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Abstract

Few-Shot Learning (FSL) is a challenging and practical learning pattern, aiming

to solve a target task which has only a few labeled examples. Currently, the field

of FSL has made great progress, but largely in the supervised setting, where

a large auxiliary labeled dataset is required for offline training. However, the

unsupervised FSL (UFSL) problem where the auxiliary dataset is fully unlabeled

has been seldom investigated despite of its significant value. This paper focuses

on the more general and challenging UFSL problem and presents a novel method

named Coarse-to-Fine Pseudo Supervision-guided Meta-Learning (C2FPS-ML)

for unsupervised few-shot object classification. It first obtains prior knowledge

from an unlabeled auxiliary dataset during unsupervised meta-training, and

then use the prior knowledge to assist the downstream few-shot classification

task. Coarse-to-Fine Pseudo Supervisions in C2FPS-ML aim to optimize meta-

task sampling process in unsupervised meta-training stage which is one of

the dominant factors for improving the performance of meta-learning based

FSL algorithms. Human can learn new concepts progressively or hierarchically
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following the coarse-to-fine manners. By simulating this human’s behaviour, we

develop two versions of C2FPS-ML for two different scenarios: one is natural

object dataset and another one is other kinds of dataset (e.g., handwritten

character dataset). For natural object dataset scenario, we propose to exploit

the potential hierarchical semantics of the unlabeled auxiliary dataset to build a

tree-like structure of visual concepts. For another scenario, progressive pseudo

supervision is obtained by forming clusters in different similarity aspects and is

represented by a pyramid-like structure. The obtained structure is applied as the

supervision to construct meta-tasks in meta-training stage, and prior knowledge

from the unlabeled auxiliary dataset is learned from the coarse-grained level to

the fine-grained level. The proposed method sets the new state of the art on

the gold-standard miniImageNet and achieves remarkable results on Omniglot

while simultaneously increases efficiency.

Keywords: Unsupervised few-shot learning, meta-learning, clustering, object

classification.

1. Introduction

In the past decade, deep learning techniques have set the state of the art in

nearly every classical computer vision tasks, such as image classification [1, 2],

object detection [3, 4], semantic segmentation [5, 6], people re-identification [7],

object recognition [8, 9], image synthesis [10], and many others. Much of this5

huge progress has been achieved by supervised deep learning, which has serious

limitations in many real world applications. Firstly, supervised learning is of

course constrained to relatively narrow domains defined largely by the training

data, and thus leads to limited generalization performance. Secondly, the high

performance of deep learning models heavily depends on a large amount of10

accurately labeled data. However, huge labeled data is expensive and time-

consuming to collect. Moreover, in many practical applications like medical

image analysis [11], industrial inspection, endangered species recognition and

military area, acquiring sufficient labeled training data is extremely expensive
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Figure 1: Illustration of the UFSL problem which is the focus of this paper. FSL aims to

learn a given task of novel categories presented by just a few samples each. Vanilla FSL task

can access a source dataset with annotations, while UFSL is provided a large unlabeled source

dataset.

or even prohibitive due to various factors such as privacy or security issues, which15

imposes significant challenges for applying data and label-hungry deep learning

methods. Therefore, there is a pressing need for developing novel methods that

are data and label efficient, yet can generalize from limited labeled examples.

Despite the huge progress in Artificial Intelligence (AI) and machine learning,

one impressive capability of human intelligence to learn novel concepts from20

one or several examples has eluded machines as current AI techniques are data

hungry and cannot rapidly generalize from a few samples. In order to simulate

this humans’ learning pattern and learning systems to achieve label efficient

learning and the ability of generalizing from very few examples, few-shot learning

(FSL) [12, 13, 14, 15, 16], first appeared in [17], has been receiving increasing25

attention in recent years, and is now a hot research topic. As extreme cases of

transfer learning, FSL aims to address the learning of a target task containing a

very limited number of labeled examples (like one or several examples), usually

using prior knowledge.

Although being a very young topic, many FSL methods [12, 13, 14, 17]30
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have been proposed in the literature already. A large amount of research

in FSL has been devoted to traditional FSL (also referred to vanilla FSL in

this paper). Despite of the great value of FSL, researchers cannot deny that

FSL is a challenging task due to its intrinsic difficulty which is the easily

overfitting problem due to very limited supervised information. In order35

to alleviate this problem, FSL is provided with a source dataset which is

always from the same domain with the novel FSL task. For vanilla FSL,

the source dataset contains base categories with a plethora of labeled training

instances. The FSL paradigm is first to train the model using a labeled

source dataset, and then the learned knowledge is transferred to the novel FSL40

task. Existing vanilla FSL methods can be categorized into prior knowledge

based [18] methods and data augmentation based methods. Data augmentation

based methods [19, 20] apply operations on available images in the instance

level or the feature level to enlarge the dataset. Prior knowledge based

methods can be divied into meta-learning based methods and transfer learning45

based methods. Recent efforts on meta-learning based vanilla FSL methods

contains the following three mainstream approaches: (1) metric learning based

methods [21, 22, 12], targeting at learning embedding and metrics functions to

measure the distance or similarity among support images and query images; (2)

optimization-based methods [14, 23, 24, 25], emphasizing searching for optimal50

parameter configurations of a given neural network; and (3) memory-based

methods [26, 27], modeling the support set of the FSL task as a sequence and

the query samples are required to match with the previous obtained knowledge.

