-
shoulder region of a person and can be in the same group to be
recognized together. It is an end-to-end single model algorithm
with no need for preprocessing and it also exploits more latent
intra-group and inter-group dependency among grouped pedes-
trian attributes. The overall algorithm can be found in Fig. 41 (2).

As shown in Fig. 41 (2), given the human image, they first
detect the key points and locate the head, upper body, and lower
body regions using the body region generation module. They
extract the whole image features with the Inception-v3 network
and obtain the local part features using ROI average pooling
operation. It is worth noting that all attributes in the same group
share the same fully connected feature. Given the global and local
features, they adopt LSTM to model the spatial and semantic
correlations in attribute groups. The output of each LSTM unit
is then fed into a fully connected layer and a prediction vector can
be obtained. This vector has the same dimension as the number of
attributes in the relevant group. They also use a batch normalized
layer to balance the positive and negative outputs of this network.
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Figure 41. The pipeline of Group Recurrent Learning (GRL). This figure is adapted from GRL [24].

Figure 42. The overview of JCM which is proposed in [25].

6.4.4 JCM (arXiv-2018) [25]

Existing sequential prediction-based person attribute recognition
algorithms, such as JRL [23], and GRL [24], may be easily
influenced by different manual division and attribute orders due
to the weak alignment ability of RNN. This paper proposes a joint
CTC-Attention model (JCM) to conduct attribute recognition,
which could predict multiple attribute values with arbitrary length
at a time avoiding the influence of attribute order in the mapping
table.

As shown in Fig. 42, the JCM is actually a multi-task network
that contains two tasks, i.e. the attribute recognition and person re-
identification. They use ResNet-50 as the basic model to extract
features for both tasks. For attribute recognition, they adopt the
Transformer [109] as their attention model for the alignment of
long attribute sequences. The connectionist temporal classification
(CTC) loss [110] and cross-entropy loss functions are used for the
training of the network. For the person re-ID, they directly use
two fully connected layers (i.e. the dense model) to obtain feature
vectors and use the softmax loss function to optimize this branch.

In the test phase, the JCM could simultaneously predict the
person’s identity and a set of attributes. They also use beam
search for the decoding of attribute sequences. Meanwhile, they
extract the features from the CNN in the base model to classify
pedestrians for person re-ID tasks.

6.4.5 RCRA (AAAI-2019) [105]

This paper proposes two models, i.e., Recurrent Convolutional
(RC) and Recurrent Attention (RA) for pedestrian attribute recog-
nition, as shown in Figure 43. The RC model is used to ex-
plore the correlations between different attribute groups with the
Convolutional-LSTM model [111] and the RA model takes advan-
tage of the intra-group spatial locality and inter-group attention
correlation to improve the final performance.

Specifically speaking, they first divide all the attributes into
multiple attribute groups, similar to GRL [24]. For each pedestrian
image, they use CNN to extract its feature map and feed it to the
ConvLSTM layer group by group. Then, new feature maps for
each time step can be obtained by adding a convolutional network
after ConvLSTM. Finally, the features are used for attribute
classification on the current attribute group.

Based on the aforementioned RC model, they also introduce a
visual attention module to highlight the region of interest on the
feature map. Given the image feature map F and the heat map Ht

of attention at each time step t, the attended feature map Ft for
the current attribute group can be obtained via:

Ft = sigmoid(Ht)⊗ F + F (22)

where ⊗ denotes the spatial point-wise multiplication. The at-
tended feature maps are used for final classification. The training
of this network is also based on the weighted cross-entropy loss
function proposed in WPAL-network [26].

Figure 43. The overview of RCRA which is proposed in [105].

Summary: As we can see from this subsection, these algo-
rithms all adopt the sequential estimation procedure. Because the
attributes are correlated to each other, they also have various
difficulties. Therefore, it is an interesting and intuitive idea to
adopt the RNN model to estimate the attributes one by one.
Among these algorithms, they integrate different neural networks,
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attribute groups, and multi-task learning into this framework.
Compared with CNN-based methods, these algorithms are more
elegant and effective. The disadvantage of these algorithms is the
time efficiency due to the successive attribute estimation. In future
works, more efficient algorithms for sequential attribute estimation
are needed.

6.5 Loss Function based Models
In this section, we will review some algorithms with improved
loss function, including WPAL [26], AWMT [27].

6.5.1 WPAL-network (BMVC-2017) [26]

Figure 44. The pipeline of WPAL-network. This figure is rewritten based
on WPAL-network [26].

