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Highlights

• We claim that SMOTE has a weakness when facing high-dimensional prob-
lems

• We propose a general version of the SMOTE strategy using OWA opera-
tors.

• The proposal includes a feature weighting process that considers rele-
vancy/redundancy.

• This new component leads to a better definition of the neighborhood of
minority samples.

• Experiments carried out on 42 datasets show the virtues of our method.
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Abstract

The Synthetic Minority Over-sampling Technique (SMOTE) is a well-known
resampling strategy that has been successfully used for dealing with the class-
imbalance problem, one of the most challenging pattern recognition tasks in the
last two decades. In this work, we claim that SMOTE has an important issue
when defining the neighborhood in order to create new minority samples: the
use of the Euclidean distance may not be suitable in high-dimensional settings.
Our hypothesis is that the use of a weighted metric that does not assume that
all features are equally important could improve performance in the presence of
noisy/redundant variables. In this line, we present a novel SMOTE-like method
that uses the weighted Minkowski distance for defining the neighborhood for
each example of the minority class. This methodology leads to a better definition
of the neighborhood since it prioritizes those features that are more relevant for
the classification task. A complementary advantage of the proposal is perform-
ing feature selection since attributes can be discarded when their corresponding
weights are below a given threshold. Our experiments on 42 class-imbalance
datasets show the virtues of the proposed SMOTE variant, achieving the best
predictive performance when compared with the traditional SMOTE approach
and other recent variants on low- and high-dimensional settings, handling issues
such as class overlap and hubness adequately without increasing the complexity
of the method.

Keywords: Data resampling, SMOTE, OWA operators, Feature selection,
Imbalanced data classification.
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1. Introduction

Imbalanced classification is a topic of high interest for nowadays applications.
This issue may cause a bias during the learning process so that minority class
instances are not well-identified [1, 2].

One of the most straightforward approaches to overcome the class-imbalance
issue is via preprocessing techniques, such as data resampling [3]. Resampling is
beneficial to rebalance the classes, to clean the borderline areas, and to enlarge
the minority class regions [4]. The Synthetic Minority Oversampling TEchnique
(SMOTE) has become the “de facto” standard for imbalanced classification
via resampling [3, 5]. SMOTE generates new minority class examples in the
neighboring areas of the original ones by means of interpolation.

We claim in this paper that SMOTE has a weakness when facing high-
dimensional problems. Generally, the classical Euclidean distance metric is cho-
sen for computing the neighbors for each minority class instance. However, this
metric may converge to the same value for all instances in high-dimensional
settings, becoming almost uniformly distant from each other. In the particular
case of SMOTE, this “curse of the dimensionality” may lead to an ineffective
interpolation process [6].

The hypothesis of this study is that a weighted distance measure can alleviate
the “curse of the dimensionality” in the k-nearest neighbors step of SMOTE.
Furthermore, this metric can be also useful in the presence of noisy/redundant
variables, even in low-dimensional settings. The Euclidean distance assumes
that all variables are equally important, which is seldom correct in most machine
learning tasks. A general metric that is able to weight the features according
to their importance can be very useful at defining a proper neighborhood for
the minority samples, leading to a better predictive performance of the base
classifier [6].

An adequate definition of the neighborhood also strengthens the boundaries
of the positive region, mitigating the hubness issue [7]. This phenomenon occurs
when few points in the minority class account for most of the observed neighbor
occurrences due to the skewness in the distribution. This issue is faced usually
in high-dimensional settings [7].

In this work we propose a general version of the SMOTE strategy that in-
cludes a feature weighting process that takes into account relevancy/redundancy.
This new component is intended to lead to a better definition of the neighbor-
hood of minority samples, conferring flexibility to the process of generating
synthetic examples. The new methodology is named after FW-SMOTE, which
stands for Feature Weighted-SMOTE.

During the k-nearest neighbors step, the proposed method is designed to
discard those variables whose weights are below a given threshold. This is done
for reducing the negative effect of the curse of the dimensionality in the con-
struction of the neighborhood. Although the variables are not removed for the
classification task, FW-SMOTE has the potential to perform feature selection
by utilizing the feature weighting strategy to select the input variables for clas-
sification without increasing the complexity of the method. We explore this
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approach in the present study, achieving best predictive results compared to
alternative feature selection strategies that deal with the class imbalance prob-
lem.

The feature weighting process is done by including the Induced Ordered
Weighted Average (IOWA) operator [8] in the definition of the distance metric.
This results in a variation of the weighted Minkowski distance, called induced
Minkowski OWA distance (IMOWAD) [9]. The weights for the attributes are
defined using a fast feature ranking method, such as the Fisher Score [10], as
an input. The goal is to prioritize those features that are more relevant for
the classification task in the k-nearest neighbors step. These modifications are
simple statistical operations that do not increase the complexity of the problem
significantly.

We developed a comprehensive experimental study carried out on 42 low- and
high-dimensional datasets. The goal of this analysis is three-fold: First, we show
that FW-SMOTE performs much better than other SMOTE variants in terms
of predictive performance. Next, we incorporate feature selection in the learning
process, showing the virtues of our strategy at dealing with redundant/irrelevant
variables. Finally, a stability analysis is performed, illustrating the robustness
of FW-SMOTE in terms of predictive performance under different parameter
settings. Our study is complemented with theoretical discussions on aspects
such as complexity and learning in an embedding space.

In summary, this research fills an important gap in the SMOTE literature
when noisy/redundant attributes are present. FW-SMOTE is the first resam-
pling technique that considers a weighted scheme for the definition of the neigh-
borhood in the SMOTE algorithm, to the best of our knowledge, being also the
first one that considers OWA operators.

The remainder of this paper is structured as follows: In Section 2 the class-
imbalance problem and SMOTE variations are presented. The core of this
research work where FW-SMOTE is formalized in Section 3. Next, we carry out
an empirically analysis to confirm the good behavior of FW-SMOTE on various
low and high-dimensional datasets in Section 4. Finally, the main conclusions
of this study are presented in Section 5.

2. The class-imbalanced problem

When it comes to addressing classification for imbalanced problems, there
are different types of approaches that can be considered. Specifically, we may
highlight preprocessing techniques, cost-sensitive learning, one-class classifica-
tion (OCC), and feature selection [11].

Among these solutions, the use of resampling-based preprocessing to balance
class distribution has undoubtedly been the most widely used of them all [5].
The advantages of data resampling are clear, since it allows different propos-
als to be applied to the same or several classifiers, with the aim of identifying
the one approach that best adapts to the input data. There are two types of
preprocessing techniques. On the one hand, there are oversampling methods
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that replicate instances of the minority class. And on the other hand, there are
undersampling methods that eliminate examples of the majority class. Each
approach has its specific capabilities. For example, oversampling allows main-
taining the original information of the problem, strengthening the borderline
areas for the clusters of the minority class, while undersampling allows an im-
plicit cleaning of possible noisy data and helps in the treatment of class overlap
[6].

A disadvantage related to resampling is that it may either remove relevant
information (undersampling) or introduce new artificially-generated data, po-
tentially biasing the results (oversampling). To avoid these issues, algorithmic-
level solutions have been proposed, such as cost-sensitive learning and one-class
classification. These approaches are trained with class-imbalanced data directly
[12].

On the one hand, cost-sensitive techniques include an estimation of the mis-
classification costs, adapting existing machine learning techniques to favor the
minority class. Support Vector Machine (SVM) is a well-known classification
method that offers great flexibility. Therefore, several cost-sensitive extensions
have been designed with excellent predictive results [13, 14].

On the other hand, OCC approaches addresses the class-imbalance problem
by constructing a description of the target class. This is done by training the
model without the information of the labels, as in a clustering algorithm for
outlier detection [12]. Similar to cost-sensitive techniques, several OCC variants
have been developed considering SVM as the baseline classifier, including the
well-known Support Vector Data Description (SVDD) [12].

From the myriad of different solutions in this context, in this research work
we focus on SMOTE [5], due to its good properties and widespread usage. To
do so, first we provide a gentle introduction to the preprocessing in general,
and to the working procedure of SMOTE in particular (Section 2.1). Then, we
enumerate several extensions of SMOTE that have been proposed in the liter-
ature to overcome some of its initial drawbacks (Section 2.2). Finally, feature
selection is discussed as a potential solution for dealing with the class-imbalance
issue in high-dimensional settings (Section 2.3).

2.1. Resampling and the SMOTE preprocessing algorithm

The baseline oversampling algorithm is random oversampling. It works sim-
ply by replicating examples of the majority class, which basically implies a
higher weight in case of misclassification; but it may cause overfitting [15]. In
2002, N.V. Chawla proposed a novel approach as an alternative to the former
standard method [16]. The idea was to assist the classifier to improve its general-
ization by creating new minority instances. This technique was named SMOTE.
The basis of its procedure was to carry out an interpolation among neighboring
minority class instances. As such, it was able to increase the number of minor-
ity class instances by introducing new minority class examples in their cluster
areas.
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Given a sample xi from the minority class, and N randomly chosen samples
from its neighborhood xpi , with p = 1, . . . , N , a new synthetic sample x∗pi is
obtained with the following expression:

x∗pi := xi + u (xpi − xi) , (1)

where u is a randomly generated number between 0 and 1. This method has
the advantages of being fast to compute and successful at providing balanced
and accurate classification performance.

2.2. Extensions for SMOTE preprocessing

Many different extensions of this original approach have been proposed with
the objective of improving some of the capabilities of SMOTE [16]. One common
alternative is to compute which the best candidates are to be oversampled in
the data before the process of synthetic example generation starts. The idea
behind this type of strategy is being able to address the problems of noise and/or
overlapping within the training dataset [17].

Based on the idea of data complexity, ADASYN [18] selects the amount of
oversampling for each minority example dynamically by estimating its intrinsic
difficulty, which is based on the ratio of examples belonging to the majority
class in the neighborhood.

A similar approach is the Adaptive Neighbor SMOTE (AN-S.) [19]. In this
case, it uses the oversampling process with a different K-parameter for each
minority instance. The selected value is based on the density of surrounding
same-class instances.

There are also some techniques that focus on the selection of instances which
are closer to the boundary areas, such as Borderline-SMOTE (BL-S.), a clearly
representative approach [20]. This algorithm draws on the premise that the
examples far from the borderline may not provide a strong contribution to the
classification ability of the model. To obtain the borderline areas, the algorithm
works by considering the ratio between the majority and minority examples
within the neighborhood of each instance to be oversampled.

A method inspired by BL-S. is Density Based SMOTE (DB-S.) [21]. Its
working procedure is based on a density-based approach of clustering called
DBSCAN, and it generates the synthetic instances by computing the shortest
path from each minority instance to a pseudo-centroid of a minority-class cluster.
Like BL-S., it operates in an overlapping region, but the main difference is that
it seeks to maintain both the minority and majority class predictions.

Other types of techniques are based on identifying whether or not to gener-
ate synthetic examples by examining the actual number of minority class exam-
ples belonging to the complete neighborhood. Such is the case with SafeLevel-
SMOTE (SL-S.) [22]. Specifically, this technique assigns each minority example
a so-called “safe level” value, obtained as the ratio of the number of minor-
ity examples within its neighborhood area. Then, the interpolation function is
modified using a gap that is dependent on the former safe level ratio of each
minority instance.
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A recent adaptation of the former SL-S. technique, named Relocating Safe-
level SMOTE (RSL-S.) [23], is dedicated to ensuring that new synthetic positive
instances are truly far from the surrounding areas of the negative examples. To
do this, the instance generation procedure is repeated while the distance to
the nearest majority class instance is lower than the distance to the original
minority class.

Similar to the previously described techniques, MWMOTE [24] seeks to
ensure that new minority instances are generated within a “correct” class cluster.
To do so, it applies a weighting mechanism based on the distance to the nearest
majority class point. Then, synthetic examples are generated from the weighted
informative minority class instance using a clustering approach.

