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Abstract

Embedding learning (EL) and feature synthesizing (FS) are two of the popu-

lar categories of fine-grained GZSL methods. EL or FS using global features

cannot discriminate fine details in the absence of local features. On the other

hand, EL or FS methods exploiting local features either neglect direct attribute

guidance or global information. Consequently, neither method performs well.

In this paper, we propose to explore global and direct attribute-supervised local

visual features for both EL and FS categories in an integrated manner for fine-

grained GZSL. The proposed integrated network has an EL sub-network and a

FS sub-network. Consequently, the proposed integrated network can be tested

in two ways. We propose a novel two-step dense attention mechanism to dis-

cover attribute-guided local visual features. We introduce new mutual learning

between the sub-networks to exploit mutually beneficial information for opti-

mization. Moreover, we propose to compute source-target class similarity based

on mutual information and transfer-learn the target classes to reduce bias to-

wards the source domain during testing. We demonstrate that our proposed

method outperforms contemporary methods on benchmark datasets.
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1. Introduction

Conventional supervised deep learning classifiers require a large amount of

labeled training data and the training and testing data must be drawn from the

same distribution. Although ordinary object images are easily accessible, there

are many object categories with scarce visual data, such as endangered species of

plants and animals [1]. To address the issues, Zero-shot learning (ZSL) methods

are studied. ZSL methods aim to exploit the visual-semantic relationship of

source (seen) classes to train a visual classifier on source classes and test the

classifier on target classes only. Though, the underlying distribution of source

and target domains is disjoint, the ZSL setting assumes that the trained visual

classifier knows whether a test sample belongs to a source or target class. To

alleviate such an unrealistic assumption, the ZSL setting is extended to a more

realistic setting called Generalized Zero-Shot Learning (GZSL) [2, 3, 4], where

the classifier has to classify test images from both source and target classes.

Figure 1: Samples from CUB dataset showing only a few dissimilar attributes between the

source and target classes. Red and green indicators denote dissimilar and similar attributes,

respectively. Best viewed in color.

The ultimate aim of this work is to improve GZSL for fine-grained recog-

nition. Unlike the coarse-grained datasets (classes, e.g., Animal, Table, and

Bus, with no sub-ordinate classes), classification of fine-grained datasets (with
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sub-ordinate classes, e.g., different types of birds (Blue jay, Florida jay, and

Green jay)) demands more local discriminative properties. The region-based

local features capture more fine distinctive information and relevance to the

semantic attributes than the global features (Figure 1). On the other hand,

global features hold the generic structure of the deep neural network’s visual

representation, which is vital for generalization. Therefore, besides exploring lo-

cal details for improved fine-grained GZSL, we argue to preserve global details

for constructing a better visual GZSL classifier.

Embedding learning (EL) and feature synthesizing (FS) methods are two

popular approaches for GZSL methods. Most existing EL [5] [6] and FS [7, 8]

methods only use global features for fine-grained GZSL tasks. Some EL methods

[9, 10, 6] focus only on the local features. However, these EL methods do not

relate individual attributes to the local features; they relate a combination of

all attributes. Consequently, they do not fully explore the discriminative local

information linked to the attributes.

We aim to address the aforementioned limitations in both EL and FS meth-

ods. As such, we propose an integrated network, which has an EL sub-network

(Attribute Guided Attention Network (AGAN)) and a FS sub-network (Ad-

versarial Feature Generation Network (AFGN)). In the proposed method, first,

we divide a sample into local regions. Then, we preserve the global represen-

tation of the local regions. After that, we propose a two-step dense attention

mechanism to explore the relation between the semantic attributes and the lo-

cal regions for discovering fine-discriminative information. Next, we combine

explored global and local information to construct a feature embedding used by

both sub-networks. Finally, we propose a mutual learning-based optimization

so that both sub-networks can assist each other and learn better features for

the GZSL task.

The proposed two-step dense attention mechanism uses direct attribute su-

pervision to construct a visual feature embedding that holds attribute-weighted

local visual information. In particular, to assign the first-level of attention to

the region features, we explore two general questions i.e., ‘Is the region related

3



to any attribute?’ and ‘Which attribute has the most relevance to the region?’.

Thus, a region’s attention has information about the presence of attributes and

the most relevant attribute in the region. This will encourage only the most

relevant attribute to a region to be attended and assist in learning fine distinc-

tion. In the second-level, we infuse the confidence score of having that attribute

in the class so that the attention of a region containing an attribute that has

a greater class score is higher weighted than others. This knowledge will en-

courage a better focus on common intra-class information, thereby facilitating

improved class decisions. The dense-attention mechanism is placed in AGAN.

We design the connection between AGAN and AFGN in such a way that they

both can leverage the attribute-weighted features constructed by the attention

mechanism.

To reduce bias towards source classes, we explore mutual information-based

source-target class similarity and loosely learn target classes in AGAN. Mu-

tual learning explores mutually useful information between AGAN and AFGN.

Thus, the source class bias in AFGN is also partially smoothed out. Moreover,

AFGN is flexible as it can be replaced with any sophisticated FS network to

learn attribute guided local features. Since the proposed integrated network

has both EL (AGAN) and FS sub-network (AFGN), the proposed method can

test in two ways, following the test sequence of both EL and FS GZSL meth-

ods (Section 3.4). Thus, the proposed integrated network will contribute to the

GZSL field in two different fine-grained classification methods.

The main contributions of this paper are as follows:

• We propose to integrate an embedding learning sub-network and a feature

generation sub-network to an integrated network. We introduce mutual

learning to optimize both sub-networks. This is the first work to apply

mutual learning in this domain to the best of our knowledge. The inte-

gration also enables two different ways of testing capability.

• We propose a novel two-step attention mechanism, which discovers fine

distinctive local visual information directly supervised by the attributes.
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In addition, unlike existing fine-grained GZSL methods, we propose to

preserve global visual information for developing a better GZSL visual

classifier.

• For fine-grained GZSL tasks, we introduce the exploration of attribute

guided fine-distinctive visual features in both embedding learning and fea-

ture synthesizing networks in a unified way.

• To reduce the bias towards source classes during testing, we propose to

transfer-learn a target class from the most similar source class based on

the pointwise mutual information (pmi) score.

• We present an extensive empirical evaluation on several fine-grained datasets

to demonstrate the superior state-of-the-art performance of the proposed

method compared to contemporary GZSL and ZSL methods.

Section 2 presents a brief discussion about contemporary methods. The

proposed method is described in Section 3. Results and analysis of the proposed

method on various datasets are provided in Section 4.

2. Related Work

In this section, we provide a brief overview of existing embedding learning

and feature synthesizing ZSLand GZSL methods.

2.1. Embedding Learning Methods

The embedding learning methods map either visual features to the semantic

space [11] or semantics to the visual space [12] based on seen classes for the

GZSL task. Most of the existing embedding learning ZSL methods use global

visual features to classify fine-grained datasets. This may inject noise and non-

discriminative information in the embedding [13].

To explore local fine-grained details, a few works have applied attention

mechanisms. However, some of them do not explore proper guidance from

attributes [9, 10] and others ignore local visual details [14, 15].
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A recent attention-based work [16] for fine-grained GZSL limits the feature

exploration space to the number of attributes to construct attribute embedding

and requires expensive attribute selection. As our ultimate goal is to learn a

visual classifier, unlike [16], we construct a visual feature embedding, which

retains necessary global visual features and the feature regions linked to the

attributes are assigned more attention than other regions.

