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a b s t r a c t 

Face masks have become one of the main methods for reducing the transmission of COVID-19. This makes 

face recognition (FR) a challenging task because masks hide several discriminative features of faces. More- 

over, face presentation attack detection (PAD) is crucial to ensure the security of FR systems. In contrast 

to the growing number of masked FR studies, the impact of face masked attacks on PAD has not been 

explored. Therefore, we present novel attacks with real face masks placed on presentations and attacks 

with subjects wearing masks to reflect the current real-world situation. Furthermore, this study investi- 

gates the effect of masked attacks on PAD performance by using seven state-of-the-art PAD algorithms 

under different experimental settings. We also evaluate the vulnerability of FR systems to masked attacks. 

The experiments show that real masked attacks pose a serious threat to the operation and security of FR 

systems. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Since the SARS-CoV-2 coronavirus outbreak and its rapid global 

pread, wearing a mask has become one of the most efficient ways 

o protect and prevent getting infected with COVID-19. However, 

or identity checks in crowded scenarios such as at airports, re- 

oving the mask for face recognition (FR) increases the chance of 

nfection. Wearing masks in public might be an essential health 

easure and a new norm even after the COVID-19 pandemic as 

ost countries support the use of masks to minimize the spread 

f the virus. As a result, researchers have shown an increased 

nterest in the effect of face masks on the performance of FR 

erification [1–3] . The results of their studies have shown that 

re-COVID-19 FR algorithms suffer performance degradation ow- 

ng to the masked faces. However, attacks compromising the se- 

urity and vulnerability of FR systems for subjects wearing face 

asks have so far been overlooked. In this study, security refer to 

he presentation attacks (PAs). Attackers can use PAs to spoof FR 

ystems by impersonating someone or obfuscating their identity. 

ommon PAs include printed photos/images, replayed videos and 

D masks [4,5] . Driven by the ongoing COVID-19 pandemic, pre- 

entation attack detection (PAD) [6] has encountered several un- 

erstudied challenges when facing masked faces. Current face PAD 
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atabases [7–9] only contain printed images or replayed videos 

n which subjects were not wearing face masks. Therefore, there 

s uncertainty about the relationship between the performance of 

AD techniques and PAs with face masks. Moreover, the vulnerabil- 

ty of FR systems to masked attacks remains unclear. To overcome 

uch gaps, researchers require well-studied masked PAs. 

In this study, we design and collect three types of attacks 

ased on masked and unmasked face images collected realistically 

nd collaboratively [2,3] . The bona fide samples were divided into 

ategories of BM0 (subjects wearing no masks) and BM1 (sub- 

ects wearing masks). AM0 data are unmasked print/replay attacks, 

hich are commonly used data in most current PAD databases. 

M1 data include print/replay attacks, where live subjects wore 

asks. In addition, we provide a novel partial attack type, called 

M2, where a real medical mask is placed on printed photos or re- 

layed videos to simulate the subject wearing a mask. This is mo- 

ivated by our assumption that AM2 might be a challenging attack 

s it contains both bona fide and attack presentations that may 

onfuse PAD and/or FR systems. The data samples are presented in 

ig. 1 . The main contributions in this study are: 

• The novel Collaborative Real Mask Attack Database (CRMA) is 

presented. Three types of PAs, called AM0 (unmasked face PA), 

AM1 (masked face PA), and AM2 (unmasked face PA with a 

real masked placed on the PA) (as shown in Fig. 1 ), were cre-

ated for both print and replay presentation attack instruments 

(PAIs). To create such attacks, three electronic tablets with high- 

https://doi.org/10.1016/j.patcog.2021.108398
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108398&domain=pdf
mailto:meiling.fang@igd.fraunhofer.de
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Fig. 1. Example bona fide and attack samples in the CRMA database. Based on the presence of face masks, bona fides are grouped into BM0 (without mask) and BM1 (with 

mask) categories. The novel attacks are grouped into AM0 (spoof face without mask), AM1 (spoof face with mask), AM2 (spoof faces covered by real masks). 
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resolution and three capture scales are used. Additionally, we 

designed three experimental protocols to explore the effect of 

masked attacks on PAD performance. 
• Extensive experiments are conducted to explore the effect of 

bona fide samples, masked faces attacks, and real masks (on 

spoof faces) on the face PAD behavior. To support the com- 

prehensive evaluation, seven PAD algorithms comprising of 

texture-based, deep-learning-based, and hybrid methods were 

selected to evaluate the performance and generalizability in 

intra- and cross-database scenarios under three mask-related 

protocols. Both quantitative and qualitative analyses revealed 

that masked bona fides and PAs dramatically decreased the 

performance of PAD algorithms. Moreover, deep-learning-based 

methods perform worse on real mask attacks than mask-face 

attacks in most cases. 
• An in-depth vulnerability analysis of FR systems is presented. 

We evaluated three deep-learning-based FR techniques for 

three types of PAs. The experimental results indicate that these 

three FR networks exhibit significantly higher vulnerabilities to 

the real mask attacks than masked face attacks. 

We provide a brief review of relevant works in Section 2 . Then, 

ur novel CRMA database is described in detail in Section 3 . The 

ace PAD algorithms and FR systems used in this study are intro- 

uced in Section 4 . Section 5 introduces the three PAD protocols 

nd PAD evaluation metrics, and then discusses the PAD results. 

ection 6 describes the three FR experimental settings, used FR 

etrics, and analyzed the vulnerability of FR systems. Finally, con- 

lusions are presented in Section 7 . 

. Related work 

This section reviews the most relevant prior works from three 

erspectives: face PAD databases, face PAD methods, and FR and 

ulnerability analysis. At the end of each part, the difference be- 

ween our work and prior work is pointed out. 

Face PAD Databases: Data resources have become espe- 

ially important ever since the advent of deep learning, because 

achine-learning-based algorithms have the risk of underfitting or 

verfitting on limited data. Given the significance of good-quality 

atabases, several face PAD databases have been released, such 

s NUAA [10] , CASIA-FAS [11] , Replay-Attack [12] , MSU-MFSD [13] , 

ULU-NPU [7] , and SiW [8] , all consisting of 2D print/replay at- 
2 
acks. In addition, SiW-M [9] and CelebA-Spoof [14] databases pro- 

ide multiple types of attacks such as makeup, 3D mask, or paper 

ut. Moreover, some multimodal databases are publicly available: 

DMAD [15] , Mssproof [16] , CASIA-SURF [17] , and CSMAD [18] . 

These databases undoubtedly contribute to the significant 

rogress of PAD research. For example, the CeleA-Spoof database 

omprises images from various environments and illuminations 

ith rich annotations to reflect real scenes. However, these 

atabases also have weaknesses: 1) the multimodal databases have 

igh hardware requirements and cannot be widely used in daily 

ife; 2) some databases such as CASIA-MFS [11] and MSU-MFS 

13] cannot satisfy the current needs because of the lower quality 

f the outdated acquisition sensors; 3) Oulu-NPU [7] , SiW [8] , SiW- 

 [9] , and CelebA-Spoof [14] are relatively up-to-date, but they do 

ot consider PAs with real face masks to fit the current COVID-19 

andemic. Hence, we collect the CRMA database to fill the gaps in 

hese databases in the context of the ongoing COVID-19 pandemic; 

urthermore, we ensure the the database is generalizable and com- 

atible with real scenarios. The CRMA database can be used to bet- 

er analyze the effect of a real mask on PAD performance and the 

ulnerability of FR systems for novel attacks, such as placing a real 

ask on an attack presentation. Detailed information related to the 

atabases mentioned above is presented in Table 1 ). 