Another resampling approach, called Radial-Based Oversampling (RBO),
was proposed recently by Koziarski et al. [25]. The main goal of RBO is to find
adequate regions of interest for generating synthetic examples from the minority
class by using radial basis functions.

To the best of our knowledge on SMOTE and all its extensions, the definition
of the neighborhood is computed while giving all the variables the same impor-
tance. However, in a high-dimensional context, this may imply a strong bias
caused by two issues. The first is that the higher the number of variables, the
higher the convergence to a similar distance value for all examples. Secondly,
it is not able to cope with noise and redundancy properly [26]. In these cases,
a smart computation of the neighborhood instances is mandatory to guarantee
the generation of useful synthetic data.

2.3. Feature selection for class-imbalanced datasets

When addressing a classification problem, the success of any ML algorithm
depends greatly on the inner characteristics of the dataset [27]. Some issues
that could hinder the classification ability are as the imbalanced problem (un-
even class distribution), the curse of dimensionality (a high number of input
attributes), or the class overlapping (same a priori class probability within a
small cluster) [28].

A common solution for this scenario is applying feature selection methods.
As its name suggests, the goal is to reduce the full feature set to a strong subset
with the same (or possibly better) discerning capacity. Irrelevant, noisy, and
redundant information can be discarded, yielding better predictive performance
since it reduces the risk of overfitting [12]. To carry out this procedure, there are
three types of schemes. One is using filtering methods which compute the score
or significance of each attribute in order to rank the input variables. The second
one is using wrapper approaches that use an auxiliary classification method for
establishing the best cooperating variables in an iterative procedure. Finally,
embedded methods perform feature selection in the training process, and are
specific to a given machine learning method [12].

Filter methods have been discussed in the literature in combination with
data resampling techniques or cost-sensitive classification approaches [29, 30].
Some filter methods, such as the Fisher score, mutual information, or the corre-
lation score (also known as Correlation-based Feature Selection, or CFS), do not
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require adaptations in order to be suitable for class-imbalance classification [6].
Alternatively, well-known filter methods such as Relief have been adapted for
the task of filtering out irrelevant attributes taking the class-imbalance problem
into consideration [29, 30].

There are some recent studies that propose wrapper strategies for simulta-
neous feature selection and class-imbalance classification. Since the exhaustive
search for an optimal feature subset is a complex combinatorial problem, ge-
netic algorithms and other metaheuristics have been proposed for this task [31].
For example, Chen et al. [32]combined neighborhood rough set theory with the
Particle Swarm Optimization (PSO) metaheuristic for this task. Neighborhood
rough set theory was also considered in [33] for online feature selection based
on k-nearest neighbors.

Some embedded feature selection methods related to the class-imbalance
problem have been proposed, especially in relation with the SVM method [12,
14]. For example, Zhang et al. [34] proposed the Border-Resampling Feature
Elimination (SVM-BRFE), in which misclassified minority samples from the
boundary constructed by the SVM method are oversampled for a better assess-
ment of the feature relevance. Alternatively, a backward iterative process based
on balanced accuracy was proposed in [35], resulting in the BFE-SVM method.

In summary, several feature selection strategies have been designed for deal-
ing with the class-imbalanced problem. However, most state of the art ap-
proaches follow two independent processes for feature elimination and data re-
sampling, or evaluate different combinations via metaheuristics. We propose
a novel scheme, in which a feature ranking step is introduced in the SMOTE
strategy.

3. The FW-SMOTE method: using feature weighting and selection
generating artificial instances

The main idea of the proposed oversampling technique is to generalize the
classic SMOTE approach using aggregation operators. FW-SMOTE deals with
two important issues: the curse of dimensionality that affects distance measures
in case of high-dimensional datasets, and the fact that although SMOTE weights
all attributes equally for defining its neighborhood, most datasets contain re-
dundant or irrelevant covariates which can be weighted down to favor relevant
attributes.

FW-SMOTE replaces of the Euclidean distance used in SMOTE oversam-
pling by the IMOWAD distance, which is a very flexible norm that allows a
weighting process for the attributes via the IOWA operator. Notice that the
traditional SMOTE approach is a special case of our proposal, in which the
Euclidean norm is used and all attributes are equally weighted.

In spite of its simplicity and good general performance, the SMOTE ap-
proach has a noticeable drawback. The Euclidean distance used for computing
the k nearest neighbors of a minority sample assumes that all variables are
equally relevant; an assumption that seldom holds for most applications, and,
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in particular, in imbalanced domains [6]. A feature weighting process that takes
into account relevancy/redundancy into account could lead to a better definition
of the neighborhood. A high-dimensional setting worsens the problem since the
Euclidean distance tends to converge to the same value for all instances, accord-
ing to the curse of the dimensionality.

FW-SMOTE is not only presented as a weighting strategy, but also as a
resampling method that has the ability of performing variable selection. The
weights provide an additional insight in the sense that attributes can be dis-
carded from the whole learning process and not only from the definition of the
neighborhood. A threshold ε is defined in order to remove variables based on
their relevancy according to the feature ranking technique. In our experimental
analysis we explore both alternatives: FW-SMOTE as a weighted resampling
technique and its extension as a feature selection method.

In Section 3.1, we introduce the concept of OWA operators and present the
IOWA-based distance measure used in FW-SMOTE. Next, the feature ranking
techniques that induce the order of the IOWA operator are discussed in Section
3.2. Then, the FW-SMOTE algorithm is formalized in Section 3.3. This section
concludes with a theoretical analysis regarding the contribution of FW-SMOTE
and its relation with other pattern recognition techniques. This analysis is
presented in Section 3.4.

3.1. The weighted distance measure for FW-SMOTE

The ordered weighted averaging (OWA) operator was introduced by R.R.
Yager to provide a method for aggregating several inputs that lie between the
maximum and minimum values [36]. It is widely used when aggregating the
data according to the attitudinal character of the decision-maker. The classic
OWA operator is given by:

OWA(a1, a2, . . . , an) =

n∑

j=1

wjbj (2)

where bj is the jth largest value of the input vector (a1, a2, . . . , an), and wj ∈
[0, 1] are the weights, with

∑n
j=1 wj = 1.

The classic OWA operator assumes that the value of the elements to be
aggregated is relevant for defining the weights. This is not true in our case since
we want to induce order using an external variable, so the rankings are obtained
by filter methods. Therefore, we use the induced OWA (IOWA) operator [8],
which is a generalized version of the classic OWA operator. Given input tuples
of the form (〈u1, a1〉, 〈u2, a2〉, . . . , 〈un, an〉), where the a values are the objects
to be aggregated and the u the order-inducing vector, the IOWA operator has
the following form:

IOWA(〈u1, a1〉, . . . , 〈un, an〉) =

n∑

j=1

wjbj (3)
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where bj is the a value of the IOWA tuple that has the jth largest u value.
Similar to those of the classic OWA operator, wjε[0, 1] are the weights, with∑n
j=1 wj = 1.
The use of aggregation operators such as IOWA has become popular due to

their ability to provide a more general process for reordering the information
[37]. The flexibility provided by these operators can be extremely useful for
designing machine learning schemes that are robust in the presence of problems
such as noisy data and/or outliers [8].

FW-SMOTE considers a variant of the weighted Minkowski distance for
the definition of the neighborhood. The weights for the distance measure are
suggested to be obtained via an IOWA operator. Given two observations xi ∈
<n and xi′ ∈ <n, and the weight vector w ∈ <n, the weighted Minkowski
distance [9] follows:

d(xi,xi′ ,w) =




n∑

j=1

wj |xi,j − xi′,j |p



1/p

, (4)

for p ≥ 1. Well-known options for this parameter are p ∈ {1, 2,∞}, i.e., the
Manhattan, Euclidean, and Chebyshev distances, respectively. The weights
in Eq. (4) can be obtained via an IOWA operator, leading to the induced
Minkowski OWA distance (IMOWAD). Following the notation in Eq. (3), this
distance function is formalized as follows:

Definition 1. The IMOWAD distance is a mapping Rn × Rn → R such that:

IMOWAD(〈u1, xi,1, xi′,1〉, . . . , 〈un, xi,n, xi′,n〉) =




n∑

j=1

wjb
p
j




1/p

, (5)

where bj is the |xi,j − xi′,j | value of the 3-tuple with the jth largest of the u
vector (the order-inducing variable). Similar to the IOWA operator, it holds for
the weight vector that

∑n
j=1 wj = 1 and wj ∈ [0, 1] [9].

Then, the distance between two samples of the minority class xi and xi′ is
given by a weighted sum of the differences between corresponding elements of
these two vectors. The weights are assigned to each dimension according to how
relevant the variables are based on a feature ranking technique. This ranking
results in the order-inducing vector u.

Notice that the IOWA operator and the IMOWAD functions are different
concepts. The IOWA operator is a very general aggregation function that confers
flexibility to operators such as the weighted average. In contrast, the IMOWAD
function is a distance measure that uses the IOWA operator, resulting in a
general version of the weighted Minkowski distance.

3.2. The feature ranking methods for FW-SMOTE

Since the IMOWAD operator requires an order-inducing variable u for ob-
taining the weights of the IOWA operator, a feature ranking is performed using
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a filter method. As it was previously discussed in Section 2.3, there are several
alternatives for this step. Specifically, there are methods that rank attributes
according to relevance (i.e. correlation between covariates and the target vari-
able), such as Mutual Information (MI) and the Fisher Score (FS); to redun-
dancy (i.e. correlations among covariates), such as the Correlation Score (CFS);
or to both relevance and redundancy, such as Eigenvector Centrality (EC) and
the Minimum Redundancy Maximum Relevance (MRMR) method.

Since this research study is focused on the preprocessing step, only filter-
ing techniques are presented. From them, we selected four different scoring
functions. The first two are based on assessing the dependency between the
covariates and the label vector; the next one computes the redundancy degree
among the variables; and, finally, the fourth one represents a synergy among all
the previous ones. Below, the four filtering techniques are enumerated:

1. Fisher Score [10]: It computes the absolute difference between the means
of the two classes, normalized with a joint standard deviation, as follows:

FS(j) =
|µj1 − µj2|
σ2
j1 + σ2

j2

, (6)

where µjl is the mean value for the j-th attribute and class l, l = 1, 2,
while σjl is its respective standard deviation.

2. Mutual Information [38]: It computes the amount of information on one
attribute that can be gained by observing another one, as follows:

MI(j) =
∑

y∈y

∑

x∈xj

p(x, y) log

(
p(x, y)

p(x)p(y)

)
, (7)

where x and y are the various levels of attribute xj and the target vector
y, respectively; whereas p(x) and p(y) are their marginal probability dis-
tributions, with p(x, y) being their joint distribution. As can be seen, this
approach assumes that the covariates are nominal variables, unlike the
Fisher Score. Mutual Information, however, can be used with numerical
variables after binning them [39].

3. Correlation Score [6]: It computes the Pearson correlation ρj,j′ for each
pair of attributes j and j′, and subsequently computes the lowest absolute
correlation, as follows:

CFS(j) = min
j′
|ρj,j′ |. (8)

4. Eigenvector Centrality [40]: It combines the Fisher Score, the Mutual
Information, and the covariates’ standard deviation to construct an ad-
jacency matrix A. Then, feature importance is assessed by computing
the eigenvector related to the largest eigenvalue of A. The edges of A
can be seen as the influence of two attributes that are used together for
classification based on the metrics that were mentioned previously.
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3.3. The FW-SMOTE algorithm

Having defined our generalized distance metric and the feature ranking meth-
ods used as an input for this metric, we now describe an algorithm that conducts
data oversampling on the basis of this distance measure. The FW-SMOTE al-
gorithm is formalized in Algorithm 1.

Algorithm 1: FW-SMOTE method for data oversampling

1 Input: Training tuples {(xi, yi)}mi=1; Minority class sample set M;
Amount of oversampling N ; Number of nearest neighbors k; Number of
selected attributes r or threshold ε; Minkowski distance parameter p;
IOWA quantifier parameter α.