A non-fine-grained attention-based GZSL method, APN [17], integrates the

exploration of both global and local details for GZSL tasks. The global mod-

ule in APN is separated from the local module and the global module extracts

channel-wise global information. This may create incompatibility in the net-

work. On the other hand, we preserve local region-wise global information.

Consequently, for building the feature embedding, we can maintain better syn-

chronization of global features with the attribute-weighted local region features.

The local module in APN aims to construct attributes from the local visual re-

gions for GZSL, which is different than our local feature exploration (discussed

in Section 3.1.1).

Moreover, in contrary to recent attention-based methods [16, 17], we propose

to employ two-level of dense attention mechanism to capture and highlight finer

details for fine-grained tasks.

2.2. Feature Synthesizing Methods

Feature synthesizing methods adversarially learn to synthesize visual fea-

tures from class semantics and reduce the GZSL to a standard supervised clas-

sification task [11, 18]. For generation of unseen class features, f-clsWGAN [19],

CVAE [20], SE-GZSL [21] used conditional Generative Adversarial Networks

(GANs) or Variational Autoencoders (VAE).

The feature synthesizing methods learn to generate global visual features

conditioned on the attribute descriptions and ignore local distinctive details

[7, 22]. On the other hand, in this paper, we explore local information related

to the attributes for synthesizing features in the proposed AFGN network for

improved fine-grained zero-shot recognition.

6



2.3. Reducing Bias Towards Source Domain

To overcome bias towards source domain, ZSL methods have explored nov-

elty detection [23] and prediction calibration [16]. For transfer learning target

classes, [24] relies on the reconstruction of source class semantic vectors from

target classes. On the other hand, for loosely smoothing out target class proba-

bilities in the proposed method, we measure class similarity by exploring shared

information between the class semantic vectors. This is more reliable as the

class semantic vectors only hold the confidence of attributes in a class.

3. Proposed Method

In this section, we formally outline the GZSL problem setting and describe

our proposed method.

Problem Setting. The GZSL problem setting has a source Ys domain and

a target Yt domain with Cs and Ct classes, respectively, where Ys∩Yt = ∅. The

source and target classes are indexed as {1, . . . , Cs} and {Cs + 1, . . . , Cs +Ct}

respectively. A dataset of N labeled images are available in the source domain,

Ds = {(xi, yi) | xi ∈ X , yi ∈ Ys}Ni=1, X denotes the visual feature space. The

target domain classes have no training samples or features. The source class

semantic vectors for c ∈ Ys are As = {ac}C
s

c=1. The target class semantic

vectors for c ∈ Yt are At = {ac}C
t

c=Cs+1. The semantic vector of class c is

ac = [a1
c , . . . , a

A
c ], where aAc represents the score of the presence of the Ath

attribute in the class. Similar to [16], we assume attribute semantic vectors

{vi}Ai=1 are provided. Here, vi denotes the average GloVe [25] representation of

words in the ith attribute, e.g., ‘throat color blue’. The objective of GZSL is to

train visual classifiers of all source and target classes hgzsl : X → Ys ∪ Yt.

3.1. Proposed GZSL

The proposed method addresses the limitation of existing embedding learn-

ing and feature synthesizing methods that ignore individual attributes for guid-

ing feature embedding construction. The method shown in Figure 2 comprises
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Figure 2: Block diagram of the proposed GZSL method. The red and purple blocks in dashed

lines represent the Attribute Guided Attention Network (AGAN) and the Adversarial Feature

Generation Network (AFGN), respectively. Best viewed in color.

two networks: 1) Attribute Guided Attention Network (AGAN) and 2) Adver-

sarial Feature Generation Network (AFGN). AGAN is the embedding learning

part of the proposed method. The attention mechanism is placed in AGAN.

First, AGAN constructs feature embedding using the attention mechanism and

leverages the feature embedding for the GZSL task. Then, the feature synthe-

sizing part, AFGN, uses the constructed feature embedding to learn the gener-

ation of attribute-weighted visual features adversarially. Furthermore, AGAN

and AFGN are mutually optimized to improve each other’s performance i.e.,

AGAN takes supervision from AFGN for optimizing the constructed feature

embedding, and AFGN takes supervision from AGAN to generate visual fea-

tures. This optimization is performed by minimizing our designed losses.
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3.1.1. Attribute Guided Attention Network

First, we select local visual regions and preserve region-wise global informa-

tion. Then we statistically bound the local regions to filter out irrelevant infor-

mation. Then, the two-step dense attention mechanism constructs an attribute-

weighted features. In Figure 2, the blue and green shaded parts on AGAN show

the two levels of attention mechanism, respectively. Then AGAN constructs

the feature embedding utilizing the output of the attention mechanism. The

feature embedding holds global representation, redundancy-free, and attribute-

weighted local visual information (the probability of the most relevant attribute

to the visual regions and the likelihood of having that attribute in the class).

Finally, a classifier utilizes the feature embedding to infer class decisions. To

reduce the source class bias while learning the classifier, we optimize a transfer

learning loss.

Constructing Visual Regions. For simplicity and consistency, in line

with [26] and [16], we divide an image I into r equal sized regions, I1, . . . , Ir.

We use a CNN to extract features for the r regions. For example, the feature

vector of the ith region is fi = fΘ(Ii), where Θ denotes parameters of the CNN.

Note that the CNN is frozen.

Exploring Global Information. To learn global discriminative features

compatible with the local region features, we apply region-wise global average

pooling on the local feature vectors F = {fi}ri=1. This operation provides

us with a feature vector Fg ∈ Rr, where Fgi represents the average global

information of the ith local region feature fi.

Learning Relevant Information. We want to reduce highly irrelevant

information from the extracted local feature space F = {fi}ri=1 by restricting

the information propagation from F to F ′. This will reduce the interruption of

redundant information in the attribute-weighted feature embedding.

As shown in Figure 2, F = {fi}ri=1 is the input to M and F ′ = {f ′i}ri=1 is the

output from M . Therefore, we aim to bind irrelevant information propagation

from the inputs of M to the outputs of M . To execute this, we have to place
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a information propagation bound in M . We use Mutual information (MI) to

bound M network to filter irrelevant information. Mutual information between

two random variables F and F ′ can be related to the marginal H(F ′) and

conditional H(F ′|F ) entropy as I(F ;F ′) = H(F ′)−H(F ′|F ). We want I(F ;F ′)

to be less than an upper bound so that only relevant information in F is passed

to F ′ through M to help reduce noise. The upper bound is found empirically

and we train M to learn to hold I(F ;F ′) less than the bound.

Since the extracted feature space is high dimensional, the estimation of mu-

tual information may be difficult. Therefore, we adopt a variational upper

bound of MI [27] to compute I(F ;F ′) as,

I(F ′;F ) ≤ Ep(f) [DKL [pM (f ′|f)‖r(f ′)]] , (1)

where pM (f ′|f) is the conditional probability of the region features f ′, which

holds only important information conditioned on the extracted real region-

features f . DKL and r(f ′) denote the Kullback-Leibler divergence and varia-

tional approximation of the marginal probability distribution of f ′, respectively.

Note that we do not reduce feature regions or filter out redundancy from global

features [7], which may lose important visual information and harm the image’s

visual feature representation. We remove redundancy from the feature regions

to use only the relevant information within a region.

First-level Dense Attention. Now, we aim to construct a dense connec-

tion i.e, every attribute is to be connected to every visual region to explore the

relevance between every attribute and every visual region. Therefore, we form a

matrix F ′′. The rows of F ′′ represent the bounded features of each region. The

corresponding attribute semantic vectors v are converted to V ′ matrix by using

Q network, where the Ath row represents the v′A
th

attribute. Both M and Q

are neural networks with non-linear activation function ReLU.