Face PAD Methods: In recent years, there has been an increas- 

ng number of studies in the field of face PAD [19–21] . These stud-

es can be broadly grouped into three categories: texture-based 

ethods, deep-learning-based methods, and hybrid methods. Tex- 

ure features, such as local binary pattern (LBP) [22] , project the 

aces to a low-dimensional embeddings. Määttä et al. [23] proposed 

n approach using multi-scale LBP to encode the micro-texture 

atterns into an enhanced feature histogram for face PAD. The 

esulting histograms were then fed to a support vector machine 

SVM) classifier to determine whether a sample is a bona fide 

r attack. The LBP features extracted from different color spaces 

24] were further proposed to utilize chrominance information. 

hey achieved competitive results on Replay-Attack [12] (equal er- 

or rate (EER) value of 0.4%) and CASIA-FAS [11] (EER value of 6.2%) 

atabases. Furthermore, Boulkenafet et al. [25] organized a face PAD 

ompetition based on the OULU-NPU database and compared 13 

lgorithms provided by participating teams and one color-LBP- 

ased method (referred to as baseline in [25] ). In this compe- 

ition, the GRADIANT algorithm fused multiple information, that 

s, color, texture, and motion. The GRADIANT achieved compet- 
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3 
tive results in the four evaluation protocols. In addition to the 

exture-based GRADIANT approach, deep-learning-based method 

MixFASNet) or hybrid method (CPqD) also achieved lower er- 

or rates in all experimental protocols. CPqD fused the results 

rom the fine-tuned Inception-v3 network and the color-LBP-based 

ethod (referred to as the baseline in [25] ). Consequently, we 

hose to re-implement the color-LBP and CPqD methods in this 

tudy (details in Section 4.1 ), while the GRADIANT and MixedFAS- 

et are discarded in our work because they do not provide suf- 

cient details for re-implementation. Deep-learning-based meth- 

ds have been pushing the frontier of face PAD research and 

ave shown remarkable improvements in PAD performance. Lu- 

ena et al. [26] presented an approach called FASNet in which a 

re-trained VGG16 is fine-tuned by replacing the last fully con- 

ected layer. The FASNet network achieved excellent performance 

n 3DMAD [15] and Replay-Attack databases [12] . Recently, George 

t al. [27] proposed training a network with pixel-wise binary su- 

ervision on feature maps to exploit information from different 

atches. DeepPixBis [27] outperformed the state-of-the-art algo- 

ithms in Protocol-1 of the OULU-NPU database (0.42% ACER) but 

lso achieved significantly better results than traditional texture- 

ased approaches in the cross-database scenario. Considering the 

opularity of PAD techniques and the ease of implementation, we 

lso chose FASNet and DeepPixBis (details in Section 4.1 ) to study 

he effect of the real mask and masked face attacks on the PAD 

erformance. 

Face Recognition and Vulnerability Analysis: As one of the 

ost popular modalities, the face has received increasing atten- 

ion in authentication/security processes, such as smartphone face 

nlocking and automatic border control (ABC). Moreover, FR tech- 

iques [28–30] have achieved significant performance improve- 

ents, and many personal electronic products have deployed FR 

echnology. However, the ongoing COVID-19 pandemic brings a 

ew challenge related to the behavior of collaborative recognition 

echniques when dealing with masked faces. Collaborative data 

ollection refers to a subject actively attending to use the FR sys- 

ems, such as unlocking personal devices or using an ABC gate, in 

ontrast to uncollaborative capture scenario where the user does 

ot intentionally use the FR service, such as in the case of surveil- 

ance. The National Institute of Standards and Technology (NIST) 

1] provided a preliminary study that evaluated the performance 

f 89 commercial FR algorithms developed before the COVID-19 

andemic. Their results indicated that digitally applied face masks 

ith photos decreased the recognition accuracy; for example, even 

he best of the 89 algorithms had error rates between 5% and 

0%. It is worth noting that the masks used in the experiments 

ere synthetically created. Damer et al. [2,3] presented a real mask 

atabase to simulate a realistically variant collaborative face cap- 

ure scenario. Each participant was asked to simulate a login sce- 

ario by actively looking toward a capture device, such as a static 

ebcam or a mobile phone. Our attack samples were created and 

ollected based on the masked face data, which refers to the bona 

de samples in the PAD case (as described in Section 3 ). They also

xplored the effect of wearing a mask on FR performance and con- 

luded that face masks significantly reduce the accuracy of algo- 

ithms. Mohammadi et al. [31] provided empirical evidence to sup- 

ort the claim that the CNN-based FR methods are extremely vul- 

erable to 2D PAs. Subsequently, Bhattacharjee et al. [18] presented 

he first FR-vulnerability study on 3D PAs. The experiments also 

learly showed that CNN-based FR methods are vulnerable to cus- 

om 3D mask PAs. However, the vulnerability of FR systems to 

As with face masks has not been investigated. Therefore, in this 

tudy, we selected three CNN-based FR algorithms for further FR- 

ulnerability analysis on masked face attacks: the state-of-the-art 

rcFace [28] , SphereFace [29] , and VGGFace [30] . These algorithms 

re discussed in more detail in Section 4.2 . 
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. The collaborative real mask attack database (CRMA) 

Our proposed CRMA database 1 and can serve as a supplement 

o the databases in Table 1 , and because of the COVID-19 pan- 

emic, it can better reflect the possible issues facing real-world 

AD performance. The CRMA database includes 1) both unmasked 

BM0) and masked (BM1) bona fide samples collected in a realistic 

cenario [2,3] , 2) conventional replay and print PAs created from 

aces not wearing a mask (AM0), 3) replay and printed PAs created 

rom masked face images (AM1), and 4) novel PAs where the PAs 

f unmasked faces are covered (partially) with real masks (AM2), 

s shown in Fig. 1 . Damer et al. [2,3] collected data to investigate

he effect of wearing a mask on face verification performance. For 

AD, such data are considered bona fide. The data presented in this 

tudy build on an extended version of the data introduced in [2,3] , 

y creating and capturing different types of PAs based on the bona 

de data captured in [2,3] . As a result, the bona fide data in this

ork are an extended version of the one introduced in [2,3] and 

he attack data presented here are completely novel and have not 

een previously studied. 

Fig. 3 introduces the general statistical information of the CRMA 

atabase. This database contains 62% males and 38% females. The 

ttack AM0, AM1, and AM2 ratios are 30%, 60%, and 10%, respec- 

ively, as will be described later in this section. Additionally, we 

ount the frequency of the proportion of the face size in the video. 

he histogram shows that the proportion of the face areas in the 

ideos is mostly between 5% and 30%. This section first describes 

he bona fide samples provided by [2,3] , and then introduces our 

rocess of attack sample creation and collection. 

.1. Collection of bona fide samples 

To explore the FR performance on masked faces, Damer 

t al. [2,3] recently presented a database where the subjects wear- 

ng face masks. 

This database simulates a collaborative environment in which 

articipants collect videos by actively looking towards the capture 

evice. During this process, the eyeglasses were removed when the 

rame was considered very thick following the International Civil 

viation Organization (ICAO) standard [32] . The videos were cap- 

ured by the participants at their residences while working from 

ome. Therefore, the types of face masks, capture devices, illu- 

ination, and background were varied. For PAD, these videos are 

lassified as bona fides and will be used later to create attack sam- 

les. 

The final version [3] of this database contains 47 participants. 

ach subject recorded a total of nine videos over three days with 

hree different scenarios for each day. In contrast to the study by 

amer et al. [2] , which examined the effects of both face masks 

nd illumination variations, we focused only on the impact of face 

asks on PAD performance. Hence, in our study, the bona fide 

ideos are divided into two categories: a face without a mask on is 

enoted as BM0 (three videos per subject), and a face with a mask 

s marked as BM1 (six videos per subject) (as shown in the right 

olumn of Fig. 1 ). 