Currently, most research in FSL focuses on vanilla FSL problem where

a large scale labeled auxiliary dataset is still required. Again, high-quality55

labels are usually obtained by human workers or even domain experts, and the

labeling process is laborious. By contrast, in many scenarios, massive amounts

of unlabeled data is easily accessible (such in the Internet). In order to expand

the usage of vanilla FSL methods for even more realistic applications, a natural

question to ask is: is it possible to transfer prior knowledge learned from a60

fully unlabeled large dataset to novel tasks with a few examples? Therefore,
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this practical need stimulates the Unsupervised FSL (UFSL) problem which is

illustrated in Fig. 1. In this paper, we attempt to address the more general

and challenging UFSL problem, where only a fully unlabeled auxiliary dataset

is provided. UFSL is a new emerging problem that has received limited65

attention [28, 29].

For FSL problems, diverse knowledge from source dataset should be obtained

to alleviate the negative effect caused by limited labeled data when adapting to

novel few-shot object classification tasks. Therefore, the main challenge of UFSL

is how to explore underlying knowledge of unlabeled auxiliary dataset and apply70

this knowledge to assist novel few-shot task learning process. Recently, meta-

learning [18] has emerged as one popular paradigm for tackling the FSL problem.

It aims at improving the learning algorithm itself by using the experience from

multiple episodes, i.e., a number of meta-tasks. By this means, the learning

algorithm obtains the transferable knowledge across multiple tasks, and then75

generalize to novel but similar downstream tasks.

Sampling meta-tasks can be considered as a combinatorial optimization

problem. Assuming that source dataset contains C classes and M samples

in total, N classes and K samples per class are selected for a specific meta-task.

There are CN
C ×(CK

M )N situations for meta-tasks and we iteratively choose meta-80

tasks for meta-training process from the total meta-tasks, which is a NP-hard

problem. In the vanilla supervised FSL setting, meta-tasks are usually sampled

randomly based on lots of strong supervision (i.e., labeled samples). However,

the random construction for meta-tasks is not the best solution. [30, 31]

optimize meta-task sampling process and achieve remarkable performance. It85

demonstrates that meta-task sampling is one of dominant factors for the whole

meta-learning process. When applying meta-learning paradigm to solve UFSL

problem, the challenge is how to sample high-quality and diversiform episodic

meta-training tasks from unlabeled auxiliary dataset using abundant underlying

information. Hsu et al. [28] formed the unlabeled data into clusters and90

constructed meta-tasks from clusters randomly by regarding each cluster as

one particular class. However, the clustering process in the meta-training stage
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is time-consuming already, and this method also requires too many iterations

of episodic training. Siavash et al. [29] randomly selected N samples from the

unlabeled source dataset, such that the probability of these N samples belonging95

to different categories is high. Therefore, these N samples were considered as

different categories and constituted as a meta-task with one sample per class,

while it could only simulate one-shot learning tasks in the meta-training phase.

However, there is no works about combinatorial optimization on mete-task

construction for UFSL. To enrich supervisions in the meta-training stage and100

alleviate the disadvantages of the existing UFSL methods described above,

this paper aims to tackle the combinatorial optimization problem on meta-

task sampling in UFSL. Human’s learning pattern can follow the coarse-to-

fine manners. To be specific, human can learn new concepts hierarchically

or progressively by organizing the knowledge in a tree-like or pyramid-like105

structure. In our natural word, objects are arranged into a hierarchical concept

tree based on semantic information. In this work, we assume that unlabeled

source dataset and the target dataset are from the same domain, as cross-

domain FSL is another challenging issue and is not our focus. Therefore,

the underlying hierarchical semantics exists in our problem. Moreover, this110

hierarchical information has prove to be useful for classification tasks. In

YOLO9000 [32], a WordTree was constructed with each node representing a

category by following the semantic relations of WordNet [33], and then higher

performance was achieved by computing losses following the tree structure in a

level-by-level manner. The hierarchical information in Yolo9000 and ours are all115

related to semantics, but the extracting process is different. For Yolo9000, they

check the visual nouns in ImageNet and find their paths through the WordNet

graph to the root node. In our method, we use a top-to-down hierarchical

clustering process to obtain the hierarchical semantics and build a binary tree.

However, for other dataset where hierarchical semantic information is not exist,120

we propose to seek for the similarity information in different perspectives. Since

different perspectives do not have direct connections, we construct a pyramid-

like structure of the underlying information.
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Based on the inspiration and the analysis above, we propose a method

named Coarse-to-Fine Pseudo Supervision-guided Meta-Learning(C2FPS-ML)125

for few-shot object classification. For the two scenarios, we implement two

versions of C2FPS-ML. Fig. 2 shows the outline of C2FPS-ML. For natural

object dataset, by conducting the hierarchical clustering process, we exploit

the underlying hierarchical nature object categories to build a hierarchical

tree structure of pseudo visual concepts. This solution is named Hierarchical130

Pseudo Supervision-guided Meta-learning (HPS-ML). For other dataset (e.g.,

handwritten characters), underlying progressive categories structure is constructed

by a progressive clustering procedure in different similarity levels. This version

of C2FPS-ML is nominated as Progressive Pseudo Supervision-guided Meta-

learning (PPS-ML).135

Such hierarchical/progressive clustering strategy allows us to extract underlying

coarse-to-fine semantic knowledge or similarities in shape or appearance of the

unlabeled dataset. Each clustering result in a particular level represents a set

of pseudo labels (i.e., cluster IDs) describing the input context, and we refer to

these cluster IDs as pseudo labels of unlabeled samples. These pseudo labels140

are used as the supervision for learning the source dataset. After obtaining the

pseudo supervision, in the next stage, we randomly select N clusters from a

specific layer of the structure and take K training samples together with query

samples from each cluster to formulate the N -way-K-shot task. This operation

is done iteratively till the meta-training is completed. Since more diversiform145

pseudo supervison is provided to unsupervised meta-training process, meta-task

sampling process is optimized by selecting tasks from different levels of pseudo

supervisions.

