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Assessing if an image comes from a specific device is fundamental in many application scenarios. The 

most promising techniques to solve this problem rely on the Photo Response Non Uniformity (PRNU), 

a unique trace left during image acquisition. A PRNU fingerprint is computed from several images of a 

given device, then it is compared with the probe residual noise by means of correlation. However, such 

a comparison requires that PRNUs are synchronized: even small image transformations can spoil this 

task. Most of the attempts to solve the registration problem rely on time consuming brute-force search, 

which is prone to missing detections and false positives. In this paper, the problem is addressed from a 

computer vision perspective, exploiting recent image registration techniques based on deep learning, and 

focusing on scaling and rotation transformations. Experiments show that the proposed method is both 

more accurate and faster than state-of-the-art approaches. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Automatic methods to assess the integrity of digital images are 

f paramount importance in order to counter the ever-increasing 

roduction and spread of fake imagery through the media. Image 

orensic methods [1] try to solve this problem by observing distinc- 

ive traces left during the image acquisition or manipulation. Dur- 

ng the years, several methods have been developed exploiting ei- 

her invisible footprints introduced in the signal statistics or phys- 

cal inconsistencies left directly into the scene. Invisible footprints 

nclude demosaicing artefacts [2] , characteristic camera [3] or scan- 

er [4] sensor noise, and compression anomalies [5,6] . Physical 

nconsistencies encompass shadows [7] , light color [8] and di- 

ection [9] , and scene geometry, like perspective [10] , 3D con- 

traints [11] , and camera principal point [12,13] . 

In this paper, we focus on sensor noise analysis to solve 

he camera identification problem, i.e., assessing if a given im- 

ge was acquired with a specific camera. In particular, we stud- 

ed the Photo Response Non Uniformity (PRNU) pattern, a device- 

ependent noise left during image acquisition by the camera sen- 

or [14] . PRNU based camera identification is typically accom- 

lished by evaluating the correlation between the residual noise 

xtracted from the probe image, and a set of reference PRNU fin- 
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erprints, obtained from a collection of flat-field images captured 

ith each candidate camera. The Peak-to-Correlation Energy ratio 

PCE) is used to measure the similarity between the probe and ref- 

rence signals. Alternative solutions have been proposed recently, 

hat attempt to boost camera identification performance by ex- 

loiting deep learning either to extract better sensor noises [15] or 

o speed-up and improve PRNU matching [16,17] . 

PRNU matching is a delicate task, that requires pixel level ac- 

uracy. Hence, even slight geometric image transformations can 

isalign the residual noise of the probe and the fingerprint, thus 

poiling the camera identification task. While image translations 

an easily be recovered as a by-product of PCE computation (the 

osition of the peak obtaining the maximum score also indicates 

he translation between the two signals), scale and rotation trans- 

ormations introduce a higher degree of complexity, since they 

ave to be explicitly recovered before evaluating any correlations. 

o date, brute-force is the most popular approach for PRNU align- 

ent [18] . It tests all possible combinations of scale and rota- 

ion, retrieving the one that maximizes the PCE. However, such ap- 

roach is computationally slow, and can produce false positives or 

issing detections. 

In order to provide a faster and more accurate solution, in 

his paper we present a method based on deep learning to re- 

over scale and rotation transformations between PRNU signals. 

e show how it is possible to train a Convolutional Neural Net- 

ork (CNN) to recover PRNU transformations and use it as a fast 

re-processing step before evaluating the PCE. 

https://doi.org/10.1016/j.patcog.2021.108413
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108413&domain=pdf
mailto:marco.fanfani@unifi.it
mailto:alessandro.piva@unifi.it
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The paper is organized as follows: In the next section related 

orks are discussed. Then, in Section 3 the proposed method is 

utlined, by describing how training data are generated and pro- 

iding details on the network architecture. Results of a compar- 

tive evaluation between the proposed method and state-of-the- 

rt approaches are reported and discussed in Section 4 . Finally, in 

ection 5 conclusions are drawn and directions for future work are 

utlined. 

. Related works 

PRNU is a unique fixed pattern noise generated during the ac- 

uisition process by any digital camera and pixel-wise related to 

he specific device sensor. Therefore, it is best extracted and com- 

ared at native camera resolution from unaltered probes [19] . Be- 

ng compared pixel-wise, PRNU signals become particularly diffi- 

ult to match when the source images have been warped as result 

f the acquisition post-processing. Even small geometric transfor- 

ations, maliciously applied by a forger or introduced directly by 

he device (e.g., during electronic image stabilization), can spoil the 

amera identification task, by strongly reducing the PCE. 

During the last few years several works addressed PRNU 

ased camera identification for stabilized videos, from preliminary 

orks [20] to more advanced solutions such as brute-force search 

n video frames [21] , hybrid image/video identifications [22,23] , 

ptimized search of transformation parameters [24,25] , or prelimi- 

ary camera model characterization [26,27] . However, a similar ef- 

ort was not devoted to single images, for which information re- 

undancy cannot be exploited in order to ease the identification 

ask. In [3] , the only geometric transformation admitted is transla- 

ion. In [18] , image scaling is also considered, thus requiring to re- 

ove any amount of zooming before computing the PCE. Scale re- 

oval is typically carried out by brute-force search, which is com- 

utationally expensive, and not always sufficiently accurate. In or- 

er to speed-up PCE computations, in [28] the PRNU is first re- 

uced to a digest. The approach, which can deal with zooming and 

ens distortion, still requires a full grid-search of the transforma- 

ion parameters. In [29] , a similar PRNU compression is proposed 

ased on Principal Component Analysis. Alternative approaches de- 

ect and estimate specific image transformations (e.g., resampling) 

sing deep learning. In [30] , a CNN based method to estimate the 

robe scaling factor directly from natural image patches is pre- 

ented. In [31] , the authors propose a deep learning classifier to 

eal with scale, compression, blurring and median filtering trans- 

ormations applied to natural images. In [32] , a Bayesian neural 

etwork is trained in order to detect resampling manipulations. 

one of the traditional and deep methods above takes into account 

otation transformations, which nevertheless are quite common yet 

ifficult to deal with in a camera identification scenario. Moreover, 

one of the CNN-based methods above operate directly on PRNU 

ignals. To the best of our knowledge, the method proposed in this 

aper is the first to address scale and rotation transformations si- 

ultaneously on PRNU signals directly extracted from single im- 

ges. 