.2. Creation of the presentation attacks 

Most FR databases tried to collect data under various harsh 

onditions, such as poor lighting, strong occlusion, or low resolu- 
1 The CRMA database is not publicly available because of privacy regulations. 

owever, the database will be (1) available for assisted in-house research use by 

ollaborators and partners in the research community; (2) bending the legal autho- 

ization by the data collection institute, the data will be submitted to be included 

n the Open Science BEAT platform ( www.beat-eu.org ). 

v

4

t

4 
ion. Such databases attempted to reproduce what might happen 

n a real-world scenario when a legitimate user obtains authoriza- 

ion [33] . In contrast, attackers use highly sophisticated artifacts, 

uch as high-resolution images or videos, to maximize the success 

ate when impersonating someone. For this reason, we first col- 

ect the PAs in a windowless room where all lights are on. Second, 

hree high-resolution electronic tablets were used in the acquisi- 

ion process: 1) iPad Pro-(10.5-inch) with the display resolution 

f 2224 × 1668 pixels, 2) Samsung Galaxy Tab S6 with the dis- 

lay resolution of 2560 × 1600 pixels, 3) Microsoft Surface Pro-6 

ith the display resolution of 2736 × 1824 pixels. In the process of 

ollecting data, the capture devices and displayed images/tablets 

ere stationary. The videos were captured with a resolution of 

920 × 1080 . In addition, each video had a minimum length of 5 

econds, and the frame rate was 30 fps. This work focuses on the 

wo common PAIs, print and replay attacks, due to their ease of 

reation and low cost. The attack data in each PAI (see the sam- 

les in Fig. 1 ) are divided into three types: 1) the spoof face with

o face mask (AM0), 2) the spoof face with a mask on (AM1), and 

) the spoof face with no face mask, but a real mask was placed 

n it to simulate a participant wearing a mask (AM2). However, 

he size of the face area in each video is slightly inconsistent be- 

ause the videos were recorded by the participants themselves. To 

eproduce the appearance of wearing a mask in the real world, we 

ropped five face masks to fit most of the faces (see Fig. 3 ). The

ve masks are three small blue surgical masks, one slighter big- 

er white face mask, and one uncropped mask. When placing the 

ask, we select a suitable mask according to the size of the face 

n the printed image or video, aiming to cover the nose to the chin 

rea and the cheeks without exceeding. The details of each PAI are 

s followings: 

Print image attack : In print PAI, an attacker tries to fool the 

R system using a printed photo. Considering the instability of the 

ace during the first second, such as the participant pressing the 

ecording button or adjusting the sitting position, the 35 th frame of 

ach bona fide video was printed out as an attack artifact. There- 

ore, we obtained nine photos per subject. The three tablets men- 

ioned above were used to capture the photos. Furthermore, to in- 

rease the diversity and variety of the data, each tablet captured 

hree videos for a photo with three scales (see examples in Fig. 2 ).

he captured videos using the first scale contained all areas (100%) 

f the photos, the second scale consisted of most areas (80%) of the 

riginal photos, and the third scale focused on the face area (60%) 

s much as possible. In addition to collecting attack data solely 

rom printed images, we also collected data from real face masks 

verlaid on photos (i.e., the previously defined AM2). Theoretically, 

eal masks will reduce the region of artificial features and increase 

he complexity and mixture of the features in the collected attack 

ata. Eventually, 90 print attack videos were generated for each 

ubject, that is, a total of 4230 videos for 47 subjects in print PAI. 

Replay video attack : In replay PAI, an attacker tries to obtain 

he authentication by replaying a video. The three common points 

f the collection process between print and replay PAI are the use 

f three tablets, the use of three scales, and the process of AM2 

ata creation, respectively. The difference is that these tablets were 

lso used for capturing displays of videos (see examples in Fig. 2 ). 

hile one tablet was replaying the video, the other two tablets 

ere used to capture the data. As a result, each subject corre- 

ponded to 180 replay attack videos (162 videos of the AM0 and 

M1 groups, 18 videos of AM2.), i.e., there were a total of 8460 

ideos in this attack subset. 

. Experimental algorithms 

This section first describes the adopted face PAD algorithms for 

he investigation of masked face attacks. Subsequently, three FR al- 

http://www.beat-eu.org
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Fig. 2. Different capture variations in the CRMA database. The top left shows the videos captured by different devices. The top right shows the different capture scales. The 

bottom shows the six cross-device types of replay attack settings. 

Fig. 3. The statistics of the subjects and the used mask shapes for creating AM2 samples in the CRMA database. From left to right: gender, mask types of attacks (AM0, 

AM1, AM2), the histogram shows the probability distribution of the face size ratio and the applied mask shapes. 
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orithms were introduced for further vulnerability analysis. In both 

AD and FR experiments, the widely used multi-task cascaded con- 

olutional networks (MTCNN) [34] technique was adopted to de- 

ect and crop the face. 

.1. Face PAD algorithms 

A competition [25] was carried out in 2017 to evaluate and 

ompare the generalization performance of face PAD techniques 

nder real-world variations. In this competition [25] , there were 

4 participating teams together with organizers that contributed 

o several state-of-the-art approaches. We chose two methods ((as 

reviously discussed in Section 2 )), the LBP-based method (re- 

erred to as the baseline in [25] ), and hybrid CPqD, and included 

dditional solutions. We re-implemented a total of seven face 

AD algorithms in this study, which can be categorized into three 

roups: hand-crafted features, deep-learning features, and hybrid 

eatures. For further cross-database evaluation scenarios, we used 

hree publicly available databases, mainly involving 2D PAs (details 

n Section 2 ): CASIA-FAS [11] , MSU-MFS [13] , and OULU-NPU [7] in

he competition. A brief description of the adopted methods is pro- 

ided below: 

• LBP: The LBP method is referred to as baseline method in 

[25] provided by the competition organizers that utilized the 

color texture technique. The face in a frame is first detected, 

cropped, and normalized to a size of 64 × 64 pixels. Second, 

an RGB face was converted into HSV and YCbCr color spaces. 

Third, the LBP features were extracted from each channel. The 

obtained six LBP features are then concatenated into one fea- 

ture vector to feed into a softmax classifier. The final predic- 

tion score for each video was computed by averaging the out- 

put scores of all the frames. 
• CPqD: The CPqD is based on the Inception-v3 network [35] and 

the above LBP method. The last layer of the pre-trained 
5 
Inception-v3 model was replaced by a fully connected layer and 

a sigmoid activation function. The faces in the RGB frames are 

detected, cropped, and normalized to 299 × 299 pixels. These 

face images were utilized as inputs to fine-tune the Inception- 

v3 model. The model with the lowest EER on the development 

set among all 10 training epochs was selected. A single score for 

each video was obtained by averaging the output scores of all 

frames. To further improve the performance, the final score for 

each video was computed by fusing the score achieved by the 

Inception-v3 model and the score obtained by the LBP method. 
• Inception FT and Inception TFS : Since the CPqD uses the 

Inception-v3 [35] network as the basic architecture, we also 

report the results of fine-tuned Inception-v3 model, named 

Inception FT . In addition to the fine-tuned model, we trained 

the Inception-v3 model from scratch for performance com- 

parison, named Inception TFS . In the training phase, the binary 

cross-entropy loss function and Adam optimizer with a learn- 

ing rate of 10 −5 were used. The output scores of the frames 

were averaged to obtain a final prediction decision for each 

video. 
• FASNet FT and FASNet TFS : FASNet [26] used transfer learning 

from pre-trained VGG16 model [36] for face PAD. They used 

a pre-trained VGG16 model as a feature extractor and modi- 

fied the last fully connected layer. The newly added fully con- 

nected layers with a sigmoid function were then fine-tuned for 

the PAD task. This fine-tuned FASNet is referred to as FASNet FT , 

similar to the Inception-v3 network methods, and we also train 

FASNet from scratch with the name FASNet TFS . The input im- 

ages are the detected, cropped, and normalized RGB face frames 

with a size of 224 × 224 pixels. The Adam optimizer with a 

learning rate of 10 −4 was used for training, as defined in [26] . 