The contributions of our work are two folds: (1) we propose the C2FPS-

ML method for few-shot object classification by exploiting the potential150

hierarchical/progressive pseudo supervision. (2) Our extensive experiments on

the miniImageNet shows state-of-the-art results by using underlying hierarchical

information, and on Omniglot illustrates remarkable results by using progressive

pseudo supervision of unlabeled data. (3) At the same time, our proposed
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C2FPS-ML can improve the efficiency of meta-training stage by decreasing155

training iterations largely.

2. Related Work

2.1. Vanilla Few-Shot Learning

In the past several decades, researches on FSL can be categorized into

data augmentation based methods and prior knowledge based methods. Prior160

knowledge based methods contains two series of methods: meta-learning based

methods and transfer-learning based methods. Data augmentation based

methods [19, 20], applying operations on available images in the instance level

or the feature level to enlarge the dataset. Chen et al. [20] proposed to learn

a mapping from a novel sample instance to a concept and relate that concept165

to the existing ones in the concept space, and new instances were generated by

using these relationships.

Recent efforts on meta-learning based FSL are mainly toward the following

aspects. (i)Metric learning based methods [21, 22, 12], targeting at learning

an embedding and useful metrics function, and using the metrics to measure170

the distance or similarity among support images and query images. Vinyals

et al. first applied metric learning on FSL methods, and combined with

attention mechanisms. The training image and the test image were mapped into

embedding space, and attention mechanisms were used to get the similarity of

images. Sung et al. proposed a FSL method in which the metric function was175

learnable. (ii) Optimization-based methods [14, 23], emphasizing searching for

parameter configurations of a given neural network such that it can effectively

fine-tune on FSL tasks within a few gradient-descent update steps. The main

idea of MAML [14] is to obtain optimal initialization parameters of the model

through training. For a novel task, the model can achieve better performance180

with a few gradient steps. (iii) Memory-based methods [26, 27], modeling the

support set of the FSL task as a sequence and formulating it as a sequence

learning task. The query samples are required to match with the previous
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obtained knowledge. The ability of a memory-augmented neural network to

rapidly assimilate new data, and leverage this data to make accurate predictions185

after only a few samples. Santoro et al. [26] demonstrated the ability of a

memory-augmented neural network to rapidly assimilate new data, and leverage

this data to make accurate predictions after only a few samples.

However, transfer learning based methods [34, 35] do not use episodic

strategy but use traditional learning strategy by pre-training a model with a190

large-scale dataset and fine-tuning on FSL task. TransMatch [34] pre-trained a

feature extractor on base-class data, then used the feature extractor to initialize

the classifier weights for the novel classes, and further updated the model with

a semi-supervised learning method. In this paper, we use the meta-learning

technique combining optimization-based architecture and metric learning based195

architecture to implement our proposed UFSL method.

2.2. Semi-Supervised and Unsupervised Few-Shot Learning

Semi-supervised learning focuses on promoting learning performance with

labeled data by leveraging a large amount of unlabeled data. It is mainly divided

into consistency regularity methods [36], entropy minimization methods [37]200

and teacher-student model [38]. As for semi-supervised few-shot learning,

[39] proposed BR-ProtoNet to enabled metric learning to benefit from readily-

available unlabeled data. [40] extended the prototypical network by incorporating

unlabeled data to update the prototypes generated by labeled images. [41] used

the transductive propagation network to propagate labels from labeled images205

to unlabeled images along with a constructed graph. [42] adopted self-training

by adding unlabeled data to the meta-learning process.

Unsupervised learning [43] is a type of machine learning that looks for

previously undetected patterns in a dataset with no pre-existing labels and

minimal human supervision. For UFSL, [28] applied clustering on source data210

to formed unlabeled data into clusters first and constructed meta-tasks from

clusters randomly by regarding every cluster as one certain class. [29] selected

N samples from unlabeled training set randomly, and the probability that these
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Figure 2: Illustration of meta-training process in C2FPS-ML. First stage: an unsupervised

embedding learning algorithm embeds instances, then the underlying hierarchical/progressive

pseudo supervision of unlabeled data are obtained by hierarchical/progressive clustering.

Second stage: meta-tasks are constructed automatically in every level by regarding cluster

IDs as pseudo labels of the unlabeled dataset.

N pictures belonged to different categories was very high, so these N pictures

were constituted as one N -way 1-shot meta-task. Progressive clustering and215

episodic training were used in UFLST [44] to implement unsupervised meta-

training. AAL [45] used data augmentation of the unlabeled support set to

generate the query data.

3. Problem Setup

FSL formulates as N -way-K-shot classification, i.e., each task includes N220

classes with K examples for each class. These N -way-K-shot images are known
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as the supporting set. In addition, there are more examples of the same classes

with the support set known as the query set, which is used for evaluating the

performance of the learned task.