In order to register PRNU images, our method employs a deep 

etwork which is inspired by the deep image homography estima- 

ion network initially proposed in [33] for natural images. Differ- 

ntly from natural images, PRNU images are characterized by pat- 

erns that neither have a clear structure nor possess characteristic 

lements such as edges or corners [34] . Moreover, the fingerprint 

btained from a collection of flat-field images and the residual 

oise extracted from a single probe coming from the same device 

re not identical, since high frequency content unrelated to the 

RNU can still be present in the residual noise. These observations 

uggest that working with PRNU images is more challenging than 

ith natural images, where the network can actually rely on low 
2 
requency information that is unavailable in PRNU signals. Never- 

heless, in the rest of the paper we show that a suitably trained 

eep net is actually capable to estimate warping transformations 

rom PRNU details only. Our method specializes on linear homo- 

raphies, a.k.a. image similarities, which are the warps that occur 

ost commonly in practical applications [27] . 

. Proposed method 

The alignment between the probe residual noise and the cam- 

ra PRNU fingerprint is obtained with a deep network trained on 

imilarity transformations characterized by a combination of scal- 

ng and rotation. Once the probe is properly registered using the 

arameters estimated by the network, PRNU matching is achieved 

ith PCE correlation. In order to estimate the scale and rotation 

arameters on PRNU signals—which are characterized by very dif- 

erent contents and structures w.r.t. natural images—the net pre- 

ented in [33] was trained from scratch using examples extracted 

rom PRNU images (see Section 3.1 ): Given the different nature of 

he inputs, it was impossible to achieve positive results with fine 

uning techniques. Also, the net architecture (see Section 3.2 ) was 

lightly modified in order to produce in output the parameters of 

imilarity transforms, instead of the those required for homogra- 

hies. 

.1. Example generation 

In order to generate the examples used to train and test the 

etwork, patches from the fingerprint and the residual noise were 

tacked as follows. 

Let F d be the fingerprint of a device d obtained from flat- 

eld unaltered images, and let N d be a residual noise extracted 

rom an unaltered natural image taken with the same device d. 

electing at random the point p ∈ F d and perturbing its x and y 

oordinates with a random shift � = [ δx , δy ] 
� , a new point p 

′ =
 x + δx , y + δy ] 

� is obtained. The shift vector � naturally induces a

inimal representation of the random similarity transformation 

 = σ

[
cos (θ ) − sin (θ ) 
sin (θ ) cos (θ ) 

]
(1) 

uch that p 

′ = Sp . Indeed, the scale factor σ and the rotation angle

in Eq. (1) can be obtained as: 

= 

|| p 

′ || 
|| p || (2) 

= − tan 

−1 

(
y ′ 
x ′ 

)
− tan 

−1 
(

y 

x 

)
. (3) 

nce the random similarity map S is generated as above, its in- 

erse S −1 is used to scale and rotate N d and obtain 

ˆ N d , such that a

oint p 

′ ∈ N d is coincident with p ∈ 

ˆ N d . A patch of 128 × 128 pix-

ls is then extracted from both F d and 

ˆ N d , with its top-left corner 

n p . The extracted pair of patches is finally stacked along with the 

hannel dimension and given as input to the net, with a label rep- 

esenting the random shift �. In our implementation, both δx and 

y are randomly sampled in the interval [ −32 , +32] pixels. With 

his sampling interval, we experimentally measured that the cov- 

red set for σ and θ are respectively [0.85,1.15], and [ −0 . 15 , 0 . 15]

egrees. The choice of parametrizing the similarity transform using 

he shift vector � is inspired by [35] , where a 4-point parametriza- 

ion was used in order to model the 8 degrees of freedom of a gen-

ral homography. Note that, in this work, a 1-point parametrization 

s sufficient to cover the 2 degrees of freedom of S . Fig. 1 depicts

he example generation process. 
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Fig. 1. Patch extraction to create examples. Given a fingerprint F d and a residual noise N d a random point p is selected. Then, p is perturbed with a random shift �, so to 

obtain p ′ . From p and p ′ a transformation matrix S can be defined, such that p ′ = Sp . The inverse transformation S −1 is used to compute the transformed version of N d , i.e. 
ˆ N d = S −1 N d , such that in ˆ N d the point p ′ gets the same coordinate of p in N d . Finally, two 128 × 128 patches are extracted — one from F d and the other from 

ˆ N d — and 

then stacked together to build an example to be passed to the net, with label �. (Best viewed in color and zoomed in). 

Fig. 2. Convolutional network architecture. 
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Fig. 3. In (a) a natural image from device D01 of VISION dataset. The PCE between 

its residual noise and the D01 fingerprint returns a score of 12836.27. In (b) the 

same image after been subjected to a scaling ( σ = 1 . 01 ), and a rotation ( θ = 0 . 001 ). 

The resulting image do not show any particular differences w.r.t. the original, how- 

ever its PCE score drops to 36.95, spoiling any possible device attribution. 
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.2. CNN implementation 

In this section implementation details of the proposed approach 

re given. Before extracting the patches as described above, the 

RNU signals are individually normalized to have zero mean and 

nit variance. Moreover, natural images whose unaltered residual 

oise obtains a low PCE score are discarded, as they may make 

ess reliable the comparison against the device fingerprint. 