F ′′ and V ′ are fused as J = F ′′⊗V ′, where ⊗ denotes matrix multiplication,

F ′′ ∈ Rr×m, r is the number of regions and m is the dimension of region features

f ′. Similarly, V ′ ∈ Rn×A, A denotes the number of attributes and n denotes the

dimension of attribute vectors v′, where m = n is ensured by M and Q networks.
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The matrix multiplication ensures a dense connection between F ′′ and V ′ as

the product contains information of every attribute (columns) in every regional

feature (rows). The output of the matrix multiplication is J ∈ Rr×A and we

denote the ith region as Ji, where Ji ∈ RA.

Existing attention-based GZSL works [9, 16], have adopted soft attention

[28] to predict only the presence of attributes in the regions. On the other

hand, we propose to use soft attention to predict the most relevant attribute

to every region besides predicting the presence of attributes in the regions. A

conceptual view of assigning attention to a region is shown in Figure 3.

Figure 3: A conceptual illustration of the first-level attention mechanism of the proposed

attribute-weighted visual feature embedding. Note that if a region has more than one at-

tributes, then the attention of the attribute having highest confidence is assigned to the

region, e.g., attribute v3 (‘wing pattern stripped’) wins over v6 (‘belly color white’). Thus,

presence of attribute and the most relevant attribute to a region is attended.

The K network takes J matrix and applies a soft-attention normalization

to set different degrees of attention to the r regions. The attentions indicate

the confidence of the presence of attributes in a region. We learn individual

soft-attentions for every one of the r regions using {Ti}ri=1 neural networks,

which encourages to learn to attend only the most relevant attribute to a re-

gion. This definitive attention assignment facilitates the embedding to hold fine

distinctive information. The attention assignment in K and {Ti}ri=1 networks

are performed as follows,

PI = softmax(tanh(J>WB)WA),

ti = softmax(tanh(JiWTAi
)WTBi

), αi = λαPIiHti ,
(2)
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where K is a neural network with learned parameters WA and WB and output

PI ∈ Rr. WTAi
and WTBi

are learned parameters of T thi network. The softmax

outputs of Ti is ti ∈ RA, which can be treated as soft attentions of the attributes

on the ith feature region. The attribute yielding the highest softmax probability

is most likely to have greater relevance to the ith feature region than others.

Thus, we consider only the highest softmax probability Hti . It also helps the at-

tention module to focus and learn only one attribute per visual region for better

discriminative learning. Similarly, we compute the soft attentions for each of the

r regions using {Ti}ri=1. αi denotes the attention and the parameter λα helps to

avoid negligible attention. Note, to handle {Ti}ri=1 networks simultaneously, we

use depth-wise (grouped) convolution; please see Section 4.3 for more details.

We obtain the weighted feature regions by applying the inferred soft at-

tention as F̂ ′′i = αiF
′′
i . To preserve both noise-free and semantic guided vi-

sual information, we combine the attribute-weighted region features with the

redundancy-free region features as follows,

F̃1i
= F ′′i ⊕ F̂ ′′i, (3)

where, ⊕ denotes region-wise summation.

Second-level Dense Attention. To further infuse the probability of the

presence of an attribute in the class in F̃1i
and boost the weighted feature

regions for handling more sophisticated cases, we apply another level of attention

mechanism. This assists the attention mechanism in learning to assign a higher

weight to a region that may contain an attribute which is more likely to be

present in the class samples and helps in making a better class decision.

First, we construct the visual-semantic matrix as J̃ = F̃1 ⊗ V ′, which has

the similar dimensional properties as J matrix. Then, we combine the class

semantic vector a as J ′ = J̃a, where a vector is multiplied to each row of

J̃ matrix element-wise and J ′ ∈ Rr×A. The second-level soft attention α̃ is

computed by using J ′ matrix and K̃ network similar to the first part (PI)

of (2) i.e., α̃ = softmax(tanh(J ′>W ′B)W ′A), where W ′B and W ′A are learned

parameters of K̃ network. The feature embedding F̃2 ∈ Rr×m is constructed
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by summation of F̃1 and F̃ ′1 = α̃F̃1 as (3). Note that, since the information

of the most relevant attribute to a region is propagated into the second-level

and beyond through the embedding F̃1, we do not use {Ti}ri=1 neural networks

in the second-level. Besides, we empirically found that using {Ti}ri=1 in the

second-level does not facilitate the attention mechanism significantly.

Feature Embedding. To hold the global information in the feature em-

bedding, we apply a region-wise product between F̃2 and Fg, i.e., the feature

vector Fg is element-wise multiplied to all the column vectors of F̃2 matrix and

the dimension of F̃2 is preserved as is. This operation infuses the region-based

global information to F̃2. To retain all the extracted information in the final

embedding, we apply an average pooling over the m-dimension of F̃2. Then, we

concatenate the pooled features and form the final feature embedding fs, where

fs ∈ Rm.

AGAN-GZSL Task. Finally, fs is fed into the classifier h2, which is

a neural network with one hidden fully-connected layer and a softmax layer.

The classifier takes fs as input and produces |Cs + Ct|-dimensional output,

where the first |Cs| indices represent the source classes and the remaining in-

dices represent the target classes. The class scores are computed as p(si) =

exp (si)/
∑
c∈|Cs| exp (sci ), where s = h2(fs), h2(fs) ∈ R|Cs+Ct|, |Cs +Ct| is the

total number of source and target classes.

3.1.2. Adversarial Feature Generation Network

In this section, we present the proposed AFGN, which utilizes final feature

embedding fs from AGAN to learn to generate features that are highly related

to the attributes for fine-grained classification.

The AFGN can adopt any adversarial feature synthesizing GZSL method.

In this work, we adopt a feature generation method f-WGAN [19], which has a

visual feature generator G and a discriminator D. The f-WGAN takes random

Gaussian noise ε and the class semantic vector a as inputs and learns to generate

a visual feature x̃ ∈ X of class y. The idea is to trainG to generate features of the

source class images xs conditioned on asc so that during testing, the generator G
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can repurpose its learned knowledge to generate target class features only from

atc. In f-WGAN [19], the global features (i.e., xs) are used as the real features to

guide G. On the contrary, we propose to utilize our attribute-weighted features

for the guidance. Not only our features are associated with attribute attention,

they also hold redundancy-free information. For converting the semantic vectors

to visual features, the usage of fs inferred from AGAN will assist the AFGN

to follow the underlying dependency between the semantic and visual feature

spaces. Therefore, we optimize,

LWGAN = E[D(fs, a)]− E[D(x̃, a)]− λE
[
(‖∇x̂D(x̂, a)‖2 − 1)

2
]
, (4)

where x̃ = G(ε, a), λ denotes the penalty coefficient, and x̂ = ηfs + (1 − η)x̃

with η ∼ U(0, 1). To further ensure the learned features hold discriminative

properties suitable for classification and less bias towards source classes, we use

the h2 from AGAN as follows,

Lcls = −Ex̃∼px̃(x̃)[logP (y | x̃; θ)], (5)

where y is the true class label of x̃ and P (y | x̃; θ) denotes the probability of x̃

being predicted as y by h2.

3.2. Optimization

In this section, we present the loss optimization details of the proposed

method.