Assume an unlabeled dataset Du = {x i} used in meta-training phase, and225

a novel set Dn, which contains unseen classes with only one or a few training

samples per class used in the meta-test process. In UFSL, it is crucial that the

model F (.), which is primarily trained on unlabeled data, can generalize to the

novel classes with a few sample per class. We use N -way K-shot strategy for

evaluation in the meta-test process, in which we apply on novel categories Dn.230

4. Coarse-to-Fine Pseudo Supervision-guided Meta-Learning(C2FPS-

ML)

For few-shot object classification task, there are two types of datasets:

one is natural object dataset, like miniImageNet, the rest dataset is other

types like character dataset (e.g., Omniglot). For natural object dataset,235

labeling the objects follows a hierarchical structure. Because we know the

unlabeled source dataset and target dataset are from the same domain, the

underlying hierarchical semantic information of unlabeled source dataset still

exists. For human, the learning pattern follows a coarse-to-fine manner. For

example, one book is often organized into a hierarchical manner, i.e., the outline.240

When people plan to read this book, the best way is to follow the outline

which shows the coarse-to-fine contents. The other kind of datasets do not

contain hierarchical semantic information. For example, Omniglot consists of

handwritten characters from 50 alphabets with 20 instances written by different

people from 50 different alphabets. Characters do not contain word level or245

semantic level information. However, they may have similarities in shape or

appearance, like the character ‘B’ and ‘D’.

Toward UFSL problem, we propose a method named C2FPS-ML to solve

it, and we provide two solutions for C2FPS-ML to tackle two different kinds

of datasets. Fig. 2 shows an illustration of meta-training process in our250
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proposed C2FPS-ML. The meta-training process of C2FPS-ML is divided into

two procedures. In the first stage, we extract potential hierarchical/progressive

pseudo supervision of unlabeled samples using a hierarchical/progressive clustering

approach. Before clustering, unlabeled source dataset are fed into unsupervised

learning algorithms to generate the corresponding embedding first. In the255

second stage, we exploit this obtained information as pseudo supervision signals

for the meta-training in UFSL. In this section, extracting coarse-to-fine pseudo

supervision of the two solutions (i.e., HPS-ML and PPS-ML) are first illustrated

in detail. Then, the total meta-training process is demonstrated and meta-

learning process is illustrated in Fig. 4.260

4.1. Extracting Hierarchical Pseudo Supervision

For natural object dataset, annotating the dataset follows a lexical database

for English. This kind of lexical dataset is always arranged in a net-like structure

and all the annotations in a dataset can be organized in a tree-like structure

base on hierarchical semantics from the lexical dataset. As for the common265

type of FSL, unlabeled source dataset and target dataset are from the same

domain. The same domain means that unlabeled source dataset shares the same

hierarchical space with the labeled target dataset. Therefore, assuming that

there must exist underlying hierarchical semantics in unlabeled source dataset

like target dataset and can be organized to the tree-like structure. Finally, we270

propose Hierarchical Pseudo Supervision-guided Meta-learning (HPS-ML) for

few-shot natural object image classification. In order to derive the hierarchical

semantics, our model proceeds in a top-down way.

WordNet concept graph in [32] where relationships between labels are

represented by a tree has proved that hierarchical semantic information can

enhance the performance of classification tasks. An example of the tree for

ImageNet [46] is shown in Fig. 3. From the previous analysis, we know that the

hierarchical information in YOLO9000 and ours are all hierarchical semantics,

just the obtaining process is different. We aim to use the part of the hierarchical

structure in ImageNet to illustrate how the hierarchical semantics looks like.
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As for one particular image, it belongs to different classes in different levels.

In Fig. 3, one image belongs to “plant” in the third level, “natural object” the

second level, and “physical object” in the first level. Classification tasks are

implemented by computing novel conditional losses level by level:

Pr(Airplane) = Pr(Airplane|Air) ∗ Pr(Air|V ehicle)

∗Pr(V ehicle|PhysicalObject).

With the semantic hierarchy, the classification task performs better by computing

the conditional loss level by level.275

In UFSL, we suppose that the auxiliary source dataset and target dataset

are from the same domain, so the underlying hierarchical categories of the

auxiliary source dataset exists. We aim to extract meaningful pseudo labels

for each image based on its content in a tree-like (i.e., hierarchical) manner.

In the meta-training phase of HPS-ML, extracting underlying hierarchical280

pseudo supervision involves two steps. In the first step, in order to cluster

in spaces where common distance functions correlate to semantic meaning,

unlabeled samples in Du are fed into the unsupervised learning algorithm A

to generate embedding spaces. Because clustering in the pixel-level is difficult

in practice due to the high dimensionality of raw images, and unreasonable due285

to the distance poorly correlating with semantic meaning [28]. The semantic

embedding usually has the strong representative characteristic that can be

useful for several downstream tasks, including clustering. In the second step,

we further conduct a hierarchical clustering process in the embedding space

to extract the underlying hierarchical nature object categories and build a290

hierarchical tree of pseudo visual concepts (i.e., pseudo-labels). These pseudo

labels are used for constructing meta-tasks of UFSL in meta-training stage. A

related work [28] required too many iterations to achieve good performance.

Too many iterations compromise the efficiency of the UFSL. To alleviate this

drawback, we opt to use underlying hierarchical supervision of unlabeled data.295

This is a simple, but efficient technique to take advantage of privilege underlying

information of unlabeled samples to generate pseudo-labels for the meta-training
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phase.

In order to extract the rich underlying nature object categories of unlabeled

data, we use a hierarchical clustering technique in a top-down manner to300

cluster generated embeddings at different levels. Hence, we generate a tree of

hierarchical semantic information representing pseudo-labels for each level (i.e.,

depth of the tree). Assume the depth of the tree L and the root node containing

all unlabeled samples. The level is denoted as Li, where the subscript i denotes

the i-th level. First, we cluster the embeddings and gain a series of C clusters305

represented by C1. We generate different branches of the tree by applying

the intra-clustering on each cluster to form P partitions, smaller clusters with

narrower semantics are gained. Hence, we divide each cluster into more detailed

clusters in the next level of the tree. In this way, we are able to create a tree of

pseudo nature object categories describing the content of unlabeled images, in310

which the upper levels contain more abstract categories and the bottom levels

represent fine-grained categories.