The used convolutional network is schematically reported in 

ig. 2 . It takes as input patches of 128 ×128 ×2 pixels and is com-

osed by four convolutional blocks followed by two dense layers. 

ach of the first two convolutional blocks include two convolu- 

ional layers with 64 3 ×3 filters, with stride 1 and ReLU activa- 

ions. After each convolutional layer batch normalization is applied, 

nd finally a max pooling operation with 2 ×2 filters and stride 2 

s used. The last two convolutional blocks use layers with 128 3 ×3 

lters. In particular, the last convolutional block does not have a 

ax pooling stage: Its output is first flattened to a 1024 vector, 

nd, after a dropout stage with a probability of 0.5 (only during 

raining), goes through two dense layers, the first with 1024 units 

nd the second and last with only two output units, predicting the 

D shift vector � = (δx , δy ) . 

Although several loss and optimization functions have been ap- 

lied in CNN architectures in the literature [36–38] , they have not 

een preferred in this work due to their computational complexity. 

he net was trained using stochastic gradient descent with mo- 

entum 0.9 and an initial learning rate of 0.005, that was pro- 

ressively reduced by 1/10 every four epochs. The loss function 

as the Euclidean distance between the predicted and the ground 

ruth shift vector �, as already done in [33] . Training went on for

5 epochs, evaluating 50 0,0 0 0 examples per epoch fed to the net 

n batches of 50 examples. At the end of each epoch, 20,0 0 0 vali-

ation examples were used to control overfitting and possibly per- 

orm early-stopping. 

.3. Camera identification 

Once trained, the net presented above can be used as a pre- 

rocessing step for the camera identification task. Typically, the 
3 
amera identification based on PRNU analysis is solved by sim- 

ly evaluating the PCE between the fingerprint signal of a de- 

ice and the residual noise extracted from a probe. Even a slight 

e-synchronization of the two signals (due to rotation or scale 

hanges) would dramatically reduce the PCE value under the ‘clas- 

ical’ thresholds (i.e., 60 and 100), thus spoiling camera identi- 

cation. As an example, in Fig. 3 a a pristine natural image is 

hown: the PCE between its residual noise and the device finger- 

rint reaches a value of 12,836.27. In Fig. 3 b the same image is 

hown after being subjected to a scale factor of 1.01 and a rotation 

f 0.001 degrees: while the transformation is practically impercep- 

ible, its PCE reaches a value of 36.95 only (with a reduction of 

ore than 99%!), resulting in a false negative camera attribution. 

To mitigate the risk of missed attributions, our net can be used 

o pre-process a given fingerprint-residual noise pair by estimating 

he scale and rotation parameters applied to the probe image (and 

onsequently to the residual noise). The estimated parameters can 

hen be used to register the residual noise w.r.t. the fingerprint, 

hus re-synchronizing the two signals and eventually obtaining a 

eliable value for the PCE (see Fig. 4 ). As shown in the experi- 

ental section, if the fingerprint and the residual noise come from 

he same device, the PCE value computed after the registration is 
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Fig. 4. Proposed camera identification pipeline. A pair of corresponding patches are sampled from both PRNU signals and given as input to the CNN to estimate the probe 

transformation parameters σ, θ . The probe is resynchronized w.r.t. the fingerprint. Finally, PCE is normally evaluated to decide the probe attribution. 
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Table 1 

Results on single device attribution for 10 0 0 test example, using τ60 = 60 and 

τ100 = 100 as thresholds on the PCE score. 

Device τ60 τ100 

D01 - Samsung Galaxy S3 Mini 87.6% 84.3% 

D02 - Apple iPhone 4s 60.2% 51.9% 

D03 - Huawei P9 59.5% 52.3% 

D04 - LG D290 71.0% 64.1% 

D05 - Apple iPhone 5c 90.9% 88.9% 

D07 - Lenovo P70A 91.4% 88.6% 

D08 - Samsung Galaxy Tab 3 82.4% 79.0% 

D09 - Apple iPhone 4 93.6% 92.2% 

D11 - Samsung Galaxy S3 83.6% 80.1% 

D12 - Sony Xperia Z1 Compact 86.0% 83.5% 

D13 - Apple iPad 2 89.7% 87.8% 

D15 - Apple iPhone 6 88.5% 85.1% 

D16 - Huawei P9 Lite 86.4% 84.6% 

D17 - Microsoft Lumia 640 LTE 91.5% 90.2% 

D19 - Apple iPhone 6 Plus 89.2% 86.2% 

D20 - Apple iPad Mini 92.4% 91.2% 

D21 - Wiko Ridge 4G 68.4% 60.0% 

D22 - Samsung Galaxy Trend Plus 91.9% 90.1% 

D23 - Asus Zenfone 2 Laser 92.5% 90.9% 

D24 - Xiaomi Redmi Note 3 79.1% 74.2% 

D25 - OnePlus A3000 85.3% 82.3% 

D27 - Samsung Galaxy S5 84.6% 81.4% 

D28 - Huawei P8 84.5% 81.5% 

D29 - Apple iPhone 5 86.8% 83.7% 

D30 - Huawei Honor 5c 91.0% 88.0% 

D31 - Samsung Galaxy S4 Mini 83.5% 79.8% 

D32 - OnePlus A3003 88.1% 85.1% 

D33 - Huawei Ascend 81.2% 77.7% 

D35 - Samsung Galaxy Tab A 93.1% 90.8% 

p

g

a

c

S

l

i

r

u

h

o

w

8

t

c

e

igher than any sensible threshold with a high probability, while 

f the two PRNU are extracted from different devices, the trans- 

ormation estimated from the network is typically not sufficient to 

btain a high PCE score, thereby avoiding to introduce false posi- 

ives. 