The WPAL is proposed to simultaneously recognize and locate
the person attributes in a weakly-supervised manner (i.e. only
person attribute labels, no specific bounding box annotation). As
shown in Fig. 44, GoogLeNet is adopted as their basic network
for feature extraction. They fuse features from different layers
(i.e. the features from Conv3−E,Conv2−E, and Conv1−E
layers) and feed into the Flexible Spatial Pyramid Pooling layer
(FSPP). Compared with regular global max-pooling, the advantage
of FSPP can be listed as following two aspects: 1). it can add a
spatial constraint to some attributes like hats; 2). The structure
lies in the middle stage of the network but not the top, making a
correlation between the detector and target class not bound at first
but free to be learned during training. The outputs of each FSPP
are fed into fully connected layers and output a vector whose
dimension is the same as the number of pedestrian attributes.

In the training procedure, the network could simultaneously
learn to fit the following two targets: the first one is to learn
the correlation between attributes and randomly initialized mid-
level detectors, and the second one is to adapt the target mid-level
features of detectors to fit the correlated attributes. The learned
correlation, the detection results of mid-level features are later
used to locate the person’s attributes.

In addition, the authors also introduce a novel weighted cross
entropy loss function to handle the extremely imbalanced distribu-
tion of positive and negative samples of most attribute categories.
The mathematical formulation can be written as follows:

Losswce =
L∑

i=1

1

2wi
∗pi∗log(p̂i)+

1

2(1− wi)
(1−pi)∗log(1−p̂i)

(23)
where L denotes the number of attributes, p is the ground truth
attribute vector, p̂ is the estimated attribute vector, and w is a
weight vector indicating the proportion of positive labels overall
attribute categories in the training dataset.

6.5.2 AWMT (MM-2017) [27]
As is known to all, the learning difficulty of various attributes
is different. However, most existing algorithms ignore this situ-
ation and share relevant information in their multi-task learning
framework. This will lead to negative transfer, in other words, the
inadequate brute-force transfer may hurt the learner’s performance
when two tasks are dissimilar. AWMT proposes to investigate a
sharing mechanism that is possible of dynamically and adaptively
coordinating the relationships of learning different person attribute
tasks. Specifically, they propose an adaptively weighted multi-task
deep framework to jointly learn multiple person attributes, and a
validation loss trend algorithm to automatically update the weights
of the weighted loss layer. The pipeline of their network can be
found in Fig. 45.

Figure 45. The pipeline of AWMT-network. This figure is adopted from
AWMT [27].

As shown in Fig. 45, they adopt ResNet-50 as a basic network
and take both train and val images as input. The basic network
will output its predicted attribute vectors for both train and
val images. Hence, the train loss and val loss can be obtained
simultaneously. The value loss is used to update the weight vectors
λj(j = 1, ...,M) which is then utilized to weight different
attributes learning. The adaptive weighted loss function can be
formulated as follows:

Θ = argmin
Θ

M∑
j=1

N∑
i=1

< λj ,L(ψj(Ii; Θ)− Lij) > (24)

where Θ denotes the parameters of the neural network, λj is the
scale value to weigh the importance of the task of learning j-
th attributes. Ii denote the i-th image in a mini-batch, Lij is
the ground truth label of attribute j of image i. ψj(Ii; Θ) is
the predicted attributes of input image Ii under neural network
parameter Θ. < · > is the inner product operation.

The key problem is how to adaptively tune the weight vector
λj in Eq. 24. They propose the validated loss trend algorithm
to realize this target. The intuition behind their algorithm is that
in learning multiple tasks simultaneously, the ”important” tasks
should be given high weight (i.e. λj ) to increase the scale of
loss of the corresponding tasks. But the question is how we can
know which task is more ”important”, in other words, how do we
measure the importance of one task?

In this paper, the authors propose to use the generalization
ability as an objective measurement. Specifically, they think the
trained model of one task with lower generation ability should
be set higher weight than those models of the other tasks. The
weight vector λj is updated per k iterations and used to compute
the loss of training data and update the network parameter Θ in
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the backward pass. Their experiments on several attribute datasets
validated the effectiveness of this adaptive weighting mechanism.

Summary: There are few works that focus on designing new
loss functions for pedestrian attribute recognition. WPAL-network
[26] considers the unbalanced distribution of data and proposes a
weighted cross-entropy loss function according to the proportion
of positive labels overall attribute categories in the training dataset.
This method seems a little tricky but has been widely used in many
PAR algorithms. AWMT [27] proposes an adaptive weighting
mechanism for each attribute learning to make the network focus
more on handling the “hard” tasks. These works fully demonstrate
the necessity to design novel loss functions to better train the PAR
network.

6.6 Curriculum Learning-based Algorithms
In this subsection, we will introduce the curriculum learning-based
algorithm which considers learning the human attribute in a “easy”
to “hard” way, such as MTCT [112], CILICIA [113].

6.6.1 MTCT (WACV-2017) [112]
This paper proposes a multi-task curriculum transfer network to
handle the issue of the lack of manually labeled training data.
As shown in Fig. 46, their algorithm mainly contains multi-task
network and curriculum transfer learning.