Fig. 2 illustrates an example of the clustering results: C is 125, P equals to
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unsupervised meta-training stage and meta-test stage. In the meta-training stage, our

proposed C2FPS-ML explores coarse-to-fine supervision and use the supervision to learn tasks

in an episodic manner.

2 and hierarchical levels L is set as 3. When the process is done, the obtained

structure contains: the node in head-level representing the whole unsupervised315

dataset, 125 first-level nodes, and each of following-levels’ nodes with one father

node and one brother node.

4.2. Extracting Progressive Pseudo Supervision

As for other kinds of dataset (e.g., handwritten characters), different objects

have weak relations in semantic levels, or even they do not contain semantic-320

level information. Therefore, we cannot use some rules to describe the semantic

relations among different samples. However, similarities in shape or appearance

from different perspective always exists, such as the layout, the writing style, etc.
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Algorithm 1 The unsupervised meta-training in HPS-ML.

Input: Du, L, F (.), P , A, N , K, C, Q, the meta-training iteration number I

Output:F (.) after meta-training stage

1: Generating embeddings of Du by unsupervised feature embedding algorithm

A;

2: for l in levels L do

3: if l==1 then

4: Divide dataset into C parts C1 by clustering;

5: else

6: Separating each previous-level cluster Cl−1 into P parts;

7: while Meta-training iterations I not done do

8: Select N clusters from an certain level of clusters;

9: Select K training samples and Q validation samples to construct meta-

task;

10: Update F (.) by learning the meta-task;

11: return F (.)

From multiple perspective, we can divide the dataset into different partitions.

However, direct connections are not contained in different partition aspects,325

so we cannot conduct splitting process from the one perspective to generate

other division results of other perspectives. Toward this situation, we propose

Progressive Pseudo Supervision-guided Meta-learning (PPS-ML) to construct

the pyramid-like structure of unlabeled data.

In order to form the pyramid structure of unlabeled data, we use a330

progressive clustering technique to cluster generated embedding at different

similarity levels. To be specific, we use clustering algorithm to cluster the

embedding into a fixed number of clusters in a progressive fashion. Assume

the depth of the tree L and the top node as the head level. Its levels are

denoted as Li, where the subscript i denotes the i-th level. First, for the level335

l1, we define C1 cluster IDs and cluster the embedding into these cluster IDs.
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Algorithm 2 The unsupervised meta-training in PPS-ML.

Input: Du, L, F (.), P , A, N , K, C, Q, the meta-training iteration number I

Output:F (.) after meta-training stage

1: Generating embeddings of Du by unsupervised feature embedding algorithm

A;

2: for l in levels L do

3: Divide dataset into C, 2C and 3C parts, respectively;

4: while Meta-training iterations I not done do

5: Select N clusters from an certain level of clusters;

6: Select K training samples and Q validation samples to construct meta-

task;

7: Update F (.) by learning the meta-task;

8: return F (.)

We increase the number of clusters to C2 (where C2 > C1) in the next level l2

and forme the embedding into C2. The number of clusters continually increase

in the following levels. Fig. 2 illustrates an example of the clustering results:

C1 is 125, C2 is 250 and C3 is 500.340

4.3. Unsupervised Meta-Training for Meta-Testing

In the meta-training phase of C2FPS-ML, cluster IDs are regarded as pseudo

labels for unlabeled samples in each cluster. Meta-task sampling process

is optimized by constructing tasks from the extracted coarse-to-fine pseudo

supervisions. The total meta-training process of HPS-ML is illustrated in345

Algorithm 1. The algorithm of PPS-ML illustrated in Algorithm 2 is the same

as that of HPS-ML except for the clustering process. The total meta-learning

procedure is presented in Fig. 4. The meta-training performs in an iterative

way. In each iteration, we randomly choose N clusters from a particular level

of the tree. Then, K samples from each cluster are selected to constitute the350

supporting set, and we choose Q samples from the rest of samples in each

cluster to form the query set. This selection process forms a N -way K-shot
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Table 1: Results of HPS-ML on miniImageNet. We obtain state-of-the-art results in 4 settings,

and exceed previous best results by 0.19%, 0.54%, 1.23% and 0.5%, respectively.

Algorithm
N-way K-shot (N, K)

(5,1) (5,5) (5,20) (5,50)

Training from scratch [28] 27.59% 38.48% 51.53% 59.63%

DeepCluster knn-nearest neighbours [28] 28.90% 42.25% 56.44% 63.90%

DeepCluster linear classifier [28] 29.44% 39.79% 56.19% 65.28%

DeepCluster MLP with dropout [28] 29.03% 39.67% 52.71% 60.95%

DeepCluster clusering matching [28] 22.20% 23.50% 24.97% 26.87%

DeepCluster CACTUs-ProtoNets [28] 39.18% 53.36% 61.54% 63.55%

DeepCluster CACTUs-MAML [28] 39.90% 53.97% 63.84% 69.64%

UMTRA [29] 39.93% 50.73% 61.11% 67.15%

AAL-ProtoNets [45] 37.67% 40.29% - -

AAL-MAML++ [45] 34.57% 49.18% - -

UFLST [44] 33.77% 45.03% 53.35% 56.72%

HPS-ML-ProtoNets (ours) 39.28% 53.44% 61.57% 63.88%

HPS-ML-MAML (ours) 40.09%(↑ 0.19) 54.51%(↑ 0.54) 65.07%(↑ 1.23) 70.14%(↑ 0.5)

learning problem. In each iteration, the model solves meta-tasks by learning

to classify images based on pseudo labels. This process repeats till completing

unsupervised meta-training. In our proposed method, we construct a meta-task355

by sampling clusters from the same level, because if we select clusters from

different levels, one image may be all selected in different levels. In this case,

one unlabeled images have more than one pseudo labels, and it may confuse the

classification algorithm. In the meta-test phase, novel FSL tasks, following the

same N -way-K-shot learning pattern with meta-tasks in meta-training stage,360

are learned by fine-tuning the obtained model by using N -way-K-shot samples.