Data augmentation techniques and class weights are utilized to 

deal with imbalanced data problems. To further reduce overfit- 

ting, an early stop technique with a patience of 5 and maxi- 
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mum epochs of 30 was used. The resulting scores were aver- 

aged to obtain the final score for each video. 
• DeepPixBis: George et al. [27] proposed a densely connected 

network framework for face PAD with binary and deep pixel- 

wise supervision. This framework is based on DenseNet archi- 

tecture [37] . Two dense blocks and two transition blocks with a 

fully connected layer with sigmoid activation produce a binary 

output. We used the same data augmentation technique (hori- 

zontal flip, random jitter in brightness, contrast, and saturation) 

and the same hyper-parameters (Adam optimizer with a learn- 

ing rate of 10 −4 and weight decay of 10 −5 ) as defined in [27] for

the training. In addition to data augmentation, we applied the 

class weight and an early stopping technique to avoid overfit- 

ting. The final score for each video was computed by averaging 

the frame scores. 

.2. Face recognition algorithms 

For FR systems, trained CNNs are typically used as feature ex- 

ractors. The feature vector extracted from a specific layer of an 

ff-the-shelf CNN was used as the template to represent the cor- 

esponding input face image. Then, the resulting templates were 

ompared with each other using similarity measures. To provide a 

ulnerability analysis of the FR systems to our novel masked at- 

acks, we adapted the following three FR algorithms: 

• ArcFace: ArcFace [28] introduced an additive angular margin 

loss function to obtain highly discriminative features for FR. We 

chose this algorithm because ArcFace consistently outperformed 

state-of-the-art methods. ArcFace achieved 99.83% on Labeled 

Faces in the Wild (LFW) [33] and 98.02% on YouTube Faces 

(YTF) [38] dataset. The pre-trained ArcFace model 2 in our study 

was based on the ResNet-100 [39] architecture and trained on 

the MS-Celeb-1M [40] dataset (MS1M-v2). The output template 

is a 512-dimension feature vector extracted from the ’ fc1 ’ layer 

of ArcFace. 
• SphereFace: Liu et al. [29] proposed a deep hypersphere embed- 

ding approach (SphereFace) for FR task. SphereFace [29] uti- 

lized the angular softmax loss for CNNs to learn angularly 

discriminative features. This method also achieved competi- 

tive performance on LFW [33] (accuracy of 99.42%) and YTF 

[38] datasets (95.00%). We extract the face representation with 

512-dimension from a pre-trained 20-layer SphereFace model. 3 

• VGGFace2: The first version of VGGFace is based on 16-layer 

VGG [36] network, while the second version of VGGFace (VG- 

GFace2) [30] adopt ResNet-50 [39] as the backbone architec- 

ture. In this work, we use the second version that a ResNet-50 

network trained on VGGFace2 dataset [30] 4 for extracting the 

512-dimension templates. 

The vulnerability of each FR system to attacks was analyzed 

ased on three scenarios. Regardless of the scenario, the references 

re scenarios-specific bona fide videos captured on the first day, 

hile bona fide videos from the second and third days or attack 

ideos were selected as probes. The three cases, including the divi- 

ion of scenario-specific references and probes, are described with 

he results in detail in Section 6 . Once the references for the face

mages are obtained, we use the Cosine-similarity as recommended 

n [28–30] to compute the similarity scores between references 

nd probes. 
2 The official ArcFace model: https://github.com/deepinsight/insightface . 
3 The official SphereFace model: https://github.com/wy1iu/sphereface . 
4 The VGGFace2 model: https://github.com/WeidiXie/Keras- VGGFace2- ResNet50 . 
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6 
. Analysis of PAD performance 

This section first describes three protocols designed to investi- 

ate the effect of masked attacks on PAD performance under dif- 

erent training settings. Second, the PAD evaluation metrics used 

ere introduced for further analysis. Third, quantitative results 

ere reported according to different PAD protocols. Finally, qual- 

tative analysis and visualization are presented and discussed. 

.1. PAD evaluation protocols 

.1.1. PAD protocols for the CRMA database 

In this study, three protocols are provided to study the im- 

act of masks on the performance of PAD solutions under differ- 

nt training settings. Other factors, such as various devices, illu- 

ination, and capture scales, are outside the scope of this study. 

hese three protocols try to answer three questions separately: 1) 

oes the PAD algorithm trained on unmasked data generalize well 

n the masked bona fides and attacks, that is, can the previously 

rained model be adapted to the present-day situation? 2) Does the 

AD algorithm designed before the COVID-19 pandemic still work 

fficiently if it is trained on additional masked data? 3) Will a net- 

ork that has learned masked face attacks be confused by real 

asks that obscure the spoof face? Hence, we split 47 subjects 

n the CRMA database into three subject-disjoint sets: the train- 

ng set (19 subjects), the development set (10 subjects), and the 

esting set (18 subjects). Gender was balanced as much as possible 

etween the three sets. Table 2 provides more information about 

hree protocols. A detailed description of three protocols is as 

ollows: 

Protocol-1 (P1) : This protocol demonstrates the generaliza- 

ion performance of the PAD solutions trained on unmasked data. 

he training and development sets contain only videos of sub- 

ects without masks (such as data in most current PAD databases). 

he trained model was then tested on the data using face masks. 

ore specifically, only BM0 and AM0 data were used for train- 

ng, while BM1, AM1, and AM2 were considered unknown mask 

ata. 

Protocol-2 (P2) : In contrast to protocol-1, which focuses on 

eneralizability on unseen mask data, the second protocol is de- 

igned to evaluate the performance of PAD algorithms when 

asked data has been learned in the training phase. In this 

rotocol, the training, development, and testing sets include 

asked and unmasked bona fides (BM0, BM1), masked and un- 

asked attacks (AM0, AM1), and spoof faces with real masks 

AM2). 

Protocol-3 (P3) : Until now, the effect of AM2 on PAD perfor- 

ance is still unclear. AM2 is a special attack type that a real face 

ask is placed on spoof faces, which means it contains only partial 

rtifacts (i.e., unmasked face spoofing region) compared to AM1, 

hich carries entire artifacts (i.e., spoofed face and mask). There- 

ore, this protocol attempts to answer the following question: If 

he network has learned the masked attacks AM1, can this trained 

odel not be confused by a real mask and perform similarly on 

he attack covered by a real mask AM2? Consequently, the training 

nd development sets include bona fides BM0 and BM1, and at- 

acks AM0 and AM1, while AM2 is an unknown attack in the test- 

ng set. 

Because data in the CRMA are video sequences and the number 

f videos between bona fide and attack classes are imbalanced, we 

ampled 60 frames from a bona fide video and five frames from 

n attack video to reduce data bias. In addition to different frame 

ampling, we also adapt the class weights inversely proportional 

o the class frequencies to reduce overfitting in the training phase. 

n the test phase, a final classification decision was determined by 

veraging the prediction scores of all sampled frames. 

https://github.com/deepinsight/insightface
https://github.com/wy1iu/sphereface
https://github.com/WeidiXie/Keras-VGGFace2-ResNet50
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Table 2 

The detailed information of three protocols for exploration of the possible effect of face masks. The bona fide is denoted as BF. 

