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(1) We propose a novel idea of exploring instance-wise localised source knowledge for 
unsupervised cross-domain person re-id. It addresses the limitations of existing 
global feature distribution adaptation based methods. To our best knowledge, this is 
the first attempt to leverage instance level association between different classes in 
unsupervised cross-domain model adaptation.

(2)  We formulate a Hierarchical Unsupervised Domain Adaptation (HUDA) method. 
HUDA is designed particularly to discover both localised source knowledge at the 
instance level and the global feature distribution knowledge across domains in 
model learning. 

(3) We analyse the underlying feature representations required for domain adaptation 
model learning in the context of closed-set supervised learning (e.g. softmax cross-
entropy loss) vs. open-set unsupervised learning (e.g. Maximum Mean Discrepancy) 
and interpret their roles in optimising open-set and cross-class person re-id. 
Extensive evaluations demonstrate the superiority of HUDA over a variety of state-
of-the-art models for unsupervised cross-domain person re-id on four benchmarks: 
Market-1501, DukeMTMC, MSMT17, and CUHK03.
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Abstract

Most existing person re-identification (re-id) methods assume supervised model train-

ing on a separate large set of training samples from the target domain. While perform-

ing well in the training domain, such trained models are seldom generalisable to a new

independent unsupervised target domain without further labelled training data from the

target domain. To solve this scalability limitation, we develop a novel Hierarchical Un-

supervised Domain Adaptation (HUDA) method. It can transfer labelled information

of an existing dataset (a source domain) to an unlabelled target domain for unsuper-

vised person re-id. Specifically, HUDA is designed to model jointly global distribution

alignment and local instance alignment in a two-level hierarchy for discovering trans-

ferable source knowledge in unsupervised domain adaptation. Crucially, this approach

aims to overcome the under-constrained learning problem of existing unsupervised do-

main adaptation methods. Extensive evaluations show the superiority of HUDA for

unsupervised cross-domain person re-id over a wide variety of state-of-the-art methods

on four re-id benchmarks: Market-1501, DukeMTMC, MSMT17 and CUHK03.
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1. Introduction

Person re-identification (re-id) aims to match the identity of person bounding boxes

captured by disjoint camera views [1]. Most existing re-id methods rely heavily on

supervised learning [2, 3, 4, 5, 6, 7, 8, 9], assuming that the model training and test

data are drawn from the same camera network, i.e. the same domain. However, such5

trained models suffer from significant performance degradation when deployed to an

unlabeled target domain due to the domain shift problem [10].

In reality, we often have no access to a large number of manually labelled matching

person image pairs for every camera pair as required by supervised learning methods,

in order to effectively learn a feature representation and a matching function for each10

camera pair. Such large human labelling is both costly and not always available, due to

a quadratic number of camera pairs in each surveillance domain. Existing supervised

learning methods have limited cross-domain usability. To overcome this limitation, a

number of approaches have been proposed, including (1) hand-crafting features [11,

12], (2) image adaptation (synthesis) [13, 14, 15, 16, 17], (3) feature adaptation [18,15

19, 20, 21], (4) unsupervised learning [22, 23, 24], and (5) joint feature adaptation and

unsupervised learning [15, 25, 26, 27, 28].

In this study, we focus on the feature adaptation approach for unsupervised cross-

domain person re-id. The key idea is to align feature statistics between source and

target training data. In doing so, re-id discriminative knowledge from the labelled20

source data can be transferred into the unlabelled target data. Existing feature adapta-

tion methods typically rely on cross-domain alignment of global feature distributions

[19, 20]. This however suffers from an under-constrained optimisation problem, yield-

ing suboptimal re-id models. We address this issue by discovering transferable source

knowledge at both the local instance and global distribution levels. This idea leads25

to a Hierarchical Unsupervised Domain Adaptation (HUDA) model. This is a non-

trivial learning task due to the lack of direct correlations between source and target

person identities. To solve this problem, we formulate a new cross-domain cross-class

association learning algorithm.

We make three contributions in this study: (1) We propose a novel idea of ex-30
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ploring instance-wise localised source knowledge for unsupervised cross-domain per-

son re-id. It addresses the limitations of existing global feature distribution adaptation

based methods. To our best knowledge, this is the first attempt of leveraging instance

level association between different classes in unsupervised feature adaptation across

domains. (2) We formulate a Hierarchical Unsupervised Domain Adaptation (HUDA)35

method. HUDA is designed particularly to discover both localised source knowledge

at the instance level and the global feature distribution knowledge across domains in

model learning. (3) We analyse the underlying feature representations required for

domain adaptation model learning in the context of closed-set supervised learning

(e.g. softmax cross-entropy loss) vs. open-set unsupervised learning (e.g. Maximum40

Mean Discrepancy) and interpret their roles in optimising open-set and cross-class per-

son re-id. Extensive evaluations demonstrate the superiority of HUDA over a variety

of state-of-the-art models for unsupervised cross-domain person re-id on four bench-

marks: Market-1501 [8], DukeMTMC [29, 13], MSMT17 [6], and CUHK03 [4].