The average validation accuracy of novel tasks is considered as the evaluation

indicator.

5. Experiment

In this section, we first introduce the experimental setup containing two365

datasets we used for evaluate our proposed two solutions and parameter

configurations. Then, we present the classification results obtained by implementing

C2FPS-ML in two widely-used FSL methods. Finally, we conduct ablation
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experiments toward two aspects and illustrate the results to demonstrate the

efficiency of C2FPS-ML.370

5.1. Experimental Setup

Omniglot[13] is frequently-used few-shot learning dataset, which consists

of 1, 623 handwritten characters from 50 different alphabets with 20 instances

written by different people in every character category. In order to compare our

methodology with existing published work, we follow the experimental protocol375

described in [26]: 1, 200 characters were used for meta-training, 100 characters

were used for validation in meta-training and 323 characters were used for meta-

testing. In our problem setting, the characters we used for mate-training and

validation are all unlabeled and we select supervised novel meta-tasks of meta-

test stage in labeled meta-test dataset.380

miniImageNet [22] is a subset of the ImageNet [46] with relatively fewer

number of classes. It includes 600 natural object images for each of 100 classes.

In this paper, we adopted the class split as in [22], i.e., 64 classes for training,

16 classes for validation, and 20 classes for test. These images are in size of

84 × 84. In our experiments, we discarded all labels of training and validation385

data and used the labeled test dataset for meta-test phase.

We implemented C2FPS-ML based on Model-Agonstic Meta-Learning (MAML) [14]

and Prototypical Networks (ProtoNets) [12]. MAML is different from previous

optimization-based meta-learning algorithms for FSL or other tasks. The core

idea of MAML is to train the model’s initial parameters such that the model390

has maximal performance on a new FSL task after the parameters have been

updated through a few gradient steps. Moreover, MAML does not constraint the

model architecture. ProtoNets learns a metric space in which classification can

be performed by computing distances to prototype representations of each class.

Compared to recent approaches for FSL, they reflect a more straightforward395

inductive bias that is beneficial in the limited-data regime and achieve excellent

results.

In this paper, we used the same model architectures as [28] for the fair
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Table 2: Results on miniImageNet obtained without random scaling and with 50 times random

scaling. Compared with [28], HPS-ML performs better in all settings.

Algorithm Random scaling
N-way K-shot (N, K)

(5,1) (5,5) (5,20) (5,50)

CACTUs-ProtoNets [28] 50 times 39.18% 53.36% 61.54% 63.55%

HPS-ML-ProtoNets (ours) 50 times 39.28% 53.44% 61.57% 63.88%

CACTUs-MAML [28] No 38.75% 52.73% 62.72% 67.77%

HPS-ML-MAML (ours) No 38.86% 53.06% 63.69% 69.52%

CACTUs-MAML [28] 50 times 39.90% 53.97% 63.84% 69.64%

HPS-ML-MAML (ours) 50 times 40.09% 54.51% 65.07% 70.14%

comparison. For HPS/PPS-ML-MAML, we used the same four blocks as

MAML with 64 filters for each convolutional layer. The outer-loop optimizer400

was Adam, and the inner-loop optimizer was SGD. For HPS-ML-ProtoNets,

we used 4-block convolutional archicture, in which each block consisted of a

convolutional layer with 64 3 × 3 filters, stride 1, and padding 1, followed by

BatchNorm, ReLU activation, and 2×2 MaxPooling. Adam optimizer was used

in HPS-ML-ProtoNets. Before extracting the underlying structure, unlabeled405

instances were processed by the unsupervised embedding algorithms. We used

DeepCluster [47] to embed miniImageNet, while Adversarially Constrained

Autoencoder Interpolation (ACAI) [48] and Bidirectional GAN (BiGAN) [49]

to embed Omniglot. We followed different training strategies to evaluate the

effectiveness of HPS/PPS-ML, i.e. (I) training from scratch [28], only using few410

labeled instances of the novel task to train the model and get the performance by

test images from the same novel categories, (II) knn-nearest neighbors [28], (III)

linear classifier [28], (IV) MLP with dropout [28], (V) clustering matching [28],

(VI) CACTUs [28], (VII) UMTRA [29], (VII) AAL [45], and (IX) UFLST [44].

We evaluated the performance of HPS-ML on the miniImageNet with the415

following settings: 5-way 1-shot, 5-way 5-shot, 5-way 20-shot, and 5-way 50-shot.

The number of clusters in [28] was 500. [28] formed pseudo labels of unlabeled
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Table 3: Results of PPS-ML-MAML on Omniglot. Our method does not achieve state-of-the-

art results in 4 settings, but exceeds the performance of CACTUs-MAML [28] in two settings,

which is related to ours.

