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Abstract

Micro-Expression Recognition has become challenging, as it is extremely difficult to extract the subtle facial
changes of micro-expressions. Recently, several approaches proposed several expression-shared features algorithms
for micro-expression recognition. However, they do not reveal the specific discriminative characteristics, which lead
to sub-optimal performance. This paper proposes a novel Feature Refinement (FR) with expression-specific feature
learning and fusion for micro-expression recognition. It aims to obtain salient and discriminative features for spe-
cific expressions and also predict expression by fusing the expression-specific features. FR consists of an expression
proposal module with attention mechanism and a classification branch. First, an inception module is designed based
on optical flow to obtain expression-shared features. Second, in order to extract salient and discriminative features
for specific expression, expression-shared features are fed into an expression proposal module with attention factors
and proposal loss. Last, in the classification branch, labels of categories are predicted by a fusion of the expression-
specific features. Experiments on three publicly available databases validate the effectiveness of FR under different
protocol. Results on public benchmarks demonstrate that our FR provides salient and discriminative information for
micro-expression recognition. The results also show our FR achieves better or competitive performance with the
existing state-of-the-art methods on micro-expression recognition.
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1. Introduction

Micro-expression, a very brief and involuntary form
of facial expressions occurring when people want to
conceal one’s true feelings, usually lasts between 0.04s
to 0.2s [1]. Automatic micro-expression analysis in-
volves micro-expression spotting and micro-expression
recognition (MER) [2]. Micro-expression spotting aims
to automatically detect the temporal interval (from onset
to offset) of a micro-movement in a sequence of video
frames, also including the apex frame spotting, while
MER refers to the classification task of identifying the
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micro-expression involved in the well-segmented video
from onset to offset [2, 3]. Our focus in this work is
micro-expression recognition.

As an essential way of human emotional behavior un-
derstanding, MER has attracted increasing attention in
human-centered computing in the past decades. Its po-
tential applications e.g. in police case diagnosis and psy-
choanalysis [4, 1] make it a core component in the next
generation of computer system, in which a natural hu-
man machine interface enables the user to account for
subtle appearance changes of human faces, to reveal the
hidden emotions [5, 6] of humans, and to help under-
standing people’s deceitful behaviors.

Although advances have been made, due to complex
factors, e.g. the subtle changes of micro-expressions, it
is extremely difficult for MER to achieve superiority
performance. Amongst, one critical research issue is
how to extract salient and discriminative features from
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micro-expression. Currently, amount of feature descrip-
tor methods have been proposed. They are commonly
categorized into handcrafted features and deep learn-
ing features. However, these existing methods char-
acterize the discrimination of micro-expressions inef-
ficiently. On the other hand, it is time-consuming to
design handcrafted feature [7] and manually adjust the
optimal parameters [8].

To address these issues, we proposed a simple yet
efficient method, termed as Feature Refinement (FR),
is proposed to extract the expression-specific feature.
The FR consists of three feature refinement stages:
expression-shared feature learning, expression-specific
feature distilling, and expression-specific feature fusion.
In the first stage, a shallow two-stream Inception net-
work with Inception blocks is designed to capture global
and local information of optical flows for expression-
shared feature learning. In the expression-specific fea-
ture distilling stage, based on expression-shared fea-
tures, the proposal module with attention mechanism
and proposal loss is proposed to distill expression-
specific features for obtaining salient and discriminative
features. The constraint of expression-specific objective
function is designed to lead separate and different fea-
ture mapping. In the last stage, the element-wise sum
function is used to fuse the separate expression-specific
features for modeling expression-refined features under
the deep network for expression categories prediction.
The fusion of expression-specific feature can boost the
feature learning. These three stages constitute the whole
process of feature refinement. Across these three stages
of feature learning, the novel deep network obtains the
salient and discriminative representations for MER.

Overall, our contributions can be summarized as fol-
lows,

• We propose a deep learning based three-level fea-
ture refinement architecture for MER. This ar-
chitecture can effectively and automatically learn
the salient and discriminative feature for micro-
expression recognition by distilling expression-
specific features and fusing these features to final
expression-refined features for expression classifi-
cation.

• We propose a constructive but straightforward at-
tention strategy and a simple proposal loss in ex-
pression proposal module for expression-specific
feature learning. Specifically, attention factors can
capture the characteristics from the subtle changes
of micro-expressions. On the other hand, penaliza-
tion of the proposal loss can optimize the discrim-
ination of features.

• We extensively validate our FR on three bench-
marks of MER. The experiment results sufficiently
demonstrate the efficiency of expression-specific
feature learning for micro-expression recognition,
and provided the latest results for micro-expression
recognition across three commonly available ex-
perimental protocols.

The rest of the paper is organized as follows. Sec-
tion II introduces the related works. Section III presents
our Inception-based feature learning algorithm in detail.
Section IV reports our experimental analysis. Section V
discusses conclusions and future research directions.

2. Related Work

2.1. Handcrafted features
The success of existing traditional approaches in

MER is attributed in good part to the quality of the
handcrafted visual features representation. Normally,
handcrafted features are fed into a supervised classi-
fier e.g. Support Vector Machines [9] to train a recog-
nizer for the target expressions. The features are gener-
ally categorized into appearance-based and geometric-
based features.

2.1.1. Appearance-based features
Local Binary Pattern from Three Orthogonal Planes

(LBP-TOP) [10] is the most widely used appearance-
based feature for micro-expression recognition. It com-
bines the temporal features along with the spatial fea-
tures from three orthogonal planes of the image se-
quence. As one of the earlier works in MER, LBP-
TOP has been widely used in micro-expression analysis.
Due to its low computational complexity, many LBP-
TOP variants has been proposed, e.g. LBP from three
Mean Orthogonal Planes (LBP-MOP) [11], Spatiotem-
poral Completed Local Quantized Patterns (STCLQP)
[12], and hierarchical spatiotemporal descriptors [13].
Wang et al. [14] proposed a spatiotemporal descrip-
tor utilizing six intersection points namely LBP with
Six Intersection Points (LBP-SIP) to suppress redun-
dant information in LBP-TOP and preserve more effi-
cient computational complexity. Wang et al. [15, 16]
explored the influence of the color space for features
extraction and extracted Tensor features from Tensor
Independent Color Space (TICS), validating that color
information can improve the recognition effect of LBP-
TOP. Huang et al. [17] proposed Spatiotemporal LBP
with integral projection (STLBP-IP), which used fa-
cial shape information to improve recognition perfor-
mance. Huang et al. [18] further proposed discrimi-
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native spatiotemporal LBP with revisited integral pro-
jection (DiSTLBP-RIP) to reveal the discriminative in-
formation. Besides the LBP family, 3D Histograms
of Oriented Gradients (3DHOG) [19, 20] was another
appearance-based feature counting occurrences of gra-
dient orientation in localized portions of the image se-
quence.

2.1.2. Geometric-based features
Geometric-based features aim to represent micro-

expression samples by the aspect of face geome-
try, e.g. shapes and location of facial landmarks. They
can be categorized into optical flow based and texture
variations based features. To estimate the apparent mo-
tion of objects, the optical flow method was mostly in-
troduced to extract motion features in MER. To sup-
press facial identity appearance information on micro-
expression, Lu et al. [8] proposed Delaunay-based Tem-
poral Coding Model (DTCM), which encoded the lo-
cal temporal variation in each sub-region by Delaunay
triangulation and standard deviation analysis. Liu et
al. [21] proposed the Main Directional Mean Optical
Flow (MDMO) to reduce the feature dimension by us-
ing optical flow in the main direction. The MDMO was
least affected by the varied number of frames in the im-
age sequence. Xu et al. [7] designed Facial Dynam-
ics Map (FDM) to suppress abnormal optical flow vec-
tors which resulted from noise or illumination changes.
Liong et al. [22] proposed Bi-Weighted Oriented Op-
tical Flow (Bi-WOOF), which applied two schemes to
weight the HOOF [23] descriptor locally and globally.
The Bi-WOOF can obtain promising performance using
only the onset and apex frame, increasing its effective-
ness by a large margin.