3.2.1. Mutual Learning

Since both AGAN and AFGN use the attribute-weighted feature embedding

fs to learn their tasks, we utilize both networks to assist one-another through

mutual learning. We define the mutual learning losses for AGAN and AFGN

networks as follows,

Lm1 =
1

2
||fs − x̃||22,Lm2 =

1

2
||x̃− fs||22, (6)
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where, x̃ = G(ε, a). By optimizing Lm1, AGAN utilizes the construction power

of G in AFGN to facilitate its embedding learning. On the other hand, AFGN

uses the learned embedding in AGAN to improve its construction ability by

optimizing Lm2.

For mutual training we need to optimize both Lm1 and Lm2 in every training

iteration. In every iteration we first optimize Lm1 and then Lm2 (Algorithm 1).

To optimize Lm1 (6), first, we feed a batch of samples to AGAN to get fs, then

we pass the same batch through G in AFGN (in eval mode) to get x̃, and finally,

compute Lm1. Similarly, to optimize Lm2 (6), first, we feed a batch of samples

to AFGN to get x̃, then we pass the same batch through AGAN (in eval mode)

to get fs, and compute Lm2.

3.2.2. Loss Optimization in AGAN

For the source classes, we optimize the standard cross-entropy loss as,

Lce =
1

ns

ns∑
i=1

L(h2(fsi), yi), (7)

where yi is the true class label of fsi and ns denotes the number of samples.

To smooth out bias towards source classes, we hope to loosely learn a target

class from the knowledge of its closest source class. Thus, we propose to optimize

the following loss over the target class indices in h2 in one-vs-rest fashion,

Lu =

ns∑
i=1

Cs+Ct∑
j=Cs+1

pmiij logP (y = j|fsi)− (1− pmiij) log(1− P (y = j|fsi)).

(8)

Here, pmiij is the similarity measure between the class of ith source sample and

jth target class and P (y = j|fsi) means the probability of jth index given the

feature of its closest source class.

To measure class similarity, we adopt pointwise mutual information (pmi).

In information theory, pmi measures association and co-occurrence between two

events of two discrete random variables. In the fine-grained GZSL setup, the

target classes share many attributes with the source classes. Therefore, the
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random variables of the class semantic vectors of source classes asc will pose

significant statistical dependence with that of target classes atc. This implies

that the target classes will produce higher pmi for similar source classes in the

class semantic vector space. We convert ac of the source and target classes to

probability distributions by applying a softmax function.

Let, ZAs and ZAt represent the converted probability distributions of the

source and target classes. The pmi between two individual events ZiAs and ZjAt

of the two discrete random variables ZAs and ZAt can be computed as,

pmi(ZiAs ;ZjAt) = log
P (ZiAs , Z

j
At)

P (ZiAs)P (ZjAt)
. (9)

We construct the joint probability distribution as Jn = ZAt · ZAs
> (tensor Jn

has a dimension of Ct ×Cs), and ZAt and ZAs matrices hold the dimension of

Ct× atc and Cs× asc. The marginals are computed from the summation of rows

and columns of Jn. The final objective for the AGAN network becomes,

Lce + λpLu + λm1Lm1

s.t. Ep(f) [DKL [pM (f ′ | f)‖r(f ′)]] ≤ γ,
(10)

where λp and λm1 are a hyper-parameters to weight the losses for target classes

and mutual learning respectively, and γ is the MI bound.

3.2.3. Loss Optimization in AFGN

The final objective of AFGN is as follows,

min
G

max
D
LWGAN + λclsLcls + λm2Lm2. (11)

Here, λcls and λm2 are hyper-parameters for weighting the contribution of Lcls
in the optimization and mutual learning respectively. We train AGAN and

AFGN in an end-to-end fashion. During each iteration, first, we sample a mini-

batch from (xsi , y
s
i )
ns

i=1 and Gaussian noise ε. Then we update the learnable

components of AGAN by (10). Finally, we update the learnable components of

AFGN by (11).
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3.3. Training Phase

The training procedure of the proposed method is summarized in Algorithm

1, where e denotes the number of steps to train discriminator D. We have used

5 steps. Please note that in our experiments, we extract CNN region features

fi
r
i=1 for training images prior to training the proposed method.

3.4. Testing Phase.

During testing, AGAN uses both test images, and semantic descriptors to

classify. On the contrary, AFGN uses the semantic descriptors to generate visual

features using the trained model. Then, train a supervised visual classifier with

the generated features to classify the test images.

Once the AGAN is trained, we formulate the classification score of a test

instance as PGZSL (xi) = maxi {si}C
t

i=1 and PZSL (xi) = maxi {si}C
t

i=Cs+1. For

AFGN, we use the trained generator G and re-sampled ε to generate multiple

synthetic features for every source and target class. Then, we learn a separate

supervised classifier, which produces |Cs+Ct| and |Ct| dimensional outputs for

GZSL and ZSL. We define the classification loss as LhAFGN
= −Ex′∼p′ [logP (y |

x′; θhAFGN
)], where x′, y, and p′ denote samples of the newly formed training

dataset, the true class label of x′, and distribution of the new training dataset

respectively. P (y | x′; θhAFGN
) represents the probability of x′ being recognized

as y.

4. Experimental Studies

In this section, we describe the datasets, evaluation protocol, implementation

details, experimental outcomes, hyper-parameter settings, ablative analysis, and

learned attention visualization.

4.1. Datasets

In line with fine-grained GZSL method [16], we conduct our experiments

on three popular fine-grained datasets, Caltech-UCSD Birds-200-2011 (CUB)
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Algorithm 1 Training Procedure

Input: Ds; asc; v; atc; AGAN components; ε; AFGN components.

Output: Trained AGAN and G from AFGN.

1: while not converged do

2: Sample mini-batch from extracted CNN region features, asc, and ε;

3: Compute Fg by region-wise avg. pooling;

4: Compute I(F ;F ′) between inputs (fi
r
i=1) and outputs (f ′i

r
i=1) of M (1);

5: Form F ′′ matrix using f ′i
r
i=1;

6: Convert vi
A
i=1 to V ′ matrix using Q;

7: Perform matrix multiplication between F ′′ and V ′ to get J ;

8: Compute soft attentions through K and Ti
r
i=1 networks by using (2);

9: Compute F̃1 by (3);

10: Perform matrix multiplication between F̃1 and V ′ to get J̃ ;

11: Perform element-wise product between J̃ and a to get J ′;

12: Compute α̃ through K̃ network similar to first part of (2);

13: Compute F̃2 by summation of F̃1 and α̃F̃1 similar to (3);

14: Perform avg. pooling and concatenation on F̃2 to get fs;

15: Feed fs to h2 for class probabilities;

16: Use asc and ε to get x̃ from G;

17: Compute losses by (7)–(10) and Lm1 (6);

18: Update learnable components of AGAN;

19: Sample mini-batch, ε, asc, and compute fs from AGAN;

20: for e steps do

21: Update D by (4);

22: end for

23: Sample mini-batch, ε, asc, and compute fs from AGAN;

24: Update G by (4)–(6);

25: end while

[29], SUN Attribute (SUN) [30], and Animals with Attributes 2 (AWA2) [31].

We further extend our experiments to Animals with Attributes 1 (AWA1) [32]
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dataset, which is a version of AWA2 dataset. We follow [1], to split the total

classes into source and target classes on each dataset.

CUB contains a total of 11,788 images of 200 classes of fine-grained bird

species, among them, 150 are selected as source classes, and the remaining 50

classes are treated as the target or unseen classes. SUN is composed of 14,340

images with 717 categories of scenes. This dataset is widely used for fine-grained

scene recognition and GZSL. The number of source and target classes used for

GZSL are 645 and 72, respectively. AWA1 consists of 30,475 images of 50

different sub-ordinate classes of animals. For GZSL, 40 classes are used as

source, and 10 are used as target classes. AWA2 has 40 source and 10 target

classes comprising 37,322 images in total.