2. Related Work45

Most existing person re-id methods require supervised learning on a large labelled

training dataset collected for every camera pair [8, 30, 7, 2, 3, 9]. They assume that the

training and test data are sampled from the same domain and have limited cross-domain

generalisation. As a result, they have poor scalability to large scale re-id deployments

in real-world when a large labelled training set is unavailable. While reducing the50

labelling effort, semi-supervised learning [31, 32] approaches still need some cross-

camera pairwise labels which may not be available inherently.

Recently, unsupervised domain adaptation (UDA) methods have demonstrated in-

creasing significance in solving cross-domain re-id deployments [14, 15, 6, 19, 20].

The existing UDA models fall into two categories: (1) image adaptation (synthesis)55

[13, 14, 16], and (2) feature adaptation [19, 20]. The first approach is often built on

Generative Adversarial Networks (GANs) [33]. The main idea is to transform the

labelled source domain images into the style of the unlabelled target domain while

attempting to preserve the person identity information. In doing so, the source class
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labels can be used for supervised learning on the synthetic imagery. The second ap-60

proach adopts a global feature distribution alignment strategy. This assumes that the

model discrimination is related to global feature distribution statistics. Representative

methods for feature distribution alignment include [34, 35, 36, 37, 38]. They all aim

at minimizing the distribution discrepancy between the source and target domain in a

shared feature space. Specifically, Tzeng et al. [34] and Long et al. [35, 39] mini-65

mize the Maximum Mean Discrepancy (MMD) metric to align the global distribution

between source and target domain. Another useful metric to be minimized is the cross-

domain feature covariance matrix [36]. Imposing manifold regularization along with

MMD metric is also shown to be effective by preserving the neighboring structures of

training data sets [38].70

Conceptually, both feature and image adaptation approaches are based on global

data distribution alignment, with the former using the images (pixels) and the latter

using the feature represnetations. One of their common weaknesses is that they all suf-

fer from a highly under-constrained learning problem. That is, both do not consider

instance level alignment to enable explicit fine-grained source knowledge adaptation.75

Recently, CR-GAN [17] proposes a novel instance-guided context rendering scheme

which transfers the person identities of source domain into diverse target domain con-

texts to enable supervised re-id model learning in the unlabelled target domain. This

can be regarded as instance alignment in the image space. However, CR-GAN is un-

friendly to be integrated with global feature distribution level alignment due to their80

complex dual conditional image generator scheme. The proposed HUDA addresses

this limitation by formulating a unified model for simultaneous global (distribution

alignment) and local (instance alignment) knowledge transfer and adaptation across

domains.

Our experiments show clearly the added benefits from modelling both levels of85

knowledge adaptation between the labelled source and the unlabelled target domains.

In comparison to UDA, unsupervised deep learning [22] provides an orthogonal strat-

egy. It aims to self-mine re-id discriminative information from the unlabelled training

data in the target domain. It is generally beneficial to model performance by combining

different strategies, for instance, integrating feature adaptation with image generation90
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Figure 1: Overview of HUDA. Given (a) supervised source domain and (b) unlabelled target training per-

son imagery data, we aim to learn (c1, c2) a re-id model generalisable to the target domain. To this end,

the proposed HUDA model jointly conducts (d) Global Distribution Alignment (GDA) and (e) Local In-

stance Alignment (LIA) in an end-to-end network learning architecture subject to (f) source re-id supervi-

sion. Cross-domain adaptation by the GDA alone is highly under-constrained. We address this by introduc-

ing the LIA for more fine-grained unsupervised domain adaptation with the stronger constraint. In re-id,

there is often no identity class overlap between the source and target domains. Motivated by our primitive

attribute viewpoint, we leverage cross-class association to discover and exploit reliably transferable knowl-

edge for domain adaptation. This is achieved by the proposed LIA through incrementally building (g1, g2)

a knowledge memory network to cumulatively memorise the past learned knowledge throughout training

and simultaneously offer target domain instance-specific local knowledge for high quality adaptation from

the labelled source domain to the unlabelled target domain. To further improve the knowledge quality, we

introduce (h) a feature normalization layer to accelerate the model training and (i) a knowledge selection

mechanism for more reliable domain adaptation.

[15, 25] or unsupervised learning [26].

3. Unsupervised Hierarchical Adaptation

Problem statement. For unsupervised cross-domain person re-id, we have a super-

vised (labelled) source dataset (domain) Ds = {Isi , ysi }K
s

i=1, consisting of Ks per-

son bounding box images Isi each with the corresponding identity label ysi ∈ Y =95

{1, · · · ,Ks
id}, i.e. a total ofKs

id different persons in the source domain. Meanwhile, we

assume a set Dt = {Iti}K
t

i=1 of Kt unsupervised (unlabelled) training data randomly

sampled from the target domain with unknown and non-overlapping identity labels.