For the multi-task network, they adopt five stacked Network-
In-Network (NIN) convolutional units [114] and N parallel
branches, with each branch representing three layers of fully
connected sub-network for modeling one of the N attributes
respectively. The Softmax loss function is adopted for the model
training.

Inspired by cognitive studies that suggest a better learning
strategy adopted by humans and animals is to start with learning
easier tasks before gradually increasing the difficulties of the tasks,
rather than blindly learning randomly organized tasks. Therefore,
they adopt a curriculum transfer learning strategy for clothing
attribute modeling. Specifically, it consists of two main stages.
In the first stage, they use the clean (i.e. easier) source images and
their attribute labels to train the model. In the second stage, they
embed cross-domain image pair information and simultaneously
appended harder target images into the model training process to
capture harder cross-domain knowledge. They adopt the t-STE (t-
distribution stochastic triplet embedding) loss function to train the
network which can be described as:

Lt−STE =
∑

It,Ips,Ins∈T

log
(1 +

||ft(It)−fs(Ips)||2

α
)β

(1 +
||ft(It)−fs(Ips)||2

α
)β + (1 + ||ft(It)−fs(Ins)||2

α
)β

(25)

where β = −0.5 ∗ (1 + α) and α is the freedom degree of the
Student kernel. ft(·) and fs(·) are the feature extraction function
for target and source multi-task networks, respectively.

6.6.2 CILICIA (ICCV-2017) [113]
Similar to MTCT [112], CILICIA [113] also introduce the idea
of curriculum learning into person attribute recognition task to
learning the attributes from easy to hard. The pipeline of CILICIA
can be found in Fig. 47. They explore the correlations between
different attribute learning tasks and divide such correlations
into strongly and weakly correlated tasks. Specifically, under the
framework of multi-task learning, they use the respective Pearson

correlation coefficients to measure the strongly correlated tasks
which can be formulated as:

pi =
T∑

j=1,j ̸=i

cov(yti , ytj )

σ(ytiσ(ytj ))
, i = 1, ..., T (26)

where σ(yti) is the standard deviation of the labels y of the task
ti. The tasks of pi with top 50% are strongly correlated with rest
and can be divided into strongly correlated groups. The rest tasks
belong to a weakly correlated group and will be learned under the
guidance of knowledge learned from a strongly correlated group.

For the multi-task network, they adopt the categorical cross-
entropy function [116] between predictions and targets, which can
be defined as follows (for a single attribute t):

Lt =
1

N

N∑
i=1

M∑
j=1

(
1/Mj∑M

n=1 1/Mn

) · 1[yi = j] · log(pi,j) (27)

where 1[yi = j] is one if the target of sample i belong to class
j, and zero otherwise. Mj is the number of samples belonging
to class j, and M and N are the number of classes and samples,
respectively.

To weight different attribute learning tasks, one intuitive idea
is to learn another branch network for weights learning. However,
the authors did not see significant improvement with this method.
Therefore, they adopt the supervision transfer learning technique
[117] to help attribute learning in weakly correlated group:

Lw = λ · Ls + (1− λ) · Lf
w, (28)

where Lf
w is the total loss obtained during the forward pass using

Eq. 27 only over the weakly correlated tasks.
They also propose CILICIA-v2 [115] by proposing an ef-

fective method to obtain the groups of tasks using hierarchical
agglomerative clustering. It can be of any number and not just
only two groups (i.e. strong/weakly correlated). More specifically,
they employ the computed Pearson correlation coefficient matrix
to perform hierarchical agglomerative clustering using the Ward
variance minimization algorithm. Ward’s method is biased towards
generating clusters of the same size and analyses all possible pairs
of joined clusters, identifying which joint produces the smallest
within-cluster sum of squared (WCSS) errors. Therefore, we can
obtain attribute groups via the WCSS threshold operation. For
each group, they compute the learning sequence of clusters by
sorting the obtained respective Pearson correlation coefficients
only within the clusters. Once the total dependencies for all the
clusters are formed, the curriculum learning process can be started
in descending order.

Summary: Inspired by the recent progress of cognitive sci-
ence, the researchers also consider using such “easy” to “hard”
learning mechanisms for PAR. They introduce existing curriculum
learning algorithms into their learning procedure to model the
relations between each attribute. Some other algorithms such as
self-paced learning [118] are also used to model the multi-label
classification problem [119] or other computer vision tasks [120].
It is also worthy to introduce more advanced works of cognitive
science to guide the learning of PAR.

6.7 Graphic Model based Algorithms

Graphic models are commonly used to model structure learning
in many applications. Similarly, there are also some works to
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Figure 46. The MTCT network design [112].

Figure 47. The CILICIA network designed in [115] .

integrate these models into the pedestrian attribute recognition
task, for example, DCSA [28], A-AOG [29], VSGR [30].