Overall, handcrafted feature extraction approach
mostly relies on the manually designed extractor, which
needs professional knowledge and complex parameter
adjustment process. Meanwhile, each method suffers
from poor generalization ability and robustness. Fur-
thermore, due to the limited representation ability, en-
gineered features may hardly handle the challenge of
nonlinear feature warping caused by complicated situa-
tions, e.g. under different environments.

2.2. Deep learning features
Recently, deep learning has been considered as an

efficient way to learn feature representations. Accord-
ing to the different evaluation mechanisms, the exist-
ing methods were evaluated on the sole database, on
Composite Database Evaluation protocol, and on Cross-
database Micro-expression Recognition protocol, re-
spectively.

2.2.1. Features evaluated on the single database
Evaluation on the single database means the training

and testing samples are from the same micro-expression
database. Leave-One-Subject-Out (LOSO), Leave-One-
Video-Out (LOVO) or K-Fold rule is commonly used
to evaluate deep learning model. For example, Kim et
al. [24] proposed a feature representation for the spa-
tial information at different temporal states, which was
based on the Long Short-Term Memory (LSTM) [25]
recurrent neural network and only evaluated on a sin-
gle dataset of CASME II [26]. Peng et al. [27] pro-
posed Dual Temporal Scale Convolutional Neural Net-
work (DTSCNN), which was evaluated on CASME [28]
and CASME II databases. The DTSCNN was the first
work in MER that utilized shallow two-stream neural
network with inputs of optical-flow sequences. Nag et
al. [29] proposed an unified architecture for micro-
expression spotting and recognition, in which spatial
and temporal network extracts time-contrasted features
from the feature maps to contrast out subtle motions
of micro-expressions. Wang et al. proposed transfer-
ring Long-term Convolutional Neural Network (TL-
CNN) [30] which utilized transfer learning from macro-
expression to micro-expression database for MER. So
far, there were many other deep learning features eval-
uated on the single database, e.g. Spatiotemporal Re-
current Convolutional Networks (STRCN) [31], Three-
stream 3D flow convolutional neural network [32], Lat-
eral Accretive Hybrid Network (LEARNet) [33], and
3D-Convolutional Neural Network method [34].

2.2.2. Features evaluated on Composite Database
Evaluation protocol

The Composite Database Evaluation (CDE) protocol
[35] means all the micro-expression databases are com-
posited into one database and LOSO validation rule is
used to evaluate the algorithm. As a deep learning work
based on CDE protocol, Optical Flow Feature from
Apex frame Network (OFF-ApexNet) [36] extracted op-
tical flow features from the onset and apex frames of
each video, then learned features representation by feed-
ing horizontal and vertical components of optical flows
into a two-stream CNN network. Since the CNN net-
work was shallow, it reduced the over-fitting caused by
the scarcity of data in the micro-expression databases.

Very recently, more deep learning features were pro-
posed [37, 38, 39, 40] in MEGC 2019 [35]. More
specifically, Expression Magnification and Reduction
(EMR) with adversarial training [39] was a part-based
deep neural network approach with adversarial train-
ing and expression magnification. With the special data
augmentation strategy of expression magnification and
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reduction, EMR won the first place in MEGC 2019.
Shallow Triple Stream Three-dimensional CNN (STST-
Net) [37] is an extended version of OFF-ApexNet. Be-
sides the horizontal and vertical components of opti-
cal flows, STSTNet extracted the handcrafted feature
named optical strain to learn more efficient features.
By concentrating the three optical features to a sin-
gle 3D image and then feeding the concentrated im-
ages to a shallow three-dimensional CNN, STSTNet
achieved state-of-the-art performance on CDE protocol
among the methods without data augmentation. Dual-
Inception [38] was achieved by feeding the optical
flow features extracted from the onset and mid-position
frames into a designed two-stream Inception network.
With data augmentation methods, Quang et al. [40] ap-
plied Capsule Networks (CapsuleNet) based on the apex
frames to MER .

2.2.3. Features evaluated on Cross-database Micro-
expression Recognition protocol

Cross-database Micro-expression Recognition (CD-
MER) protocol means the samples of training and test-
ing are selected from two different micro-expression
databases [41, 42, 43]. Based on the emotion classi-
fication, Zong et al. proposed domain generators ap-
proach for cross-database micro-expression recogni-
tion [44]. Holdout-database Evaluation (HDE) proto-
col [42], which is considered as a specific type of CD-
MER, was advocated in MEGC 2018 [42]. This proto-
col aims to tackle the recognition of micro-expressions
based on AU-centric objective classes rather than emo-
tion classes. The two earliest works that introduced
Deep Neural Network (DNN) on the HDE protocol
were proposed by Peng et al. [45] and Khor et al. [46].
Specifically, Peng et al. used Resnet10 as a back-
bone and introduced transfer learning from macro-
expression databases to learn micro-expression fea-
tures [45]. Khor et al. adopted Enriched Long-term
Recurrent Convolutional Network (ELRCN) to improve
the recognition performance [46], which contained the
channel-wise for spatial enrichment and the feature-
wise for temporal enrichment predicted the micro-
expression by passing the feature vector through LSTM.

Although the aforementioned works have studied the
problem of feature learning for MER, they primarily fo-
cused on learning expression-shared features from the
input, ignoring resolving how to obtain salient and dis-
criminative features. Due to the low intensity of micro-
expression, generic feature learning lacks of revealing
the intrinsic different characteristic of different micro-
expressions. Expression-shared feature learning aims to
learn identical feature space in the process of classifica-

tion [47]. However, in [47], the identical features for all
categories may hardly lead to optimized performance.
To solve these issues of expression-shared feature learn-
ing, this paper leverages expression-specific discrimi-
nant mapping features for MER. Specifically, a straight-
forward feature refinement framework is proposed to
learn salient and discriminative features for micro-
expression recognition, which combines expression-
specific features from expression-shared features by an
expression proposal module with the attention mecha-
nism.

3. Proposed Method

Fig. 1 describes our proposed FR architecture. It
leverages two-stream Inception network as a back-
bone for expression-shared feature learning, an expres-
sion proposal module with attention mechanism for
expression-specific feature learning, and a classification
module for label prediction by fused expression-refined
features.

3.1. Expression-shared feature learning
As shown in Fig. 1, the expression-shared feature

learning module consists of three critical components:
apex frame chosen, optical flow extraction and two-
stream Inception network.

Note that, as SMIC database [48] doesn’t supply the
human-annotated apex frame, the apex frame spotting
becomes very necessary. Several apex frame spotting
algorithms have been proposed in recent years [49, 3,
50, 51, 52, 38]. For example, the mid-position frame
is straightforwardly chosen as the apex frame [52, 38].
Moreover, Liu et al. [39] used motion difference to lo-
cate the apex frame. Quang et al. [40] divided the face
image into ten regions, and then computed the absolute
pixel differences to find the apex frame. Considering a
trade-off between efficiency and effectiveness, the inter-
frame difference method (interframe-Diff) is presented
to locate apex frame on SMIC database. The interframe-
Diff defines the index of apex frames tapex as follows:

tapex = arg max mean(I(x, y, t) − I(x, y, 0)), (1)

where I(x, y, t) denotes the t-th frame of each sample,
mean() computes the mean absolute value of the pixel
value difference between the onset and the t-th frames
at (x, y).

As a motion information feature, the optical flow is
extensively used by [37, 36, 53] for micro-expression
recognition. More specifically, the optical flow of each
sample is extracted from the onset and apex frames,
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Fig. 1: The architecture of the proposed FR for MER. The “Databases” module shows data from different micro-expression databases. The module
“expression-shared feature learning” in the approach contains apex frame chosen, optical flow extraction and expression-shared feature learning
in basic Inception network. The module “expression-specific feature learning” shows the expression-specific feature learning by using separate
attention factors in the proposal module. The module “feature fusion for classification” illustrates that the expression-specific features are fused by
element-wise sum function, and fused features are used to predict labels of categories.

where onset and apex frames mean the frames with
neutral-expression and the highest expression intensity,
respectively. For FR, TV-L1 optical flow method [54]
is utilized to obtain motion feature from the onset and
apex frames of each micro-expression video. As shown
in Fig. 1, for preserving more motion information, two
optical flow components are extracted to represent the
facial change along horizontal and vertical directions.