Using Dt is for model domain adaptation. The goal is to learn a feature representation

optimal for the unlabelled target domain ID class discrimination by transferring the100

identity discriminative information learned from a labelled source domain.
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Approach overview. To solve the aforementioned problem, we present a Hierarchical

Unsupervised Domain Adaptation (HUDA) model. It can jointly perform global fea-

ture distribution alignment and local instance alignment between the source and target

domains by end-to-end deep learning. This is uniquely characterised by more fine-105

grained knowledge transfer during unsupervised domain adaptation. This is crucial

for person re-id since a key objective is to capture subtle discrimination of different

persons with high appearance similarity. A large number of pedestrians observed in

open surveillance scenes can appear visually alike. Aligning only global distributions

across domains is incapable of capturing critical fine-grained instance-level informa-110

tion which is significant for re-id. With a joint modelling, fine-grained instance align-

ment enriches global distribution alignment. This provides a stronger constraint for

unsupervised domain adaptation in a two-level hierarchy, whilst addressing the under-

constrained problem. An overview of HUDA is depicted in Fig 1.

3.1. Person Re-Identification Model115

To build a re-id model θtar (Fig 1(c1, c2)), we use ResNet-50 [40] as backbone. We

discard the last 1,000-dim fully-connected (FC) layer and add one FC layer (i.e., the

classifier) with Ks
id-dim output. Given labelled source training data Ds, we train the

model by a discriminative loss function Lre-id = Lce+λtriLtri where Lce and Ltri denote

the softmax Cross Entropy loss and the triplet loss, respectively. We empirically set the120

weight parameter λtri = 0.3.

Discussion. A trained re-id model by the above formulation is suitable only for the

source domain deployment, therefore having limited generalisation. To adapt the model

to an independent target domain, we perform unsupervised domain adaptation by a

HUDA model. In HUDA, unlabelled target domain data are used as a bridge for trans-125

ferring source domain knowledge. Our model consists of two parts: (1) global distri-

bution alignment, and (2) local instance alignment.

3.2. Global Distribution Alignment

The Global Distribution Alignment (GDA) component of HUDA aims to adapt

holistic statistical information between the source and target domains (Fig 1(d)). Due130
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to the disjoint nature of source and target identity classes (i.e. an open-set recognition

setting), GDA seems improper and has been shown to be ineffective for generic open-

set object classification [41, 42]. Nonetheless, person re-id is rather different from

generic object recognition, since it is a fine-grained matching problem.

A counter-intuitive phenomenon in re-id. Essentially, person re-id aims to derive a135

feature representation for pairwise similarity based matching and ranking. The training

and testing person identity classes are totally disjoint. Such cross-class (i.e. open-set

recognition) nature between training and testing is universal and intrinsic to the prob-

lem. Consider that the learning target is for optimal pairwise matching, early deep

re-id models reasonably use pairwise loss functions (including the triplet ranking loss140

involving positive and negative pairs) for model training [4, 43, 44]. Subsequent works

empirically find that the softmax Cross-Entropy (CE) loss, which is commonly used for

training closed-set multi-class classification models, is similarly effective, even with-

out the complexity of pairing samples [5]. This selection (presumably occasional) is

actually not as intuitive as the pairwise counterparts, because the CE loss is conven-145

tionally considered effective only for closed-set recognition [45], so it would have been

“ineffective” for cross-class learning as re-id. That being said, this traditional wisdom

is against the wide practices. Interestingly, this counter-intuitive phenomenon lacks

proper interpretation in the literature.

The essence to cross-class recognition in re-id. We provide an explanation to the150

above phenomenon as follows. By learning re-id feature representation for pairwise

similarity matching, we consider the fundamental key is to derive a set of primitive pat-

terns (attributes) which are formally composited of individual feature dimensions or

some dimension combinations. They are useful to distinguish different person appear-

ance and largely independent of any person identity classes including training classes.155

That is, these primitive attributes can describe arbitrary person appearance due to their

massive combination space, which is the essence for them to possess cross-class recog-

nition capability. Therefore, the essential learning objective is to obtain such a set of

class independent primitive attributes, rather than a pairwise similarity matching func-

tion (previous understanding). Consequently, it is not necessarily to limit the learning160

objective to pairwise loss functions; The CE loss function can be similarly effective
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since the learning of classifiers also results in a set of primitive attributes optimal for

multi-class discrimination. These loss functions are functionally similar in this primi-

tive attribute viewpoint. This naturally interprets the mysterious efficacy of the CE loss

for re-id.165

Cross-domain in re-id. Unlike the generic object class classification with distinct

appearance difference [42, 41], person re-id handles uniquely fine-grained identity dis-

crimination with similar holistic person appearance. This suggests that a large pro-

portion of primitive attributes can be shared across domains, i.e. overlapped in the

distribution. Specifically, the feature representations contain more primitive attributes170

shared over domains. Together with cross-class interpretation, GDA navigates cross-

domain person re-id learning.