6.7.1 DCSA (ECCV-2012) [28]

Figure 48. The pipelines of DCSA [28].

In this paper, the authors propose to model the correlations
between human attributes using a conditional random field (CRF).
As shown in Fig. 48, they first estimate the pose information
using off-the-shelf algorithms [121] and locate the local parts of
the upper body only (the lower body is ignored because of the
occlusion issues). Then, four types of base features are extracted
from these regions, including SIFT [2], texture descriptor [122],
color in LAB space, and skin probabilities. These features are
fused to train multiple attribute classifiers via SVM. The key idea
of this paper is to apply the fully connected CRF to explore the
mutual dependencies between attributes. They treat each attribute
function as a node of CRF and the edge connecting every two
attribute nodes reflects the joint probability of these two attributes.
The belief propagation [123] is adopted to optimize the attribute
label cost.

6.7.2 A-AOG (TPAMI-2018) [29]

Figure 49. An attributed parse graph for a human image [29].

The A-AOG model which is short for attribute And-Or gram-
mar, is proposed to explicitly represent the decomposition and
articulation of body parts, and account for the correlations between
poses and attributes. This algorithm is developed based on And-
Or graph [124] and the and-nodes denote decomposition or depen-
dency; the or-nodes represent alternative choices of decomposition
or types of parts. Specifically speaking, it mainly integrates the
three types of grammar: phrase structure grammar, dependency
grammar, and an attribute grammar.

Formally, the A-AOG is defined as a five-tuple:

A−AOG =< S, V,E,X,P > (29)

where V is the vertex set and it mainly contains a set of and-
nodes, or-nodes, and terminal nodes: V = Vand ∪ Vor ∪ VT ; E
is the edge set and it consists of two subsets E = Epsg ∪ Edg:
set of edges with phrase structure grammar Epsg and dependency
grammar Edg . X = {x1, x2, ..., xN} is the attribute set associ-
ated with nodes in V . P is the probability model on graphical
representation.

According to the aforementioned definitions, the parse graph
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Figure 50. A parse graph example derived from the A-AOG [29], which contains parse graphs for human body detection and pose and human
attributes.

can be formulated as:

pg = (V (pg), E(pg), X(pg)) (30)

An example of the parse graph derived from the A-AOG can be
found in Fig. 50. Given an image I , the target is to find the most
probable parse graph pg from their grammar model. They adopt
the Bayesian framework which computes the joint posterior as
the product of a likelihood and prior probability, to formulate the
probability model over the parse graph as follows:

P (pg|I;λ) ∝ P (I|pg;λ)P (pg;λ)

=
1

Z
exp{−E(I|pg;λ)− E(pg;λ)}

(31)

where λ is the model parameters. The energy functions E can be
decomposed into a set of potential functions. Both terms in Eq. 31
can be decomposed into part and attribute relations, therefore, Eq.
31 can be rewritten as:

P (pg|I;λ) = 1

Z
exp{−EV

app(I|pg;λ)− EX
app(I|pg;λ)

−EV
rel(pg;λ)− EX

rel(pg;λ)}
(32)

where EV
app(I|pg;λ), EX

app(I|pg;λ), EV
rel(pg;λ) and EX

rel(pg;λ)
are appearance and relations terms for part and attribute respec-
tively.

Then, the energy terms can be expressed as following scoring
functions:

S(pg|I) = −EV
app(I|pg)− EX

app(I|pg)− EV
rel(pg)− EX

rel(pg)

= SV
app(I, pg) + SX

app(I, pg) + SV
rel(pg) + SX

rel(pg).
(33)

Therefore, the most probable parse graph pg∗ can be found by
maximizing the score function 33:

pg∗ = argmax
pg

P (I|pg)P (pg)

= argmax
pg

[SV
app(pg, I) + SX

app(pg, I) + SV
rel(pg) + SX

rel(pg)]

≈ argmax
pg

[Sapp(pg, I) + Srel(pg)]

(34)
They use deep CNN to generate the proposals for each part and

adopt a greedy algorithm based on the beam search to optimize an
aforementioned objective function. For the detailed learning and
inference procedure, please check the original paper [125] [29].

6.7.3 VSGR (AAAI-2019) [30]
In this paper, the authors propose to estimate the pedestrian
attributes via visual-semantic graph reasoning (VSGR). They

Figure 51. The overview of visual-semantic graph reasoning framework
(VSGR) which is proposed in [30].

argue that the accuracy of person attribute recognition is heavily
influenced by: 1). only local parts are related with some attributes;
2). challenging factors, such as pose variation, viewpoint, and oc-
clusion; 3). the complex relations between attributes and different
part regions. Therefore, they propose to jointly model spatial and
semantic relations of region-region, attribute-attribute, and region-
attribute with a graph-based reasoning framework. The overall
pipeline of their algorithm can be found in Fig. 51.