Furthermore, Considering horizontal and vertical
components of optical flow, FR designs two-stream In-
ception network based on the Inception V1 block [55],
which complements with two-layer depths. Specifically,
inception block is designed to capture both the global
and local information of the optical component for fea-
ture learning. Distinguishing from traditional convolu-
tion with a fixed size of filters, Inception blocks paral-
lelize filters of multiple sizes at the same level. Addi-
tionally, motivated by LeNet [56], the number of filters
in the first and second layers is set at 6 and 16, respec-
tively. Finally, the flattened two sets of feature maps are
concentrated into an expression-shared feature.

3.2. Expression-specific feature learning

As illustrated in Fig. 1, based on the expression-
shared feature, expression proposal module with the at-
tention mechanism and proposal loss is introduced to
learn the expression-specific features. Given a micro-

Fig. 2: Attention unit in the proposal module for expression-specific
feature learning.
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expression sample x and an expression-shared feature
z, a proposal module with K sub-branches is designed,
where each of sub-branch learns a set of specific-feature
for each micro-expression category (total K categories).
The proposal module becomes the core component of
FR to obtain salient and discriminative features. The
S o f tmax attention and proposal loss are described as
follows.

Softmax attention: Attention mechanism provides
the flexibility to our model to learn K expression-
specific features from the same set of expression-shared
feature. K attention units are shown in the part (2) of
Fig. 1, and the detail of each attention unit is depicted
in Fig. 2. Specifically, the expression-shared feature z is
connected with K fully connected layers separately. Af-
ter activated by S o f tmax, we gain the attention weight
of z for each specific expression,

ak = so f tmaxk(z), (2)

where ak is a vector that has the same dimension as z,
and k ≤ K. Then, the representation z∗k for each specific
expression is given by:

z∗k = ak ∗ z. (3)

Proposal loss: Besides the inducing of attention
strategy, expression-specific feature learning is also
constrained with a prososal loss which is averaged
from K expression-specific detection losses in the
proposal module. Each expression-specific detector
(‘Detector k’ in Fig. 1) is aligned with a feature vec-
tor z∗k, which contains two fully connected layers with
a S igmoid layer as the output. Thus, each sub-proposal
branch is trained by optimizing the following detection
loss,

L
(k)
detc(θ; yp) = −

N∑
i=1

[yk(i)
p log(p(yk(i)

p ))+(1−yk(i)
p ) log(1−p(yk(i)

p ))], (4)

where yk(i)
p and p(yp

k(i)) denote the ground truth (either
1 or 0) and the probability of the i-th sample as the k-th
category expression, respectively. N is the total number
of training samples. L(k)

detc allows the network to gen-
erate expression-specific features for every expression.
Based on the loss occurring in each sub-proposals, the
loss of the proposal module consisted of K sub-branches
is defined as the average of K detection losses:

Lprop(θ; yp) =
1
K

K∑
k=1

L
(k)
detc. (5)

By the restraint of the proposal loss of Lprop and
the attention mechanism, the proposal module obtains
salient and discriminative expression-specific feature
for micro-expression recognition.

3.3. Fused expression-refined features for classification
Generally, a simple way is to concatenate the

expression-specific features into one feature vector,
which is directly fed into Fully Connected Layers.
However, this method will cause the high dimension
and contain more trainable parameters. Motivated by
the feature fusion method in [57], this work utilizes a
simple but efficient method, namely, the element-wise
sum as a fusion function. The efficiency evaluation
about element-wise sum for fusion can be referred to
Section 4.3. Consequently, the aggregated feature rep-
resentation z′ is defined as follows:

z′ =

K∑
k=1

z∗k. (6)

Then, the expression-refined feature z′ is fed into the
final classification module which consists of two fully
connected layers. To avoid over-fitting, the first fully
connected layer was followed by a Dropout layer (with
dropout probability being 0.5). Lastly, the output of the
last fully connected layer Fi is activated by a so f tmax
unit. Hence, the classification loss Lcls is expressed as:

Lcls(φ; yc) = −

N∑
i=1

[yi
c log(

exp(Fi)∑
i exp(Fi)

)], (7)

where yi
c is the class label for the i-th training instance.

By joining the proposal loss of Lprop in Eq. (5) and
classification loss of Lcls in Eq. (7), a novel FR loss is
proposed as follows:

L(θ, φ; yp, yc) = λLprop(θ; yp) +Lcls(φ; yc), (8)

where the hyper-parameter λ balances the contribution
of expression proposal and category classification.

4. Experiments

4.1. Datasets
Experiments are conducted on three commonly used

spontaneous micro-expression databases: SMIC [48],
CASME II [26], and SAMM [58].

SMIC [48]: The SMIC database contains SMIC-HS
(recorded by a high-speed camera of 100 fps), SMIC-
VIS (by a normal visual camera of 25 fps), and SMIC-
NIR (by a near-infrared camera). SMIC-HS has 164
micro-expression clips from 16 subjects, while SMIC-
VIS/SMIC-NIR consists of 71 samples from 8 par-
ticipants. Additionally, these samples in three sub-
databases are annotated as Negative, Positive, and Sur-
prise. The sample resolution is 640× 480 pixels and the
facial area is around 190 × 230 pixels.
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CASME II [26] : The CASME II contains two ver-
sions: the first one includes 247 samples of 5 micro-
expression classes (Happiness, Surprise, Disgust, Re-
pression, and Others), and the second has 256 samples
of 7 classes (Happiness, Surprise, Disgust, Sadness,
Fear, Repression, and Others). All the samples are gath-
ered from 26 subjects. It was recorded by a camera with
200 fps. The resolution of the samples are 640×480 pix-
els and the resolution of facial area is around 280 × 340
pixels.

SAMM [58]: The SAMM database contains 159
micro-expression instances from 32 participants at 200
fps. The resolution of the samples are 2040×1088 pixels
and the resolution of facial area is around 400×400 pix-
els. Samples in SAMM are categorized into Happiness,
Surprise, Disgust, Repression, Angry, Fear, Contempt,
and Others.

4.2. Experiment settings

Since the apex frame annotation in SMIC database
is not available, interframe-Diff method as described
in Section III is applied to spot the apex frame. For
the CASME II and SAMM databases, the ground truth
of the apex frames is directly used. The Libfacedetec-
tion [59] is utilized to crop the facial area out of onset
and apex frames. TV-L1 optical flow is extracted from
the onset and apex frames. Two components of optical
flow images are resized to 28 × 28 pixels before feed-
ing to the Inception network. All the experiments are
conducted with Ubuntu 16.04, Python 3.6.2 with Keras
2.2.4 and Tensorflow 1.11.0 on 1 NVIDIA GTX Titan
X GPU (12 GB).

Setup: To evaluate the effect of each module of
FR, an ablation study is first designed to investigate
the backbone selection, strategy selection, and fusion
module selection. Second, three groups of experiments,
namely, CDE experiment, CDMER experiment, and the
single database experiment, are designed to validate the
effectiveness of the proposed method. For fair compari-
son, all the experiments on CDE and the single database
evaluation are conducted with Leave-One-Subject-Out
(LOSO) cross-validation, where samples from one sub-
ject are held out as the testing set while all remaining
samples for training. For CDMER, the model is trained
on the source dataset and tested on the target dataset.

The detail settings for model ablation experiment,
CDE experiment, CDMER experiment, and the sin-
gle database experiment can be referred to Section 6.

Performance metric: Here, this work applies differ-
ent performance metric for the three groups.

• For CDE protocol, according to the MEGC 2019,
Unweighted F1-score (UF1) and Unweighted Av-
erage Recall (UAR) are used to measure the per-
formance of various methods on composite and in-
dividual databases.

• For CDMER protocol, according to [41], Accuracy
(Acc) and UF1 are reported for evaluating the per-
formance.

• For the evaluation on the single database, Acc is
used.

All results of each type of experiments are the aver-
age of at least ten rounds. The evaluation metrics can
be also referred to Section 6.

4.3. Model ablation
The ablation study is performed on the composite

database of CDE protocol. Table 1 reports the results
in terms of UAR and UF1 on different models.