. Experimental analysis 

.1. Dataset 

To train the net and evaluate the proposed approach we used 

he recently proposed VISION dataset [19] . This dataset includes 

till images and videos recorded from 35 smartphone devices, cov- 

ring 29 different models from 11 manufacturers. For each device, 

at-field (i.e., planar, monochromatic) and natural images are avail- 

ble, for a total of 4167 flat-field and 7565 natural images. 

.2. Training 

In order to compute a strong fingerprint of each device, all the 

vailable flat-field images taken with it were used. The natural 

mages taken with the same device were divided into three sets: 

raining (using 70% of the probes), validation (10%), and test (20%). 

hen, 50 0,0 0 0 examples were generated from the training set, fol- 

owing the method described in Section 3.1 , and 20,0 0 0 from the

alidation set. Test examples were instead generated at runtime 

rom the remaining test set 1 . A different net was trained separately 

or each selected device, evaluating 15 epochs with batches of 50 

xamples, repeated 10,0 0 0 times (so as to observe all 50 0,0 0 0 ex-

mples for each epoch). At the end of each epoch, 20,0 0 0 valida-

ion examples were used to control overfitting and possibly per- 

orm early-stopping. 

.3. Results 

.3.1. Performance measure 

Since the aim of this method is to solve the camera identi- 

cation task when the probe has been modified by a scale and 

otation transform, the performance of the method was assessed 

y evaluating the PCE between the fingerprint and the registered 

esidual noise (using the scale and rotation parameter predicted 

y our net) and then counting how many test cases obtained a 

CE score higher than the two thresholds 60 and 100. The higher 

s the number of passed tests, the more reliable is the net. 

.3.2. Single device attribution 

The first test was devoted to assess the ability of the net in 

ecognizing a transformed probe coming from a single device. In 
1 Note that, in the VISION dataset, some of the acquired devices are of the same 

odel (e.g. D02 and D10 are both Apple iPhone 4s): in this case, we selected for 

raining and testing the device with the highest number of available probes (i.e., 

etween D02 and D10, we used the former, since it has more natural images avail- 

ble). 

f

r

3

A

r

t

4 
ractice, after having trained the net on data coming from a sin- 

le device, for example D01, in the test phase the net is evalu- 

ted on data coming only from D01. For each device/net pair, we 

reated 10 0 0 test samples using the same procedure described in 

ection 3.1 applying different scales and rotations randomly se- 

ected at runtime. The predicted � was then used to define (us- 

ng Eqs. (1) –(3) ) a similarity transform, which in turn was used to 

egister the residual noise on the fingerprint. Then PCE was eval- 

ated and a positive result was recorded whenever its value was 

igher than τ60 
. = 60 or τ100 

. = 100 . Table 1 shows the results thus 

btained: In most of the cases, more than 80% of the test probes 

ere correctly identified, with an average of 84,62% for τ60 , and of 

1,22% for τ100 . 

Since VISION includes multiple devices of the same model, we 

ested how a net trained on one device would work on probes 

oming from another device of the same model . In particular, we 

valuated the net trained on D01 on transformed probes coming 

rom D26, another Samsung Galaxy S3 Mini. The percentage of cor- 

ect detection was, in this case, respectively 38.7% with τ60 , and 

3.1% with τ100 . Similarly, testing the D15 net on D06 probes (both 

pple iPhone 6) yielded 18.1% with τ60 , and 14.2% with τ100 . These 

esults suggest that the net is able to capture PRNU characteristics 

hat are specific to a given individual device, and can therefore dis- 
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Fig. 5. Confusion matrices for multiple device attribution using τ60 (see text for details): (a) results for single patch sampling, and (b) results for triple patch sampling 

strategies. (Best viewed in color and zoomed in) 
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riminate well between two devices sharing the same model. Such 

et selectivity helps to keep low the number of false positives, as 

ill be shown in the next Section, reporting experiments on mul- 

iple device attribution. 

.3.3. Multiple device attribution 

In this second test the performance of the trained networks in 

 multiple device attribution setup was assessed. Given a set of de- 

ices for which both the fingerprint and the trained net are avail- 

ble, this test evaluates the net’s capability at selecting the cor- 

ect source device for a scaled and rotated probe coming from any 

f the devices in the considered set. To accomplish such objec- 

ive, the probe is compared against all the devices by firstly pass- 

ng through the specific net to recover the transformation parame- 

ers, and then computing the PCE between the fingerprint and the 

egistered residual noise. In this way, both True Positive (TP) and 

alse Positive (FP) rates can be evaluated. For each considered de- 

ice, 10 probes were selected and each probe was randomly trans- 

ormed using 10 different scales and rotation angles, thereby ob- 

aining 100 test cases for each device. This resulted in a total of 

900 test examples for the 29 devices from the VISION dataset. 

or each test example, 29 different PCE scores (one for each device 

n the dataset) were obtained. 

Fig. 5 a shows the confusion matrix obtained when a single patch 

rom the probe image was randomly selected and the threshold 

as τ60 . The entry (i, j) of this matrix indicates how many times 

 probe from device i was attributed to device j (i.e., the jth PCE 

core was maximum among the 29 PCE scores computed). As a re- 

ult, the TPs and FPs are respectively the diagonal ( i = j) and extra-

iagonal ( i � = j) entries of the matrix. If none of the 29 PCE scores

as above the threshold, the probe was labelled as Not Assigned 

NA) (this is why the matrix rows can add up to a number less 

han 100, which is the number of test cases for each device). Av- 

raging the results over all devices, the performance using a sin- 

le patch and τ60 was 72.0% TP, 5.3% FP, 22.7% NA. While the ra- 

io between TP and FP is not at all bad, the single patch strategy 

or device attribution gives rise to a relatively large number of NA. 

ence, in order to improve the performance, alternative device at- 

ribution strategies were devised and tested. 