The test data is the same in the three protocols, while the types of training and development data are different. 

Protocol Set Subjects Types of masks # BF videos # Attack videos 

P1 Train 1–19 BM0, AM0 57 1569 

Dev 20–29 BM0, AM0 30 810 

Test 30–47 BM0, BM1, AM0, AM1, AM2 162 4860 

P2 Train 1–19 BM0, BM1, AM0, AM1, AM2 171 5130 

Dev 20–29 BM0, BM1, AM0, AM1, AM2 90 270 

Test 30–47 BM0, BM1, AM0, AM1, AM2 162 4860 

P3 Train 1–19 BM0, BM1, AM0, AM1 171 4617 

Dev 20–29 BM0, BM1, AM0, AM1 90 2430 

Test 30–47 BM0, BM1, AM0, AM1, AM2 162 4860 

Table 3 

The PAD performance of different PAD solutions in three protocols (as described in Section 5.1 ). The bold number in each 

protocol and each method refers to the highest BPCER on BM0 and BM1 data and the highest APCER value between AM0, AM1, 

and AM2 in the two PAIs, respectively. The higher BPCER values for BM1 (in comparison to BM0) indicate that subjects wearing 

masks tend to be classified falsely as attacks. 

Protocol Method Threshold @ BPCER 10% in dev set 

BPCER (%) APCER (print) (%) APCER (replay) (%) 

BM0 BM1 AM0 AM1 AM2 AM0 AM1 AM2 

P1 LBP 1.75 4.39 80.12 72.61 71.93 74.95 67.76 73.98 

Inception FT 19.30 84.21 10.33 3.80 2.92 27.19 5.81 0.88 

CPqD 7.02 47.37 18.52 7.80 15.79 31.77 11.19 10.23 

FASNet FT 12.28 56.14 7.02 1.36 2.92 20.37 12.21 9.65 

Inception TFS 7.04 48.25 1.36 0.00 1.75 7.50 0.34 7.02 

FASNet TFS 7.02 29.82 1.95 0.49 15.20 8.09 4.64 7.89 

DeepPixBis 19.30 28.95 1.56 1.56 5.85 3.61 4.05 6.43 

P2 LBP 26.32 11.40 31.38 44.44 36.84 36.74 34.39 28.95 

Inception FT 1.75 7.02 35.28 30.80 11.70 54.09 52.17 10.23 

CPqD 3.51 7.89 27.49 30.41 16.37 46.20 44.50 10.23 

FASNet FT 1.75 17.54 10.72 12.77 5.85 30.60 28.09 3.80 

Inception TFS 8.77 18.42 0.78 1.56 2.34 3.90 5.23 2.63 

FASNet TFS 14.04 29.82 4.09 3.41 9.36 4.69 2.88 3.80 

DeepPixBis 29.82 24.56 0.78 0.19 1.75 0.10 1.86 0.88 

P3 LBP 22.81 9.65 35.28 48.15 47.95 38.50 36.79 42.40 

Inception FT 1.75 8.77 24.17 24.37 11.70 46.69 47.14 14.04 

CPqD 7.02 7.02 20.66 28.95 21.64 41.23 41.52 17.84 

FASNet FT 5.26 21.93 14.04 9.94 26.71 22.62 19.88 20.47 

Inception TFS 21.05 21.93 0.19 0.00 1.17 1.56 2.34 4.97 

FASNet TFS 22.81 34.21 0.39 0.29 2.34 3.41 2.20 6.43 

DeepPixBis 17.54 24.56 0.78 0.68 2.92 0.88 1.91 6.43 
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.1.2. PAD protocols for cross-database scenarios 

In addition to the intra-database scenario on our CRMA 

atabase, we also perform cross-database experiments to explore 

he generalizability of these PAD algorithms on masked data. Be- 

ause the PAIs in the CRMA database are print and replay at- 

acks, we selected three popular publicly available databases con- 

aining the same PAIs: CASIA-MFS [11] , MSU-MFS [13] , and OULU- 

PU [7] to demonstrate the evaluation. We conducted two cross- 

atabase experiments. In the first cross-database scenario, the PAD 

olutions trained on three publicly available databases were eval- 

ated on the test set of the CRMA database. In addition, the re- 

ults tested on their own test sets are also reported (as shown in 

he left block in Table 4 ). The first setting is similar to protocol-1

f the CRMA intra-database scenario, as no masked data are seen 

n the training phase. Therefore, the first cross-database setting is 

lso used to answer the first question: does the PAD algorithm 

rained on unmasked data generalize well on masked bona fides 

nd attacks? Conversely, in the second cross-database experiment, 

odels trained on different protocols of the CRMA database were 

valuated separately on publicly available databases. This experi- 

ental setting can help us understand the CRMA database values 

eyond face masks, such as the diversity of masks/sensors/scales. 

owever, the second scenario does not support the main study of 

he work and is provided only for completeness; thus, the results 

re reported in the supplementary material. In both cross-database 
7 
cenarios, we use the τBPCER 10 decision threshold computed on the 

evelopment set of the training database as a priori to determine 

he APCER, BPCER, and HTER values of the test database. 

.2. PAD evaluation metrics 

The metrics following the ISO/IEC 30107-3 [41] standard were 

sed to measure the performance of the PAD algorithms: Attack 

resentation Classification Error Rate (APCER) and bona fide presen- 

ation classification error rate (BPCER). APCER is the proportion of 

ttack images incorrectly classified as bona fide samples in a spe- 

ific scenario, while BPCER is the proportion of bona fide images 

ncorrectly classified as attacks in a specific scenario. The APCER 

nd BPCER reported in the test set were based on a pre-computed 

hreshold in the development set. In our study, we use a BPCER 

t 10% (on the development set) to obtain the threshold (denoted 

s τBPCER 10 ). Additionally, half-total error rater (HTER) correspond- 

ng to half of the summation of BPCER and APCER is used for the 

ross-database evaluation. Noticeably, we computed a threshold in 

he development set of the training database. Then, this threshold 

as used to determine the HTER value in the test database. The 

etection EER (D-EER) value, where APCER and BPCER are equal is 

lso reported in the cross-database scenarios. For further analysis 

f PAD performance, receiver operating characteristic (ROC) curves 

ere also demonstrated. 



M. Fang, N. Damer, F. Kirchbuchner et al. Pattern Recognition 123 (2022) 108398 

Table 4 

Cross-database evaluation 1: the model trained on three publicly available databases is used to test on the CRMA database. This cross-database scenario is similar to protocol- 

1, as no masked data is seen during the training phase. Italic numbers indicate the lowest error rate on their own test set, and bold numbers indicate the highest error rate 

in the bona fide and each PAI category. The results show that despite good performance on their own test set, these trained models do not generalize well to masked bona 

fides and attacks. 