(1) Backbone selection for the expression-shared
feature learning

To better capture the subtle motion of micro-
expression for our proposed model, we make a back-
bone selection for the expression-shared feature learn-
ing.

a. Dual-Inception [38]: The model straightfor-
wardly uses the mid-position frame of each sample as
the apex frame for MER.

b. Basic Inception: Different from [38], Basic In-
ception uses interframe difference algorithm described
in Section III to approximately locate the apex frames
for SMIC-HS database, and uses ground truth of apex
frames in CASME II and SAMM.

Table 1(a) compares basic Inception to Dual-
Inception on the composite database. Basic Inception
outperforms Dual-Inception in terms of UAR and UF1.
Thus, the Basic Inception is chosen as the backbone of
our framework to learn the expression-shared feature.

(2) Strategy selection for the expression-specific
feature learning

In the proposal module, two followed strategies are
presented to learn expression-specific features:

a. FR-fc: FR-fc only uses fully-connected layers in
the proposal module for the expression-specific feature
learning, and then uses the element-wise sum mode to
aggregate expression-specific features of each expres-
sion category for classification.

b. FR: FR differs from FR-fc using attention strategy
to learn expression-specific features.

From Table 1(b), FR with attention mechanism
boosts the performance from 0.7377 to 0.7838 in terms

7



Table 1: Ablation models. The best result is in bold.

(a) Backbone selection for the expression-
shared feature learning.

Model UF1 UAR
Dual-Inception [38] 0.7322 0.7278

Basic Inception 0.7360 0.7391

(b) Strategy selection for the
expression-specific feature
learning.

Model UF1 UAR
FR-fc 0.7377 0.7443

FR 0.7838 0.7832

(c) Fusion mode selection to obtain the
expression-refined feature.

Model UF1 UAR
FR-concatenated 0.7632 0.7727

FR 0.7838 0.7832

Table 2: Performance comparison among the handcrafted feature methods, classical CNN methods, state of the art and our proposed methods on
the composite database and the individual databases on CDE protocol. In the CDE protocol, except samples of SMIC-HS, samples in CASME II
and SAMM are regrouped into three classes, i.e. Negative, Positive, and Surprise. Then, regrouped samples of three databases are combined into
one dataset and using LOSO validation methods to evaluate the performance. The best results are in bold.

Groups Approaches Composite SMIC-HS CASME II SAMM
UF1 UAR UF1 UAR UF1 UAR UF1 UAR

Handcrafted features LBP-TOP [10] 0.5882 0.5785 0.2000 0.5280 0.7026 0.7429 0.3954 0.4102
Bi-WOOF [22] 0.6296 0.6227 0.5727 0.5829 0.7805 0.8026 0.5211 0.5139

Deep learning features

AlexNet [60] 0.6933 0.7154 0.6201 0.6373 0.7994 0.8312 0.6104 0.6642
GoogLeNet [55] 0.5573 0.6049 0.5123 0.5511 0.5989 0.6414 0.5124 0.5992
VGG16 [61] 0.6425 0.6516 0.5800 0.5964 0.8166 0.8202 0.4870 0.4793
CapsuleNet [40] 0.6520 0.6506 0.5820 0.5877 0.7068 0.7018 0.6209 0.5989
OFF-ApexNet [36] 0.7196 0.7096 0.6817 0.6695 0.8764 0.8681 0.5409 0.5392
Dual-Inception [38] 0.7322 0.7278 0.6645 0.6726 0.8621 0.8560 0.5868 0.5663
STSTNet [37] 0.7353 0.7605 0.6801 0.7013 0.8382 0.8686 0.6588 0.6810
EMR [39] 0.7885 0.7824 0.7461 0.7530 0.8293 0.8209 0.7754 0.7152
FR (Ours) 0.7838 0.7832 0.7011 0.7083 0.8915 0.8873 0.7372 0.7155

of UF1, from 0.7443 to 0.7832 in terms of UAR. This
suggests that attention factors in the proposal module
have the capability to highlight specific characteristics
and generate salient features.

(3) Fusion mode selection to obtain the expression-
refined feature

To validate the fusion mode for fusing the expression-
specific features, this part compares element-wise sum
mode used in this paper to concatenated mode.

a. FR-concatenated: FR-concatenated model di-
rectly concatenates the expression-specific features.

b. FR: FR model uses element-wise sum mode to
obtain expression-refined features.

According to Table 1(c), FR outperforms the FR-
concatenated. It may attribute to that element-wise sum
mode alleviates the over-fitting problem as element-
wise sum model more suppress the dimension of
expression-refined feature than concatenated method.
Consequently, the element-wise sum mode is chosen for
expression-specific features fusion to obtain expression-
refined features.

4.4. Performance evaluation on CDE protocol

Table 2 compares our method to several state-of-the-
art methods on CDE protocol. These methods con-

tain two handcrafted features (LBP-TOP [10] and Bi-
WOOF [22]), six deep learning features without data
augmentation technology (AlexNet [60], GoogLeNet
[55], VGG16 [61], OFF-ApexNet [36], Dual-Inception
[38], and STSTNet [37]), and two deep learning features
with data augmentation (CapsuleNet [40] and EMR
[39]). Specifically, AlexNet, GoogLeNet, and VGG16
were reproduced by Liong et al. [37] instead by the in-
puts of optical flow features.

4.4.1. Comparison with handcrafted features

When comparing to LBP-TOP, our proposed FR im-
proves the baseline consistently with gains of 19.56%,
50.11%, 18.89%, and 34.18% in terms of UF1 for com-
posite, SMIC-HS, CASME II, and SAMM databases,
respectively. It increases the performance of the base-
line by 20.47%, 18.03%, 14.44%, and 30.53% in terms
of UAR for composite, SMIC-HS, CASME II, and
SAMM databases, respectively. FR consistently im-
proves the Bi-WOOF by a large margin. It indirectly
suggests that FR learns discriminative and meaningful
features on micro-expression database, which is better
than the traditional handcrafed features.
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4.4.2. Comparison with deep learning features
Table 2 indicates that our proposed FR outperforms

most state-of-the-art algorithms on all the databases. It
is explained by that the scarcity of data causes the exist-
ing deep-depth networks the over-fitting. The promising
results further suggest that the shallow neural networks
with fewer parameters alleviate the over-fitting problem
in MER.

• FR achieves better performance than OFF-
ApexNet, CapsuleNet, Dual-Inception, and STST-
Net. The similarity between FR and these three
models is that they all learn features by feeding
the extracted optical flows into designed shallow
networks. But the major difference is that our
proposed FR distills more meaningful characteris-
tic from the expression-shared features for MER
by expression-specific feature learning and fusion,
while they focus on the expression-shared feature
learning.

• As we know, STSTNet is an extension of OFF-
ApexNet, which learns deep learning features for
MER with three pre-extracted optical flows. The
considerable result of STSTNet indirectly suggests
that the more pre-processing features input, the
better performance the method obtains. Although
our proposed FR and STSTNet belongs to multi-
stream feature learning approach, with expression-
specific feature learning and fusion, FR gains im-
provements of 5.03% and 2.07% in terms of av-
erage UF1 and UAR across four databases, respec-
tively, though the performance of STSTNet are rel-
atively high. The improvement indicates that ex-
ploring features with more salient and discrimina-
tive characteristic based on fewer pre-processing is
a more promising approach.

• EMR used Eulerian Video Magnification (EVM)
for magnifying micro-expression, in which EVM
has been shown its effectiveness to micro-
expression recognition [62]. Comparing with
EMR, FR slightly degrades the performance by
0.64% in terms of average UF1 across four
databases, while increases the performance by
0.58% in terms of average UAR across four
databases. Thus, FR still obtains a competitive per-
formance to EMR. On the other hand, FR is built
on more simple pre-process e.g. facial cropped
and apex frame chosen than EMR e.g. macro-
expression samples relabeling to three categories
and micro-expressions magnification.

4.5. Performance evaluation on CDMER benchmark
In this experiment, the proposed FR is further evalu-

ated by using CDMER protocol [41]. CDMER proto-
col contains 12 sub-experiments from the TYPE-I and
TYPE-II tasks. The detail setting of CDMER is referred
to Section 6 and Table 10. Table 3 and Table 4 compare
FR to the state-of-the-art algorithms referred by [43].
Their parameter settings are described as follows:

• For LBP-TOP [10], the uniform pattern is used.
For the neighboring radius R and the number of the
neighboring points P, experiments consider three
cases: R = 1, P = 4 (R1P4), R = 1, P = 8 (R1P8),
R = 3, P = 4 (R3P4), and R = 3, P = 8 (R3P8).