As shown in Fig. 51, this algorithm mainly contains two sub-
networks, i.e. the visual-to-semantic sub-network and semantic-to-
visual sub-network. For the first module, it first divides the human
image into a fixed number of local parts X = (x1, x2, ..., xM )T .
They construct a graph whose node is the local part and edge
is the similarity of different parts. Different from regular relation
modeling, they adopt both the similarity relations between parts
and topological structures to connect one part with its neighbor
regions. The similarity adjacency matrix can be formulated as:

Asa(i, j) =
exp(Fs(xi, xj))∑M
j=1 exp(Fs(xi, xj))

(35)

where Fs(xi, xj) denotes the pairwise similarity between each
two-part regions which can also be modeled by a neural network.

The topological relations between local parts can be obtained
via:

Asl(i, j) =
exp(−dij/∆)∑M
j=1 exp(−dij/∆)

(36)

where dij is the pixel distance between two parts and ∆ is the
scaling factor.

The two sub-graphs are combined to compute the output of the
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spatial graph via the following equation:

Gs = AsaXWsa + AslXWsl (37)

where Wsa and Wsl are weight matrices for two sub-graphs.
Therefore, the spatial context representation gs can be obtained

via average pooling operation after convolution. After encoding
the region-to-region relation, they also adopt a similar operation
to model the relations between semantic attributes based on spatial
context. The node of the new graph is the attributes, and they trans-
form them into the embedding matrix R = (r0, r1, ..., rK), where
r0 denotes the ”start” token and each column ri is an embedding
vector. The positional encoding [81] is also considered to make
use of the attribute order information P = (p0, p1, ..., pK). The
embedding matrix and positional encoding are combined together
to obtain the semantic representations on an ordered prediction
path E = (e0, e1, ..., eK), where ek = rk + pk.

Finally, the spatial and semantic context can be obtained by:

C = E + (Usgs) (38)

where the U is learnable projection matrix. For the edges, they
only connect the i−th node with nodes whose subscript ≤ i to
ensure the prediction of the current attribute only has relations
with previously known outputs. The edge weights of connected
edges can be computed by:

Fê(ci,cj) = ϕê(ci)Tϕê′(cj) (39)

where ϕê(∗) and ϕê′(∗) are linear transformation functions. The
adjacency matrix Aê can also be obtained by normalizing the
connected edge weights along each row. And the convolution
operation on the semantic graph can be computed as:

Gê = AêCT Wê (40)

The output representation Gê can be obtained after conducting
convolutions on the semantic graph, and then utilized for sequen-
tial attribute prediction.

The semantic-to-visual sub-network can also be processed in
a similar manner and it also outputs sequential attribute predic-
tion. The output of these two sub-networks is fused as the final
prediction and can be trained in an end-to-end way.

Summary: Due to the relations that exist in multiple attributes,
many algorithms are proposed to mine such information for PAR.
Therefore, the Graphic models are the first to think and introduced
into the learning pipeline, such as Markov Random Field [126],
Conditional Random Field [127], And-Or-Graph [124] or Graph
Neural Networks [128]. The works reviewed in this subsection
are the outputs via the integration of the Graphic models with
PAR. Maybe the other Graphic models can also be used for
PAR to achieve better recognition performance. Although these
algorithms have so many advantages, however, these algorithms
seem more complex than others. The efficiency issues also need
to be considered in practical scenarios.

6.8 Other Algorithms
This subsection is used to demonstrate algorithms that are not
suitable for the aforementioned categories, including PatchIt [31],
FaFS [32], GAM [33].

6.8.1 PatchIt (BMVC-2016) [31]
Regular ConvNets usually adopt a pre-trained model on an aux-
iliary task for weight initialization. However, it constrains the

Figure 52. The pre-training algorithm introduced from PatchIt [31] (left
figure) and multi-class classification network for PAR (right figure).

designed network to as similar to existing architectures, such as
AlexNet, VGG, or ResNet. Different from these algorithms, this
paper proposes a self-supervised pre-training approach, named
PatchTask, to obtain weight initializations for the PAR. Its key
insight is to leverage data from the same domain as the target task
for pre-training and it only relies on automatically generated rather
than human-annotated labels. In addition, it is easier for us to find
massive unlabelled data for our task.

For the PatchTask, the authors define it as a K-class classifica-
tion problem. As shown in Fig. 52, they first divide the image into
multiple non-overlapping local patches, and then, let the network
predict the origin of a given patch. They use the PatchTask to
obtain an initialization for the convolutional layers of VGG16 and
apply it for PAR.