4.2. Evaluation Metrics:

We evaluate the performance of our method by per-class Top-1 accuracy.

For the source domain, we will evaluate the Top-1 accuracy on source classes

denoted as S. For the target domain, the Top-1 accuracy on the target classes

is represented as T . For evaluating the total performance of GZSL, we compute

the harmonic mean as, H = (2× S × T )/(S + T ), which is similar to [1].

4.3. Implementation Details.

In our experiments, we extract a feature map of size 7× 7× 2048 from the

last convolutional block of pre-trained ResNet-101 and use it as a set of features

from 7 × 7 local regions. It is worth mentioning that the pre-trained ResNet-

101 model is only used for feature extraction and not fine-tuned in the training

procedure. In AGAN, the networks M , Q, and h2 are fully-connected neural

networks with no hidden layers. The networks K and K̃ have only one hidden

layer.

Grouped Convolution Attention We replace {Ti}ri=1 fully-connected

neural networks with grouped 1D convolutional block. Everyone of the r Ti

networks has two linear layers, one is followed by tanh function and the other

19



has a softmax function after it. We replace the linear layers, as shown in Fig-

ure 4. We use a kernel size of 1 in the convolutional block to mimic the lin-

ear or fully-connected neural layers. The input of the convolution block has

b × (A ∗ r) × 1-dimension, where b, A, r, and ∗ denote the batch size, number

of attributes, number of regions, and multiplication respectively. In Figure 4, h

denotes the size of the hidden layer of Ti. Note that in the first conv layer, ri
th

group will be connected to only A input channels and in the second conv layer

ri
th group will be connected to h input channels (hidden layer neurons). Thus,

the weights of different groups in the convolution block are not shared, which

supports our goal to learn separate attentions for r regions parallelly. After the

second conv layer we obtain an output of b × (A ∗ r) × 1-dimension which is

reshaped to b× r × A-dimension for applying softmax over the A attributes of

r regions.

Figure 4: Grouped convolution pseudo-code.

In AFGN, since the generator has to produce fully-connected features from

conditional input, we maintain a full fully-connected structure of the generator

for efficiency i.e., the generator has only one hidden fully-connected layer. The

discriminator has no hidden layers in the structure.

The threshold γ for MI bound in the region features is cross-validated be-

tween [0.01, 0.05]. The attribute semantic vectors v for all datasets are extracted

from Wikipedia articles trained GloVe model [25]. The attention balancing

hyper-parameter λα is set to 10. Adam solver with β1 = 0.5, β2 = 0.999 and

learning rate 0.0001 is used for optimization. The suitable hyper-parameters

setting across all datasets is as follows, λp ∈ [0.1, 0.2, 0.3, 0.4], λm1 = 0.1,

λcls = 0.1, and λm2 = 0.2.

Computation time The proposed method is trained using an NVIDIA
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Quadro P5000 GPU for 100 epochs with a batch size of 32. Each epoch takes

approximately 50 seconds to execute. Thus, the total training time is approx-

imately 5000 seconds. We compute the inference or testing time of AGAN in

two ways: 1) include CNN (ResNet-101) feature extraction in the process and

2) exclude the CNN (ResNet-101) feature extraction from the process. For Case

1, the inference time for a sample is approximately 0.81 seconds and for Case

2, it is approximately 0.01 seconds. For AFGN, the inference time for a sample

is approximately 0.006 seconds.

Approach Model

GZSL

CUB SUN AWA1 AWA2

T S H T S H T S H T S H

4

LATEM [13] (2016) 15.2 57.3 24.0 - - - 7.3 71.7 13.3 11.5 77.3 20.0

DEM [33] (2017) 19.6 57.9 29.2 - - - 32.8 84.7 47.3 30.5 86.4 45.1

DCN [23] (2018) 28.4 60.7 38.7 25.5 37.0 30.2 25.5 84.2 39.1 - - -

AREN [6] (2019) 38.9 78.7 52.1 19.0 38.8 25.5 - - - 15.6 92.9 26.7

CRnet [34] (2019) 45.5 56.8 50.5 34.1 36.5 35.3 58.1 74.7 65.4 - - -

TCN [24] (2019) 52.6 52.0 52.3 31.2 37.3 34.0 49.4 76.5 60.0 61.2 65.8 63.4

DVBE [35] (2020) 53.2 60.2 56.5 45.0 37.2 40.7 - - - 63.6 70.8 67.0

DAZLE [16] (2020) 56.7 59.6 58.1 52.3 24.3 33.2 - - - 60.3 75.7 67.1

VSG-CNN [3] (2020) 52.6 62.1 57.0 30.3 31.6 30.9 - - - 60.4 75.1 67.0

APN [17] (2020) 65.3 69.3 67.2 41.9 34.0 37.6 - - - 56.5 78.0 65.5

AGAN (Ours) 67.9 71.5 69.7 40.9 42.9 41.8 65.1 83.2 73.0 64.1 80.3 71.3

�

SE-GZSL [21] (2018) 41.5 53.3 46.7 40.9 30.5 34.9 56.3 67.8 61.5 58.3 68.1 62.8

f-CLSWGAN [19] (2018) 43.7 57.7 49.7 42.6 36.6 39.4 57.9 61.4 59.6 - - -

f-VAEGAN-D2 [8] (2019) 48.4 60.1 53.6 45.1 38.0 41.3 - - - 57.6 70.6 63.5

LisGAN [22] (2019) 46.5 57.9 51.6 42.9 37.8 40.2 52.6 76.3 62.3 - - -

RFF-GZSL (softmax) [7] (2020) 52.6 56.6 54.6 45.7 38.6 41.9 59.8 75.1 66.5 - - -

ASPN [18] (2020) 50.7 61.5 55.6 - - - 58.0 85.7 69.2 46.2 87.0 60.4

E-PGN [36] (2020) 52.0 61.1 56.2 - - - 62.1 83.4 71.2 52.6 83.5 64.6

APN [17] + f-VAEGAN-D2 [8] (2020) 65.7 74.9 70.0 49.4 39.2 43.7 - - - 62.2 69.5 65.6

AFGN (Ours) 69.8 77.1 73.2 53.1 45.9 49.2 67.5 83.8 74.7 68.1 82.9 74.7

Table 1: Performance comparison. T and S are the Top-1 accuracies tested on target classes

and source classes, respectively, in GZSL. H is the harmonic mean of T and S.

4.4. Results and Analysis

In this section, we analyze the evaluation of the proposed and contemporary

GZSL methods. The ZSL results of LATEM [13], DEM [33], and SGMAL [10]

are adopted from SGMAL [10], GZSL results of LATEM [13] and DEM [33] are

taken from ASPN [18], and the results of other compared methods are obtained
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from their corresponding published articles. For a fair comparison, we compare

both AGAN and AFGN with only inductive methods and synthesize 400 features

per class for comparing AFGN’s performance. In Tables 1 and 2, 4 and �

denote embedding learning and feature synthesizing methods, respectively, and

‘-’ represents that the results are not reported.

4.4.1. Generalized Zero-Shot Learning.

Table 1 shows that both AGAN and AFGN achieves more Harmonic mean

H compared to contemporary methods. H the main indicator of how well a

GZSL method performs. AGAN and AFGN also significantly outperform the

contemporary methods for the majority of the GZSL tasks. Unlike embedding

learning methods, feature synthesizing methods leverage supervised training on

synthesized data during testing and outperform embedding learning methods.