• For LBP-SIP [14], the neighboring radius R is set
at 1 and 3, respectively.

• For LPQ-TOP [63], the size of the local window in
each dimension is set as [5, 5, 5], and the factor for
correlation model decorr is set as [0.1, 0.1] and [0,
0], respectively.

• The number of bins p is set as 4 and 8 for HOG-
TOP and HIGH-TOP [62], respectively.

• For three dimensional convolutional neural net-
work (C3D) [64], the micro-expression features
are extracted from the last two fully connected
layers from the pre-trained Sport-1M [65] and
UCF101 [66] model.

4.5.1. Comparison with handcrafted features
As seen from Table 3 and Table 4, our proposed FR

outperforms all handcrafted features in terms of both
unweighted F1-score and accuracy. Additionally, two
important observations are concluded as follows:

• The performance of handcrafted features fluctuates
greatly with the adjustment of parameters. For ex-
ample, in Table 3, as the results of LBP-TOP in
Exp.1 of Type-I task showed, it gains considerable
performance (0.8561 / 0.8592) under R1P8, but
worse result (0.4656 / 0.4930) under R3P4. The
same to LBP-SIP in Exp.9 of Table 4.

• Varied parameters lead to perform unsteadily for
Engineered features on all tasks. Instead, our pro-
posed FR achieves the stable performance. For
example, although LPQ-TOP(decorr=0.1) obtains
better results (with UF1 being 0.9455, with Acc be-
ing 0.9437) than our proposed FR (with UF1 being
0.7065, with Acc being 0.7149) in Exp.1 of TYPE-
I task, but dramatically degrades performance in
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Table 3: Experimental results (UF1 / Acc) of different micro-expression features for Type-I of CDMER tasks. The results of feature descriptors in
the benchmark are directly extracted from [43]. The best results in each experiment are in bold.

Groups Feature Descriptors Exp.1: H→V Exp.2: V→H Exp.3: H→N Exp.4: N→H Exp.5: V→N Exp.6: N→V Average

Handcrafted features

LBP-TOP(R3P8) [10] 0.8002/0.8028 0.5421/0.5427 0.5455/0.5352 0.4878/0.5488 0.6186/ 0.6338 0.6078/0.6338 0.6003/0.6162
LBP-TOP(R1P4) [10] 0.7185/0.7183 0.3366/0.4024 0.4969/0.4930 0.3457/0.4024 0.5480/0.5775 0.5085/0.5915 0.4924/0.5332
LBP-TOP(R1P8) [10] 0.8561/0.8592 0.5329/0.5366 0.5164/0.5775 0.3246/0.3537 0.5124/0.5775 0.4481/0.5070 0.5318/0.5686
LBP-TOP(R3P4) [10] 0.4656/0.4930 0.4122/0.4512 0.3682/0.4085 0.3396/0.4085 0.5069/0.5915 0.5144/0.6056 0.4345/0.4931
LBP-SIP(R1) [14] 0.6290/0.6338 0.3447/0.4085 0.3249/0.3380 0.3490/0.4207 0.5477/0.6056 0.5509/0.6056 0.4577/0.5020
LBP-SIP(R3) [14] 0.8574/0.8592 0.4886/0.5000 0.4977/0.5493 0.4038/0.4268 0.5444/0.5915 0.3994/0.4648 0.5319/0.5653
LPQ-TOP(decorr=0.1) [63] 0.9455/0.9437 0.5523/0.5488 0.5456/0.6197 0.4729/0.4756 0.5416/0.5775 0.6365/0.6620 0.6157/0.6379
LPQ-TOP(decorr=0) [63] 0.7711/0.7746 0.4726/0.4878 0.6771/0.6761 0.4701/0.4817 0.7076/0.7183 0.6963/0.7042 0.6325/0.6405
HOG-TOP(p=4) [62] 0.7068/0.7183 0.5649/0.5732 0.6977/0.7042 0.2830/0.2927 0.4569/0.4930 0.3218/0.3662 0.4554/0.4847
HOG-TOP(p=8) [62] 0.7364/0.7465 0.5526/0.5610 0.3990/0.4648 0.2941/0.3232 0.4137/0.4648 0.3245/0.3803 0.4453/0.4901
HIGO-TOP(p=4) [62] 0.7933/0.8028 0.4775/0.5061 0.4023/0.4789 0.3445/0.3598 0.5000/0.5352 0.3747/0.4085 0.4821/0.5152
HIGO-TOP(p=8) [62] 0.8445/0.8451 0.5186/0.5366 0.4793/0.5493 0.4322/0.4390 0.5054/0.5493 0.4056/0.4648 0.5309/0.5640

Deep learning features

C3D-FC1 (Sports1M) [64] 0.1577/0.3099 0.2188/0.2378 0.1667/0.3099 0.3119/ 0.3415 0.3802/0.4930 0.3032/0.3662 0.2564/0.3431
C3D-FC2 (Sports1M) [64] 0.2555/0.3662 0.2974/0.2927 0.2804/0.3380 0.3239/0.3659 0.4518/0.4789 0.3620/0.3803 0.3285/0.3703
C3D-FC1 (UCF101) [64] 0.3803/0.4648 0.3134/0.3476 0.3697/0.4789 0.3440/0.3476 0.3916/0.4789 0.2433/0.2958 0.3404/0.4023
C3D-FC2 (UCF101) [64] 0.4162/0.4648 0.2842/0.3232 0.3053/0.4225 0.2531/0.2805 0.3937/0.4789 0.2489/0.3239 0.3169/0.3823
FR (Ours) 0.7065/0.7149 0.5971/0.5968 0.5335/0.5673 0.5137/0.5200 0.7934/0.7910 0.7921/0.7921 0.6561/0.6636

Table 4: Experimental results (UF1 / Acc) of different micro-expression features for Type-II of CDMER tasks. Those results of feature descriptors
in the benchmark are directly cited from [43]. The best results in each experiment are in bold.

Groups Feature Descriptors Exp.7: C→ H Exp.8: H→C Exp.9: C→V Exp.10: V→C Exp.11: C→N Exp.12: N→C Average

Handcrafted features

LBP-TOP(R3P8) [10] 0.3697/0.4512 0.3245/0.4846 0.4701/0.5070 0.5367/0.5308 0.5295/0.5211 0.2368/0.2385 0.4112/0.4555
LBP-TOP(R1P4) [10] 0.3358/0.4451 0.3260/0.4769 0.2111/0.3521 0.1902/0.2692 0.3810/0.4366 0.2492/0.2692 0.2823/0.3749
LBP-TOP(R1P8) [10] 0.3680/0.4390 0.3339/0.5462 0.4624/0.4930 0.5880/0.5769 0.3000/0.3380 0.1927/0.2308 0.3742/0.4373
LBP-TOP(R3P4) [10] 0.3117/0.4390 0.3436/0.4462 0.2723/0.3944 0.2356/0.2846 0.3818/0.4.30 0.2332/0.2538 0.2964/0.3852
LBP-SIP(R1) [14] 0.3580/0.4512 0.3039/0.4462 0.2537/0.3803 0.1991/0.2692 0.3610/0.4648 0.2194/0.2692 0.2825/0.3802
LBP-SIP(R3) [14] 0.3772/0.4268 0.3742/0.5615 0.5846/0.5915 0.6065/0.6000 0.3469/0.3521 0.2790/0.2769 0.4279/0.4681
LPQ-TOP(decorr=0.1) [63] 0.3060/0.4207 0.3852/0.4846 0.2525/0.3380 0.4866/0.4769 0.3020/0.3521 0.2094/0.2385 0.3236/0.3851
LPQ-TOP(decorr=0) [63] 0.2368/0.4390 0.2890/0.5154 0.2531/0.3803 0.3947/0.4077 0.2369/0.3521 0.4008/0.4154 0.3019/0.4183
HOG-TOP(p=4) [62] 0.3156/0.3476 0.3502/0.4769 0.3266/0.3521 0.4658/0.4692 0.3219/0.3521 0.2163/0.2746 0.3327/0.3791
HOG-TOP(p=8) [62] 0.3992/0.4390 0.4154/0.5231 0.4403/0.4507 0.4678/0.4769 0.4107/0.4085 0.1390/0.2077 0.3787/0.4177
HIGO-TOP(p=4) [62] 0.2945/0.3963 0.3420/0.5385 0.3236/0.4085 0.5590/0.5538 0.2887/0.2958 0.2668/0.3154 0.3458/0.4181
HIGO-TOP(p=8) [62] 0.2978/0.4146 0.3609/0.5000 0.3679/0.4366 0.5699/0.5462 0.3395/0.3380 0.1743/0.2231 0.3517/0.4098