2 Output: Oversampled set of elements of the minority class M∗.
1. M∗ ←M.

2. u← Feature ranking method FR({(xi, yi)}mi=1).

3. w← RIM quantifier RIM(u, α).

4. S ← Take the r largest values of w, or {j ∈ X |wj > ε}.

5. for i ∈M

6. for i′ ∈M, i 6= i′

7. IMOWAD(xi,xi′ ,w) =
(∑

j∈S wjb
p
j

)1/p
.

8. end for

9. T ← arg minT
∑
i′∈T

IMOWAD(xi,xi′ ,w), T ⊆M \ {i}, |T | = k.

10. for k ← 1 to N

11. xk ← Select a random sample from T .

12. x∗k ← xi + υ(xk − xi).

13. M∗ ← (M∗,x∗k).

14. T ← T \ {xk}.

15. end for

16. end for

Assuming a two-class problem with objects xi ∈ <n, i = 1, . . . ,m, and their
respective outputs yi ∈ {−1,+1}, FW-SMOTE first computes the k nearest
neighbors for each element that belongs to the set of minority class samplesM.
For this step, which is done using the Euclidean norm in the classic SMOTE
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method and most of its variations, we propose using the IMOWAD operator
presented in Eq. (5).

In Step 1, the oversampled minority class setM∗ is initialized as the original
set of minority samples in M. Next, the order-inducing variable u required by
IMOWAD distance is computed by means of the feature ranking chosen for this
task (see Step 2 of Algorithm 1).

In Step 3, the weights for the IMOWAD distance are obtained from the
order-inducing variable u. For this step, we explore four variants of the Regular
Increasing Monotone (RIM) quantifier, where α is an input parameter. This
strategy, also known as fuzzy linguistic quantifiers, are arguably the best-known
approach for obtaining the OWA weighting vectors [41]. The quantifiers used
in this study are the following:

• Basic Regular Increasing Monotone (RIM) quantifier:

wj =

(
j

n

)α
−
(
j − 1

n

)α
∀ j. (9)

• Quadratic RIM quantifier [42]:

wj =

(
1

1− α
(
j
n

)0.5

)
−
(

1

1− α
(
j−1
n

)0.5

)
∀ j. (10)

• Exponential RIM quantifier:

wj = e−α( j
n ) − e−α( j−1

n ) ∀ j. (11)

• Trigonometric RIM quantifier:

wj = arcsin

(
α

(
j

n

))
− arcsin

(
α

(
j − 1

n

))
∀ j. (12)

Step 4 performs feature selection within the SMOTE strategy, defining a
subset S ⊆ X of relevant variables, in which X represents the full set of variables.
This subset is obtained from the weights computed in the previous step.

The feature selection step is suggested in order to alleviate the curse of di-
mensionality when facing high-dimensional datasets. For this step, the literature
on feature selection offers two alternatives. First, a predefined threshold ε can
be defined, and those attributes whose weights are below ε can be discarded.
Alternatively, a target number of ranked variables r ≤ n can be defined. In this
case, those attributes that are ranked among the n− r variables with the lowest
weights are discarded (see Step 4 of Algorithm 1).

As mentioned in the introduction, FW-SMOTE is not designed as a feature
selection method for the classification task. However, it can be used for this
purpose, taking advantage of the feature ranking method. In other words, the
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use of the set S for classification instead of using the full set of attributes is up
to the modeler.

Steps 5 to 15 of Algorithm 1 are the core of the FW-SMOTE method. For
each minority sample inM (Step 5), its neighborhood of size k is computed using
the IMOWAD function (Step 6 to 9). Set T includes the k nearest neighbors of
the target sample i.

Similar to the SMOTE algorithm, FW-SMOTE selects the N < k neighbors
randomly once the neighborhood is defined. The values for k and N must be
defined beforehand. Step 11 selects a random sample xk from T , while Step 12
creates a synthetic examples x∗k via interpolation with the target sample. For
this step, the algorithm requires a random number υ between 0 and 1.

In Step 13, the synthetic example x∗k is appended toM∗. Next, the randomly
selected sample is xk is excluded from T (see step 14 of Algorithm 1). This
process is repeated N times for each of the minority examples.

The output of the algorithm is then the oversampled minority classM∗ that
includes all the original samples in M and the synthetic examples.

Our approach is a generalized version of the SMOTE algorithm since the
IMOWAD operator becomes the traditional Euclidean norm when wj = 1/n for
all j, r = n (no feature selection), and p = 2.

3.4. Theoretical analysis and contribution

Our main contribution is the proposed weighting strategy for the definition
of the neighborhood in the SMOTE algorithm. It is important to notice that
the proposed metric (the IMOWAD distance) was not considered previously in
the context of machine learning. Furthermore, the feature ranking methods
have not been considered in previous studies with the purpose of developing
a weighted distance metric. These elements make FW-SMOTE a non-trivial
oversampling strategy with a lot of potential since it generalizes the original
SMOTE algorithm.

The introduction of a weighting process in the construction of distance func-
tions showed good empirical results in unsupervised learning, as suggested in
[43]. In this study, the authors report an important improvement in the descrip-
tion and interpretability of data from molecular dynamics (MD) simulations.
This is a very relevant high-dimensional task designed to describe biomolecules
observed in time. Although this approach considers a completely different
weighting strategy and it is designed for a different purpose, it supports our
hypothesis that a weighted scheme can improve distance-based learning strate-
gies in high-dimensional settings.

Our proposal is essentially similar to SMOTE in terms of complexity. FW-
SMOTE is based on fast feature ranking methods, such as Fisher Score, and
involves additional steps which are very fast arithmetic operations: computing
the RIM function in order to obtain the weight vector, sorting the output of the
feature ranking method, and finally the inclusion of the weights in the distance
function. The sole exception to this is the use of Eigenvector Centrality as
feature ranking method, which is more time-consuming than the alternatives
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since it requires the other feature ranking methods as input, and it performs
the computation of eigenvalues for the adjacency matrix.

The following remarks relate the proposed approach with the use of over-
sampling in combination with feature extraction methods:

Remark 1. There is an interesting relation between FW-SMOTE and the ap-
plication of SMOTE oversampling on an embedding space. Feature extraction
strategies such as Locally Linear Embedding (LLE) have some mathematical
similarities with FW-SMOTE: it constructs a k-NN graph and defines weights
to multiply the input variables. However, this is done with a completely different
purpose: to map the data into a low-dimensional manifold, where the patterns
become more distinguishable [44].

Remark 2. FW-SMOTE is flexible enough to be able to resemble (at least par-
tially) a feature extraction method. In particular, the correlation score (Eq. (8))
weighs down attributes that are uncorrelated with others in the data matrix X.
Alternatively, Eigenvector Centrality integrates different strategies that can be
linked with feature extraction, such as the computation of eigenvectors. Nev-
ertheless, we believe that there are important differences between FW-SMOTE
and studies that apply SMOTE on the embedding space:

(a) Casting the original space into a lower-dimensional feature space is im-
portant in many applications, such as computer vision or text analytics.
However, in many others, such as in business analytics, this step seldom
brings an improvement in prediction. In tabular datasets, the correlations
between variables are usually not strong and the predictive performance is
linked to the relationship between each one of the original variables and
the labels.

(b) Our weighting strategy is directly linked to the original variables, allowing
the possibility of performing feature selection. In contrast, feature extrac-
tion methods perform combinations of the inputs, making it impossible to
perform feature selection in most cases.

(c) The correlation-based weighting approach (FW-SMOTE with correlation
score as feature ranking method) showed a worse performance in compari-
son to relevance-based feature ranking techniques (Fisher Score or Mutual
Information). This confirms that the virtue of FW-SMOTE relies on the
proper definition of the neighborhood by assessing the individual contribu-
tion of the original features, at least in the benchmark datasets considered
in this study.

(d) Feature extraction techniques are usually more time-consuming than the
feature ranking techniques recommended in this study. Therefore, the over-
all complexity of an approach that performs SMOTE on the embedding
space would be larger than the one of FW-SMOTE.
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(e) There are ad-hoc embedding strategies depending on the task at hand. It is
not evident which feature extraction strategy works best in a given applica-
tion. These issues are task-dependent, while FW-SMOTE can be applied
in any domain.

We strongly believe that performing SMOTE in a feature embedding space
has many advantages, as shown in [44], and it would perform better than FW-
SMOTE in some domains. However, it represents a different strategy for ad-
dressing the class-imbalance problem. In order to support this claim, we eval-
uate empirically the use of Principal Component Analysis (PCA) for feature
extraction in combination with SMOTE oversampling, as suggested in [45], on
low and high-dimensional datasets.

4. Experimental Results

We applied the proposed FW-SMOTE and alternative oversampling ap-
proaches to well-known benchmark datasets with a wide range of sample sizes
and imbalance ratios. In Section 4.1 we present a description of all the datasets
and the experimental setting, while Section 4.2 provides a summary of the per-
formance obtained for all techniques. Next, the influence of the different param-
eters related to our approach is analyzed in Section 4.3. Finally, the adaptation
of the FW-SMOTE method as a feature selection strategy is discussed in Sec-
tion 4.4, comparing it with alternative feature selection approaches that deal
with the class-imbalance problem.

4.1. Experimental Framework and Available Datasets

Of the 42 datasets used for benchmarking, 12 are high-dimensional microar-
ray datasets reported in Maldonado et al. [6], while the remaining 30 are low-
dimensional applications from the UCI (http://archive.ics.uci.edu/) and
KEEL (http://sci2s.ugr.es/keel) data repositories.

Regarding the relevant information of the various datasets, Table 1 sum-
marizes the relevant metadata, such as Imbalance Ratio (IR), Number of At-
tributes (#Att), Number of Samples (#Samples), and Percentage of Samples
in each class (min.,maj.) for all datasets.

The following alternative approaches were considered in the experimental
analysis: the classic SMOTE [16]; the SMOTE variations Borderline-SMOTE
[20], SL-SMOTE, [22], ADASYN [18], Adaptive Neighbor SMOTE [19], Density
Based SMOTE [21], MWMOTE [24], Relocating Safe-level SMOTE [23], the
RBO technique [25], and PCA in combination with standard SMOTE [45]. For
the latter method, the number of extracted components was decided in such a
way that at least 90% of the variance was explained with the selected features,
as suggested in [45].

A major challenge in class-imbalance classification is the choice of the per-
formance measure [46, 47]. Ten-fold cross-validation was conducted using AUC
(Area Under the Curve) as the performance metric to perform model validation
[47]. We also included a metric based on the binary confusion matrix that is
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Table 1: Relevant metadata for all datasets.
ID Dataset IR #Att #Samples %class(min.,maj.)