Triple patch strategy Instead than using a single patch, three 

atches for each probe are extracted and evaluated. All the three 
5 
atches are then passed to the nets and three distinct PCE scores 

re computed. Finally, the highest PCE among the three is selected. 

s can be seen in Fig. 5 b, using this approach gives better results

han with a single patch. The average percentages over all devices 

re respectively 87.4% TP, 4.5% FP, 8.1% NA. It can be noticed that 

he number of NA probes was significantly reduced. However this 

trategy is three times slower than the single patch approach. 

Multi-patch statistical analysis Since the forward pass of the net 

sed to retrieve the transformation parameters is very fast com- 

ared to the time required to compute the PCE, alternative strate- 

ies can be designed based on a statistical analysis of the predic- 

ion results obtained with a large number N of input patches ex- 

racted from the probe at hand. Each patch is analyzed by the net 

nd the scale and rotation parameters are recorded. This gives rise 

o two sets of N elements: S , with all the estimated scales and R ,

ith the rotation angles. Then, robust statistical measures M are 

pplied to S and R in order to extract a single pair of scale and

ngle estimates ( ̂  σ , ˆ θ ) that summarize the entire set of N patches. 

n particular, two measures were tested: the univariate median M u , 

nd the geometric median M g . Using the former, scale and rotation 

ngles are used separately, i.e. ˆ σ = M u (S) and 

ˆ θ = M u (R) . Differ-

ntly, when using the geometric median the two sets are consid- 

red jointly, i.e. ( ̂  σ , ˆ θ ) = M g (S , R) . Once obtained the ( ̂  σ , ˆ θ ) pa-

ameters, a similarity transform is defined to register the probe, 

nd a single PCE is evaluated, thus reducing the overall compu- 

ational time w.r.t. the triple patch strategy. Results for the uni- 

ariate median are reported in Fig. 6 a for N = 100 , and in Fig. 6 b

or N = 10 0 0 . Similarly, Fig. 7 a and Fig. 7 b reports, respectively,

he results for the geometric median with N = 100 and N = 10 0 0

atches. The two statistical measures yield similar results, with 

lightly lower FPs but also with lower TPs and higher NAs w.r.t. the 

riple patch strategy. Moreover, the univariate median obtains the 

ame results using 100 or 10 0 0 patches, while the geometric me- 

ian slightly improves as the number of patches increases. 

The results obtained with τ100 with all stretegies are reported 

n Table 2 . The table shows only the diagonal entries of the confu- 

ion matrix, since with this higher threshold almost all false pos- 

tives are correctly filtered out (the few residual FPs appear in 

rackets). However, as expected, by increasing the threshold, more 

As and less TPs are obtained. In general the triple patch strat- 

gy is the best performing, obtaining the highest TPs for 26 out of 
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Fig. 6. Confusion matrices for multiple device attribution using τ60 and the univariate median strategy ( M u ) (see text for details). In (a) results with 100 patches, and in (b) 

for 10 0 0 patches. (Best viewed in color and zoomed in). 

Fig. 7. Confusion matrices for multiple device attribution using τ60 and the geometric median strategy ( M g ) (see text for details). In (a) results with 100 patches, and in (b) 

for 10 0 0 patches. (Best viewed in color and zoomed in). 

Table 2 

Correct detection rate for the multiple device attribution test, using τ100 . In bold the highest rate for each device. In brackets are reported the false positives. Note that, 

D07 is confused with D13 both for the Single patch sampling and the Geometric Median with 100 patches ( M 

100 
g ). 

D01 D02 D03 D04 D05 D07 D08 D09 D11 D12 D13 D15 D16 D17 D19 D20 D21 D22 D23 D24 D25 D27 D28 D29 D30 D31 D32 D33 D35 

Single 77 49 38 40 85 72 (1) 80 84 54 73 85 65 74 77 76 83 56 79 70 57 63 72 73 62 84 72 83 60 72 

Triple 90 67 66 66 92 85 90 91 78 93 91 82 89 88 92 91 80 89 84 81 84 89 92 92 90 88 92 86 82 

M 

100 
u 86 62 78 72 90 81 84 86 78 89 90 84 89 82 80 84 78 87 80 79 76 85 88 89 88 80 87 81 77 

M 

10 0 0 
u 86 62 78 72 90 81 84 86 78 89 90 84 89 82 80 84 78 87 80 79 76 85 88 89 88 80 87 81 77 

M 

100 
g 86 63 79 73 89 82 (1) 84 86 78 89 89 85 89 82 80 82 78 87 80 80 74 86 88 87 88 80 87 81 77 

M 

10 0 0 
g 85 63 79 72 89 82 86 85 77 89 89 84 87 82 81 84 79 88 79 81 76 86 89 86 89 80 87 80 77 
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9 devices. However, for D03, D04, and (less significantly) for D15, 

ulti-patch approaches achieved higher scores. Note that a similar 

ehaviour for D03 and D04 is found also for τ = 60 . This is prob-

bly due to the peculiar characteristics of these devices, where the 

ntensity of the PRNU is likely not uniform throughout the image. 

ence, by sampling a larger number of patches, there is a higher 
6 
robability to select a meaningful patch over which correct trans- 

ormation parameters can be estimated. This hypothesis however 

ould require a deeper analysis that is out of the scope of this 

aper and will be left for future investigations. 

Table 3 summarizes the results obtained with the different de- 

ice attribution strategies, using both the thresholds τ60 and τ100 . 
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Table 3 

Resume of the multiple device attribution using different strategies, 

for τ60 and τ100 . Results are expressed as percentage; in brackets we 

reported the number of FP when 0.0% are achieved but some false 

positive still happen. 