Deep learning features

C3D-FC1 (Sports1M) [64] 0.1994/0.4268 0.2394/0.5615 0.1631/0.3239 0.1075/0.1923 0.1631/0.3239 0.2397/0.5615 0.1854/0.3983
C3D-FC2 (Sports1M) [64] 0.1994/0.4268 0.1317/0.2462 0.1631/0.3239 0.1075/0.1923 0.1631/0.3239 0.2397/0.5615 0.1674/0.3458
C3D-FC1 (UCF101) [64] 0.1581/0.3110 0.1075/0.1923 0.1886/0.3944 0.1075/0.1923 0.1886/0.3944 0.2397/0.5615 0.1650/0.3410
C3D-FC2 (UCF101) [64] 0.1994/0.4268 0.1705/0.1923 0.1631/0.3239 0.1075/0.1923 0.1631/0.3239 0.1075/0.1923 0.1414/0.2753
FR (Ours) 0.4670/0.4905 0.4883/0.5380 0.5678/0.6101 0.5929/0.6019 0.4399/0.4823 0.5963/0.6081 0.5254/0.5552
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Table 5: Experimental results of different micro-expression recognition approaches on the single database in terms of Acc. CASME II (5 class)
means samples of the original 5 classes in CASME II are used (Happiness, Surprise, Disgust, Repression and Others). CASME II (4 class) and
SAMM databases mean samples of both databases are regrouped into four classes, i.e., Negative, Positive, Surprise and Others. The best results in
each experiment are highlighted in bold. All the results reported are based on the original samples without expression magnification.

Groups Approaches SMIC-HS CASME II CASME II SAMM Average
(5 classes) (4 classes)

Handcrafted features

LBP-TOP [10] 0.4878 - 0.4090∗ 0.4150∗ 0.4357
OSF + OS weighted LBP-TOP [67] 0.5244 - - - 0.5244
OS [68] 0.5356 - - - 0.5356
OS weighted LBP-TOP [69] 0.5366 0.4200 - - 0.4783
STM [70] 0.4434 0.4378 - - 0.4406
LBP-MOP [11] 0.5061 0.4413 - - 0.4737
LBP-TOP + ROIs [71] 0.5400 0.4600 - - 0.5000
LBP-SIP [14] 0.4451 0.4656 0.4570∗ 0.4170∗ 0.4462
LBP-TOP + DMDSP [72] 0.5800 0.4900 - - 0.5350
LBP-TOP + Adaptive MM [73] 0.5191 - - - 0.5191
HFOFO [74] 0.5183 0.5664 - - 0.5424
STCLQP [12] 0.6402 0.5839 - - 0.6121
STLBP-IP [17] 0.5793 0.5951 0.5510∗ 0.5680∗ 0.5734
MMFL [75] 0.6315 0.5981 - - 0.6148
Hierarchical STLBP-IP [13] 0.6078 0.6383 - - 0.6231
STRBP [76] 0.6098 0.6437 - - 0.6268
DiSTLBP-RIP [18] 0.6341 0.6478 - - 0.6410
MDMO [21] 0.6150∗ - 0.5100∗ - 0.5630
FDM [7] 0.5488 0.4593 0.4170∗ - 0.4750
Bi-WOOF [22] 0.5930∗ - 0.5890∗ 0.5980∗ 0.5930
OF Maps [77] - 0.6535 - - 0.6535
Bi-WOOF + Phase [78] 0.6829 0.6255 - - 0.6542
HIGO [62] 0.6524 0.5709 - - 0.6117

Deep learning features

Image-based CNN [79] 0.3120∗ - 0.4440∗ 0.4360∗ 0.3973
3D-FCNN [32] 0.5549 0.5911 - - 0.5730
CNN + LSTM [24] - 0.6098 - - 0.6098
STRCN-A [31] 0.4810 - 0.4710 0.4880 0.4800
STRCN-G [31] 0.5760 - 0.6210 0.6420 0.6130
FR (Ours) 0.5790 0.6285 0.6838 0.6013 0.6232

∗ means that we directly extracted the result from [31] as the original papers did not report these relevant results.

Exp.3 of TYPE-II task. Therefore, the both two ob-
servations indicate that our proposed method per-
forms more stable and robust (database-invariant)
to different situations than engineered features.

4.5.2. Comparison with deep learning features
FR outperforms image-based C3D, which used the

small scale of micro-expression data and low intensity
of micro-expressions. It suggests that exploiting avail-
able information e.g. optical flow and shallow network
will benefit to MER.

Finally, the results of experiments on CDE and CD-
MER protocols demonstrate that FR performs robust
recognition in complex situations, e.g. cross-database
MER.

4.6. Performance evaluation on the single database
Table 5 compares our proposed FR to the state-of-the-

art algorithms on four single micro-expression database.

4.6.1. Comparison with handcrafted features
FR outperforms most of the handcrafted features

listed in Table 5 in terms of average recognition accu-
racy, except STRBP [76], DiSTLBP-RIP [18], OF Maps
[77], and Bi-WOOF with Phase [78]. It suggests that al-
though almost many of the research fields in computer
vision are focusing on the deep learning century, tradi-
tional machine learning features play an importance role
in MER. It is explained by the scale of data.

As we know, OF Maps and Bi-WOOF with Phase
need more process to extract better features and are
based on professional knowledge. Specifically, they
all need to compute direction and magnitude statistical
profiles of optical flow, and Bi-WOOF with Phase also
needs using Riesz transform to extract phase informa-
tion. On the other hand, LBP-based features of STRBP
and DiSTLBP-RIP are based on the entire sequence of
samples, which also need to use temporal interpolation
method (TIM) [80] to normalize each video for perfor-
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Table 6: Performance comparison of the composite database among
Basic Inception and FR on CDE protocol.

Model UF1 UAR
Basic Inception 0.7360 0.7391

FR 0.7838 0.7832

mance improvement. In contrast, our proposed FR only
needs simple pre-processing, e.g. face detection, apex
frame chosen, and optical flow extraction.

4.6.2. Comparison with deep learning features
Furthermore, Table 5 compares our proposed FR to

Image-based CNN [79], 3D-FCNN [32], CNN with
LSTM [24], and Spatiotemporal Recurrent Convolu-
tional Networks (STRCN) [31], of which experiments
were conducted on the same database and micro-
expression categories to ours. Specifically, STRCN
contains STRCN-A and STRCN-G. The first one vertor-
izes one channel of a frame into a column of the matrix
for the appearance features, while the latter one uses op-
tical flow images as the input to train the model. First,
Table 5 shows all the handcrafted features outperform
the Image-based CNN feature [79], because Image-
based CNN feature ignored the temporal information.
On the other hand, other works on CNN [32, 24] demon-
strate temporal information significantly boosts the per-
formance of CNN. Thus, these results suggest that when
designing CNN for MER, temporal information should
be considered. Furthermore, FR gains a considerable
improvement of 14.32% by comparing with STRCN-A.
FR obtains competitive performance to STRCN-G. The
comparison suggests that geometric-based features may
become a complementary information to deep learning
model. Additionally, the comparison motivates us to
consider how the geometric-based features are embed-
ded in our FR model in future. Finally, our FR sup-
presses all the deep learning features. The comparison
results demonstrate that both expression-specific feature
and feature fusion contribute the discriminative infor-
mation to MER in deep learning methods.