Trained on Method Threshold @ BPCER 10% in dev set of trained database 

Tested on the same dataset (%) Tested on our CRMA dataset (%) 

CAISA-FASD D-EER BPCER APCER BPCER APCER (Print) APCER (Replay) 

BM0 BM1 AM0 AM1 AM2 AM0 AM1 AM2 

LBP 7.50 6.25 8.75 38.60 56.14 42.11 24.76 18.13 60.72 34.59 22.51 

Inception FT 10.00 8.75 15.00 21.05 38.60 35.48 5.95 16.96 69.49 47.44 15.50 

CPqD 6.25 11.25 3.12 38.60 65.79 31.97 12.38 8.77 53.22 23.06 14.62 

FASNet FT 8.75 12.50 4.38 15.79 90.35 44.83 2.14 23.98 64.13 5.76 22.81 

Inception TFS 0.00 1.25 0.00 12.28 20.08 61.60 40.35 49.71 90.35 83.19 59.65 

FASNet TFS 1.25 3.75 0.62 21.05 75.44 60.23 19.49 38.60 70.86 16.32 45.61 

DeepPixBis 1.25 6.25 0.00 35.09 66.67 70.57 36.65 56.73 57.99 29.26 42.98 

MSU-MFSD LBP 4.17 4.17 4.17 98.25 100.00 0.58 0.68 0.00 3.22 2.25 0.00 

Inception FT 20.14 20.81 16.67 50.88 25.44 47.95 56.04 52.05 31.19 48.85 44.15 

CPqD 4.17 4.17 4.17 98.25 100.00 0.19 0.39 0.00 1.46 1.56 0.00 

FASNet FT 13.19 26.39 4.17 43.86 85.96 32.55 2.63 0.58 42.50 13.39 2.34 

Inception TFS 4.17 8.33 1.39 80.70 94.74 0.19 0.00 0.00 8.58 0.78 2.05 

FASNet TFS 0.00 8.44 0.00 91.23 100.00 0.00 0.00 0.00 7.70 0.00 0.29 

DeepPixBis 0.00 4.17 0.00 82.46 80.70 0.00 0.10 0.00 10.33 10.36 5.26 

Oulu-NPU LBP 8.33 7.50 10.21 40.35 67.54 35.28 25.54 13.45 26.12 10.89 13.74 

Inception FT 15.00 16.67 11.04 61.40 87.72 11.50 5.85 8.77 12.38 2.39 1.46 

CPqD 8.33 9.17 3.54 57.89 89.47 9.55 3.70 1.17 10.14 1.03 0.58 

FASNet FT 3.23 1.67 4.38 49.12 73.68 33.92 27.10 8.77 22.81 8.99 3.80 

Inception TFS 4.17 3.33 6.46 80.07 100.00 22.81 0.78 2.34 3.22 0.00 0.00 

FASNet TFS 5.10 11.67 3.33 70.18 99.12 46.98 18.03 19.88 8.09 0.39 0.29 

DeepPixBis 2.29 2.92 0.00 66.67 98.25 44.64 11.21 4.68 10.23 0.10 0.58 
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.3. Analysis of protocol-1 

Protocol-1 represents the pre-COVID-19 PAD scenarios, in which 

ubjects normally do not wear a mask, and demonstrates the gen- 

ralization performance on masked data. Therefore, protocol-1 is 

onsidered the most challenging task because of the unseen BM1, 

M1, and AM2 data. 

Table 3 describes the results of the different protocols on the 

RMA database. The bold numbers indicate the highest BPCER val- 

es between BM0 and BM1 and the highest APCER values between 

M0, AM1, and AM2 in each PAI. By observing the first block, P1, in

able 3 , the BPCER values of masked bona fide samples are much 

igher than those of unmasked ones; however, most PAD systems 

chieve lower APCER values on the masked attack samples (either 

M1 or AM2). The higher classification error rates on masked bona 

de and the lower error rates on masked attacks are intuitively 

onceivable. When the model has not seen faces wearing a mask 

efore, it is more inclined to falsely classify such a masked bona 

de sample (BM1) as an attack. 

Moreover, it is interesting to note that networks trained from 

cratch and the DeepPixBis approach work worse on attack AM2 

han AM1. These observations are consistent with the ROC ( Fig. 4 ). 

he red curves generated by printed AM2, bona fide BM1, and gray 

urves obtained by replay AM2 and bona fide BM1 possess signifi- 

antly smaller areas under the curves in five of the seven methods. 

urthermore, training a network from scratch improves the over- 

ll performance. The possible reason for those observations is that 

earning from scratch is more efficient for obtaining discriminative 

eatures between bona fide and artifacts. On the contrary, such ap- 

roaches might be confusing when applying realistic masks to at- 

ack samples. 

In addition to the intra-database scenario, the first cross- 

atabase experiment (introduced in Section 5.1.2 ) can be seen as 

imilar to protocol-1, as both scenarios study PAD methods that 

AD solutions trained on unmasked data and tested on the CRMA 

atabase. In Table 4 , the bold BPCER number is the highest BPCER 

between BM0 and BM1) for each PAD method. The bold APCER 
8 
umber is the highest APCER (between AM0, AM1, and BM2) for 

ach PAD method in print and replay attacks, respectively. This 

olding is performed to show which samples are more difficult to 

lassify correctly. We observed that the performance in the cross- 

atabase setting was relatively poor for all models. Even though 

eep-learning-based methods achieved great results on their own 

est sets, they generalize significantly worse on masked bona fide 

amples; for example, most BPCER values for BM1 are close to 

00%. In contrast, most algorithms achieve lower APCER values on 

asked AM1 and AM2 than unmasked AM0 attacks, which is con- 

istent with the observation of protocol-1 from the intra-database 

cenarios. 

In general, the experimental results of the intra-database 

rotocol-1 and the first cross-database scenario results answer the 

rst posed question (in Section 5.1.1 ) by showing that models 

rained only on unmasked data cannot properly classify images of 

asked faces. A subject with a mask on has a high probability of 

eing falsely detected as an attack by PAD systems, even if this 

ubject is bona fide. 

.4. Analysis of protocol-2 

Protocol-2 targets the performance of PAD algorithms on 

asked data when both unmasked and masked samples are used 

n the training phase. As shown in Table 3 , we can observe the 

ollowing points: First, despite the fact that the masked bona fide 

amples are still more difficult to classify correctly than unmasked 

nes in most cases, the BPCER value of BM1 behaves more similar 

o its behavior on the BM0 in protocol-2 than in protocol-1. More- 

ver, the BPCER values of BM0 and BM1 in protocol-2 decreased 

n most cases compared with the results of protocol-1. For exam- 

le, the BPCER value of BM1 achieved by Inception FT was 84.21% 

n protocol-1 and 7.02% in protocol-2. This finding indicates that 

earning the masked data is helpful in improving the performance 

f PAD methods. 

This is also consistent with the observation in the ROC curves 

by comparing the ROCs in protocol-1 and protocol-2 in general). 
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Fig. 4. ROC curves for all PAD methods in three protocols. Eight combinations between bona fide and attack (testing data) are represented for each method in each protocol: 

PR(AM0)-BF(BM0), PR(AM1)-BF(BM1), PR(AM2)-BF(BM0), PR(AM2)-BF(BM1) in print PAI and RE(AM0)-BF(BM0), RE(AM1)-BF(BM1), RE(AM2)-BF(BM0), RE(AM2)-BF(BM1) in 

replay PAI. The x-axis and y-axis are APCER and 1 - BPCER, respectively. The red curves (PR(AM2)-BF(BM1)) and gray curves (RE(AM2)-BF(BM1)) show significantly smaller 

AUC values by most PAD methods on protocol-1. Moreover, Inception TFS , FASNet TFS , and DeepPixBis achieve higher AUC values on protocol-2 and -3 than on protocol-1 might 

be due to the masked data in the training phase.. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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t

n particular, Inception TFS , FASNet TFS , and DeepPixBis achieved sig- 

ificant progress (larger areas under the curves). Second, six of 

he seven methods performed worse on the masked printed face 

AM1 or AM2), while five of the seven algorithms showed inferior 

esults for unmasked replay attacks. Moreover, AM2 in print PAI 
9 
chieves higher APCER values than AM1 by training from scratch 

pproaches. One possible reason for the different results between 

rint and replay attacks is specular reflection. Because attack data 

ere collected in windowless labor with all electric lights on, 

ablets easily reflect the light compared to the printed paper, and 
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Fig. 5. Examples for attention maps generated by ScoreCAM of different PAD al- 

gorithms and different protocols. The rows from top to bottom in each protocol 

correspond to Inception FT , Inception TFS , FASNet FT , FASNet TFS , and DeepPixBis. The 

columns from left to right in each protocol refer to BM0, BM1, PR-AM0, PR-AM1, 

PR-AM2, RE-AM0, RE-AM1, RE-AM2. Faces with red boxes are misclassified. (For in- 

terpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
his reflection is difficult to avoid. The real face masks might also 

eak light when placed on an electric tablet, but this does not ap- 

ear when applied on printed paper. 