Low-dimensional datasets
ldd1 abalone7 9.7 8 4177 (9.3, 90.7)
ldd2 ecoli 8.6 7 336 (10.4, 89.0)
ldd3 ecoli-0-1 vs 5 11 6 240 (8.3, 91.7)
ldd4 ecoli-0-1-4-6 vs 5 13 6 280 (7.1, 92.9)
ldd5 ecoli-0-1-4-7 vs 5-6 12.28 6 332 (7.5, 92.5)
ldd6 ecoli-0-2-3-4 vs 5 9.1 7 202 (9.9, 90.1)
ldd7 ecoli-0-2-6-7 vs 3-5 9.18 7 224 (9.8, 90.2)
ldd8 ecoli-0-3-4 vs 5 9 7 200 (10.0, 90.0)
ldd9 ecoli-0-3-4-6 vs 5 9.25 7 205 (9.8, 90.2)

ldd10 ecoli-0-3-4-7 vs 5-6 9.28 7 257 (9.7, 90.3)
ldd11 ecoli-0-4-6 vs 5 9.15 6 203 (9.9, 90.1)
ldd12 ecoli-0-6-7 vs 3-5 9.09 7 222 (9.9, 90.1)
ldd13 ecoli-0-6-7 vs 5 10 6 220 (9.1, 90.9)
ldd14 ecoli4 13.84 7 336 (6.7, 93.3)
ldd15 glass-0-1-6 vs 2 10.29 9 192 (8.9, 91.1)
ldd16 glass-0-4 vs 5 9.22 9 92 (9.8, 90.2)
ldd17 glass-0-6 vs 5 11 9 108 (91.7, 8.3)
ldd18 glass4 15.47 9 214 (6.1, 93.9)
ldd19 image1 6 19 2310 (14.3, 85.7)
ldd20 page-blocks-1-3 vs 4 15.85 10 472 (5.9, 94.1)
ldd21 shuttle-c0-vs-c4 13.87 9 1829 (6.7, 93.3)
ldd22 solar 19.4 10 1389 (4.9.95.1)
ldd23 yeast-0-2-5-7-9 vs 3-6-8 9.14 8 1004 (9.9, 90.1)
ldd24 yeast-0-5-6-7-9 vs 4 9.35 8 528 (9.7, 90.3)
ldd25 yeast-1 vs 7 13.87 7 459 (6.7, 93.3)
ldd26 yeast-1-4-5-8 vs 7 22.1 8 693 (4.3, 95.7)
ldd27 yeast-2 vs 4 9.08 8 514 (9.9, 90.1)
ldd28 yeast3 8.1 8 1484 (11.0, 89.0)
ldd29 yeast4 28.1 8 1484 (3.4, 96.6)
ldd30 yeast5 32.78 8 1484 (3.0, 97.0)

High-dimensional datasets
hdd1 bhat1 9.15 3312 203 (9.9,90.1)
hdd2 bhat2 9.15 3312 203 (8.4,91.6)
hdd3 bhat3 9.15 3312 203 (10.3,89.7)
hdd4 bhat4 9.15 3312 203 (3.0,97.0)
hdd5 bullinger 11.25 17,404 98 (8.2, 91.8)
hdd6 car1 14.8 9182 174 (6.3, 93.7)
hdd7 car2 14.8 9182 174 (6.9, 93.1)
hdd8 car3 14.8 9182 174 (4.0, 96.0)
hdd9 car4 14.8 9182 174 (3.4, 96.6)

hdd10 glioma 6.14 4434 50 (14.0,86.7)
hdd11 lung 4.85 12,533 181 (17.1,82.9)
hdd12 srbct 6.55 2308 83 (13.2, 86.8)

able to provide a balance between the two class accuracies, as suggested in [46].
Therefore, the G-mean, computed as the geometric mean of the sensitivity and
the specificity [46], is also reported for completeness.

The following classification techniques are used after the data resampling
method is applied: k-Nearest Neighbors (k-NN), Logistic Regression (LR), and
linear Support Vector Machine (SVM). While logistic regression does not re-
quire parameter setting in its formulations, the values for k and C must be
defined for k-NN and SVM, respectively. We used k = 5 and C = 1 for these
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methods, since they are suggested in the literature as good default values for
these methods [6]. For all the oversampling methods, the number of neighbors
was set to k = 5, as suggested in the original paper by Chawla et al. [16]. We
selected N = 1 and N = 3 objects from these five neighbors (100% and 300%
oversampling, respectively). For the proposed method, the following values for r
(the cardinality of the subset of selected features), p (the Minkowski distance pa-
rameter), and α (the OWA quantifier parameter) were explored: r ∈ {n2 , 3n4 , n},
p ∈ {1, 2,∞} (Manhattan, Euclidean, and Chebyshev norms, respectively), and
α ∈ {0.4, 0.6}. Different combinations of these parameters were explored using
grid search.

The parameter tuning procedure was performed within the training set for
the various parameters included in our proposal. The only “parameter” choice
that was made based on the average test performance was the amount of over-
sampling N . For all methods, we selected the best performance between these
two alternatives. The comparison between all models is fair since the test set
remains unseen until the final performance assessment for all models.

Regarding model implementation, our proposal was developed in Matlab,
and the codes are available at http://github.com/cvairetti. The SMOTE,
BL-SMOTE, and SL-SMOTE variants were implemented in Matlab by Iman
Nekooeimehr (http://github.com/Nekooeimehr), while the remaining SMOTE
variants were developed in R using the imbalance package by Ignacio Cordón
[48] (http://github.com/ncordon).

4.2. Performance analysis

Tables 2 and 3 summarize the results obtained for oversampling methods
using k-NN, SVM, and LR as classification models, and for both low- and high-
dimensional datasets, respectively. For each oversampling technique (presented
in ascending order of average rank) and classification method, these tables in-
clude the following information:

• The average rank computed by the Friedman test with Iman-Davenport
correction. This test was used to assess whether or not all ranks are statis-
tically similar [49]. This is a common approach for assessing classification
performance among various supervised learning methods. For each clas-
sification method, the average rank is computed based on the AUC value
on all the datasets for each oversampling approach.

• The average AUC x100 and G-mean x100 with their corresponding stan-
dard deviations.

• The p-values obtained by the Holm test and the outcome of the test. This
test was suggested in [49] to use in case the Friedman test is rejected,
which is our case. This test compares the pairwise performance between
each oversampling approach and the one with the best rank. The outcome
is ‘reject’ when this p-value falls below a threshold β/(j − 1), with β =
5% and j = 2, . . . , 11 being the overall ranking for a given oversampling
method. This outcome implies that the corresponding SMOTE variant is

17

                  



outperformed by the one with the best rank. In this case, the p-value is
highlighted with an asterisk.

• The number of wins/ties/loses (W/T/L) for each method in comparison
with the one with the highest rank. This analysis is presented for both
performance measures (AUC and G-mean).

The values for the Friedman F tests with Iman-Davenport correction for
the low dimensional datasets with the AUC measure are 13.28, 7.99, and 9.11
for the k-NN, SVM, and LR methods, respectively, suggesting that the null
hypothesis of equal ranks can be rejected for all methods with p-values below
0.01. For the high-dimensional datasets, the values for this test are 6.26, 6.75,
and 5.82 for the k-NN, SVM, and LR methods, respectively, suggesting that the
null hypothesis of equal ranks can also be rejected for the k-NN, SVM, and LR
approaches with p-values below 0.01.

Table 2: Holm’s post-hoc test for pairwise comparisons. Low-dimensional datasets.

Method Ranking AUC W/T/L p-value G-mean W/T/L
(AUC) (Holm test) (G-mean)

k-nearest neighbors
FW-SMOTE 1.600 88.2±9 - - 83±19.5 -
SMOTE 5.300 85.5±11.1 0/2/28 < 0.001* 80.3±20 1/6/23
AN-S. 5.700 84.2±12.1 1/4/25 < 0.001* 77.9±22.7 1/5/24
MWMOTE 5.867 84.7±12.4 0/4/26 < 0.001* 79.3±22.3 1/4/25
BL-S. 5.883 85.6±10.5 0/1/29 < 0.001* 79.1±21.5 0/2/28
RBO 6.000 85.5±10.8 0/2/28 < 0.001* 82.8±15.4 2/2/26
SL-S. 6.050 84.5±11.6 0/5/25 < 0.001* 77.1±24 0/4/26
RSL-S. 6.483 83.7±13.5 0/7/23 < 0.001* 75.7±25.5 0/6/24
ADASYN 6.483 83.8±12.4 0/4/26 < 0.001* 77.4±23.4 2/2/26
DB-S. 7.533 83.1±12.7 0/4/26 < 0.001* 76.1±23.8 1/3/26
PCA-S. 9.100 72.4±11.8 0/0/30 < 0.001* 62.2±57.5 0/0/30
Support Vector Machine
FW-SMOTE 2.600 84.6±13.4 - - 78.5±25.3 -
SL-S. 5.400 83.2±13 2/2/26 0.001* 75.5±26.9 2/4/24
SMOTE 5.533 82.7±13.9 1/3/26 0.001* 75.3±27.8 1/3/26
AN-S. 5.733 82.7±12.8 1/3/26 < 0.001* 77.3±22.6 3/2/25
BL-S. 6.033 82.2±14.5 2/1/27 < 0.001* 74.5±30.1 3/1/26
MWMOTE 6.050 82.5±13.1 1/2/27 < 0.001* 76.7±24 2/3/25
RSL-S. 6.050 82.4±12.5 1/2/27 < 0.001* 76.6±22.3 2/2/26
RBO 6.183 82.4±13.6 0/2/28 < 0.001* 74.8±27.4 0/3/27
DB-S. 6.667 82.1±13.4 2/2/26 < 0.001* 75.7±24.4 1/2/27
ADASYN 6.833 81.6±13.1 2/1/27 < 0.001* 75.2±23.6 3/1/26
PCA-S. 8.917 63.8±16.7 1/0/29 < 0.001* 36.2±42.5 1/1/28
Logistic regression
FW-SMOTE 3.267 85.4±10.2 - - 82.2±17.5 -
SMOTE 5.083 84.8±9.8 2/3/25 0.034* 80±19.2 1/8/21
MWMOTE 5.267 83.5±11.8 4/3/23 0.020* 77.7±21.5 1/4/25
SL-S. 5.550 84.4±10 1/3/26 0.008* 80.6±15.8 2/5/23
BL-S. 5.617 84.2±10 4/2/24 0.006* 79.8±17.7 4/3/23
AN-S. 5.917 83.3±11.7 0/5/25 0.002* 78±20.9 1/4/25
RSL-S. 6.033 82.7±12.5 2/5/23 0.001* 75.7±23.7 1/5/24
RBO 6.083 83.3±11.6 3/4/23 0.001* 77.9±20.9 0/4/26
DB-S. 6.433 82.8±11.8 2/4/24 < 0.001* 76.7±21.5 1/4/25
ADASYN 7.250 81.9±11.8 1/3/26 < 0.001* 75.8±21.1 2/5/23
PCA-S. 9.500 64.4±15.2 0/1/29 < 0.001* 42.9±47.2 0/1/29
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Table 3: Holm’s post-hoc test for pairwise comparisons. High-dimensional datasets.

Method Ranking AUC W/D/L APV G-mean W/D/L
(Holm test)

k-nearest neighbors
FW-SMOTE 2.708 92.7±10.5 - - 95.7±23.9 -
AN-S. 4.792 91.3±10.2 1/3/8 0.124 93.6±26.2 2/1/9
RSL-S. 5.083 91.3±10.3 1/2/9 0.079 92.8±28.5 1/1/10
ADASYN 5.292 90.9±10.1 2/1/9 0.056 92.2±26.5 2/2/8
DB-S. 5.375 90.9±10.6 0/2/10 0.049 92.4±27.2 1/1/10
MWMOTE 5.458 91.1±10.8 0/2/10 0.042 93.6±25.8 1/1/10
SL-S. 6.417 90.4±10.9 0/1/11 0.006* 92.4±26.9 0/2/10
SMOTE 6.625 90.5±10.8 0/2/10 0.004* 91.8±23.8 0/2/10
RBO 7.042 89.4±9.8 0/2/10 0.001* 90.9±20.2 1/1/10
BL-S. 7.125 90.5±10.8 0/1/11 0.001* 92.5±25 0/1/11
PCA-S. 10.083 65.4±17.5 1/0/11 < 0.001* 19.9±22.6 1/0/11
Support Vector Machine
BL-S. 5.458 88±13.1 0/12/0 - 87.2±31.9 0/8/4
FW-SMOTE 5.458 88±13.1 0/12/0 - 90±28.4 0/8/4
RBO 5.458 88±13.1 0/12/0 - 87.2±30 0/8/4
SL-S. 5.458 88±13.1 0/12/0 - 87.2±29.6 0/8/4
SMOTE 5.458 88±13.1 0/12/0 - 87.2±30.3 0/8/4
DB-S. 5.750 87.4±12.8 0/11/1 0.829 87.2±27.6 0/8/4
MWMOTE 5.750 87.4±12.8 0/11/1 0.829 87.2±27.1 0/8/4
ADASYN 5.917 87.4±12.8 0/11/1 0.735 86.4±26.6 0/7/5
RSL-S. 5.917 87.4±12.8 0/11/1 0.735 87.2±26 0/8/4
AN-S. 6.042 87.3±12.8 0/11/1 0.667 87.2±26 0/8/4
PCA-S. 9.333 66.7±18.8 2/0/10 0.004* 38.1±37.0 1/0/11
Logistic regression
FW-SMOTE 1.083 91.3±11.3 - - 92.9±22.3 -
MWMOTE 4.958 83.7±12.7 0/0/12 0.004* 75.4±27.3 0/0/12
DB-S. 5.125 83.2±15.6 0/0/12 0.003* 73.8±28 0/0/12
SMOTE 5.625 82.4±13.8 0/0/12 0.001* 77.9±25 0/0/12
AN-S. 6.250 81.6±14.9 0/0/12 < 0.001* 75.2±27.4 0/0/12
RBO 6.250 81.7±16 0/0/12 < 0.001* 68.6±28.1 0/0/12
SL-S. 6.375 82±16 0/0/12 < 0.001* 74.8±24.7 0/0/12
ADASYN 7.125 80.9±14.6 0/0/12 < 0.001* 70.7±26.3 0/0/12
RSL-S. 7.125 79.5±14.7 0/0/12 < 0.001* 70±28.6 0/0/12
BL-S. 7.583 80.6±16 0/0/12 < 0.001* 74.7±24.9 0/0/12
PCA-S. 8.500 66.4±17.1 1/0/11 < 0.001* 32.2±32.9 1/0/11