4.7. Analysis on feature’s salience and discrimination

As previously described in Section 3, expression-
specific feature learning and fusion aim to learn the
salient and discriminative feature. Here, to better reveal
the effect of expression-specific feature learning and fu-
sion module to FR, the comparison is conducted to com-
pare the expression-refined features to the expression-
shared features obtained by the Basic Inception on the
composite database. The CDE protocol is used.

(a) The confusion matrix of
composite database in Basic
Inception.

(b) The confusion matrix of
composite database in FR.

Fig. 3: The confusion matrices of composite database in Basic Incep-
tion and FR.

Table 6 reports comparison results in terms of UF1
and UAR. It is seen that with expression-specific feature
learning and fusion module FR obtains the significant
improvement which improves the Basic Inception from
73.60% to 78.38% in terms of UF1, from 73.91% to
78.32% in terms of UAR. This suggests that expression-
specific feature learning and fusion module is the most
contributed module for our FR. Furthermore, Fig. 3
shows the confusion matrices of Basic Inception and
FR on each micro-expression category. As seen from
Fig. 3, FR obtains the accuracy of 83.60%, 70.64%,
and 80.72% for negative, positive, and surprise, respec-
tively. When adding expression-specific feature learn-
ing and fusion module to FR, FR improves Basic Incep-
tion consistently with gains of 3.2%, 6.42%, and 3.61%
for negative, positive, and surprise, respectively. This
indicates that the expression-refined features can im-
prove the salience in each class and highlight the spe-
cific characteristics of each type of expression, and thus
perform better than the expression-shared features in in-
dividual categories.

In order to get more reasonable and stable feature dis-
tribution visualization, 34 subjects are randomly cho-
sen, where 282 samples are used for training and the
rest for testing. Fig. 4 shows the feature distribution of
Basic Inception and FR from the testing samples, where
all features are mapped to 2D using t-SNE [81]. For the
Basic Inception model, the features are from the con-
centrated layer before the classifier, while for FR, the
expression-refined features are obtained before the fi-
nally classification module. It is observed that the fea-
ture representations learned by FR are better separated,
making the intra-class distribution more compact and
the inter-class distribution more dispersed. These vi-
sualization results indicate that expression-refined fea-
tures learned by FR are more discriminative than the
expression-shared features learned by Basic Inception.
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(a) Expression-shared feature distribution of Basic Inception. (b) Expression-refined feature distribution of FR.

Fig. 4: Feature distributions of Basic Inception and FR.

Table 7: The Accuracy (Acc), learnable Parameters (Parameter), and Execution Time (ET) comparison among backbone of Basic Inception and
FR model, where learnable parameters include the weights and biases of the network, and Execution Time means the average training and testing
times on single database evaluation.

Methods
SMIC-HS CASME II (4 classes) SAMM

Acc Parameter ET Acc Parameter ET Acc Parameter ET
(Million) (s) (Million) (s) (Million) (s)

Basic Inception 0.5612 6.4803 15.0610 0.6601 6.4813 32.9442 0.5783 6.4813 18.5792
FR 0.5790 10.2418 15.5559 0.6838 11.4231 36.7728 0.6013 11.4231 20.6564

4.8. Analysis on the complexity of the expression-
specific feature learning and fusion

As previously described in Section 3, FR with the
backbone of Basic Inception learns expression-shared
feature, while FR with the expression-specific fea-
ture learning and fusion module learns and aggregates
expression-specific feature. To analyze the complex-
ity of the expression-specific feature learning and fu-
sion of FR, Table 7 compares FR to Basic Inception
in terms of accuracy (Acc), learnable parameters (Pa-
rameters), and execution time (ET) on three micro-
expression databases.

According to Table 7, compared with the number of
parameters in Basic Inception, the learnable parame-
ters size indeed increases significantly in FR which is
caused by the expression-specific feature learning and
fusion. In other words, as SMIC-HS contains three cat-
egories, FR includes three expression-specific feature
learning sub-branches. It leads to more 3.7615 million
parameters to learn, but only more 0.4949 s to execute
for FR when compared with Basic Inception. It re-
veals that although the number of parameters increases
by adding expression-specific feature learning and fu-

Table 8: Accuracy (Acc) of SMIC-HS database under different proto-
cols of FR. Exp.i is the number of the experiment in CDMER proto-
col and S and T are the source and target micro-expression databases,
respectively. C, H, V, and N denote the CASME II, SMIC-HS, SMIC-
VIS, and SMIC-NIR databases, respectively. The best results are
highlighted in bold.

Protocols Experiments Acc Validation rule
CDE - 0.6951 LOSO

CDMER
Exp.2: V→H 0.5968 5-fold
Exp.4: N→H 0.5200 5-fold
Exp.7: C→H 0.4905 5-fold

Single database - 0.5790 LOSO

sion module, the additional execution time is still ac-
ceptable. The comparison results and analysis validate
expression-specific feature learning and fusion is still
efficient and effective for MER.

4.9. Discussion on three protocols
This previous parts extensively discuss on results un-

der CDE, CDMER, and the single database evaluation
protocols. According to the previously discussed re-
sults, several observations can be concluded in the fol-
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lowing. First, algorithm in the single database of SMIC-
HS obtained worse results than by using CDMER pro-
tocol. Second, algorithm failed to achieve same or sim-
ilar performance under CDE protocol and in the single
database experiment. The following will discuss these
two observations.

(1) Why does algorithm under single database
evaluation not always outperform under CDMER
protocol?

According to Table 8, the performance of SMIC-HS
database under the single database protocol is only bet-
ter than that of CDMER protocol in the Exp.4 : N → H
and Exp.7 : C → H. In contrast, it works worse than
CDMER in the Exp.2 : V → H. In Exp.4 : N → H and
Exp.7 : C → H, the data between SMIC-NIR/CASME
II and SMIC-HS is heterogeneous. In other words,
the data were collected under different conditions. In
contrast, in Exp.2 : V → H, samples in SMIC-VIS
recorded by a normal visual camera are more similarly
to the sample in SMIC-HS database. As well, both
databases contains the same participants.

The recent works [39, 45, 30] have indicated that
the model leveraging on macro-expression can boost
the deep neural network. The way may benefit to
micro-expression recognition: Compared with collect-
ing more micro-expressions of a person to reveal one’s
true feeling, it is much easier to collect the person’s
macro-expressions. It motivates us to leverage macro-
expressions transferring learning method to boost our
proposed FR in future. Additionally, leveraging the sub-
ject information and transfer learning strategy allows us
to obtain better recognition performance.

(2) Why does algorithm under CDE protocol out-
perform that under the single database evaluation?

This is explained by that increasing number of sam-
ples from other micro-expression databases and the op-
tical flow feature contribute to FR. As we know, more
samples can partly avoid from the overfitting problem.
On the other hand, in our framework, optical flow is
fed into FR. Optical flow mainly focuses on extracting
motion feature of samples, which mostly suppresses the
facial identity. Consequently, besides transfer learning
and other domain adaption mechanisms, adding sam-
ples from different micro-expression databases and also
utilizing proper motion feature to train the model is a
considerable approach to obtain better performance of
MER.

5. Conclusion

In this paper, we propose a novel approach for micro-
expression recognition, which involves three feature

refinement stages: expression-shared feature learning,
expression-specific feature distilling, and expression-
specific feature fusion. Different from the existing
deep learning methods in MER which focus on learning
expression-shared features, our approach aims to learn a
set of expression-refined features by expression-specific
feature learning and fusion. To make the learned fea-
ture more salient and discriminative, we propose a con-
structive but straightforward attention strategy and a
simple proposal loss in expression proposal module for
expression-specific feature learning. Experiments on
three publicly available micro-expression databases and
three different evaluation scenarios testify the efficacy of
our proposed approach. In the future, we will consider
an end-to-end approach for MER, find more effective
ways to enrich the micro-expression samples, and use
transfer learning from the large-scale databases to make
benefit for MER.

6. Appendix: experiment settings and evaluation
metrics for experiments

6.1. Detail experiment settings for four types of experi-
ments

Firstly, to easily understand the settings of the four
types of experiments, we give the detailed description
of the experiment settings as follows.