6.8.2 FaFS (CVPR-2017) [32]
The target of multi-task learning is to share relevant information
across these tasks to help improve final generalization perfor-
mance. Most hand-designed deep neural networks conduct both
shared and task-specific feature learning. Different from existing
works, FaFS [32] is proposed to design compact multi-task deep
learning architecture automatically. This algorithm starts with a
thin multi-layer network and dynamically widens it in a greedy
manner during training. This will create a tree-like deep architec-
ture by repeating the above widening procedure and similar tasks
reside in the same branch until at the top layer. Fig. 53 (right
sub-figure) illustrates this process. Fig. 53 (left figure) gives a
comparison between the thin network and the VGG-16 model.
The weight parameters of the thin network are initialized by
minimizing the objective function as follows with simultaneous
orthogonal matching pursuit (SOMP) [129]:

A∗, ω∗(l) = arg min
A∈Rd×d′ ,|w|=d′

||W p,l −AW p,l
w: ||F , (41)

where W p,l is the parameters of the pre-trained model at layer l
with d rows. W p,l

w: denote a truncated weight matrix at only keeps
the rows indexed by the set ω. This initialization process is done
layer by layer and is applicable for both convolutional and fully
connected layers.

Then, a layer-wise model widening is adopted to widen the
thin network, as shown in Fig. 53 (right sub-figure). This operation
is started from the output layer and recursively in a top-down
manner towards the lower layers. It is also worth noting that each
branch is associated with a subset of tasks. They also separate the
similar and dissimilar tasks into different groups according to the
probability which is an affinity between a pair of tasks.

6.8.3 GAM (AVSS-2017) [33]
This paper proposes to handle the issue of occlusion and low
resolution of pedestrian attributes using deep generative models.
Specifically, their overall algorithm contains three sub-networks,
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Figure 53. (Left) the comparison between the thin model with VGG-16; (Right) Illustration of the widening procedure in [32]

i.e., the attribute classification network, the reconstruction net-
work, and the super-resolution network.

Figure 54. The pipeline of GAM-network. This figure is adapted from
GAM [33].

For the attribute classification network, they also adopt joint
global and local parts for final attribute estimation, as shown in
Fig. 54. They adopt ResNet50 to extract the deep features and
global-average pooling to obtain the corresponding score. These
scores are fused as the final attribute prediction score. To handle
the occlusion and low-resolution problem, they introduce the deep
generative adversarial network [90] to generate re-constructed
and super-resolution images. And use the pre-processed images
as input to the multi-label classification network for attribute
recognition.

7 APPLICATIONS

Visual attributes can be seen as a kind of mid-level feature repre-
sentation which may provide important information for high-level
human-related tasks, such as person re-identification [131], [132],
[133], [134], [135], pedestrian detection [136], person tracking
[137], person retrieval [138], [139], human action recognition
[140], scene understanding [141]. Due to the limited space of this
paper, we only review some works in the rest of these subsections.

Pedestrian Detection. Different from regular person detection
algorithms which treat it as a single binary classification task, Tian
et al. propose to jointly optimize person detection with semantic
tasks to address the confusion of positive and hard negative
samples. They use existing scene segmentation datasets to transfer
attribute information to learn high-level features from multiple
tasks and dataset sources. Their overall pipeline can be found in
Figure 55.

Person Re-identification. As noted in [135], person re-
identification and attribute recognition share a common target
at the pedestrian description. PAR focuses on local information
mine while person re-identification usually captures the global
representations of a person. As shown in Figure 56, Lin et al.
propose the multi-task network to estimate the person attributes
and person ID simultaneously. Their experiments validated the
effectiveness of more discriminative representation learning.

Su et al. also propose to integrate the mid-level human at-
tributes into the person re-identification framework in [131]. They

Figure 55. The pipeline of pedestrian detection aided by deep learning
semantic tasks [136].

Figure 56. The pipeline of APR network in [135].

train the attribute model in a semi-supervised manner and mainly
contain three stages, as shown in Figure 57. They first pre-train
the deep CNN on an independent attribute dataset, then, fine-
tuned on another dataset only annotated with person IDs. After
that, they estimate attribute labels for the target dataset using
the updated deep CNN model. They can achieve good results on
multiple-person re-ID datasets using deep attributes with simple
Cosine distance. Sameh Khamis et al. [133] propose to integrate
a semantic aspect into regular appearance-based methods. They
jointly learn a discriminative projection to a joint appearance-
attribute subspace, which could effectively leverage the interaction
between attributes and appearance for matching. Li et al. also
present a comprehensive study on clothing attributes assisted
person re-ID in [134]. They first extract the body parts and their
local features to alleviate the pose-misalignment issues. Then, they
propose a latent SVM-based person re-ID approach to model the
relations between low-level part features, middle-level clothing
attributes, and high-level re-ID labels of person pairs. They treat
the clothing attributes as real-value variables instead of using them
as discrete variables to obtain better person-ID performance.