It can be observed in tables 2 and 3 that the proposed FW-SMOTE clearly
outperforms the other SMOTE variations on both low and high-dimensional
datasets. The only exception is the SVM case on high-dimensional datasets,
in which most oversampling methods are equally good. This can be due to
the small number of minority samples in the microarray datasets, leading to
relatively similar sets of oversampled objects. Furthermore, the use of unregu-
larized classification approaches on high-dimensional datasets may explain the
small differences in methods such as SVM.

Regarding the use of a feature extraction method such as PCA in combina-
tion with SMOTE oversampling, we observe in tables 2 and 3 that this approach
has the worse average rank and average predictive performance in terms of AUC
and G-mean. Furthermore, it is statistically outperformed by the proposed FW-
SMOTE in all six cases. We can conclude that the use of a feature extraction
method in combination with SMOTE is not recommended in tabular datasets
with a low degree of redundancy, being able to achieve best performance only
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on a few occasions.
The mean AUC and G-mean values confirm the superiority of the proposed

method in terms of average predictive performance. Best average performance
is achieved with the k-NN classifier, however, our approach for feature selection
and data resampling lead to competitive results with logistic regression, which
has the additional virtue of being interpretable.

The detailed results for each method and dataset are reported in Appendix
A, presented as supplementary material. Tables A.1 to A.3 consider AUC as
performance measure, while tables A.4 to A.6 use G-mean.

4.3. Influence of the FW-SMOTE parameters

As mentioned above, the proposal is a very general version of SMOTE over-
sampling, which allows several alternatives for feature weighting and selection
thanks to the use of OWA operators. Table 4 presents the percentage of times
a given parameter leads to the largest AUC with the FW-SMOTE strategy and
the four classification approaches. We note that four feature ranking strate-
gies were explored (Fisher Score, Mutual information, Eigenvector Centrality,
and Correlation Score), three alternatives for the number of ranked features
(r ∈ {n2 , 3n4 , n}), three variants for the Minkowski distance (p ∈ {1, 2,∞}, i.e.
Manhattan, Euclidean, and Chebyshev norms, respectively), four OWA quanti-
fiers (Basic RIM, Quadratic RIM, Exponential RIM, and Trigonometric RIM),
and two values for the OWA quantifier parameter (α ∈ {0.4, 0.6}). Notice that
when two FW-SMOTE variants achieve the same performance, the first one is
considered to be the one with the best performance in the ordering provided in
Table 4.

According to Table 4, the first alternatives are usually the ones that achieved
the best results. Fisher Score is the recommended feature selection strategy,
while the basic RIM quantifier is the suggested OWA approach. Notice that the
best performance is seldom achieved with r = n, suggesting that the feature
selection step is very important for the algorithm, and confirming the results
obtained in [6]. Finally, the Chebyshev norm is preferred among the various
alternatives for p. Theoretically speaking, the Chebyshev provides a better def-
inition of distance in high-dimensional settings when compared with the Man-
hattan and Euclidean norms [6], and this result confirms this point. Neverthe-
less, there is a large number of ties in terms of performance for all FW-SMOTE
variants. On the one hand, it suggests that the results are very stable, and
the influence of the various parameters is not strong. On the other hand, this
analysis must be used with caution in the sense that most variants achieve a
similar performance.

Notice that the results obtained with the proposal were obtained via grid
search based on the parameter set reported in Section 4.1. Table 4 is constructed
by taking into account the best parameter configuration with this procedure
for each dataset and classification method. The percentage of times a given
parameter lead to the largest AUC (the values in Table 4) were computed using
this information. In other words, only the optimal parameter configuration is
used in Table 4.
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Table 4: Percentage of times a given parameter performs best.

k-NN SVM LR

Feature ranking method
Fisher 46.7 64.4 44.5
Mutual Inf. 16.7 11.1 21.1
Eig. Centrality 16.7 7.8 16.7
Correlation 20.0 16.7 17.8
Number of ranked features
r = n/2 58.9 67.8 50.0
r = 3n/4 22.2 15.6 28.9
r = n 18.9 16.7 21.1
Minkowski distance parameter
p =∞ 55.6 55.6 57.8
p = 1 21.1 30.0 21.1
p = 2 23.3 14.4 21.1
OWA quantifier
Basic RIM 57.8 74.4 63.3
Quadratic 15.6 10.0 20.0
Exponential 12.2 7.8 7.8
Trigonometric 14.4 7.8 8.9
Quantifier parameter
α = 0.4 71.1 83.3 76.7
α = 0.6 28.9 16.7 23.3

4.4. Feature selection results

As it was previously pointed out, FW-SMOTE is designed to define a bet-
ter neighborhood for the oversampling process via feature weighting. In case
a variable has a very low weight, it will be ignored in the definition of the
neighborhood. However, the method does not remove it from the classification
task as it is designed to be an intelligent oversampling comparable to any other
SMOTE variant. Nevertheless, we can utilize the feature weighting strategy
and allow the complete exclusion of the covariates that receive a low weight in
the IOWA function. Table 5 reports a new set of experiments in which feature
selection is incorporated in the learning process.

21

                  



Table 5: Holm’s post-hoc test for pairwise comparisons. Feature selection.

Method Ranking AUC W/T/L APV G-mean W/T/L
(Holm test)

k-nearest neighbors
FW-SMOTE 2.833 96.8±3.6 - - 96.8±3.7 -
Fisher+SMOTE 5.344 90.3±7.1 3/0/45 0.002* 89.7±7.8 3/0/45
Relief+SMOTE 5.927 89.6±7.3 0/0/48 < 0.001* 89.2±7.9 0/0/48
Fisher+BL-S. 6.240 92.8±7.2 6/9/33 < 0.001* 92.3±7.9 5/9/34
Fisher+SL-S. 6.240 92.8±7.2 6/9/33 < 0.001* 92.3±7.9 5/9/34
Relief+BL-S. 6.313 94.1±5.6 4/12/32 < 0.001* 94±5.8 6/10/32
Relief+SL-S. 7.115 90±7 1/0/47 < 0.001* 89.6±7.6 1/0/47
CFS+BL-S. 7.333 91.2±7.6 2/0/46 < 0.001* 90.8±8.4 2/0/46
CFS+SL-S. 8.281 92.9±6 6/4/38 < 0.001* 92.5±6.4 7/3/38
CFS+SMOTE 8.448 94.2±5.4 7/5/36 < 0.001* 94±5.7 7/5/36
BFE+SL-S. 8.635 91.8±14.9 6/3/39 < 0.001* 91.4±15.1 6/3/39
BFE+SMOTE 8.917 90.2±7.4 1/0/47 < 0.001* 89.6±8.4 1/0/47
BFE+BL-S. 9.375 90.5±7 0/0/48 < 0.001* 90.1±7.7 0/0/48
Support Vector Machine
FW-SMOTE 4.375 93.7±6.9 - - 93.3±7.5 -
Fisher+BL-S. 5.000 93.1±7.1 2/27/19 0.432 92.6±7.7 2/27/19
Fisher+SL-S. 5.000 93.1±7.1 3/26/19 0.432 92.6±7.7 2/27/19
Fisher+SMOTE 5.042 88.4±10.8 0/12/36 0.402 87±12.8 0/12/36
Relief+SL-S. 6.417 88.4±11 0/12/36 0.01* 87±12.9 0/12/36
Relief+SMOTE 6.938 88.2±11.1 0/12/36 0.001* 86.8±13 0/12/36
Relief+BL-S. 7.448 93±7 0/26/22 < 0.001* 92.5±7.7 0/26/22
CFS+SL-S. 7.948 91.5±10.6 1/20/27 < 0.001* 90.5±13.4 1/20/27
CFS+BL-S. 8.219 90.2±9.1 4/10/34 < 0.001* 89.2±10.8 4/10/34
CFS+SMOTE 8.333 91.2±10.2 1/17/30 < 0.001* 90.2±12.6 2/16/30
BFE+SL-S. 8.656 89.4±16 1/16/31 < 0.001* 88.5±17 1/16/31
BFE+SMOTE 8.708 89.8±9.4 4/10/34 < 0.001* 88.7±11.2 4/10/34
BFE+BL-S. 8.917 89.6±10.9 1/13/34 < 0.001* 88.2±13.9 1/13/34
Logistic regression
FW-SMOTE 2.677 91.1±9.1 - - 90.8±9.4 -
Relief+BL-S. 5.615 84.9±12.6 4/3/41 < 0.001* 84.1±13.4 4/3/41
Fisher+BL-S. 5.625 85±13.9 4/7/37 < 0.001* 84.1±15.3 4/7/37
Fisher+SL-S. 5.625 85±13.9 4/7/37 < 0.001* 84.1±15.3 4/7/37
Relief+SL-S. 5.906 79.3±13.3 3/1/44 < 0.001* 78.1±14.5 3/1/44
Relief+SMOTE 6.021 79±13.6 2/1/45 < 0.001* 77.9±14.9 2/1/45
Fisher+SMOTE 6.042 78.6±14.2 1/1/46 < 0.001* 77.3±15.9 1/1/46
BFE+BL-S. 8.656 79.3±12.3 0/2/46 < 0.001* 77.8±13 0/2/46
CFS+BL-S. 8.667 80±12.4 2/0/46 < 0.001* 79.1±13.2 2/0/46
BFE+SMOTE 8.938 78.8±12.6 0/0/48 < 0.001* 77.6±14.2 0/0/48
CFS+SMOTE 8.938 84.4±12.5 6/2/40 < 0.001* 83.5±13.7 6/2/40
BFE+SL-S. 8.990 84.1±17.4 4/4/40 < 0.001* 83.3±18 4/4/40
CFS+SL-S. 9.302 84.5±12.4 5/4/39 < 0.001* 83.5±13.3 5/5/38

For the twelve high-dimensional datasets, we select the top n∗ attributes with
the filter strategies proposed for FW-SMOTE (FS, MI, EC, or CFS) while per-
forming the oversampling approach, with n∗ ∈ {50, 100, 250, 1000}. For each fea-
ture selection+oversampling technique and for each classifier (k-NN, SVM, and
LR), Table 5 reports the average rank, the average AUC x100 and G-mean x100
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with their corresponding standard deviations, the number of wins/ties/loses, the
p-values of the Holm test.

As alternative approaches we consider the filter methods Fisher Score, CFS,
Relief, and BFE-SVM (only as a measure for feature ranking), in combina-
tion with the resampling techniques SMOTE, Borderline SMOTE (BL-S.), and
SafeLevel-SMOTE (SL-S.). Relief and BFE-SVM were selected because they
are relevant measures discussed in the feature selection literature for dealing
with the class-imbalance problem (see Section 2.3).