τ60 τ100 

TP FP NA TP FP NA 

Single 72.0% 5.3% 22.7% 69.5% 0.0% (1) 30.5% 

Triple 87.4% 4.5% 8.1% 85.5% 0.0% 14.5% 

M 

100 
u 84.1% 3.5% 12.4% 82.4% 0.0% 17.6% 

M 

10 0 0 
u 84.1% 3.5% 12.4% 82.4% 0.0% 17.6% 

M 

100 
g 83.9% 3.8% 12.2% 82.4% 0.0% (1) 17.6% 

M 

10 0 0 
g 84.2% 3.4% 12.4% 82.4% 0.0% 17.6% 

Fig. 8. ROC curves for multiple device attribution using our net and the six dif- 

ferent strategies on 29 devices of the VISION dataset. (Best viewed in color and 

zoomed in). 
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esults are expressed in percentage w.r.t. overall number of test 

xamples. TP columns were obtained by accumulating the values 

n the diagonal of the confusion matrices, FP columns those in 

he non-diagonal entries. NA columns take into account the probes 

hat were neither TPs nor FPs. Whatever the thresholds, the worst 

erforming strategy is the single patch strategy, which can be as- 

umed as the baseline of the method. With τ60 , the best perform- 

ng strategy in terms of both TP and NA percentage is the triple 

atch strategy (87.4% and 8.1%, respectively), followed by the ge- 

metric median using 10 0 0 patches (84.2% and 12.4%). The latter 

trategy also has the best performance on FPs (3.4%). The second 

est on FPs is the univariate median, whose performance is the 

ame with either 100 or 10 0 0 patches. Concerning τ100 , all the 

trategies obtain negligible FPs, at the expense of lower TPs and 

igher NAs. The triple patch strategy is confirmed as the best of all, 

hile the strategies based on robust statistics have almost identi- 

al, suboptimal performances. 

In order to get an insight into the results for any possible value 

f the threshold, the Receiver Operating Characteristic (ROC) curve 

nd the relative Area Under the Curve (AUC) obtained with the dif- 

erent approaches were also computed. For this experiment, the 

900 PCEs computed for all the test examples (and not only the 

aximum PCE for each test example, as done before with confu- 

ion matrices) were used, together with the true device attribution 

abels. As can be seen in Fig. 8 , all the strategies show good per-

ormance with a high TP rate (greater than 0.7) even at extremely 
7 
ow FP rates. Among the proposed strategies, triple patch sampling 

s confirmed as the best performing one with an AUC of 0.926, fol- 

owed by the robust statistic strategies that achieve similar results, 

ith AUCs higher than 0.9. The baseline single patch sampling, 

ith an AUC of 0.832, is the fastest but also the worst perform- 

ng among the tested strategies. 

.4. Comparative evaluation 

The proposed solution was compared against the brute-force 

earch approach [18] , the particle swarm method presented in [24] , 

nd the solution presented in [25] (that will be indicated as 

CV4SSV). 

For the brute-force case, given a probe, all the combinations 

f scales and rotation angles are evaluated by first registering the 

robe and then computing the PCE. The scale-angle pair obtaining 

he maximum PCE score is then selected. In order to be fair, we 

imited the search space to the values covered during the train- 

ng of the net, i.e. [0.85,1.15] with steps of 0.01 for the scale, and 

 −0 . 15 , 0 . 15] degrees with steps of 0.01 for the rotation angle. Con-

erning the particle swarm, we adapted the source code released 

y the authors in order to work on single images instead than 

n video frames. Differently from the brute-force approach, this 

ethod performs a smarter search of the parameters by exploit- 

ng the particle swarm optimizer, that in each iteration focuses pa- 

ameter search on the most promising particles. In our tests we 

sed the default parameters selected by the authors, i.e., the max- 

mum number of used particles N p = 50 and the maximum num- 

er of iterations max it = 50 (see [24] for further details). As with 

he brute-force, also for the particle swarm we limited the search 

pace to [0.85,1.15] for the scale, and to [ −0 . 15 , 0 . 15] degrees for

he rotation angle. SCV4SSV was also tested using an adaptation of 

he authors’ source code to make it work on single images instead 

han on video frames. Once obtained the PRNU of the transformed 

robe, it is centrally cropped with a fixed window. Then, candi- 

ate transformations are searched for. To avoid extreme interpo- 

ation effects, the authors select a sub-set of transformation such 

hat the shift of corner pixels of the cropped PRNU are limited in 

 given window. Moreover, to speed up the search, two solutions 

re provided: the Three-Level Hierarchical Grid Search , and its con- 

trained version (which is the one implemented in the code). Fi- 

ally, a validation procedure is carried out to exclude transforma- 

ions not satisfying three user defined thresholds, namely P CE v ld , 

 sub , and P CE sub (see [25] for details). In order to select an appro-

riate value for last three thresholds, several trials were performed. 

sing the values provided in the code, i.e. P CE v ld = 42 , n sub = 2 ,

nd P CE sub = 2 , only 13% of probes were analysed. The best perfor-

ances were achieved using P CE v ld = 42 , n sub = 1 , and P CE sub = 2 ,

owever 70% of probes were still discarded. In order to be fair with 

he other methods, that do not discard any probe, we decided to 

how results for the best performing trial where all the probes 

ere analysed: This output was obtained by setting P CE v ld = 21 , 

 sub = 0 , and P CE sub = 1 , with a minimal performance loss w.r.t. the

est setup (the difference between their AUCs was 0.045 only). 

Note that the high number of PCEs to be evaluated—by all the 

ompared methods, in particular by the brute-force—is a strong 

imitation, since it requires huge computational times, so in this 

est we were forced to limit the analysis to only three devices. As 

one in the previous tests, 100 test cases for each device were con- 

idered. In Fig. 9 confusion matrices obtained with τ60 and τ100 

re shown for the brute-force approach ( Fig. 9 a and 9 e), the par-

icle swarm method ( Fig. 9 b and 9 f), SCV4SSV ( Fig. 9 c and 9 g),

nd our single patch sampling, limited to the three devices con- 

idered (see Fig. 9 d and 9 h). As can be seen, our method, despite

sing the worst among the proposed strategies, obtains similar or 

etter results in terms of TPs, FPs and NAs than its competitors. 
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Fig. 9. Confusion matrices comparing the performance of the brute force approach with τ60 (a) and with τ100 (e). Similarly, in (b) and (f) are shown the results of the particle 

swarm method, and in (c) and (g) results for SCV4SSV, while in (d) and (h) results with our single patch strategy are reported. The Predicted Class run along the columns, 

while the True Class along the rows. (Best viewed in color and zoomed in). 