8 FUTURE RESEARCH DIRECTIONS

In the rest of this section, we discuss several interesting directions
for future work of pedestrian attribute recognition. We also list
some released source codes of PAR in Table 2.
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Table 2
A summary of the source code

Algorithm Source Code
DeepMAR [6] https://github.com/dangweili/pedestrian-attribute-recognition-pytorch

Wang et al. [130] https://github.com/James-Yip/AttentionImageClass
Zhang et al. [36] https://github.com/dangweili/RAP

PatchIt [31] https://github.com/psudowe/patchit
PANDA [10] https://github.com/facebookarchive/pose-aligned-deep-networks

HydraPlus-Net [18] https://github.com/xh-liu/HydraPlus-Net
WPAL-Net [26] https://github.com/YangZhou1994/WPAL-network

DIAA [20] https://github.com/cvcode18/imbalanced learning

Figure 57. The pipeline of Semi-supervised Deep Attribute Learning
(SSDAL). [131].

8.1 More Accurate and Efficient Part Localization Algo-
rithm

Human beings can recognize detailed attribute information in a
very efficient way because we can focus on specific regions in
a glimpse and reason the attribute based on local and global
information. Therefore, it is an intuitive idea to design algorithms
that can detect the local parts for accurate attribute recognition as
we humans do.

According to section 6.2, it is easy to find that researchers are
indeed more interested in mining local parts of the human body.
They use manually annotated or detected human body or pose
information for part localization. The overall framework of part-
based attribute recognition can be found in Fig. 58. There are also
some algorithms that attempt to propose a unified framework in a
weakly supervised manner to jointly handle attribute recognition
and localization. We think this will also be a good and useful
research direction for pedestrian attribute recognition.

8.2 Deep Generative Models for Data Augmentation

In recent years, the deep generative models have achieved great
progress and many algorithms are proposed, such as: pixel-CNN
[142], pixel-RNN [143], VAE [88], GAN [89]. Recent works like
the progressive GAN [144] and bigGAN [145] even make people

Figure 58. The framework of joint local and global feature extraction for
person attribute recognition.

feel shocked about the image generated by these algorithms. One
intuitive research direction is how can we use deep generative
models to handle the issues of low-quality person images or
unbalanced data distribution.

There are already many types of research focusing on image
generation with the guidance of text, attribute, or pose information
[146], [147], [148], [149], [150]. The generated images can be
used in many other tasks for data augmentation, for example, ob-
ject detection [151], person re-identification [152], visual tracking
[153], et al. GAM [33] also attempt to generate high-resolution
images for person attributes recognition. It is also worth designing
new algorithms to generate pedestrian images according to given
attributes to augment the training data.

8.3 Further Explore the Visual Attention Mechanism
Visual attention has drawn more and more researchers’ attention
in recent years [154]. It is still one of the most popular techniques
used nowadays and is integrated with every kind of deep neural
network in many tasks. Just as noted in [154], one important
property of human perception is that one does not tend to process a
whole scene in its entirety at once. Instead, humans focus attention
selectively on parts of the visual space to acquire information
when and where it is needed and combine information from
different fixations over time to build up an internal representation
of the scene [155], guiding future eye movements and decision
making. It also substantially reduces the task complexity as the
object of interest can be placed in the center of the fixation and
irrelevant features of the visual environment (“clutter”) outside the
fixated region are naturally ignored.

Many existing attention-based pedestrian attribute recognition
algorithms focus on feature or task weighting using a trainable
neural network. Although it indeed improved the overall recog-
nition performance, however, how to accurately and efficiently
locate the attention regions is still an open research problem.
Designing novel attention mechanisms or borrow from other
research domains, such as NLP (natural language processing),

https://github.com/dangweili/pedestrian-attribute-recognition-pytorch
https://github.com/James-Yip/AttentionImageClass
https://github.com/dangweili/RAP
https://github.com/psudowe/patchit
https://github.com/facebookarchive/pose-aligned-deep-networks
https://github.com/xh-liu/HydraPlus-Net
https://github.com/YangZhou1994/WPAL-network
https://github.com/cvcode18/imbalanced_learning
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for pedestrian attribute recognition will be an important research
direction in the future.

8.4 New Designed Loss Functions
In recent years, there are many loss functions have been proposed
for deep neural network optimization, such as (Weighted) Entropy
Loss, Contrastive Loss, Center Loss, Triplet Loss, and Focal Loss.
Researchers also design new loss functions for the PAR, such as
WPAL [26], AWMT [27], to further improve their recognition
performance. It is a very important direction to study the influence
of different loss functions for PAR.