Similarly, AFGN outperforms AGAN.AGAN outperforms all the compared em-

bedding learning methods, which either use local or global feature embedding.

This indicates that the proposed method’s feature embedding holds finer dis-

criminative information required for fine-grained tasks. The improved perfor-

mance of AGAN also proves that both global and local information plays a vital

role in fine-grained GZSL.

APN [17] is the closest competitor, which has a global feature learning mod-

ule (BaseMod) along-with a local feature learning module (ProtoMod). AGAN

outperforms APN significantly. AFGN increases the accuracy of GZSL by a

large margin compared to APN + f-VAEGAN-D2 [8]. This means the proposed

method is more effective for GZSL tasks.Considering fine-grained attention-

based GZSL methods, DAZLE [16] is the closest competitor, which leverages

only local region-based features. However, DAZLE restricts the embedding

space to the number of selective attributes. In comparison, we preserve all local

region features highlighted by the most relevant attributes to the regions and

the global information corresponding to the local regions. The improved perfor-

mance of AGAN and AFGN verifies the effectiveness of our feature embedding.

Concerning irrelevant information removing GZSL methods, RFF-GZSL [7]
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filters out redundant information from global features. On the other hand, the

proposed method preserves global information on an average to hold the generic

trend of deep classifier features and removes redundancy from local regions to

reduce the interruption of irrelevant information. The higher performance of

AGAN and AFGN validates that the proposed feature embedding holds better

distinctive and necessary information. Compared to other methods, AGAN

reduces the source domain bias by optimizing the target loss Lu and makes

better knowledge transfer from source to target classes. AFGN follows the same

trend as it uses the discriminative knowledge of h2.We present some qualitative

results of AGAN and AFGN on the CUB dataset’s GZSL task in Figure 5. The

samples shown in the figure are selected from the test set. The results show

both AGAN and AFGN have minimal misclassifications.

(a) AGAN GZSL results. (b) AFGN GZSL results.

Figure 5: Qualitative results on GZSL task of the CUB dataset. Images with red boxes show

misclassifications by AGAN and AFGN.
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4.4.2. Zero-Shot Learning

The performance on ZSL tasks (CUB, SUN, AWA1) of different methods is

shown in Table 2. As expected, the results show that the target class accuracy

of all ZSL methods is higher than the GZSL tasks. The proposed AGAN and

AFGN perform better than contemporary methods. The improved performance

of the networks for ZSL tasks shows that the trained networks gain the ability

to generalize well to unseen target classes even in the conventional ZSL setup,

which is encouraged by the optimization of Lu based on the pmi similarity.

Approach Model CUB SUN AWA1 Approach Model CUB SUN AWA1

4

LATEM [13] 49.4 - 78.4

�

SE-GZSL [21] 60.3 64.5 83.8

DEM [33] 51.8 - 80.3 cycle-CLSWGAN [20] 58.6 59.9 66.8

S2GA (2-attention layer) [9] 68.9 - - LisGAN [22] 58.8 61.7 70.6

S2GA (3-attention layer) [9] 68.5 - - GMN [37] 64.3 63.6 71.9

SGMAL [10] 70.5 - 83.5 f-CLSWGAN [19] 57.3 60.8 68.2

TCN [24] 59.5 61.5 70.3 SABR [38] 65.2 62.8 -

DAZLE [16] 67.8 - - f-VAEGAN [8] 72.9 65.6 -

APN [17] 72.0 61.6 68.4 APN [17] +f-VAEGAN-D2 [8] 73.8 65.7 71.7

AGAN (Our) 74.9 66.5 88.7 AFGN (our) 78.5 69.8 89.1

Table 2: Performance comparison of ZSL tasks.

4.4.3. Hyper-parameters Analysis.

For studying the trend of GZSL accuracy of AGAN and AFGN in different

hyper-parameters (λP , λm1, λm2, and λcls) settings, we plot the graphs shown

in Figure 6.

Figures 6(a) and 6(b) show the performance of AGAN and AFGN with

various λP setups respectively. In case of both the networks, we observe that

the source accuracy depicts a sharp decreasing pattern after λP = 0.2 while

the target accuracy starts to surpass the source accuracy a little after that

point. This means the networks gradually lose the capability to recognize the

source domain samples correctly. The harmonic mean H achieves the optimal

performance at λP = 0.2 and decreases soon after that. Thus, we find the value

of λP = 0.2 optimal for the task. Note that for other datasets we cross-validate

λP in the range [0.001, 0.01, 0.1, 0.2, 0.3, 0.4].
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(a) (b) (c)

(d) (e)

Figure 6: Effect of varying the hyper-parameters in the GZSL performance on the CUB

dataset.

The effect of different settings of the hyper-parameters weighting the mutual

loss λm1 in AGAN and λm2 in AFGN are shown in Figures 6(c) and 6(d) respec-

tively. We observe that the optimal performance in AGAN is achieved when

λm1 = 0.1, and the source and target classes performances are harmed when

the value of λm1 is greater than that. On the other hand, the AFGN network

has low accuracies for fewer values of λm2 and achieves optimal performance

when λm2 is 0.2. This means the AFGN is more facilitated by mutual learning

compared to AGAN.

Figure 6(e) illustrates the performance of AFGN in different settings of λcls.

Note that AFGN has a very low source and target accuracy for near-zero values

of λcls, which indicates the importance of the discriminative feedback of h2 in

the network. We demonstrate that the performance increases for greater values

of λcls, however, decreases slightly after λcls = 0.1. Therefore, we set the value

of λcls to 0.1 for optimal performance in AFGN.
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4.4.4. MI Bound Analysis

Figure 7 shows the change in performances of AGAN and AFGN on different

values of γ. Both networks show low accuracy near zero MI bound, which

indicates interruption of redundant information in the features.

(a) (b)

Figure 7: Performance comparison for different MI bounds γ of AGAN (a) and AFGN (b) on

GZSL task of the CUB dataset.

Note that the performance of both networks depicts an increasing trend

with the increasing values of γ. However, after γ = 0.05, the performance starts

to decrease, which means the necessary information flow is harmed. Both the

networks achieve optimal performance when the MI bound is γ = 0.05. Note

that for some datasets we observe better performance at γ = 0.01, therefore we

mentioned earlier γ ∈ [0.01, 0.05].

4.4.5. Ablation Study

To highlight the impact of different vital components on the performance

of the proposed method, we perform an ablative analysis by removing those

components from AGAN and AFGN. The results of the ablative analysis are

shown in Table 3.

First, we omit the MI bound from the proposed method and study its im-

portance. The variants AGAN w/o γ and AFGN w/o γ show the performance

without the MI bound. The accuracy of AGAN decreases drastically without

the MI bound. AFGN without the MI bound shows a similar trend of infe-

rior results. The existence of irrelevant information in the local regions while

constructing the feature embedding harms AGAN and AFGN for fine-grained
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Approach T S H Approach T S H

AGAN w/o γ 48.7 56.8 52.4 AFGN w/o γ 50.5 59.1 54.4

AGAN (fs w/o Lu) 20.1 72.5 31.4 AFGN (fs w/o Lu) 25.2 78.9 38.1

AGAN (fs w/ F̃1) 58.1 61.9 59.9 AFGN (fs w/ F̃1) 60.9 70.1 65.1

- - - - AFGN w/o Lcls 47.8 58.1 52.4

AGAN w/o Fg 59.9 65.3 62.4 AFGN w/o Fg 62.4 68.7 65.3

AGAN w/o Lm1 59.2 65.2 62.0 AFGN w/o Lm2 57.9 66.1 61.7

AGAN w/o m 59.1 64.4 61.6 AFGN w/o m 61.1 71.3 65.8

AGAN 67.9 71.5 69.7 AFGN 69.8 77.1 73.2

Table 3: Ablative analysis for GZSL on the CUB dataset.