GDA formulation. Due to highly complex distributions of visually ambiguous and

diverse re-id image data, it is difficult to select a suitable parametric model for such

a distribution. We adopt a non-parametric representation to characterising re-id visual

data statistics. In particular, we exploit the Maximum Mean Discrepancy (MMD) [46]

to measure the feature dissimilarity between the source and target domains for distri-

bution alignment:

Lmmd2 = || 1
ns

ns∑

i=1

φ(fs,i)−
1

nt

nt∑

j=1

φ(ft,j)||2H (1)

where fs ∈ Rns×d and ft ∈ Rnt×d specify the feature vectors of ns source and nt

target images in each mini-batch, and d is the feature dimension. We further enforce

non-linearity by using a mapping function φ(·) to project the feature samples into a

Reproducing Kernel Hilbert Space (RKHS)H [47]. By the kernel trick, we design the

GDA loss by reformulating Eq (1) as:

Lgda =
1

n2
s

ns∑

i=1

ns∑

i′=1

k(fs,i,fs,i′)+

1

n2
t

nt∑

j=1

nt∑

j′=1

k(ft,j ,ft,j′)−
2

nsnt

ns∑

i=1

nt∑

j=1

k(fs,i,ft,j)

(2)

We adopt the common Gaussian kernel function:

k(fs,i,ft,j) = exp
(
− ||fs,i − ft,j ||

2
2

2σ2

)
(3)
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where σ is the kernel bandwidth. To reduce the selection bias and enable to au-

tomatically identify an optimal kernel, we deploy a predefined set of kernels with

σ ∈ {1, 5, 10}.175

3.3. Local Instance Alignment

To enrich GDA based cross-domain adaptation by cross-class discriminative learn-

ing necessary for person re-id, we further introduce Local Instance Alignment (LIA) to

explore instance level fine-grained discriminative learning (Fig 1(e)). Specifically, we

want to progressively discover and adapt reliably transferable source information spe-180

cific to individual target samples during training. The key idea is learning to associate

target samples with visually similar source data for guiding cross-domain knowledge

transfer. The intuition is that, re-id of target instances can benefit (“borrow” informa-

tion) from a model discriminatively trained by labelled source instances if the target

and source instances are visually aligned (similar).185

The association in LIA is often across identity classes between domains. Inspired

by our primitive attribute viewpoint, we classify the target person images into the

source identity classes. Specifically, given an unlabelled target person image sample

It, we predict a class probability vector for it in the source domain class-label space:

p(It) = {p(1|It), p(2|It), · · · , p(Ks
id|It)} (4)

This classification indicates how visually similar a target person image is measured

against all the source classes. It encodes the cross-domain transferable knowledge we

aim to extract for unsupervised domain adaptation.

3.3.1. Source Knowledge Discovery

In a unified design, the source and target domain model learning shares a single net-190

work trained simultaneously. A faster training on the source data is essential for ensur-

ing the knowledge quality. Consider deep learning using mini-batches of training sam-

ples as a stochastic learning process, the feature distribution changes per batch. This

may complicate and slow down the unsupervised domain adaptation process, because

the model needs to repeatedly and continuously adapt to new distributions throughout195

the training process.
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Feature normalization. To address the above problem, we enforce that the model

always outputs the feature representations in a fixed distribution. Specifically, we stan-

dardise the re-id feature representations (the average pooling of the last conv layer of

ResNet-50). This performs a per-dimension normalisation on the per-batch feature

vectors from both domains (Fig 1(h)), as follows:

f̂ =
f − E[f ]√
V[f ] + ε

(5)

where E[·] and V[·] denote the per-dimension expectation and variance of feature values

per batch. The small constant ε > 0 is for ensuring numerical stability. Given this, we

use the standardised features f̂ for re-id deployment in test.

Remarks. Feature normalization has been used elsewhere, e.g. Sparsifying Features200

[48], and Batch Normalisation (BN) [49]. In this study, we investigate its potential for

unsupervised domain adaptation in person re-id. The key differences are: Compared to

BN that introduces two extra free parameters for scaling and shift in order to preserve

the identity transform respectively, our method does not have such requirements. BN

is used to normalise the layer inputs, whereas our model is applied to the model output.205

In contrast to [48], our method does not improve the feature sparsity nor constrain the

internal layer outputs.

Knowledge memory network. To project a target instance into the source identity

class space, a straightforward way is to apply the current up-to-date deep model. How-

ever, this is not ideal. The reason is as follows. In stochastic deep learning, the in-210

training model updates at each iteration. This may cause the model performance to

temporally deteriorate on samples of the past mini-batches, due to the nature of catas-

trophic forgetting [50]. As target domain samples are randomly sampled, it is possible

that the up-to-date model has degraded in recent updates when assessing some target

samples of the current batch.215

To further improve the knowledge quality, we propose to incrementally memorise

the source information learned per mini-batch during training. In particular, we estab-

lish a knowledge memory network (Fig 1(g1,g2)) θmem in identical architecture as the

target model, and we exploit it to obtain the knowledge in the form of class posterior

probability. Formally, this knowledge memory network θmem is updated along with the

11

                  



target model θtar at each iteration τ by exponential moving average as:

θmem
τ = αθmem

τ−1 + (1− α)θtar
τ (6)

where α is the smoothing coefficient hyper-parameter. We set α = 0.99 empirically.