Algorithm
N-way K-shot (N, K)

(5,1) (5,5) (20,1) (20,5)

Training from scratch 52.52% 74.78% 24.91% 47.62%

ACAI knn-nearest neighbours 57.46% 81.16% 39.73% 66.38%

BiGAN knn-nearest neighbours 49.55% 68.06% 27.37% 46.70%

ACAI linear classifier 61.08% 81.82% 43.20% 66.33%

BiGAN linear classifier 48.28% 68.72% 27.80% 45.82%

ACAI MLP with dropout 51.95% 77.20% 30.65% 58.62%

BiGAN MLP with dropout 40.54% 62.56% 19.92% 40.71%

ACAI clusering matching 54.94% 71.09% 32.19% 45.93%

BiGAN clusering matching 43.96% 58.62% 21.54% 31.06%

ACAI CACTUs-MAML [28] 68.84% 87.78% 48.09% 73.76%

BiGAN CACTUs-MAML [28] 58.18% 78.66% 35.56% 58.62%

ACAI PPS-ML-MAML (ours) 69.00% 87.88% 47.62% 72.74%

BiGAN PPS-ML-MAML (ours) 58.20% 78.67 % 39.90% 58.68 %

images in an extreme fine-grained level, since the total number of classes in

unlabeled dataset was less than 100. We also set the number of clusters in the

last level as 500. Numbers of samples in clusters should be balanced in order420

to construct meta-tasks, or samples in a particular cluster may not be enough

for selecting N -way K-shot tasks. In order to construct balanced clusters and

alleviate inadequate situations that the number of samples in a specific cluster

was less than K, we represented the potential underlying hierarchical categories

by the binary tree. Therefore, we set hierarchical levels L as three and the425

number of the first level clusters C as 125. The partition number P was two,

which meant separating each previous-level cluster into two parts. We used k -

means for conducting 3-level clustering: first level with 125 clusters, second level

with 250 clusters, third level with 500 clusters. The aim that we use k -means

as clustering method is for fair comparison with the baseline method [28].430

We evaluated the performance of PPS-ML on the Omniglot with the
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Table 4: Results on Omniglot obtained without random scaling and with 100 times random

scaling. Compared with [28], PPS-ML performs better in nearly all settings.

Algorithm Random scaling
N-way K-shot (N, K)

(5,1) (5,5) (20,1) (20,5)

ACAI CACTUs-MAML [28] No 66.49% 85.60% 45.04% 69.14%

ACAI CACTUs-MAML [28] 100 times 68.84% 87.78% 48.09% 73.76%

ACAI PPS-ML-MAML (ours) No 68.50% 86.42% 45.87% 71.00%

ACAI PPS-ML-MAML (ours) 100 times 69.00% 87.88% 47.62% 72.74%

BiGAN CACTUs-MAML [28] No 55.92% 76.28% 32.44% 54.22%

BiGAN CACTUs-MAML [28] 100 times 58.18% 78.66% 35.56% 58.62%

BiGAN PPS-ML-MAML (ours) No 57.35% 77.88 % 34.54% 56.63 %

BiGAN PPS-ML-MAML (ours) 100 times 58.20% 78.67 % 39.90% 58.68 %

following settings: 5-way 1-shot, 5-way 5-shot, 20-way 1-shot, and 20-way 5-

shot. The number of clusters in [28] was 500. We also set the number of clusters

in the last level as 500, and we set progressive levels L as three. Moreover, C1

is 125, and C2 is 250.435

5.2. Results

The results obtained by these two implemented frameworks are illustrated

in this section, and we also compare our results with the most related method

in [28]. Moreover, we present the iteration numbers in meta-training stage to

demonstrate the efficiency of C2FPS-ML.440

[28] applied random scaling to the dimensions of embedding spaces for

inducing different metrics during clustering. The results on miniImageNet in

Table 1 are also obtained by 50 times random scaling. By HPS-ML-MAML,

we obtain state-of-the-art results for UFSL classification on miniImageNet.

Accuracies of 5-way 1-shot and 5-way 5-shot settings are 40.09% and 54.51%.445

In 5-way 20-shot and 5-way 50-shot settings, we obtain 64.27% and 70.14%.

The clustering was also used in CACTUs [28], while unlabeled source samples

were divided into a certain number of clusters. Although the dimensions of

generated embeddings were randomly scaled 50 times to induce different metrics

and generate diverse meta-tasks, the extracted information only contained450

simple level supervision. In [28], embeddings were divided into 500 clusters
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Figure 5: The number of iterations in the meta-training stage of HPS-ML. Our proposed

HPS-ML needs less training iterations than [28].

for 50 times. We also conduct the random scaling in proposed method. The

comparison results of miniImageNet without random scaling and with 50 times

random scaling are summarized in Table 2. Our proposed HPS-ML performs

better than [28] in nearly all settings. Therefore, we demonstrate that455

optimizing meta-task sampling with the underlying hierarchical semantics of

unlabeled source dataset can improve the performance of UFSL.

The results on Omniglot in Table 3 are also obtained by 100 times random

scaling. By PPS-ML-MAML, we do not achieve the best results for UFSL

classification on Omniglot. However, compared with CACTUs [28] which is460

most related with PPS-ML-MAML, our results outperform its results in nearly

all settings. The comparison results of Omniglot without random scaling and

with 100 times random scaling are illustrate in Table 4. Our proposed PPS-ML

performs better than [28] in most cases. For UFLTS [45] which obtains the state-

of-art results, progressive clustering is also used. UFLTS focuses on applying465

advanced and complex progressive cluster algorithms on the extracted features
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(1) The iteration numbers of 5-Way settings.

(2) The iteration numbers of 20-Way settings.

Figure 6: The number of iterations in the meta-training stage. Our proposed PPS-ML needs

less training iterations than [28].

to obtain better partitions than CACTUs [28]. For the intermediate stage results

of progressive clustering, UFLTS does not use them in meta-training stage,

which is similar with CACTUs except for the complicated clustering methods.