The values for the Friedman tests with Iman-Davenport correction for these
experiments are 13.63, 15.57, and 18.38 for the k-NN, SVM, and LR approaches,
respectively. It can be concluded that the hypothesis of equal ranks can be
rejected for all classifiers with p-values below 0.01.

Similar to tables 2 and 3, it can be observed that the proposed FW-SMOTE
with the feature selection step outperforms the alternative approaches, being
the top-ranked strategy with the three classifiers. Furthermore, feature selection
improves the average performance of the resampling techniques, including our
proposal. This is particularly noticeable for SVM classification. We conclude
that our proposal is not only extremely useful as an oversampling technique,
but also as an integrated solution for dealing with the class-imbalance problem
in high-dimensional settings.

5. Conclusions

In this work, we have proposed a novel oversampling approach, called FW-
SMOTE, designed to deal with imbalanced classification under the presence
of irrelevant/redundant variables. The proposal uses the weighted Minkowski
distance for identifying the k nearest objects in the minority class. This leads to
a general and efficient SMOTE variant that is able to up-weigh relevant features
for a better definition of the neighborhood.

Our experimental analysis, carried out on 42 imbalanced datasets, shows
the effectiveness of this new proposal, which outperforms several state-of-the-
art SMOTE-based variants under different classification algorithms. Further-
more, our strategy is also able to perform feature selection and data resampling
simultaneously thanks to the feature weighting step. Experiments on high-
dimensional datasets prove that FW-SMOTE outperformed two-step strategies
for independent feature selection and oversampling.

We must discuss about a potential FW-SMOTE limitation regarding its
large number of tuning parameters, which opens many possible combinations
of parameter configurations. Exploring a wide range of values for the various
parameters can be a time-consuming process since it requires successive model
estimations on the resampled data. Computationally speaking, the model train-
ing step is usually more expensive than data resampling. It is important to no-
tice that our approach is faster than most alternatives: FW-SMOTE does not
consider the majority class, resulting in a relatively similar complexity in rela-
tion to SMOTE, while being faster than alternatives that consider the majority
samples.
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From our grid search study, we observe very stable results for most parameter
configurations. We can conclude from this analysis that a default configuration
can ease the model validation process when facing large datasets. Therefore,
we recommend a default setting based on the best-performing parameters found
with our thorough experimentation. In particular, we suggest using Fisher Score
as feature ranking method because of its superior performance and efficiency.

As future work, we intend to extend this proposal to Big Data problems.
In a Big Data setting, both SMOTE and our variant can be extremely time
consuming or even intractable. Some solutions have been proposed, such as
the use of an approximation of the distance function [50]. We believe that this
line of research is extremely important for the future of pattern recognition
and machine learning in general. In order to address this challenge, we plan
to design and develop a smart and scalable feature ranking approach that, in
synergy with a distributed oversampling solution, will be able to cope with
Big Data applications. In addition, we plan to design hybrid undersampling-
oversampling approaches to get the best of both worlds.

Another important avenue for research is deep learning (DL). The advent
of artificial intelligence and AI has created new opportunities in domains such
as medical diagnosis, computer vision, and natural language processing [51, 52].
Furthermore, deep learning tasks can also face the class imbalance problem
[51, 52]. Although our FW-SMOTE method is designed to weigh to original
input variables, it can be adapted to introduce weights on a feature space,
making it suitable for learning machines such as DL architectures.
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Appendix A. Detailed Results without feature selection

Tables A.1 to A.3 present the results for all the datasets and oversampling
methods using k-NN, SVM, and LR as classification models, respectively. Each
table reports the average AUC of the best parameter configuration obtained
for each oversampling method. The best performance is emphasized in bold
type. The average AUC computed from all low-dimensional (XLDD) and high-
dimensional (XHDD) datasets is also reported for each method.

Table A.1: Performance summary using k-nearest neighbors for binary classification. AUC
measure.
k-NN FW-SMOTE SMT BL-S. SL-S. A.SYN AN-S. DB-S. MWT RSL-S. RBO PCA-S.

Low-dimensional datasets
ldd1 72.9 69.1 68.4 68.3 69.7 72.0 69.2 70.9 68.3 65.6 65.9
ldd2 92.3 92.0 92.0 89.5 89.5 92.3 92.3 91.6 92.3 92.0 84.7
ldd3 92.3 92.1 91.9 92.3 89.8 89.8 91.9 92.1 92.3 91.9 56.8
ldd4 91.4 89.2 90.0 89.7 87.1 85.1 85.4 88.9 83.6 89.3 58.8
ldd5 91.9 91.7 91.1 91.9 91.1 91.7 89.4 91.9 91.9 91.4 49.9
ldd6 90.0 88.0 86.8 84.8 90.0 85.3 84.6 84.8 85.3 88.0 76.7
ldd7 92.2 92.2 91.1 92.2 89.7 92.2 92.2 91.7 92.2 92.2 64.4
ldd8 92.2 92.0 91.7 92.2 92.2 92.0 92.2 91.4 92.2 91.4 76.9
ldd9 91.2 90.2 90.3 90.8 87.4 90.8 88.5 90.8 90.8 90.6 72.5
ldd10 92.2 89.7 91.7 91.9 91.9 92.2 89.7 91.7 91.9 91.9 62.5
ldd11 89.1 86.3 88.1 85.1 89.1 86.3 85.1 85.8 85.3 87.3 73.9
ldd12 89.8 88.5 88.5 89.8 86.3 91.3 86.0 88.8 89.5 88.8 64.8
ldd13 88.1 86.6 86.2 84.3 87.3 85.1 86.5 85.6 85.6 82.8 70.3
ldd14 92.3 91.9 89.4 92.0 89.4 92.2 92.0 89.5 89.5 91.9 89.5
ldd15 78.5 72.6 72.3 73.4 50.5 53.3 52.2 52.7 48.0 71.5 54.8
ldd16 90.0 83.8 83.8 88.8 88.8 88.8 83.8 88.8 88.8 88.8 71.3
ldd17 89.0 79.5 84.5 79.5 80.0 79.5 79.5 84.0 79.0 84.0 78.5
ldd18 95.5 95.3 95.3 83.0 88.0 83.3 85.5 95.5 95.5 95.3 76.0
ldd19 99.7 99.4 99.3 99.4 99.3 99.4 98.8 99.2 99.2 99.3 78.4
ldd20 98.1 97.8 94.9 93.0 93.1 93.9 94.0 92.3 94.9 94.2 85.2
ldd21 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 61.8
ldd22 66.3 60.3 60.3 59.4 62.0 60.3 56.4 60.0 56.7 55.6 56.2
ldd23 95.8 90.6 88.4 89.9 89.4 89.1 89.7 89.3 90.1 89.9 89.3
ldd24 85.8 82.9 80.8 79.3 81.8 80.7 81.8 82.7 77.7 76.9 79.8
ldd25 70.1 61.5 63.2 59.1 57.5 57.5 57.8 61.7 56.3 68.0 68.1
ldd26 65.9 59.3 62.6 52.6 53.2 58.2 54.8 54.2 55.7 64.2 60.9
ldd27 91.8 89.6 89.6 87.3 88.1 88.6 86.0 89.4 86.0 88.4 89.6
ldd28 90.3 88.4 87.5 88.1 88.8 88.7 87.1 89.0 87.9 87.9 89.0
ldd29 76.9 70.5 73.3 72.1 74.9 73.7 69.0 72.6 72.0 73.0 72.4
ldd30 95.8 94.5 95.0 94.6 87.6 92.1 92.3 95.8 92.2 94.5 94.5

XLDD 88.2 85.5 85.6 84.5 83.8 84.2 83.1 84.7 83.7 85.5 72.4

High-dimensional datasets
hdd1 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 81.5
hdd2 88.7 88.7 88.7 88.7 87.9 88.9 88.7 88.7 88.9 86.7 47.5
hdd3 84.1 79.1 83.6 83.6 83.3 83.9 78.9 83.0 84.1 78.5 65.8
hdd4 100 99.7 99.7 99.7 99.7 99.7 100 100 99.7 100 75.3
hdd5 81.7 80.6 81.7 81.7 85.0 81.1 83.9 77.2 81.1 84.4 97.2
hdd6 99.7 97.2 97.8 98.4 91.0 99.7 99.1 99.1 99.1 94.7 51.1
hdd7 95.0 86.9 87.2 91.0 89.7 88.3 88.6 94.3 90.4 90.7 53.2
hdd8 100 92.9 92.6 85.7 92.9 92.9 92.9 92.9 92.9 92.9 48.0
hdd9 99.7 98.8 98.8 98.8 99.1 98.8 99.4 98.8 98.8 90.2 97.2
hdd10 65.0 63.8 61.3 61.3 63.8 65.0 63.8 63.8 63.8 63.8 52.0
hdd11 100 100 98.0 99.3 99.7 98.3 97.7 97.3 98.0 93.8 60.4
hdd12 98.7 98.0 97.3 97.3 99.4 98.7 98.0 98.8 98.7 97.3 55.7

XHDD 92.7 90.5 90.5 90.4 90.9 91.3 90.9 91.1 91.3 89.4 65.4
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Table A.2: Performance summary using linear Support Vector Machine for binary classifica-
tion. AUC measure.

SVM FW-SMOTE SMT BL-S. SL-S. A.SYN AN-S. DB-S. MWT RSL-S. RBO PCA-S.

Low-dimensional datasets
ldd1 74.8 74.2 75.1 73.5 75.4 73.9 73.6 72.9 73.3 73.4 74.0
ldd2 91.4 85.5 90.5 83.9 83.4 90.9 90.9 88.4 83.6 85.7 90.1
ldd3 88.7 86.3 90.8 89.0 86.2 86.2 86.2 86.3 86.3 86.5 50.0
ldd4 90.5 90.2 88.2 90.2 88.2 85.2 85.9 82.2 84.9 89.7 50.0
ldd5 91.9 91.7 88.3 91.9 91.7 89.4 89.2 91.7 91.7 91.4 50.0
ldd6 86.8 85.3 83.0 82.1 83.0 83.5 82.3 82.3 82.6 82.8 50.0
ldd7 91.1 91.1 88.1 91.1 85.8 88.6 91.4 88.6 89.2 89.7 79.9
ldd8 91.2 86.7 89.3 88.7 90.9 89.2 89.2 88.7 89.2 89.2 50.0
ldd9 91.0 88.3 90.6 87.7 89.9 90.4 87.3 90.4 87.5 90.2 50.0
ldd10 91.1 88.9 89.5 86.1 86.8 89.2 86.7 85.9 86.4 88.6 50.0
ldd11 87.6 87.3 86.8 85.1 86.8 86.8 84.8 86.3 85.1 86.8 50.0
ldd12 89.5 89.3 89.0 89.0 88.5 89.3 89.3 89.3 89.3 89.0 76.3
ldd13 90.3 89.9 88.6 90.1 89.1 88.4 89.6 89.6 89.1 89.9 79.3
ldd14 92.5 92.0 94.2 92.0 91.9 92.2 92.0 94.5 92.0 92.0 92.0
ldd15 50.0 50.0 50.0 50.0 49.7 49.7 49.4 49.4 50.8 50.0 50.0
ldd16 85.0 85.0 83.8 84.4 84.4 84.4 85.0 85.0 84.4 84.4 54.4
ldd17 90.0 83.5 85.0 89.0 84.5 84.5 84.5 89.5 89.0 85.0 45.0
ldd18 95.5 94.5 89.8 95.0 77.8 94.5 90.3 89.5 89.5 89.5 55.5
ldd19 99.2 99.2 99.4 99.2 99.7 99.2 99.2 99.2 99.2 99.2 58.4
ldd20 86.3 85.4 82.9 83.6 82.2 72.3 70.3 72.8 66.3 78.7 54.3
ldd21 100 100 100 100 100 100 100 100 100 100 50
ldd22 61.2 61.3 58.8 61.3 60.3 60.2 57.9 61.2 60.5 61.2 50.0
ldd23 93.1 90.2 88.6 90.2 89.6 90.1 89.2 89.0 90.3 90.2 89.8
ldd24 80.7 79.5 78.2 80.1 76.2 80.7 79.4 80.0 79.9 79.8 79.7
ldd25 51.7 50.0 50.0 58.2 53.2 53.2 53.0 53.0 54.7 51.7 51.7
ldd26 51.7 50.0 50.0 50.0 54.4 59.2 55.4 56.0 58.9 50.0 50.0
ldd27 88.9 88.9 83.7 87.8 85.1 88.9 88.8 88.3 88.9 88.9 88.9
ldd28 89.1 88.6 89.2 88.7 89.4 88.6 89.5 89.2 88.6 88.5 88.9
ldd29 73.7 57.3 51.0 66.4 56.5 63.7 60.2 63.5 68.2 59.5 62.2
ldd30 93.1 90.5 93.9 93.0 86.9 88.2 91.6 93.1 91.8 90.6 94.0