8.5 Explore More Advanced Network Architecture
Existing PAR models adopt off-the-shelf pre-trained networks on
large-scale datasets (such as ImageNet), as their backbone network
architecture. Seldom of them consider the unique characteristics
of PAR and design novel networks. Some novel networks have
been proposed in recent years, such as capsule network [74]
[75], and External Memory Network [84]. However, there are
still no attempts to use such networks for PAR. There are also
works [156] demonstrate that the deeper the network architecture
the better recognition performance we can obtain. Nowadays,
Automatic Machine Learning solutions (AutoML) draw more and
more attention [157] [158] [159] and many development tools are
also released for development, such as AutoWEKA [160], Auto-
sklearn [161]. Therefore, it will be a good choice to design specific
networks for person attribute recognition in future works with the
aforementioned approaches.

8.6 Prior Knowledge guided Learning
Different from regular classification task, pedestrian attribute
recognition always has its own characteristics due to the prefer-
ence of human beings or natural constraints. It is an important
research direction to mining the prior or common knowledge
for the PAR. For example, we wear different clothes in various
seasons, temperatures or occasions. On the other hand, some
researchers attempt to use history knowledge (such as Wikipedia ||)
to help improve their overall performance, such as image caption
[162], [163], object detection [164]. Therefore, how to use this
information to explore the relations between personal attributes
or help the machine learning model to further understand the
attributes is still an unstudied problem.

8.7 Multi-modal Pedestrian Attribute Recognition
Although existing single-modal algorithms already achieve good
performance on some benchmark datasets as mentioned above.
However, as is known to all, the RGB image is sensitive to
illumination, bad weather (such as rain, snow, fog), night time,
et al. It seems impossible for us to achieve accurate pedestrian
attribute recognition all day and in all weather. However, the actual
requirement of intelligent surveillance needs far more than this
target. How can we bridge this gap?

One intuitive idea is to mine useful information from other
modalities, such as thermal or depth sensors, to integrate with
RGB sensors. There are already many works that attempt to
fuse these multi-modal data and improve their final performance
significantly, such as RGB-Thermal tracking [165], [166], [167],

||en.wikipedia.org

moving object detection [168], person re-identification [169],
RGB-Depth object detection [170], [171], segmentation [172]. We
think the idea of multi-modal fusion could also help improve the
robustness of pedestrian attribute recognition. As shown in Fig.
59, these thermal images can highlight the contour of humans and
some other wearing or carrying objects as denoted in [173], [174].

Figure 59. The example RGB and thermal infrared images adopted from
[169], [173] .

8.8 Video-based Pedestrian Attribute Recognition
Existing pedestrian attribute recognition is based on a single
image, however, in practical scenarios we often obtain the video
sequence captured by cameras. Although running the existing al-
gorithm on each video frame can be an intuitive and easy strategy,
efficiency maybe the bottleneck for practical applications. Chen
et al. propose a video-based PAR dataset [175] by re-annotating
the MAR dataset [176] which is originally constructed for video-
based person re-identification. Generally speaking, image-based
attribute recognition can only make use of the spatial information
from the given image, which increases the difficulty of PAR due
to the limited information. In contrast, given the video-based
PAR, we can jointly utilize the spatial and temporal information.
The benefits can be listed as follows: 1). we can extend the
attribute recognition into a more general case by defining more
dynamic person attributes, such as “running man”; 2). The motion
information can be used to reason the attributes that may be
hard to recognize in a single image; 3). The general person
attributes learned in videos can provide more helpful information
for other video-based tasks, such as video caption, and video
object detection. Therefore, how to recognize human attributes
in practical video sequences efficiently and accurately is a worthy
studying problem.

8.9 Joint Learning of Attribute and Other Tasks
Integrating the person attribute learning into the pipeline of other
person-related tasks is also an interesting and important research
direction. There are already many algorithms proposed by consider
the person attributes into corresponding tasks, such as: attribute-
based pedestrian detection [177], visual tracking [178], person re-
identification [25], [179], [180], [181] and social activity analysis
[182]. In future works, how to better explore the fine-grained
person attributes for other tasks and also use other tasks for better
human attribute recognition is an important research direction.

9 CONCLUSION

In this paper, we give a review of pedestrian attribute recognition
(i.e. PAR) from traditional approaches to deep learning based
algorithms in recent years. To the best of our knowledge, this is the
first review paper on pedestrian attribute recognition. Specifically

en.wikipedia.org
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speaking, we first introduce the background information (the
definition and challenging factors) about PAR. Then, we list
existing benchmarks proposed for PAR, including popular datasets
and evaluation criteria. After that, we review the algorithms that
may used for PAR from two aspects, i.e. the multi-task learning
and multi-label learning. Then, we give a brief review of PAR
algorithms, we first review some popular neural networks which
has been widely used in many other tasks; then, we analyze the
deep algorithms for PAR from different views, including global-
based, part-based, visual-attention-based, sequential prediction
based, new designed loss function based, curriculum learning
based, graphic model-based and other algorithms. Then, we give a
short introduction about the previous works on combining person-
attribute learning and other human-related tasks. Finally, we
conclude this survey paper and point out some possible research
directions from nine aspects of the PAR.
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