In general, the experimental results of the intra-database 

rotocol-2 answer the second question (in Section 5.1.1 ), which ad- 

resses the performance changes of the current PAD algorithms 

fter complementary learning on the masked data. Based on the 

bove findings, we can conclude that the PAD algorithms still per- 

orm worse on masked bona fides (BM1) than on unmasked faces 

BM0), even when the PAD solutions are trained on masked data. 

.5. Analysis of protocol-3 

Protocol-3 investigates the generalizability of the model trained 

n data that includes masked face attacks (AM1) when tested on 

he masked face attacks where a real mask is placed on top of the 

ttack (AM2). For bona fide samples, we draw a similar conclusion 

o protocol-1 and protocol-2, stating that masked bona fide sam- 

les have a higher probability of incorrectly being classified as at- 

acks. However, the experimental results show differences in attack 

etection behavior (APCER) between protocol-3 on one side and 

rotocols-1 and -2 on the other side. In this protocol, the highest 

PCER values of most PAD algorithms appear on either the AM1 or 

M2 attacks in both print and replay PAIs. Second, the traditional 

BP method, Inception FT , FASNet FT , and the hybrid CPqD method 

hat achieve relatively worse results on AM0 or AM1 attacks than 

ther methods may have proved to be unable to learn or extract 

ufficient discriminative features. Third, although the other meth- 

ds, such as learning from scratch Inception TFS and FASNet TFS or 

ustom designed DeepPixBis achieve impressive results on seen 

M0 and AM1 attacks, they generalize not well on unseen AM2 

ttacks. These observations answer the third question stated in 

ection 5.1.1 by stating that a network trained on masked face at- 

acks (AM1) tends to produce confusing decisions on AM2, where 

 real mask is placed on an attack face. 

.6. Qualitative analysis and visualization 

To qualitatively analyze and interpret the deep-learning-based 

ethods, the score-Weighted CAM [42] technique was adopted to 

ocalize the discriminative areas in face images. The rows from 

op to bottom correspond to Inception FT , Inception TFS , FASNet FT , 

ASNet TFS and DeepPixBis. Fig. 5 (a) shows the results of protocol- 

 (the example subject is in the test set). Inception FT mainly fo- 

uses on the nose, including nearby parts of the masks, whereas 

nception TFS pays more attention to the upper region of the face. 

imilarly, FASNet TFS reduces the attention paid to the masks and 

ncreases the concentration around the forehead. DeepPixBis con- 

entrates around the eyes for both unmasked (BM0) and masked 

BM1) bona fides. However, for attack samples, attention seems to 

e focused on the left eye and partial masks. In general, masks are 

oticed by all networks. The results of protocol-2 and protocol-3 

or the same subjects are shown in Fig. 5 (b), and Fig. 5 (c). We

oticed that 1) the attention areas of fine-tuned networks hardly 

hange in the three protocols because of the fixed weights of lay- 

rs before the last classification layer. 2) Inception TFS in protocol-2 

ppears to focus on the upper face, including many more eye re- 

ions than in protocol-1. 3) FASNet TFS in protocol-2 concentrates 

uch more on applied real masks than in protocol-3 where train- 

ng without AM2. 4) DeepPixBis still works well on bona fide, 

ut for attack samples, its attention seems to be distracted to the 

dge of images. Although DeepPixBis produces correct decisions, 

his observation raises a serious concern about its reliability and 

eneralizability. This concern was confirmed by the cross-database 

valuation. DeepPixBis generally obtains worse cross-database re- 

ults than the other two training from scratch networks (details 
10 
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ee Table 4 ). Finally, looking at attention maps in all protocols for 

his identity, we notice that except for the misclassified samples 

with red boxes) that appear on print/replay AM0, print AM2 at- 

acks are more easily to be incorrectly detected as bona fide than 

M1 attacks. This finding is in line with the previous quantitative 

valuation that AM2 attacks may confuse the PAD, even if the net- 

ork has been trained by masked face attacks. 

To further understand the above quantitative and qualitative re- 

ults, we provide additional t-SNE plots to visualize the learned 

eatures in the supplementary material. These plots consolidate our 

ndings here that 1) masked bona fide samples are more likely 

o be detected as bona fide by the pre-COVID-19 PAD algorithms. 

) attacks with real masks placed on the attacks (AM2) are more 

alsely detected by PAD systems as bona fides than attacks with 

asked faces (AM1). 

. Analysis of FR vulnerability 

.1. Experimental settings 

The vulnerability of each FR system on each type of PA is 

nalyzed based on three experimental settings. In the first set- 

ing BM0-BM0, we use the bona fide unmasked samples captured 

n the first day as references. Then, the references are compared 

gainst bona fide BM0 samples captured on the second and third 

ays of the same subjects (to compute genuine scores), as well as 

f other subjects (zero-effort imposter (ZEI) scores). Once genuine 

nd ZEI comparison scores are obtained, the operating threshold 

s computed using the τF MR @0 . 01 threshold. Finally, the probe sam- 

les of each type of PA were compared against the reference of the 

ame subjects separately. In the second setting BM0-BM1, the dif- 

erence is that bona fide BM1 data captured on the second and 

hird days are used for comparison against references BM0 and 

hen obtain the corresponding genuine and ZEI scores. In the third 
ig. 6. The similarity score distributions by off-the-shelf ArcFace [28] . The rows from top

s shown in Table 5 . 

11 
etting, BM1-BM1, the bona fide masked faces captured on the first 

ay are references for each subject. Such references are also com- 

ared against the masked bona fide samples captured on the sec- 

nd and third days to obtain their genuine and ZEI scores. 

These three experimental settings are provided to enable ad- 

ressing the following four questions: 1) When having an un- 

asked reference and we use a decision threshold that does not 

onsider masked comparisons (BM0-BM0), how vulnerable are FR 

ystems to the three types of attacks in CRMA (AM0, AM1, and 

M2)? 2) When having an unmasked reference and we use a deci- 

ion threshold based on unmasked-to-masked comparisons (BM0- 

M1), how vulnerable are FR systems to the three types of attacks 

n CRMA (AM0, AM1, and AM2)? 3) When having a masked refer- 

nce and we use a decision threshold based on masked-to-masked 

omparisons (BM1-BM1), how vulnerable are FR systems to the 

hree types of attacks in CRMA (AM0, AM1, and AM2)? Addition- 

lly, we address the fourth question: 4) will the vulnerability of FR 

ystems be different when facing the AM1 and AM2 attacks? 