In doing so, the discriminative information derived from each mini-batch is absorbed

and memorised into θmem, so that the memory model serves as a stronger knowledge

extractor as compared to the up-to-date target model. That is, in mini-batch training

we exploit the θmem
τ as the replacement of θtar

τ to obtain the posterior probability vector220

(Eq (4)) for each unlabelled target sample in the source domain class space.

Remarks. The proposed memory network is inspired by the neuron memory mech-

anism [51]. This is due to that the memorising capacity of deep networks is often

incomplete and limited in representing knowledge experienced in the past learning it-

erations. However, unlike [51], our method uses a network for memory organisation225

without the need for extra components to customise the network structure and design-

ing particular knowledge representations for access operations. LSTM [52] is a family

of deep models with a memory mechanism for learning sequential data. Nonetheless,

it is not suited for our problem due to several reasons: (1) If we consider the itera-

tive model update as a sequential process over training iterations, this will give a huge230

input dimension (e.g., 4.6 × 107 CNN parameters) and many temporal steps (thou-

sands of training mini-batches). Both challenge the ability of LSTM. (2) There is no

ground-truth for training such a LSTM network in the re-id model parameter space.

Algorithmically, building our memory network is similar to the notion of mean-teacher

in semi-supervised learning [53], but the two address different goals. Our method seeks235

a reliable cross-class knowledge extraction in training. In contrast, mean-teacher aims

to improve label prediction on unlabelled data from the same domain in a closed-set

classification setting.

3.3.2. Source Knowledge Transfer

The aim of source knowledge transfer is to enhance the generalisation of the target240

model θtar in the target domain. To this end, we consider the richer memorised knowl-

edge in the memory network that is relevant to target domain samples. However, the

12

                  



underlying transferable knowledge between source and target domains is unknown a

priori. It is sub-optimal to blindly transfer all memory knowledge with all target sam-

ples. To address this, we design a knowledge selection mechanism (Fig 1(i)) for more245

reliable adaptation on individual samples.

Knowledge selection. In unsupervised cross-domain re-id, not all target person images

can be associated with some source identity classes with high confidence. This is due

to the cross-class nature between independent domains with entirely different person

classes. Given that source knowledge is expressed in a probability form, one intuitive

way to measure the knowledge transferability and reliability is to use the maximum

likelihood:

ML(It) = max({p(1|It), p(2|It), · · · , p(Ks
id|It)}) (7)

With this, we can then deploy a thresholding strategy for knowledge selection by

choosing those target samples satisfying that the corresponding ML(It) exceeds a

pre-defined threshold u. We denote the selected target samples as Ĩt. In cross-class

context, it is often that most ML(It) values are not high. Hence, a mild threshold250

value is preferred to ensure sufficient source-target associations. Too small threshold

values, on the other hand, may lead to adapting non-transferable knowledge with neg-

ative effects. We empirically find that setting u = 0.3 is satisfactory.

Knowledge transfer. Once we have the selected knowledge, the next is to transfer it

into the target model, i.e. knowledge domain adaptation. To accomplish this, we align

the knowledge memory model and the target model in their predictions of selected

target samples Ĩt by exploiting the Kullback-Leibler (KL) divergence written as:

Llia =

Ks
id∑

j=1

p(j|Ĩt,θmem) log
p(j|Ĩt,θmem)

p(j|Ĩt,θtar)
(8)

3.4. Overall Model Loss Formulation

Given the re-id and HUDA loss functions, we obtain the final objective function for

model training as:

L = Lre-id + λgdaLgda + λliaLlia (9)

13

                  



(a) (b)

(d)(c)

Figure 2: Example person images from (a) Market-1501, (b) DukeMTMC, (c) CUHK03, (d) MSMT-17

where λgda and λlia are the relative importance parameters. We set λgda = 1 and λlia = 1255

in our experiments. The whole model can be trained end-to-end subject to the loss

function of Eq. (9) by the stochastic gradient descent algorithm.

4. Experiments

Datasets. For evaluation, We used four person re-id benchmarks with distinct camera

viewing conditions. (Fig 2). The Market-1501 [8] contains 32,668 images of 1,501260

identities (ID) captured by 6 cameras. We used the standard 751/750 train/test ID

split. The DukeMTMC [13, 29] consists of 36,411 labelled images of 1,404 IDs from

8 camera views. We adopted the same 702/702 ID split as [13]. The CUHK03 [4]

provides 14,096 images of 1,467 IDs from 6 camera views. We used the detected

images as the source as [15]. The MSMT-17 [6] is a largest person re-ID benchmark265

thus far. contains 126,411 person images from 4,101 IDs captured from 15 camera

views. We adopted the standard 1041/3060 train/test ID split.

Performance metrics. We adopted the Cumulative Matching Characteristic (CMC)

14

                  



and mean Average Precision (mAP) as the model performance measurements.