XLDD 84.6 82.7 82.2 83.2 81.6 82.7 82.1 82.5 82.4 82.4 63.8

High-dimensional datasets
hdd1 100 100 100 100 100 100 100 100 100 100 84
hdd2 85.3 85.3 85.3 85.3 85.3 85.3 85.3 85.3 85.3 85.3 50.0
hdd3 79.4 79.4 79.4 79.4 79.4 79.4 79.4 79.4 79.4 79.4 86.0
hdd4 100 100 100 100 100 100 100 100 100 100 67
hdd5 100 100 100 100 100 100 100 100 100 100 97
hdd6 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 50.0
hdd7 83.3 83.3 83.3 83.3 83.3 83.3 83.3 83.3 83.3 83.3 67.9
hdd8 85.7 85.7 85.7 85.7 85.7 85.7 85.7 85.7 85.7 85.7 50.0
hdd9 83.3 83.3 83.3 83.3 83.3 83.3 83.3 83.3 83.3 83.3 97.2
hdd10 52.5 52.5 52.5 52.5 52.5 52.5 52.5 52.5 52.5 52.5 50.0
hdd11 96.7 96.7 96.7 96.7 89.1 88.4 89.6 89.6 89.1 96.7 50.0
hdd12 100 100 100 100 100 100 100 100 100 100 50

XHDD 88.0 88.0 88.0 88.0 87.4 87.3 87.4 87.4 87.4 88.0 66.7

Similar to tables A.1 to A.3, tables A.4 to A.6 present the results using
G-mean as performance metric. The best performance is emphasized in bold
type. The average G-mean computed from all low-dimensional (XLDD) and
high-dimensional (XHDD) datasets is also reported for each method.
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Table A.3: Performance summary using logistic regression for binary classification. AUC
measure.

LR FW-SMOTE SMT BL-S. SL-S. A.SYN AN-S. DB-S. MWT RSL-S. RBO PCA-S.

Low-dimensional datasets
ldd1 74.0 73.6 73.7 73.3 73.4 73.8 71.3 73.3 72.8 73.2 67.4
ldd2 91.6 91.1 91.1 89.1 86.4 91.6 91.6 91.1 88.9 86.1 89.1
ldd3 88.8 88.7 90.6 88.7 86.2 86.2 86.3 88.8 86.3 86.3 50.0
ldd4 90.3 89.0 89.7 90.2 86.6 82.4 83.1 84.7 81.2 87.7 50.0
ldd5 89.5 87.8 87.3 88.1 88.1 85.6 88.1 87.8 88.1 89.8 50.0
ldd6 88.0 86.3 86.3 86.3 85.3 86.0 86.0 86.5 86.5 84.6 49.2
ldd7 88.3 88.3 88.9 88.3 82.8 88.3 88.3 90.3 88.3 90.3 74.0
ldd8 90.7 88.7 90.1 88.7 91.4 88.7 88.7 88.7 88.7 88.4 48.1
ldd9 90.8 90.6 87.1 89.1 88.4 90.8 90.4 90.4 90.8 88.9 48.4
ldd10 91.1 88.9 90.9 88.9 87.6 88.9 88.9 88.9 88.9 88.4 51.2
ldd11 89.0 88.3 88.8 89.0 88.5 88.8 88.8 88.3 89.0 86.3 49.6
ldd12 88.8 88.8 88.5 89.0 88.5 88.5 89.0 89.0 89.0 88.8 71.8
ldd13 87.4 90.6 89.3 89.3 88.4 85.8 89.6 89.3 86.3 88.9 75.0
ldd14 91.5 91.5 91.4 91.4 91.5 91.5 91.5 91.5 91.5 91.5 91.5
ldd15 77.1 74.6 80.4 72.4 56.9 54.2 56.7 56.7 52.2 50.7 50.0
ldd16 82.5 82.5 82.5 82.5 82.5 82.5 82.5 82.5 82.5 82.6 55.0
ldd17 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 50.0
ldd18 85.0 87.3 75.0 79.8 75.0 85.0 82.0 87.5 87.5 77.0 67.3
ldd19 99.5 99.2 99.1 99.1 99.2 99.0 99.1 99.3 99.2 99.5 53.4
ldd20 97.6 88.9 79.1 91.6 78.9 93.6 88.7 87.3 91.8 91.0 63.2
ldd21 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 50.0
ldd22 64.7 63.3 62.3 62.3 60.5 62.7 57.4 60.4 61.2 62.2 54.9
ldd23 90.6 89.7 88.3 90.3 88.7 90.1 88.6 89.4 90.4 90.2 89.7
ldd24 79.4 80.3 79.5 79.7 69.8 77.3 74.8 74.2 72.3 78.1 79.3
ldd25 74.3 68.1 70.7 69.7 56.3 56.3 56.3 54.9 53.2 72.9 69.1
ldd26 54.0 53.8 52.5 53.5 54.9 56.2 56.7 55.8 53.1 52.4 51.6
ldd27 89.3 87.6 82.6 85.3 85.6 87.8 84.3 88.3 86.0 88.1 85.5
ldd28 89.0 88.2 89.5 88.1 89.2 88.6 88.4 88.6 88.0 88.8 88.0
ldd29 63.8 73.5 71.7 72.7 71.5 72.8 72.5 75.3 72.7 69.1 73.9
ldd30 87.2 86.1 90.7 86.1 84.5 86.1 85.1 87.1 86.2 88.0 87.1

XLDD 85.4 84.8 84.2 84.4 81.9 83.3 82.8 83.5 82.7 83.3 64.4

High-dimensional datasets
hdd1 99.2 95.8 94.8 93.4 93.4 92.6 96.5 95.3 96.7 89.8 74.6
hdd2 85.4 78.2 77.7 77.7 72.8 78.7 76.1 80.0 80.8 80.8 50.0
hdd3 83.4 74.0 65.7 69.4 64.8 72.5 72.4 71.7 60.2 67.0 82.4
hdd4 99.2 93.1 91.4 90.6 96.0 92.5 94.0 97.8 92.5 97.3 65.8
hdd5 95.0 84.2 92.2 92.2 85.3 86.4 92.5 88.6 85.3 89.7 97.2
hdd6 99.4 89.4 86.9 94.4 90.7 91.6 97.0 88.2 86.9 93.8 58.8
hdd7 84.3 69.4 75.9 78.1 77.2 76.5 73.0 76.5 73.3 80.1 65.7
hdd8 98.2 83.9 75.6 80.0 84.5 76.2 74.7 83.3 68.1 83.3 50.0
hdd9 100 91.1 98.5 98.5 90.8 98.5 98.5 98.8 91.1 97.9 97.2
hdd10 60.0 46.3 37.5 37.5 42.5 40.0 43.8 51.3 45.0 36.3 50.0
hdd11 91.0 84.1 80.1 77.8 79.7 81.1 82.3 81.7 81.8 80.3 54.4
hdd12 100 99.4 91.4 94.3 92.9 92.9 97.9 91.4 92.1 84.3 50.0

XHDD 91.3 82.4 80.6 82.0 80.9 81.6 83.2 83.7 79.5 81.7 66.4
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Table A.4: Performance summary using k-nearest neighbors for binary classification. G-mean
measure.
k-NN FW-SMOTE SMT BL-S. SL-S. A.SYN AN-S. DB-S. MWT RSL-S. RBO PCA-S.

Low-dimensional datasets
ldd1 71.6 68.3 67.0 64.5 68.4 70.9 66.6 69.3 65.3 62.4 62.9
ldd2 87.5 83.5 85.3 84.1 86.5 83.7 84.8 84.9 84.2 81.6 83.7
ldd3 91.1 90.7 90.4 90.8 87.9 91.1 90.9 90.4 91.1 90.8 30.4
ldd4 91.0 91.0 91.0 90.8 88.1 91.0 90.7 90.8 91.0 90.6 39.4
ldd5 90.5 88.0 87.6 87.5 86.1 79.7 79.9 88.0 77.9 87.7 11.3
ldd6 90.7 90.7 90.0 90.7 90.0 90.5 83.7 90.7 90.7 90.3 62.1
ldd7 86.7 80.1 80.1 78.7 88.9 79.1 78.3 78.5 78.9 86.5 49.7
ldd8 90.9 90.9 90.1 90.6 88.0 90.9 90.9 90.4 90.9 90.9 69.7
ldd9 90.9 90.9 90.3 90.9 90.9 90.8 90.9 90.2 90.9 90.2 66.1
ldd10 90.1 91.2 89.3 89.7 86.0 89.7 87.3 89.7 89.7 89.5 51.8
ldd11 90.9 90.9 90.7 90.9 90.6 90.9 88.0 90.5 90.7 90.6 67.2
ldd12 81.5 78.9 81.1 78.4 87.7 80.8 78.9 80.0 79.1 81.5 46.6
ldd13 88.0 87.6 87.4 87.8 80.1 90.0 79.8 87.0 87.8 87.2 57.3
ldd14 87.0 79.8 79.8 86.8 79.7 86.8 86.6 79.7 79.7 86.2 79.7
ldd15 72.3 68.4 65.9 62.5 6.7 9.4 8.8 9.4 0.0 61.4 27.4
ldd16 98.8 87.5 87.5 98.6 98.6 98.6 87.5 98.6 98.6 98.6 63.0
ldd17 0.0 0.0 0.0 0.0 77.8 77.8 87.7 87.7 77.2 87.7 76.6
ldd18 95.2 94.7 94.9 68.5 78.7 68.7 75.5 95.2 68.5 94.9 61.8
ldd19 99.7 99.4 99.3 99.4 99.3 99.4 98.8 99.2 99.2 99.3 78.1
ldd20 97.8 92.2 94.3 92.3 92.6 93.5 93.6 91.9 94.5 93.9 83.2
ldd21 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 54.8
ldd22 62.4 51.4 38.5 38.2 50.5 45.3 36.8 44.9 32.8 34.0 39.0
ldd23 89.8 88.9 88.2 89.4 89.0 88.5 89.2 88.8 89.5 89.4 88.9
ldd24 84.7 82.6 78.1 77.2 80.3 80.1 80.8 81.3 76.7 75.3 77.3
ldd25 58.7 51.3 48.6 33.2 25.2 27.1 25.2 37.8 23.0 53.5 53.5
ldd26 51.2 49.0 38.9 19.1 39.5 46.6 40.7 44.3 40.9 51.3 46.5
ldd27 92.0 88.7 89.1 85.9 87.4 87.8 83.7 88.7 84.2 87.4 88.6
ldd28 90.3 88.6 87.4 88.2 88.5 88.3 86.5 88.7 87.4 87.4 88.8
ldd29 71.7 70.9 66.9 66.7 21.9 27.6 18.9 28.7 17.8 69.3 67.6
ldd30 95.6 94.4 94.6 91.4 86.5 91.4 91.7 95.6 91.5 94.2 94.2

XLDD 83.0 80.3 79.1 77.1 77.4 77.9 76.1 79.3 75.7 82.8 62.2

High-dimensional datasets
hdd1 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 81.4
hdd2 98.5 98.5 98.5 98.5 97.6 98.8 98.5 98.5 98.8 96.0 27.9
hdd3 96.0 76.5 86.6 86.6 87.0 87.6 76.5 86.6 87.9 76.0 65.2
hdd4 99.7 99.7 99.7 99.7 89.7 99.7 100 100 99.7 100 74
hdd5 76.7 74.8 76.7 76.7 83.1 76.3 74.8 74.8 76.3 80.0 97.2
hdd6 98.1 89.7 89.7 89.7 85.9 99.7 99.0 99.0 99.0 89.7 45.2
hdd7 89.6 85.9 83.1 83.1 85.8 83.1 83.1 88.7 76.3 79.8 44.1
hdd8 100 92.7 92.3 88.7 90.4 92.7 92.7 92.7 92.7 92.7 38.3
hdd9 98.8 96.3 96.3 96.3 97.8 96.3 98.2 96.3 96.3 96.3 97.2
hdd10 92.8 90.4 92.3 92.3 90.4 92.3 90.4 90.4 90.4 90.4 28.2
hdd11 99.7 99.7 98.2 99.7 99.7 98.2 97.5 97.1 97.8 93.2 51.3
hdd12 98.6 98.2 97.1 97.1 99.4 98.6 98.0 98.7 98.6 97.2 39.7

XHDD 95.7 91.8 92.5 92.4 92.2 93.6 92.4 93.6 92.8 90.9 57.5
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Table A.5: Performance summary using linear Support Vector Machine for binary classifica-
tion. G-mean measure.