.2. Evaluation metrics 

To measure the performance of FR techniques, the genuine 

atch rate (GMR), which refers to the proportion of correctly 

atched genuine samples, is used at the fixed false match rate 

FMR). GMR is equal to 1 minus the false non-match rate (FNMR). 

oreover, to analyze the vulnerability of FR algorithms for our 

asked attacks, the imposter attack presentation match rate (IAPMR) 

orresponding to the proportion of PAs accepted by the FR system 

s genuine presentations is adopted. IAPMR also follows the stan- 

ard definition presented in ISO/IEC 30107-3 [41] . The threshold 

or GMR and IAMPR is defined by fixing the FMR at 1% (denoted 

s τF MR @0 . 01 ). The probe images with similarity scores lower than 

he τF MR @0 . 01 are not matched. Moreover, the recognition score- 

istribution histograms are shown in Fig. 6 , 7 , and 8 . In addition
 to bottom represent three experimental settings: BM0-BM0, BM0-BM1, BM1-BM1, 
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Fig. 7. The similarity score distributions by off-the-shelf SphereFace [29] . 

Fig. 8. The similarity score distributions by off-the-shelf VGGFace [29] . 

12 
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Table 5 

The performance and vulnerability of FR systems. The GMR and IAPMR values were computed based on the τFMR @0 . 01 threshold. The 95% confidence intervals for the IAPMR 

values are shown in parentheses. 

Settings Attack Probes ArcFace [28] SphereFace [29] VGGFace [30] 

EER GMR IAPMR EER GMR IAPMR EER GMR IAPMR 

BM0 - BM0 AM0 0.00 100 98.40 [98.22, 98.56] 8.57 75.85 66.31 [65.69, 66.93] 0.12 100 99.47 [99.37, 99.56] 

AM1 81.61 [81.24, 81.97] 2.80 [2.65, 2.96] 71.54 [71.12, 71.96] 

AM2 97.10 [96.77, 97.41] 10.45 [9.89, 11.03] 97.23 [96.91, 97.53] 

BM0 - BM1 AM0 2.25 96.56 98.73 [98.58, 98.88] 22.83 19.99 84.17 [83.68, 84.64] 2.29 94.2 99.86 [99.80, 99.90] 

AM1 88.57 [88.27, 88.86] 15.26 [14.92, 15.60] 90.24 [89.96, 90.51] 

AM2 98.56 [98.33, 98.78] 40.00 [39.09, 40.91] 99.55 [99.41, 99.67] 

BM1 - BM1 AM0 1.00 99.00 70.62 [70.19, 71.04] 13.13 59.33 2.43 [2.29, 2.58] 0.85 99.46 45.84 [45.38, 46.31] 

AM1 94.20 [94.04, 94.35] 47.69 [47.36, 48.02] 97.41 [97.30, 97.51] 

AM2 97.70 [97.49, 97.89] 50.82 [50.16, 51.48] 98.26 [98.08, 98.43] 
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o these metrics, the EER value, where FMR equals FNMR, is com- 

uted to compare the FR algorithms. 

.3. Analysis of FR results 

The performance and vulnerability of each FR system are sum- 

arized in Table 5 . SphereFace [29] obtains relatively low IAPMR 

alues; however, its GMR values are also much lower than those 

f ArcFace [28] and VGGFace [30] . In general, the IAPMR values of 

ll three FR systems were close to their GMR values. Specifically, 

R systems are vulnerable to unmasked attacks when unmasked 

ona fide samples are used as references (the settings BM0-BM0 

nd BM0-BM1), and vulnerable to the masked attacks when the 

eference is masked bona fide data. Comparing the vulnerability 

nalysis results for AM1 and AM2 in all three cases and all FR sys- 

ems, we note that the IAMPR values of AM2 are always signifi- 

antly higher than those of AM1. This indicates that applying real 

asks on attack presentations can further reduce the performance 

f FR systems. This might be due to the fact that the AM2 attacks 

ossess more realistic features than AM1. To further verify this as- 

umption, we provide histograms of the similarity score distribu- 

ion in the three scenarios and three FR systems (see Fig. 6 , 7 , and

 ). In the histograms, green refers to genuine scores, blue repre- 

ents ZEI scores, and gray represents attack verification scores. The 

deal situation is that there is no overlap between the green and 

he other two histograms. Fig. 6 shows the score distributions of 

rcFace [28] , where the rows from top to bottom represent BM0- 

M0, BM0-BM1, BM1-BM1 cases and columns from left to right 

efer to AM0, AM1, and AM2 attacks. It can be seen that 1) the 

erification scores of attacks are higher than the scores of ZEI in 

ll cases. 2) The scores of AM0 attacks and genuine scores almost 

verlap in the BM0-BM0 and BM0-BM1 settings, while the scores 

f AM1/AM2 attacks have many overlapping areas with genuine 

cores in the BM1-BM1 setting. 3) for all cases, the scores of AM2 

ave more overlaps with genuine scores than AM1. Similar obser- 

ations can be found in Fig. 7 for the SphereFace, and Fig. 8 for

GGFace. These observations are consistent with the findings pre- 

ented in Table 5 . 

Overall, these results indicate that 1) FR systems are more vul- 

erable to unmasked attacks compare to masked attacks when the 

eferences are unmasked faces, 2) when the threshold is computed 

ased on the unmasked-to-masked comparison, the vulnerability 

f FR systems becomes higher for both masked or unmasked at- 

acks, 3) when the reference is masked, FR systems are more vul- 

erable to masked attacks in comparison to the FR systems having 

nmasked references. Another important finding is that 4) FR sys- 

ems pose a higher vulnerability for spoof faces with real masks 

laced on them (AM2) than a masked face attack (AM1). Such ob- 

ervations raise concerns about the security of FR systems when 

acing masked attacks. 
13 
. Conclusion 

We studied the behavior of PAD methods on different types 

f masked face images. To enable our study, we presented a new 

arge-scale face PAD database, CRMA, including the conventional 

nmasked attacks, novel attacks with faces wearing masks, and at- 

acks with real masks placed on spoof faces. It consists of 13,113 

igh-resolution videos and has a large diversity in capture sensors, 

isplays, and capture scales. To study the effect of wearing a mask 

n the PAD algorithms, we designed three experimental protocols. 

he first protocol measures the generalizability of the current PAD 

lgorithms on unknown masked bona fide or attack samples. In 

he second protocol, masked data are used in the training phase to 

easure the performance of PAD solutions where the face masks 

re known. The third protocol investigates the generalizability of 

odels trained on masked face attacks when tested on attacks cov- 

red by a real mask. Extensive experiments were conducted using 

hese protocols. The results showed that PAD algorithms have a 

igh possibility of detecting masked bona fide samples as attackers 

median BPCER value for BM1 in protocol-1 is 48.25%). Moreover, 

ven if the PAD solutions have seen the masked bona fide data, 

he PAD algorithms still perform worse on masked bona fide sam- 

les compared with unmasked bona fides. Furthermore, the PAD 

olutions trained on masked face attacks (AM1) do not general- 

ze well on attacks covered by a real mask (AM2). For example, 

he APCER values achieved by DeepPixBis increased from 0.62% for 

M1 to 2.92% for AM2 in print attack and from 1.92% for AM1 to 

.43% for AM2 in replay (protocol-3). In addition, we performed a 

horough analysis of the vulnerability of FR systems to such novel 

ttacks. The results indicate that FR systems are vulnerable to both 

asked and unmasked attacks. For example, when the reference 

mages and system threshold are based on unmasked faces (BM0- 

M0), the IAPMR values for unmasked attacks (AM0), masked at- 

acks (AM1), and attacks covered by a real mask (AM2) are 98.40%, 

1.60%, and 97.10%, respectively. This leads to the interesting obser- 

ation that all the investigated FR systems are more vulnerable to 

ttacks where real masks are placed on attacks (AM2) than attacks 

f masked faces (AM1). 
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