Model parameter setting. In this context, no target domain supervision is available for270

hyper-parameter cross-validation. We hence used a single set of empirical parameter

setting for HUDA (including λtri for Lre-id, α in Eq (6), u for Eq (7), λgda and λlia in Eq

(9)) in all the experiments.

Implementation details. We performed all the experiments in PyTorch [54]. We used

ResNet-50 as person re-id c1 and memory network g1. TThe identity classifier c2/g2275

consists of one fully-connection layer at the shape of d × Kid, where d is the feature

dimension and Kid is the number of training identity classes in the source domain. We

used a triplet loss to enhance identity discriminative learning with the cross-entropy

loss. To train a re-id model, we deployed SGD with the momentum set to 0.9, the

weight decay to 0.0005, and the mini-batch size of 64 (32 source plus 32 target sam-280

ples), the epoch number to 60. All input images were resized to 256×128 and sub-

tracted by ImageNet mean. We applied data augmentation for the target and memory

networks independently in training, including random cropping, random flipping, and

colour jitter. In test time, we used the Euclidean distance as the re-id matching metric.

4.1. Comparisons to the State-of-the-Art Methods285

For a fine-grained evaluation, we compared five types of existing methods: (a) two

hand-crafted feature models (LOMO [7], BoW [8]); (b) four image adaptation models

(PTGAN [6], SPGAN+LMP [14], ATNet [16]), CR-GAN[17]); (c) six feature adapta-

tion models (UMDL [18], CAMEL [55], PUL [56], TJ-AIDL [19], MMFA [20], MAR

[21]); (d) four unsupervised deep learning method (TAUDL [22], SSG [23], PCB-R-290

PAST [24], UDA [57]); (e) seven hybrid methods (HHL [15], ECN [25], PAUL [26]),

MMT-500 [27], MMT-700 (IBN-ResNet-50) [27], PDA-Net [28], CR-GAN+TAUDL [17]),

(f) one semi-supervised method (SSG++ [23]). We made three HUDA based hybrid

models: (i) Taking TAUDL [22] as unsupervised learning, termed as HUDA+TAUDL,

(ii) Further taking PCB [26] for part based classification as in PCB-R-PAST [24],295

termed as HUDA+TAUDL(PCB), (iii) Following MMT-700 (IBN-ResNet) [27] we

use clustering driven unsupervised learning (i.e., SSG [23]) to produce pseudo labels

and adopt IBN-ResNet-50 as feature backbone, termed as HUDA+SSG. We evaluated
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three transfer scales in source data size: (1) large: MSMT17⇒Market, (2) medium:

Market1501⇔DukeMTMC, (3) small: CUHK03⇒Market.300

Evaluation on DukeMTMC ⇔ Market-1501. Table 1 shows the comparisons be-

tween HUDA and 22 state-of-the-art methods. We have the following observations.

(1) Hand-crafted feature methods [7, 8] produce the poorest performance, due to weak

representations. (2) Image adaptation methods [6, 14, 15] yield fairly strong re-id rates.

but weaker than the best feature adaptation counterparts, e.g., HUDA. (3) Interestingly,305

unsupervised re-id methods( TAUDL [22], SSG [23], PCB-R-PAST [24], UDA [57])

achieve competitive performance without using any labelled source data. (4) For the

feature adaptation models, HUDA outperforms all the competitors [18, 55, 56, 19, 20].

This suggests strongly the modelling superiority of our method over the state-of-the-

art counterparts. (5) Unsupervised domain adaptation alone (e.g., CR-GAN, HUDA)310

is clearly inferior than those hybrid models (MMT variants, PDA-Net), as expected.

When integrated with unsupervised learning, our HUDA can reach the best overall re-

sults. This indicates the superior complementary of our model with previous unsuper-

vised learning methods. (6) Some hybrid methods (MMT variants, HUDA+SSG) even

surpass the semi-supervised learning method SSG++, showing the joint effectiveness315

of unsupervised learning and domain adaptation.

Evaluation on MSMT17/CUHK03 ⇒ Market-1501. We further tested the domain

adaptation with large and small scale transfer. Table 2 compares the performance of

HUDA to 4 state-of-the-art alternative methods with reported re-id results. Overall, we

have similar observation as above. For MSMT17⇒Market-1501, as a feature adapta-320

tion method, HUDA even surpasses the hybrid competitor PAUL. In the case of small

scale transfer on CUHK03⇒Market-1501, HUDA consistently outperforms all strong

competitors. This test validates the superiority of HUDA in varying cross-domain

adaptation scenarios.

4.2. Further Analysis and Discussions325

We conducted a series of component analysis for HUDA using DukeMTMC⇔Market-

1501.

HUDA design. We tested the significance of HUDA and its components (GDA and
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Table 1: Results on Market-1501⇔DukeMTMC.