Fig. 10. ROC curves comparing our approaches w.r.t. brute force method, particle 

swarm solution, and SCV4SSV, using three devices (D01, D02, and D04). AUC values 

are reported in the plot legends. (Best viewed in color and zoomed in). 
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ndeed, using τ60 , our solution achieves 178(60%) TPs, 0 FPs and 

22(40%) NAs, brute-force achieves 174(58%) TPs, 35(12%) FPs and 

1(30%) NAs, particle swarm achieves 174(58%) TPs, 5(1.7%) FPs 

nd 121(40.3%) NAs, and SCV4SSV obtains 72(24%) TPs, 0 FPs and 

28(76%) NAs. Results with τ100 are even more favourable toward 

ur approach, that obtains 166(55%) TPs, 0 FPs and 134(45%) NAs, 

gainst 114(38%) TPs, 0 FPs and 186(62%) NAs of brute-force search, 

63(54.3%) TPs, 0 FPs and 137(45.7%) NAs of particle swarm opti- 

ization, and 47(15.7%) TPs, 0 FPs and 253(84.3%) NAs of SCV4SSV. 

Fig. 10 shows the ROC curves and the related AUCs for all the 

roposed strategies, the brute-force method, the particle swarm 

ptimizer, and the SCV4SSV approach (for the three devices con- 

idered). All the evaluated methods obtain better results than the 

rute-force approach: SCV4SSV achieves only a slightly improve- 

ent w.r.t. the brute-force, while particle swarm obtains a better 

UC, only slightly worse than our single patch solution. AUCs for 

ur solutions are always higher than those of the compared meth- 
8 
ds, with the triple patch strategy achieving the best results over- 

ll. 

The bad performance of the brute-force approach is, in our 

pinion, due to the selected steps on the scales and angles to be 

ested. Probably, choosing a finer step would increase the perfor- 

ance, since there would be a higher probability to select the ex- 

ct scale-angle pair used to warp the probe. However, reducing 

he step would also increase dramatically the number of trials to 

e carried out, and as a consequence the computational time, to 

 point that the problem would become intractable. Relating the 

UC with the results shown in Fig. 9 c and 9 g, SCV4SSV seems to

utput low PCE scores, but it is able to provide relatively higher 

CEs when comparing the residual noise of the correct device with 

ts fingerprint, such to obtain a better AUC score w.r.t. the brute- 

orce. On the other hand, the particle swarm approach is able to 

etter identify the correct scale and angle parameters, since it 

ocuses on the more promising parameters with an optimization 

trategy. Note that the particular transformation search strategies 

dopted by the particle swarm and SCV4SSV, not only provide bet- 

er results, but also reduce the computational times considerably 

.r.t. the brute-force. Still, our solutions achieve the best perfor- 

ance, since the trained nets are able to recover the transforma- 

ion parameters both reliably and with extremely reduced compu- 

ational times—as shown in the next Section. 

.4.1. Computational times 

The computational times (expressed in seconds) for the pro- 

osed approaches, the brute-force method, the particle swarm so- 

ution, and SCV4SSV are shown in Table 4 . All times were obtained 

n a PC equipped with an Intel Core i7-8700 CPU@3.20 GHz, with 

2 GB of RAM. The neural net was implemented in Python using 

he Tensorflow library and can run either on an NVIDIA TITAN Xp 

PU, with 12 GB of RAM, or on the CPU. A single forward pass on

he trained net requires 0.03 s, if run on the CPU, 0.002 s if run

n the GPU. Warping the probe takes around 0.02 s, while com- 

uting the PCE requires a time proportional to the probe resolu- 

ion: In our experiments an average time of 2.8 s was required. The 

eometric median takes around 0.01 s on 100 samples, and 0.4 s 

n 10 0 0 samples. The univariate median takes instead 0.0 0 01 s, 

oth for 100 and 10 0 0 samples. The brute-force approach tested 

1 values both for the scale and angles (using the limits and the 

teps defined above), for a total of 31 × 31 = 961 tries. The particle 

warm and SCV4SSV also performed multiple tests, however since 
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Table 4 

Estimates of computational times for a single probe evaluation (expressed in seconds). For each method we reported the number of required operations and the average 

time used by each operation; For the net forward pass (and as consequence for the total times) we reported the GPU time and, in brackets, the CPU time. Total times are 

obtained by multiplication and sum of the single operations. Note that, for the Particle Swarm and SCV4SSV we do not know how many warping and PCE computations 

have been used, so we reported the total average time obtained experimentally. 