SVM FW-SMOTE SMT BL-S. SL-S. A.SYN AN-S. DB-S. MWT RSL-S. RBO PCA-S.

Low-dimensional datasets
ldd1 74.4 73.9 67.2 73.9 75.2 73.6 73.3 72.5 73.0 73.0 73.6
ldd2 89.5 87.6 88.4 88.5 88.5 87.7 89.0 89.0 88.4 89.3 89.5
ldd3 90.1 86.9 89.4 77.1 76.9 89.9 77.1 86.9 77.1 79.7 0.0
ldd4 87.0 87.2 88.9 77.4 84.2 84.4 84.2 84.4 84.3 84.6 0.0
ldd5 89.1 88.2 88.7 88.8 87.2 83.9 84.3 72.4 83.1 88.4 0.0
ldd6 90.6 90.4 89.6 90.6 90.5 87.7 87.5 90.5 90.5 90.2 0.0
ldd7 80.2 73.2 72.4 71.8 72.5 73.1 71.5 71.8 71.8 72.5 79.2
ldd8 90.1 86.8 87.1 90.5 83.9 87.0 90.2 87.1 87.5 88.4 0.0
ldd9 90.2 87.5 90.4 86.9 89.6 87.5 87.5 87.0 87.5 87.5 0.0
ldd10 89.9 87.7 89.4 89.4 89.1 89.4 85.4 89.4 85.6 89.3 0.0
ldd11 87.7 87.7 88.3 84.8 85.5 87.7 84.8 84.2 84.6 87.3 0.0
ldd12 81.9 81.6 80.6 78.7 81.1 81.1 78.7 80.6 78.9 81.1 71.7
ldd13 87.9 87.4 87.4 87.9 87.0 87.7 87.6 87.6 87.7 87.5 78.2
ldd14 87.1 86.6 93.4 86.6 86.4 86.7 86.6 93.7 86.6 86.7 86.6
ldd15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.9 0.0 0.0
ldd16 88.9 88.9 88.2 88.2 88.2 88.2 88.9 88.9 88.2 88.2 30.4
ldd17 99.5 88.2 88.9 99.4 88.3 88.3 99.4 99.4 98.9 88.9 0.0
ldd18 95.2 84.9 94.5 75.4 62.2 94.2 85.2 84.9 85.4 84.7 16.6
ldd19 99.2 99.1 99.4 99.2 99.7 99.1 99.2 99.1 99.2 99.1 42.9
ldd20 87.1 80.8 86.8 86.3 76.5 68.2 63.0 69.9 58.7 74.9 28.1
ldd21 100 100 100 100 100 100 100 100 100 100 0.0
ldd22 46.1 46.1 42.3 46.1 44.4 44.3 39.3 46.1 45.7 46.1 0.0
ldd23 91.2 89.6 88.2 89.8 89.3 89.7 88.6 88.5 89.9 89.8 89.4
ldd24 78.1 77.4 78.5 77.6 75.8 80.1 79.0 79.5 79.3 77.5 77.3
ldd25 5.8 0.0 5.8 5.8 11.5 23.0 11.5 11.5 17.3 5.8 5.8
ldd26 36.4 0.0 0.0 0.0 36.4 42.5 34.8 36.4 42.5 0.0 0.0
ldd27 88.1 88.0 78.0 87.1 83.1 88.1 88.0 87.5 88.1 88.1 88.1
ldd28 88.7 88.9 88.3 88.6 89.3 88.2 89.3 88.9 88.2 88.1 88.6
ldd29 42.5 42.1 4.5 57.6 49.1 49.3 46.6 50.6 52.6 36.2 46.5
ldd30 91.4 92.7 89.7 90.0 85.3 87.2 91.2 92.7 91.3 89.8 93.7

XLDD 78.5 75.3 74.5 75.5 75.2 77.3 75.7 76.7 76.6 74.8 36.2

High-dimensional datasets
hdd1 100 100 100 100 100 100 100 100 100 100 83.7
hdd2 94.1 94.1 94.1 94.1 94.1 94.1 94.1 94.1 94.1 94.1 0.0
hdd3 94.6 77.1 77.1 77.1 77.1 77.1 77.1 77.1 77.1 77.1 84.9
hdd4 100 100 100 100 90.0 100 100 100 100 100 59.2
hdd5 100 100 100 100 100 100 100 100 100 100 97.2
hdd6 90.5 80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0 23.6
hdd7 81.6 77.9 77.9 77.9 77.9 77.9 77.9 77.9 77.9 77.9 64.6
hdd8 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 0.0
hdd9 81.6 81.6 81.6 81.6 81.6 81.6 81.6 81.6 81.6 81.6 97.2
hdd10 55.2 55.2 55.2 55.2 55.2 55.2 55.2 55.2 55.2 55.2 0.0
hdd11 98.4 96.3 96.3 96.3 96.3 96.3 96.3 96.3 96.3 96.3 0.0
hdd12 100 100 100 100 100 100 100 100 100 100 0.0

XHDD 90.0 87.2 87.2 87.2 86.4 87.2 87.2 87.2 87.2 87.2 42.5
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Table A.6: Performance summary using logistic regression for binary classification. G-mean
measure.

LR FW-SMOTE SMT BL-S. SL-S. A.SYN AN-S. DB-S. MWT RSL-S. RBO PCA-S.

Low-dimensional datasets
ldd1 73.2 73.2 73.0 72.1 72.5 72.9 70.0 72.1 71.7 72.3 64.6
ldd2 86.8 86.6 87.3 87.0 87.8 84.3 88.9 88.6 85.6 88.2 88.4
ldd3 90.2 90.2 90.0 87.5 80.2 90.4 87.5 90.0 87.2 80.0 0.0
ldd4 87.0 87.0 88.7 84.3 84.2 84.4 84.3 87.2 84.3 84.3 0.0
ldd5 89.0 88.9 88.1 88.9 85.7 77.1 77.5 79.5 75.6 85.9 0.0
ldd6 89.6 89.0 86.1 86.7 86.7 83.7 86.7 86.5 86.7 88.7 13.1
ldd7 86.8 80.5 80.3 80.7 79.3 80.3 80.0 80.7 80.5 78.9 66.0
ldd8 89.3 86.7 88.0 86.7 80.5 86.7 86.7 89.0 86.7 89.0 13.1
ldd9 89.7 86.7 89.4 87.0 90.1 87.0 87.0 87.0 87.0 86.7 13.2
ldd10 89.9 89.4 86.7 89.5 87.4 89.7 89.4 89.4 89.7 87.2 28.9
ldd11 90.1 90.1 88.8 87.5 86.2 87.5 87.5 87.5 87.5 87.0 19.6
ldd12 83.5 83.5 82.0 83.5 82.9 83.2 83.2 82.7 83.5 80.6 62.5
ldd13 87.2 87.2 87.2 87.5 87.1 87.1 87.4 87.4 87.5 87.2 69.4
ldd14 86.2 86.2 85.8 86.2 86.2 86.2 86.2 86.2 86.2 85.7 86.2
ldd15 56.6 50.5 57.0 49.5 16.5 13.7 16.5 16.5 7.1 13.5 0.0
ldd16 86.0 86.0 86.0 86.0 86.0 86.0 86.0 86.0 86.0 86.0 30.4
ldd17 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0 11.1
ldd18 79.7 69.5 70.2 79.3 59.7 79.7 72.3 82.5 60.2 62.3 43.3
ldd19 99.5 98.8 99.1 98.8 99.2 99.0 99.1 99.3 99.2 99.5 52.4
ldd20 97.5 89.9 73.7 90.9 71.7 93.2 87.3 81.2 90.7 89.7 40.3
ldd21 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 99.6 0.0
ldd22 62.1 34.2 41.1 52.1 41.3 53.3 40.6 43.1 46.0 47.0 28.1
ldd23 90.6 90.6 87.7 89.8 88.6 89.7 87.7 88.9 89.9 89.9 89.3
ldd24 76.8 75.4 77.0 77.1 68.9 76.6 73.7 72.9 71.1 75.2 76.7
ldd25 66.2 69.7 66.3 60.4 15.5 17.8 15.5 13.8 8.1 60.8 60.0
ldd26 5.8 5.7 11.4 22.7 46.6 41.8 43.9 42.2 36.1 11.2 5.8
ldd27 87.5 84.4 81.4 82.6 83.9 85.9 81.7 86.6 83.9 86.4 83.4
ldd28 88.5 88.2 89.0 87.9 89.0 88.2 88.0 88.2 87.5 88.4 87.6
ldd29 69.5 68.7 65.7 68.9 52.5 52.6 46.4 52.6 43.3 61.4 68.0
ldd30 85.8 85.8 91.5 80.4 82.5 84.8 83.6 85.8 84.8 86.8 85.8

XLDD 82.2 80.0 79.8 80.6 75.8 78.0 76.7 77.7 75.7 77.9 42.9

High-dimensional datasets
hdd1 99.7 96.4 94.8 92.0 89.3 92.0 96.4 94.8 96.6 87.9 73.8
hdd2 90.5 83.9 83.9 79.6 79.6 86.8 83.9 88.1 89.3 89.2 0.0
hdd3 88.9 74.8 68.9 70.0 60.2 74.8 70.0 68.8 51.5 68.6 82.3
hdd4 99.7 93.4 96.3 91.9 86.0 91.9 93.4 97.8 91.8 97.2 60.5
hdd5 95.5 28.6 7.4 11.0 11.0 5.7 6.1 6.1 7.4 6.1 97.2
hdd6 98.8 88.7 86.5 86.5 85.6 86.5 96.9 83.1 76.8 88.7 57.3
hdd7 84.3 40.9 55.2 78.4 76.8 79.7 74.8 55.2 42.7 59.4 61.0
hdd8 97.6 91.9 79.3 86.5 76.2 80.5 48.1 87.7 76.2 42.7 0.0
hdd9 99.7 91.9 96.9 96.9 88.5 96.9 96.9 98.8 91.9 98.8 97.2
hdd10 72.9 60.2 55.2 28.6 28.6 36.8 40.9 55.2 48.1 28.6 0.0
hdd11 87.8 85.9 80.5 80.5 78.4 79.3 80.5 80.5 79.9 79.7 36.8
hdd12 99.3 98.2 91.9 96.3 87.7 91.9 97.8 88.5 87.7 76.2 0.0

XHDD 92.9 77.9 74.7 74.8 70.7 75.2 73.8 75.4 70.0 68.6 47.2
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