Source→Target Duke→Market Market→ Duke

Metric (%) R1 R5 R10 mAP R1 R5 R10 mAP

LOMO [7] 27.2 41.6 49.1 8.0 12.3 21.3 26.6 4.8

BOW [8] 35.8 52.4 60.3 14.8 17.1 28.8 34.9 8.3

PTGAN [6] 38.6 - 66.1 - 27.4 - 50.7 -

SPGAN+LMP [14] 57.7 75.8 82.4 26.7 46.4 62.3 68.0 26.2

ATNet [16] 55.7 73.2 79.4 25.6 45.1 59.5 64.2 24.9

CR-GAN[17] 64.5 79.8 85.0 33.2 56.0 70.5 74.6 33.3

TAUDL [22] 63.7 - - 41.2 61.7 - - 43.5

SSG [23] 80.0 90.0 92.4 58.3 69.3 80.2 83.1 53.4

PCB-R-PAST [24] 78.4 - - 54.6 72.4 - - 54.3

UDA [57] 75.8 89.5 93.2 53.7 68.4 80.1 83.5 49.0

SSG++[23] 86.2 94.6 96.5 68.7 76.0 85.8 89.3 60.3

UMDL [18] 34.5 52.6 59.6 12.4 18.5 31.4 37.6 7.3

CAMEL [55] 54.5 - - 26.3 - - - -

PUL [56] 45.5 60.7 66.7 20.5 30.0 43.4 48.5 16.4

TJ-AIDL [19] 58.2 74.8 81.1 26.5 44.3 59.6 65.0 23.0

MMFA [20] 56.7 75.0 81.8 27.4 45.3 59.8 66.3 24.7

HUDA (Ours) 68.5 82.9 87.1 37.6 52.3 65.4 68.7 30.2

HHL [15] 62.2 78.8 84.0 31.4 46.9 61.0 66.7 27.2

ECN [25] 75.1 87.6 91.6 43.0 63.3 75.8 80.4 40.4

MMT-500 [27] 86.8 94.6 96.9 71.2 78.0 88.8 92.5 65.1

MMT-700(IBN) [27] 91.1 96.5 98.2 74.5 81.8 91.2 93.4 68.7

PDA-Net [28] 75.2 86.3 90.2 47.6 63.2 77.0 82.5 45.1

CR-GAN+TAUDL [17] 77.7 89.7 92.7 54.0 68.9 80.2 84.7 48.6

HUDA+TAUDL [22] 78.8 90.2 93.4 57.6 70.4 82.5 86.2 51.2

HUDA+TAUDL (PCB) [22] 81.0 91.1 93.5 59.3 73.1 83.7 87.2 54.5

HUDA+SSG [57] 91.4 96.7 98.5 74.7 81.5 91.5 93.7 69.0
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Table 2: Results on MSMT17/CUHK03⇒Market-1501.

S→T MSMT→Market S→T CUHK→Market

Metric(%) R1 R5 R10 mAP Metric(%) R1 R5 R10 mAP

MAR 67.7 81.9 - 40.0 HHL 42.7 57.5 64.2 23.1

PAUL 68.5 82.4 87.4 40.1 SPGAN 42.3 - - 19.0

HUDA 72.3 85.2 89.2 42.4 HUDA 49.7 62.8 67.7 27.9

Table 3: HUDA design analysis. GDA: Global Distribution Alignment. LIA: Local Instance Alignment.

Source→Target Duke→Market Market→Duke

Metric(%) R1 R5 R10 mAP R1 R5 R10 mAP

w/o HUDA 55.2 74.3 81.3 27.1 41.8 57.6 63.2 22.3

GDA Only 61.8 77.9 83.6 32.4 46.8 62.6 68.8 26.5

LIA Only 61.9 78.3 83.8 32.9 44.3 59.4 65.5 24.1

Full HUDA 68.5 82.9 87.1 37.6 52.3 65.4 68.7 30.2

LIA). Table 3 shows that: (1) Without HUDA, the model suffers clearly the domain

gap, e.g. large performance drop. (2) GDA Only gives significant performance boost.330

This validates our primitive attribute interpretation . (3) LIA Only also yields similar

re-id rate gain. This verifies the idea of our local alignment and the proposed design.

(3) When GDA and LIA are jointly exploited (i.e. full HUDA), model performance is

further increased. This validates good complementary of GDA and LIA, as well as our

motivation of integrating them into a single formulation.335

Cross-class association between domains. Recall that we classify the unlabelled tar-

get person images into the source identity class space in a cross-class manner. This

aims to associate target persons with visually similar source people in the LIA process

(see Fig 4). We examined the effectiveness of this association. Specifically, we mea-

sured the proportion of target person images highly associated to any source identity340

classes with the maximum likelihood above the threshold u. We tracked this measure-

ment with and without the LIA. We observed from Fig 3 that, the proposed association

18

                  



0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35 40 45 50 55 60

Ra
tio

 (%
)

Epochs

Duke->Market (HUDA) Duke->Market(w/o-LIA)

Market->Duke(HUDA) Market->Duke(w/o-LIA)

Figure 3: The proportion of target training samples that is highly associated with source classes during model

training.

scheme significantly improves the cross-domain alignment at the fine-grained instance

level. LIA makes the most target persons associated to the relevant source identities

with similar appearance. This indicates that GDA is under-constrained. Not every tar-345

get sample can be associated with a visually similar source identity by HUDA. This

is reasonable due to the independent nature between source and target domains. The

rising association rate of HUDA without LIA in the beginning of training is due to

inaccurate predictions by the immature in-training model.