Forward Pass 

Time 

Forward Pass 

Num 

Warp Time Warp Num PCE Time PCE Num Geom 

Median 100 

Time 

Geom 

Median 10 0 0 

Time 

Univ Median 

Time 

Total Time 

Single 0.002 (0.03) 1 0.02 1 2.8 1 — — — 2.822 (2.850) 

Triple 0.002 (0.03) 3 0.02 3 2.8 3 — — — 8.466 (8.550) 

M 

100 
u 0.002 (0.03) 100 0.02 1 2.8 1 — — 0.0001 3.020 (5.820) 

M 

10 0 0 
u 0.002 (0.03) 1000 0.02 1 2.8 1 — — 0.0001 4.820 (32.820) 

M 

100 
g 0.002 (0.03) 100 0.02 1 2.8 1 0.01 — — 3.030 (5.830) 

M 

10 0 0 
g 0.002 (0.03) 1000 0.02 1 2.8 1 — 0.4 — 5.220 (33.220) 

Brute Force — — 0.02 961 2.8 961 — — — 2710.020 

Particle 

Swarm 

— — 0.02 n.a. 2.8 n.a. — — — 1022.231 

SCV4SSV — — 0.02 n.a. 2.8 n.a. — — — 122.939 

Fig. 11. Relation between the transformation parameters and the obtained PCE score. In all the plot, red crosses indicate PCE score inferior to 60, in blue if the PCE is 

between 60 and 100, in green PCE score higher than 100. Plots on the top row show the full parameter space, while on bottom a zoomed version (corresponding to the 

black bounding boxes) is presented. (a) and (g) are for the single patch case, while the triple patch case in shown in (b) and (h). Similarly, (c) and (i) are for M 

100 
u ; (d) and 

(j) are for M 

10 0 0 
u ; (e) and (k) for M 

100 
g , and finally (f) and (l) for M 

10 0 0 
g . (Best viewed in color and zoomed in). 
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heir exact number is unknown, only the time required to evaluate 

 probe can be appreciated. 

As can be seen in Table 4 , the brute-force approach has ex- 

remely high computational times, due to the computation of 961 

arps and PCEs. Particle swarm, using a smarter search of the reg- 

stration parameters, is almost three times faster, and SCV4SSV, by 

arefully selecting which transformations to evaluate, works almost 

hirty time faster than brute-force. Our methods are way faster 

han their competitors, using only a few seconds per probe, espe- 

ially if the GPU is available. Obviously, the three patch sampling is 

he most computationally demanding solution, since it requires the 

valuation of three PCEs. However, if no GPU is available, the eval- 

ation of 10 0 0 patches (for both M 

10 0 0 
u and M 

10 0 0 
g ) is the most

ime consuming step. 

.4.2. Ablation study 

Different net architectures were experimented in order to as- 

ess the best model to be used. In particular, an attempt was 

one to remove the max pooling operation after each convolu- 

ional block or replace it with the average pooling operation to as- 

ess if removing or changing the interpolation of the feature map 

ould bring some positive effects. Deeper and wider net architec- 

ures were also tested by including additional convolutional blocks 

r by increasing to 128 the number of kernels in the first convo- 
9 
utional blocks. However, none of these changes improved signifi- 

antly the results, so they were dropped, as they required higher 

raining times, given the increased number of parameters to be 

uned. 

To gain a better understanding of the proposed approach, the 

elation between the transformation parameters (i.e., scale and an- 

le) and the obtained PCE score after probe registration was also 

nalyzed. To this aim, the results of Section 4.3.3 , limited only 

o the cases where probe and reference come from the same de- 

ice, were considered, and all the ground truth scales and angles 

nd the respective PCE scores obtained with our six strategies (i.e. 

ingle, Triple, M 

100 
u , M 

10 0 0 
u , M 

100 
g , and M 

10 0 0 
g ) were retrieved. In

ig. 11 for each scale-angle pair the achieved results are shown, 

ivided in three classes: (i) PCE < τ60 (red crosses), (ii) τ60 ≤ PCE 

 τ100 (blue crosses), (iii) PCE ≥ τ100 (green crosses). As can be no- 

iced, stronger transformations on the marginal sides of the plots 

re those that achieve lower PCEs, hence are the most difficult 

ases. Notice also that, while in the single patch cases ( Fig. 11 a

nd 11 g), some red crosses can be found also near the centre of 

he plots, with the other strategies most of the red crosses change 

o blue or green. 

Similar conclusions can be drawn observing the 3D plots 

f Fig. 12 . In this case the obtained PCE scores are used di- 

ectly (without quantization) as real values, in order to obtain a 
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Fig. 12. Relation between the transformation parameters and the obtained PCE score presented as a 3D surface plot. (a) is for the single patch case, while the triple patch 

case in shown in (b). Similarly, (c) is for M 

100 
u ; (d) for M 

10 0 0 
u ; (e) for M 

100 
g , and finally (f) for M 

10 0 0 
g . (Best viewed in color and zoomed in). 
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[  
D surface plot. Higher PCEs are found near the center where 

he transform is close to the identity (i.e., unit scale and zero 

ngle). 

. Conclusions 

In this paper we presented a novel approach to solve the cam- 

ra identification task when the probe image has undergone a 

cale and rotation transformation. Differently from the state of the 

rt solutions, our methods do not test a high number of differ- 

nt registration possibilities. Using a trained convolutional network 

he proposed method is able to estimate sufficiently correct trans- 

ormation values so as to let the correlation based PCE to work 

eliably. Several experiments carried out on a recent dataset of 

martphone devices show the effectiveness of the proposed solu- 

ion, both when focusing on a single device or working on multi- 

le device attribution. In particular, the high true positive and the 

ow false positive rates guarantee that our method can be used 

eliably in practical application scenarios. Moreover, at the cost 

f spending time to train the nets, the proposed solution, at test 

ime, can output the registration parameters in just a few seconds, 

trongly reducing the time requirements w.r.t. the compared so- 

utions, thus being particularly useful to analyze datasets with a 

uge number of probes. The main drawbacks of the proposed ap- 

roach are two. Firstly, at this moment the approach was trained 

o reliably estimates similarity transformations only: An extension 

o deal with more general transformations (e.g., homographies) is 

lanned for future development. Secondly, it requires to perform 

s many training sessions as the number of the distinct devices to 

est. However, this limitation is not so impacting on the method 

erformance, since it has to be done only once, in an offline and 

utomatic mode. 

In future work, our single image approach will be extended 

o image sequences in order to work also with digitally stabilized 

ideos. Also the introduction of correlation measures into the net- 

ork loss function should be considered in order to better train 

he net for the specific problem of PRNU matching. 
10 
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