GZSL recognition. Thus, the MI bound is crucial for the proposed method.

Second, we omit the target loss optimization represented by the variants fs

w/o Lu as feature embedding without the target loss. We observe that both

AGAN and AFGN variants show high S accuracy and very low T accuracy.

This indicates that without Lu, AGAN and AFGN struggle to generalize to

target classes, which demonstrates the importance of the target loss based on

pmi similarity.

Third, we omit the second step attention. The variants of AGAN and AFGN

where the feature embedding is formed with only one-step dense attention (fs

w/ F̃1) show a large decrease in performance. This justifies that only one level

of dense attention mechanism is not sufficient enough to yield satisfactory per-

formance.

Fourth, we remove Lcls from AFGN optimization and observe that the per-

formance of AFGN decreases as the discriminative property of the generated

features is not monitored during training.

Fifth, for analyzing the influence of global features in the proposed method,

we omit Fg from the two variants AGAN w/o Fg and AFGN w/o Fg. We

observe that the performance of both networks decreases to a large extent. This

demonstrates the impact of the global features besides local features in the

performance of GZSL tasks.

Sixth, to investigate whether AGAN or AFGN is more facilitated by the

27



mutual training, we omit Lm1 from AGAN in one variant (AGAN w/o Lm1)

and Lm2 from AFGN in the other variant (AFGN w/o Lm2). AGAN and AFGN

are trained jointly in both variants. The results indicate that AFGN is more

facilitated than AGAN by mutual learning.

Finally, to study the impact of mutual learning in the proposed method, we

remove mutual training i.e., first, we train AGAN separately and then use the

feature embedding from AGAN to train AFGN. These two variants are denoted

by AGAN w/o m and AFGN w/o m. The degrading performance of the two

variants shows the impact of the interaction between AGAN and AFGN during

optimization.

4.4.6. Analyzing Number of Generated Features

For analyzing the effect of the number of generated features per class during

testing, we plot the graphs in Figures 8(a), 8(b) and 8(c).

The graphs (Figures 8(a) and 8(b)) show the performance comparison of

CUB and SUN datasets with respect to a various number of generated features

per class for GZSL. In general, we demonstrate that with the increasing number

of features per class, the H increases. For CUB dataset, S and T significantly

(a) CUB (b) SUN (c) ZSL

Figure 8: (a) and (b) Increasing the number of synthesized features wrt GZSL performance

in CUB and SUN datasets. (c) Increasing the number of synthesized features wrt ZSL per-

formance in CUB, SUN, and AWA1 datasets.

increase till 400, and after that the increment is marginal. For SUN dataset, S

marginally decreases after 200; however, T increases with the increasing number

of features per class. Notice that after 400, the value of H plateaus as both S
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and T depict no significant change. We demonstrate that AFGN can generalize

well to unseen target classes besides seen source classes.

For ZSL (Figure 8(c)), the performance of all the datasets significantly in-

creases with the increasing number of synthesized features per class. More

number of features per class helps the final classifier learn better and general-

ize more to unseen target classes. Similar to GZSL tasks, we observe that the

increment in performance is marginal after 400. The improved generalization

to target classes in GZSL and ZSL tasks validates that AFGN reduces source

domain bias.

Figure 9: Samples from ‘Mallard’ class of CUB dataset (first row). Visualization of the learned

attention maps (second row), where first, second, and third columns show the original images,

images after applying one-step attention (α), and two-step attention (α and α̃), respectively.

Best viewed in color.

4.4.7. Analyzing Two-level of Attentions

The first row of Figure 9 presents some examples of the class ‘Mallard’

from the CUB dataset. To study the learned attention, we visualize the learned

attention maps for an image of the class ‘Mallard’ in the second row of Figure 9.

We visualize the output of the first level of attention in the second column of

the second row, which shows that the local regions linked to the attributes are

assigned more weights than the other regions. This assists in focusing better

on the possible distinctive attributed regions. The third column of the second
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row shows the visualization of second-level attention. Compared to the output

of one-level attention, two-level attention shows more weight assignment on the

regions having intra-class common attributes to assist in better class decisions.

In particular, notice that the region shown in green circles in the third column

achieve more attention compared to that of the second column as the attributes

‘forehead color green’ and ‘breast color grey’ have a greater score of presence

in the samples of the class. On the other hand, the region shown in orange

circle in the third column receives less attention than the second column as the

attribute ‘leg color orange’ has less visibility in the samples of the class. This

visualization verifies the importance of our two-step attention mechanism to

learn better attribute-weighted features for fine-grained GZSL.

5. Conclusion

Existing EL and FS GZSL methods use either local or global details to ac-

complish fine-grained classification. However, in this paper, we argue that both

global and local details are crucial. Local features are necessary to capture fine

distinctive information related to the semantic attributes, and global features are

required to preserve generic visual feature representation structure. To utilize

local and global features in EL and FS approaches, we propose to integrate an

EL network (AGAN) and a FS network (AFGN) into a unified GZSL network.

In the proposed GZSL network, we introduce a new two-step dense attention

mechanism to discover local details linked to the attributes. The global details

are preserved region-wise. We then introduces a mutual learning optimization

between the two networks to exploit mutually beneficial information. To reduce

bias towards the source domain, we transfer learn the target classes depend-

ing on their shared information with the source classes. The integration avails

two-way testing capability. We present a thorough evaluation of the proposed

method on benchmark datasets for GZSL and ZSL tasks and demonstrate that

it outperforms contemporary works. The improved performance of the pro-

posed method evinces that both global and local information are essential for
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fine-grained classification. Although the network has many hyper-parameters,

a saddle point can be easily found with a moderate hyper-parameter tuning or

cross-validation. Once the saddle point is located, it works for a wide range of

tasks.

The proposed method opens new avenues for research, such as implement-

ing the dense attention mechanism in medical imagery for disease analysis and

anomaly detection, integrating a more sophisticated feature synthesizing net-

work instead of AFGN to investigate the change in performance. Besides, the

researchers in the community can benefit from the proposed model for producing

improved GZSL or ZSL results on their application datasets.

References

[1] Y. Xian, B. Schiele, Z. Akata, Zero-shot learning- the good, the bad and

the ugly, in: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017, pp. 4582–4591.

[2] H. Zhang, L. Liu, Y. Long, Z. Zhang, L. Shao, Deep transductive network

for generalized zero shot learning, Pattern Recognition 105 (2020) 107370.

[3] C. Geng, L. Tao, S. Chen, Guided cnn for generalized zero-shot and open-

set recognition using visual and semantic prototypes, Pattern Recognition

102 (2020) 107263.

[4] Z. Li, L. Yao, X. Chang, K. Zhan, J. Sun, H. Zhang, Zero-shot event

detection via event-adaptive concept relevance mining, Pattern Recognition

88 (2019) 595–603.

[5] M. Xing, Z. Feng, Y. Su, W. Peng, J. Zhang, Ventral & dorsal stream

theory based zero-shot action recognition, Pattern Recognition 116 (2021)

107953.

[6] G.-S. Xie, L. Liu, X. Jin, F. Zhu, Z. Zhang, J. Qin, Y. Yao, L. Shao,

Attentive region embedding network for zero-shot learning, in: Proceedings

31



of the IEEE Conference on Computer Vision and Pattern Recognition,

2019, pp. 9384–9393.