6.1.1. Settings of model ablation
Ablation study is conducted on the CDE protocol in

MEGC 2019 [35], where this study focuses on choosing
the backbone for expression-shared feature learning, the
strategy for expression-specific feature learning, and the
fusion mode for expression-specific features aggregat-
ing.

According to the CDE protocol, LOSO validation is
used to evaluate the model performance. SMIC-HS,
CASME II, and SAMM are merged into one dataset.
To make these databases share the common types of ex-
pression, original emotion classes are re-grouped into
three main categories, i.e. Positive, Surprise, and Nega-
tive. Specifically, samples of Happiness are given Pos-
itive labels while the labels of Surprise samples are
unchanged. Samples of Disgust, Repression, Anger,
Contempt, Fear, and Sadness are grouped into Nega-
tive. Table 9 presents the detail information about three
databases used for CDE protocol.

In the ablation experiment, without momentum, the
batch size, learning rate, and loss function weight factor
λ are set as 32, 0.001, and 0.85, respectively.
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Table 9: The sample distribution on three classes (Positive, Negative,
and Surprise) of three databases and composite database on the CDE
protocol. As LOSO validation rule is used in CDE experiment, subject
number is given in the table.

Database Micro-Expression Category SubjectsNegative Positive Surprise Total
SMIC-HS [48] 70 51 43 164 16
CASME II [26] 88† 32 25 145 24

SAMM [58] 92§ 26 15 133 28
Composite 250 109 83 442 68

† Negative class of CASME II: Disgust and Repression.
§ Negative class of SAMM: Anger, Contempt, Disgust, Fear and Sadness.

Table 10: Two types of CDMER tasks. It contains 12 CDMER exper-
iments. Each source to target experiments of CDMER is denoted by
Exp.i : S → T , where Exp.i is the number of this experiment and S
and T are the source and target micro-expression databases, respec-
tively. C, H, V, and N denote the CASME II, SMIC-HS, SMIC-VIS,
and SMIC-NIR databases, respectively.

Type CDMER Task Source Database Target Database

Type-I

Exp.1: H→V SMIC-HS SMIC-VIS
Exp.2: V→H SMIC-VIS SMIC-HS
Exp.3: H→N SMIC-HS SMIC-NIR
Exp.4: N→H SMIC-NIR SMIC-HS
Exp.5: V→N SMIC-VIS SMIC-NIR
Exp.6: N→V SMIC-NIR SMIC-VIS

Type-II

Exp.7: C→H CASME II SMIC-HS
Exp.8: H→C SMIC-HS CASME II
Exp.9: C→V CASME II SMIC-VIS
Exp.10: V→C SMIC-VIS CASME II
Exp.11: C→N CASME II SMIC-NIR
Exp.12: N→C SMIC-NIR CASME II

Table 11: The sample distribution on three classes (Positive, Negative,
and Surprise) of CASME II and SMIC databases on CDMER proto-
col. Five-fold cross validation rule is used in CDMER experiment.

Database Micro-Expression Category
Negative Positive Surprise Total

SMIC-HS [48] 70 51 43 164
SMIC-NIR [48] 23 28 20 71
SMIC-VIS [48] 23 28 20 71
CASME II [26] 73† 32 25 130
† Negative class of CASME II: Disgust, Sadness and Fear.

6.1.2. Settings of CDE experiment
Our proposed FR compares with the baseline of

MEGC 2019 [82, 10], three popular deep learning net-
works [60, 55, 61], and several state-of-the-art methods
[22, 36, 38, 37, 39, 40]. In the experiments, we use the
same expression grouped rules and parameters setting
for CDE evaluation to the experiment of model ablation.

6.1.3. Settings of CDMER experiment
This paper evaluates the proposed FR with [10, 14,

63, 62, 64] under CDMER protocol 1 [41]. Five-fold
cross validation.

CDMER protocol: Four publicly available micro-
expression databases are used in the CDMER bench-
mark: SMIC-HS, SMIC-VIS, SMIC-NIR, and
CASME II. Different from CDE protocol, in each ex-
periment of CDMER, two of four databases are chosen,
where one is used as source database and another as
target database. Thus, there are 12 sub-experiments in
CDMER. The detail setup is depicted in Table 10. Each
source to target sub-experiment of CDMER is denoted
by Exp.i : S → T , where Exp.i is the number of
this sub-experiment, S and T are the source and target
databases, respectively.

Table 11 describes the sample distribution for CD-
MER experiments. The re-group rule for Positive and
Surprise classes is the same to the CDE protocol, while
the samples with Disgust, Sadness, and Fear classes be-
long to Negative class. In the CDMER experiment, the
learning rate is set as 0.0005, with the momentum rate
of 0.8. Batch size and λ are set as 32 and 0.85, respec-
tively.

6.1.4. Settings of the single database experiment
Leave-one-subject-out (LOSO) protocol is used. The

parameters settings of the single database experiment
are the same to CDMER evaluation. Table 12 lists
the detailed information about “CASME II (4 classes)”,
SAMM and SMIC-HS databases.

For CASME II, there are two versions of the
database. The first version contains 247 samples of
5 classes, while the second version involves 256 sam-
ples labeled as 7 classes. To make fair comparison,
we use these two versions of CASME II for the sin-
gle database experiment. For the first version, we di-
rectly use 5 micro-expression categories. For conve-
nience, we abbreviate the first version of CASME II
with 5 classes as “CASME II (5 classes)” in our ex-
periment. Table 13 describes the detail information of
“CASME II (5 classes)”. Following [21, 15, 13, 31], for
the second version, the samples with Happiness class
belong to Positive class, while the samples with Sur-
prise class remain the original label. The samples with
Disgust, Anger, Contempt, Fear, and Sadness classes
are assigned to Negative label. Samples of Repression
are labeled to Others class. Lastly, the samples in the
second version of CASME II are categorized into four

1http://aip.seu.edu.cn/cdmer/
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Table 12: The sample distribution on four classes (Positive, Negative, Surprise, and Others) of three databases on the single database evaluation.
As LOSO validation rule is used in the single database experiment, subject number is also given in the table.

Database Micro-Expression Category SubjectsNegative Positive Surprise Others Total
SMIC-HS [48] 70 51 43 - 164 16
CASME II [26]

73† 32 25 126§ 256 26(4 classes)
SAMM [58] 92] 26 15 26 159 32
† Negative class of CASME II: Disgust, Sadness and Fear.
§ Others class of CASME II: Repression and Others.
] Negative class of SAMM: Disgust, Anger, Contempt, Fear and Sadness.

Table 13: The sample distribution of CASME II (5 classes). As LOSO validation rule is used in the single database experiment, subject number is
also given in the table.

Database Micro-Expression Category SubjectsRepression Happiness Surprise Disgust Others Total
CASME II [26] 27 32 25 64 99 247 26(5 classes)

classes. Here, we denote it as “CASME II (4 classes)”
in the experiment. The same category protocol is used
for SAMM database.

6.2. Detail description for performance metrics
The Acc, UAR, and UF1 metrics are defined as fol-

lows:

Acc :=

∑K
k=1
∑M

m=1 T P(m)
k∑K

k=1
∑M

m=1 FP(m)
k +

∑K
k=1
∑M

m=1 T P(m)
k

, (9)

UF1 =
1
K

F1k , (10)

and
UAR =

1
K

∑
Acck . (11)

where,

F1k :=
2 ·
∑M

m=1 T P(m)
k

2 ·
∑M

m=1 T P(m)
k +

∑M
m=1 FP(m)

k +
∑M

m=1 FN(m)
k

, (12)

and

Acck =

∑M
m=1 T P(m)

k

nk
, (13)

where K is the number of classes, M is the number of
folds of LOSO, nk is the total number of samples in the
ground truth of the k-th class, and Acck is the per-class
accuracy scores. For the m-th fold of LOSO by the k-th
class, T P(m)

k , FP(m)
k , and FN(m)

k are true positives, false
positives, and false negatives, respectively.
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M. Pietikäinen, Towards reading hidden emotions: A com-
parative study of spontaneous micro-expression spotting and
recognition methods, IEEE Transactions on Affective Comput-
ing 9 (4) (2018) 563–577.

[63] J. Päivärinta, E. Rahtu, J. Heikkilä, Volume local phase quan-
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