Feature normalization. We evaluated the effect of feature normalization (FN) on350

unsupervised domain adaptation with and without HUDA. Table 4 shows that FN is

significant for effective cross-domain knowledge transfer in HUDA context, validating

our design consideration. This is because, the cross-domain association becomes re-

liable and effective for unsupervised domain adaptation, only when the model learns

sufficiently discriminative information from the source labels. Besides, FN slightly355

helps the baseline without HUDA, suggesting a generic usefulness. We further tested

the impact of FN on the model performance convergence on the source domain data.
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(a)

(c)

Duke Duke Market Duke MarketMarket Duke Market Duke Market

Duke Market Duke Market

Duke MarketDuke Market

Duke Market

(b)

Duke MarketMarketDuke

Figure 4: Association of target DukeMTMC persons to source Market-1501 identity classes. (a) The pairs

of source and target persons extracted automatically by cross-domain cross-class association. The associated

persons show strong visual similarities. (b) The target person images associated to a source person have

either the same identity (when in the same domain) or similar visual appearance (when cross-domain). (c)

Cross-domain associations can be distracted by background clutters.

20

                  



Table 4: Examination of feature normalization (FN).

Source→Target Duke→Market Market→Duke

Model FN R1 R5 R10 mAP R1 R5 R10 mAP

w/o HUDA 7 55.2 74.3 81.3 27.1 41.8 57.6 63.2 22.3

w/o HUDA 3 56.9 74.2 80.1 28.4 42.1 57.9 63.3 22.5

HUDA 7 61.5 77.2 82.9 32.3 44.5 57.6 64.0 24.6

HUDA 3 68.5 82.9 87.1 37.6 52.3 65.4 68.7 30.2
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Figure 5: Effect of the feature normalization (FN) to the model convergence on the source domain data.

We chose the memory network that is used for knowledge extraction. Figure 5 shows

that FN is clearly beneficial for accelerating the model learning speed on the source

labelled data.360

Table 5: Examination of knowledge selection (KS).

Source→Target Duke→Market Market→Duke

KS R1 R5 R10 mAP R1 R5 R10 mAP

7 65.5 79.1 84.7 34.7 48.3 63.5 67.9 27.5

3 68.5 82.9 87.1 37.6 52.3 65.4 68.7 30.2
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Figure 6: Effect of controlling the knowledge reliability in cross-domain transfer in (a) Rank-1 and (b) mAP

rates, and (c) the effect of batch size on Duke→ Market.

Table 6: Domain adaptation (DA) effects on the source domain.

Dataset Market Duke

Metric(%) R1 R5 R10 mAP R1 R5 R10 mAP

Before DA 86.6 94.7 97.0 67.5 77.4 88.5 91.7 59.5

SPGAN 59.9 78.7 84.5 34.3 53.9 70.9 76.5 32.4

HUDA 87.0 95.0 97.1 67.8 77.1 87.9 91.4 59.3

Knowledge selection. We tested the performance benefit from knowledge selection

(KS). The KS is controlled by setting a threshold u on the maximum likelihood in the

source class space (Eq (7)). We compared the re-id accuracy rates on the target domain

with and without the thresholding based (u) selection. Table 5 and Fig 6 (a,b) support

the significance of knowledge selection for more reliable unsupervised domain adapta-365

tion. The optimal selections lie in the range of [0.1, 0.4], validating our consideration

that a mild threshold value u would be used. Note that not the entire (u = 0) source

knowledge are equally relevant and reliably transferable to the target domain. Adapting

unsuitable source information can hurt the model generalisation. Besides, the perfor-

mance is clearly inferior when no local knowledge adaptation is considered (u = 1),370

validating our modelling motivation.

Batch size. The mean embeddings of two probability distributions in MMD metric

are calculated for the source and target domains respectively within each mini-batch

during training. The default batch size is 64. We further compared more batch sizes
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[32, 64, 128, 256] on Duke→ Market. Fig 6 (c) indicates that a good range for batch375

size is around 64.

Source domain performance. Unlike the image adaptation methods [14], HUDA

avoids the need for re-id model fine-tuning for target domain. This helps maintain the

model performance on the source domain. Table 6 shows that HUDA can preserve well

model performance on the source data after domain adaptation. In contrast, SPGAN380

suffers significantly due to losing much of original discrimination ability in fine-tuning.

5. Conclusion

We presented a novel HUDA person re-id model for more discriminative domain

adaptation from a labelled source domain to an unlabelled target domain. HUDA is

designed for simultaneous global distribution alignment and local instance alignment.385

It addresses the limitations of existing unsupervised domain adaptation re-id models

where only global distribution alignment is considered. Extensive evaluations validate

the advantages of HUDA over state-of-the-art models.
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