Compared with our methods, UFLTS uses complex clustering methods, while470

we apply simple k -means algorithm. Moreover, we use the intermediate stage

results of progressive clustering, which is totally different from CACTUs.

Compared with CACTUs [28], Fig. 5 and Fig. 6 shows the number of

iterations in the meta-training stage. The method in [28] needs nearly 60,000

iterations to achieve its optimal performance on miniImageNet. Although the475
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Table 5: Compare the result of miniImageNet obtained by PPS-ML-MAML with that of HPS-

ML-MAML. HPS-ML-MAML outperforms PPS-ML-MAML on all settings, and the results

illustrated that the performance would become bad without hierarchical knowledge.

Algorithm Random scaling
N-way K-shot (N, K)

(5,1) (5,5) (5,20) (5,50)

PPS-ML-MAML (ours) No 38.85% 52.26% 63.32% 68.53%

HPS-ML-MAML (ours) No 38.86% 53.06% 63.69% 69.52%

PPS-ML-MAML (ours) 50 times 38.94% 53.05% 63.73% 68.91%

HPS-ML-MAML (ours) 50 times 40.09% 54.51% 65.07% 70.14%

performance of FSL is measured by novel tasks in the meta-test stage, the

training process might be hindered by the computational resources resulting

in longer training. However, it takes maximum 30,000 iterations for HPS-ML

to reach its highest performance, which is half of the iteration number in [28].

This shows the efficiency of our proposed HPS-ML. For omniglot, CACTUs480

needs 30000 iterations to obtain the satisfying results. PPS-ML only requires

maximum 20000 iterations in four settings.

5.3. Ablation Study

We conduct ablation experiments toward two different aspects. The first

aspect is PPS-ML on miniImageNet and HPS-ML on Omniglot. The second485

part is the study on clustering levels and iterations in our proposed C2FPS-ML,

which are hyper-parameters.

5.3.1. PPS-ML on miniImageNet and HPS-ML on Omniglot

To explore the effect of various coarse-to-fine supervisions on different

classification tasks, we analyze the performance of PPS-ML on miniImageNet490

and HPS-ML on Omniglot.

For miniImageNet, if we use PPS-ML for the classification task, the

hierarchical information were not extracted or stored using the progressive

manner. We discarded the clustering results of the former level and formed new
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Table 6: Compare the result of Omniglot obtained by HPS-ML-MAML with that of PPS-ML-

MAML. PPS-ML-MAML outperforms HPS-ML-MAML on the two settings, and the results

illustrated that the performance would become bad with hierarchical knowledge.

Algorithm Random scaling
N-way K-shot (N, K)

(5,1) (5,5)

ACAI HPS-ML-MAML (ours) No 41.38% 61.22%

ACAI PPS-ML-MAML (ours) No 69.00% 87.88%

clusters from the embedding in the later level. In our experiment, we adopted495

3-level progressive clustering with 125, 250 and 500 clusters, respectively. The

results implemented on PPS-ML-MAML are illustrated in Table 5. Accuracies

obtained by progressive clustering strategy are lower than results achieved by

HPS-ML. Therefore, this comparison demonstrates that hierarchical pseudo

supervision is useful for few-shot colored image classification.500

For omniglot, we also conducted experiment by using HPS-ML. We also

adopted 3-level hierarchical clustering with 125, 250 and 500 clusters, respectively.

The results are presented in Table 6. We adapted the same hyper-parameters

when conducting experiment using these two solutions. PPS-ML-MAML

outperforms HPS-ML-MAML in these two settings by a large percentage.505

5.3.2. Ablation Study on Clustering Levels and iterations

Clustering levels and iterations taken in each level are hyper-parameters in

C2FPS-ML. In this section, we analyse the effect caused by different numbers

of clustering levels and iterations on the classification performance.

Fig. 7 presents the results obtained by different iterations and sampling510

tasks from different clustering levels. Fig. 7(a) illustrates the results obtained

by HPS-ML-MAML with 50 times random scaling on miniImageNet. Fig. 7(b)

shows the results obtained by HPS-ML-ProtoNets with 50 times random scaling

on miniImageNet. The results of four settings are all enhanced by increasing

the iteration numbers and selecting meta-tasks from deeper cluster levels. The515
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Figure 7: Ablation study results on cluster levels and iterations. Level i under the nodes

means that the corresponding result is updated by sampling meta-tasks from this level. (a)

This figure illustrates the ablation study results of HPS-ML-MAML with 50 times random

scaling on miniImageNet. (b) This line chart shows the ablation study results of HPS-ML-

ProtoNets with 50 times random scaling on miniImageNet.

hyper-parameter settings in our experiment achieve the best results.

6. Conclusion

FSL follows the pattern that models learn new tasks with only a few labeled

samples per class. This paper focuses on a more general and challenging

UFSL problem where the auxiliary source dataset is fully unlabeled. We520

present a novel method named C2FPS-ML for few-shot object classification.

For natural object dataset, the underlying hierarchical nature object categories

of the unlabeled source dataset are extracted by hierarchical clustering, and

build a hierarchical tree of pseudo visual concepts. For other kinds of dataset

without semantic relations between objects, the potential progressive pseudo525

information is obtained by progressive clustering in different similarity levels.

We exploit this information as supervisions in meta-training stage and optimize

meta-task sampling process. In terms of accuracy and high efficiency, our

extensive experiments reveal state-of-the-art results on the miniImageNet and

remarkable results on Omniglot.530
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