[7] Z. Han, Z. Fu, J. Yang, Learning the redundancy-free features for gen-

eralized zero-shot object recognition, in: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2020, pp. 12865–

12874.

[8] Y. Xian, S. Sharma, B. Schiele, Z. Akata, f-vaegan-d2: A feature generating

framework for any-shot learning, in: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2019, pp. 10275–10284.

[9] Z. Ji, Y. Fu, J. Guo, Y. Pang, Z. M. Zhang, et al., Stacked semantics-guided

attention model for fine-grained zero-shot learning, in: Advances in Neural

Information Processing Systems, 2018, pp. 5995–6004.

[10] Y. Zhu, J. Xie, Z. Tang, X. Peng, A. Elgammal, Semantic-guided multi-

attention localization for zero-shot learning, in: Advances in Neural Infor-

mation Processing Systems, 2019.

[11] H. Huang, C. Wang, P. S. Yu, C.-D. Wang, Generative dual adversarial

network for generalized zero-shot learning, in: Proceedings of the IEEE

conference on computer vision and pattern recognition, 2019, pp. 801–810.

[12] H. Zhang, H. Bai, Y. Long, L. Liu, L. Shao, A plug-in attribute correction

module for generalized zero-shot learning, Pattern Recognition 112 (2021)

107767.

[13] Y. Xian, Z. Akata, G. Sharma, Q. Nguyen, M. Hein, B. Schiele, Latent

embeddings for zero-shot classification, in: Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, 2016, pp. 69–77.

[14] Y. Liu, J. Guo, D. Cai, X. He, Attribute attention for semantic disambigua-

tion in zero-shot learning, in: Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2019, pp. 6698–6707.

32



[15] L. Huang, W. Wang, J. Chen, X.-Y. Wei, Attention on attention for im-

age captioning, in: Proceedings of the IEEE International Conference on

Computer Vision, 2019, pp. 4634–4643.

[16] D. Huynh, E. Elhamifar, Fine-grained generalized zero-shot learning via

dense attribute-based attention, in: Proceedings of the Conference on Com-

puter Vision and Pattern Recognition, 2020, pp. 4483–4493.

[17] W. Xu, Y. Xian, J. Wang, B. Schiele, Z. Akata, Attribute prototype net-

work for zero-shot learning, in: Advances of the Neural Information Pro-

cessing Systems, 2020.

[18] Z. Lu, Y. Yu, Z.-M. Lu, F.-L. Shen, Z. Zhang, Attentive semantic preserva-

tion network for zero-shot learning, in: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition Workshops, 2020, pp. 682–

683.

[19] Y. Xian, T. Lorenz, B. Schiele, Z. Akata, Feature generating networks for

zero-shot learning, in: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2018, pp. 5542–5551.

[20] R. Felix, I. Reid, G. Carneiro, et al., Multi-modal cycle-consistent gener-

alized zero-shot learning, in: Proceedings of the European Conference on

Computer Vision, 2018, pp. 21–37.

[21] V. Kumar Verma, G. Arora, A. Mishra, P. Rai, Generalized zero-shot learn-

ing via synthesized examples, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2018, pp. 4281–4289.

[22] J. Li, M. Jing, K. Lu, Z. Ding, L. Zhu, Z. Huang, Leveraging the invariant

side of generative zero-shot learning, in: Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2019, pp. 7402–7411.

[23] S. Liu, M. Long, J. Wang, M. I. Jordan, Generalized zero-shot learning with

deep calibration network, in: Advances in Neural Information Processing

Systems, 2018, pp. 2005–2015.

33



[24] H. Jiang, R. Wang, S. Shan, X. Chen, Transferable contrastive network for

generalized zero-shot learning, in: Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, 2019, pp. 9765–9774.

[25] J. Pennington, R. Socher, C. D. Manning, Glove: Global vectors for word

representation, in: Proceedings of the Conference on Empirical Methods in

Natural Language Processing (EMNLP), 2014, pp. 1532–1543.

[26] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,

Y. Bengio, Show, attend and tell: Neural image caption generation with

visual attention, in: International conference on machine learning, 2015,

pp. 2048–2057.

[27] A. A. Alemi, I. Fischer, J. V. Dillon, K. Murphy, Deep variational in-

formation bottleneck, in: Proceedings of the International Conference on

Learning Representations, 2017.

[28] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly

learning to align and translate, in: Proceedings of the International Con-

ference on Learning Representations, 2015.

[29] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, P. Per-

ona, Caltech-ucsd birds 200, California Institute of Technology.

[30] G. Patterson, J. Hays, Sun attribute database: Discovering, annotating,

and recognizing scene attributes, in: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2012, pp. 2751–2758.

[31] Y. Xian, C. H. Lampert, B. Schiele, Z. Akata, Zero-shot learning—a com-

prehensive evaluation of the good, the bad and the ugly, IEEE transactions

on pattern analysis and machine intelligence 41 (9) (2018) 2251–2265.

[32] C. H. Lampert, H. Nickisch, S. Harmeling, Learning to detect unseen object

classes by between-class attribute transfer, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2009, pp. 951–

958.

34



[33] H. Zheng, J. Fu, T. Mei, J. Luo, Learning multi-attention convolutional

neural network for fine-grained image recognition, in: Proceedings of the

IEEE International Conference on Computer Vision, 2017, pp. 5209–5217.

[34] F. Zhang, G. Shi, Co-representation network for generalized zero-shot learn-

ing, in: International Conference on Machine Learning, 2019, pp. 7434–

7443.

[35] S. Min, H. Yao, H. Xie, C. Wang, Z.-J. Zha, Y. Zhang, Domain-aware

visual bias eliminating for generalized zero-shot learning, in: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2020, pp. 12664–12673.

[36] Y. Yu, Z. Ji, J. Han, Z. Zhang, Episode-based prototype generating net-

work for zero-shot learning, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2020, pp. 14035–14044.

[37] M. B. Sariyildiz, R. G. Cinbis, Gradient matching generative networks for

zero-shot learning, in: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2019, pp. 2168–2178.

[38] A. Paul, N. C. Krishnan, P. Munjal, Semantically aligned bias reducing

zero shot learning, in: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2019, pp. 7056–7065.

35


	IntegratedGeneralizedCopyright
	Federation University ResearchOnline
	https://researchonline.federation.edu.au


	2101.02141
	1 Introduction
	2 Related Work
	2.1 Embedding Learning Methods
	2.2 Feature Synthesizing Methods
	2.3 Reducing Bias Towards Source Domain

	3 Proposed Method
	3.1 Proposed GZSL
	3.1.1 Attribute Guided Attention Network
	3.1.2 Adversarial Feature Generation Network

	3.2 Optimization
	3.2.1 Mutual Learning
	3.2.2 Loss Optimization in AGAN
	3.2.3 Loss Optimization in AFGN

	3.3 Training Phase
	3.4 Testing Phase.

	4 Experimental Studies
	4.1 Datasets
	4.2 Evaluation Metrics: 
	4.3 Implementation Details.
	4.4 Results and Analysis
	4.4.1 Generalized Zero-Shot Learning.
	4.4.2 Zero-Shot Learning
	4.4.3 Hyper-parameters Analysis.
	4.4.4 MI Bound Analysis
	4.4.5 Ablation Study
	4.4.6 Analyzing Number of Generated Features
	4.4.7 Analyzing Two-level of Attentions


	5 Conclusion


