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Abstract 

 

Accurate characterisation of visual attributes such as spiculation, lobulation, and calcification 

of lung nodules is critical in cancer management. The characterisation of these attributes is 

often subjective, which may lead to high inter- and intra-observer variability. Furthermore, 

lung nodules are often heterogeneous in the cross-sectional image slices of a 3D volume. 

Current state-of-the-art methods that score multiple attributes rely on deep learning-based 

multi-task learning (MTL) schemes. These methods, however, extract shared visual features 

across attributes and then examine each attribute without explicitly leveraging their inherent 

intercorrelations.  Furthermore, current methods either treat each slice with equal importance 

without considering their relevance or heterogeneity, which limits performance. In this study, 

we address these challenges with a new convolutional neural network (CNN)-based MTL 

model that incorporates multiple attention-based learning modules to simultaneously score 9 

visual attributes of lung nodules in computed tomography (CT) image volumes. Our model 

processes entire nodule volumes of arbitrary depth and uses a slice attention module to filter 

out irrelevant slices. We also introduce cross-attribute and attribute specialisation attention 

modules that learn an optimal amalgamation of meaningful representations to leverage 

relationships between attributes. We demonstrate that our model outperforms previous state-

of-the-art methods at scoring attributes using the well-known public LIDC-IDRI dataset of 

pulmonary nodules from over 1,000 patients. Our model also performs competitively when 

repurposed for benign-malignant classification. Our attention modules also provide easy-to-

interpret weights that offer insights into the predictions of the model. 

 

Index Terms— Deep Learning; Lung Nodule Analysis; Multi-Task; Computed Tomography 

(CT) 
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1. Introduction 

  

Lung cancer is the leading cause of cancer-related mortality worldwide and accounted 

for over 18% of the 9.5 million cancer deaths in 2018 [1]. The planning and optimisation of 

treatment depends on accurate lung nodule characterisation and staging. Computed 

tomography (CT) is an indispensable tool for the clinical assessment and profiling of lung 

nodules [2]. Lung nodules can vary in appearance and size, and some visual characteristics are 

suggestive of cancer [3]. CT has adequate resolution to depict characteristics such as sphericity, 

spiculation, and calcification, which are referred to as attributes in this study. They characterise 

high-level appearance of nodules at the object level that are more abstract, rather than low-

level features such as colour and edges. These attributes are used to classify the malignancy 

(cancerous or benign) and subtype of nodules [3-5]. Furthermore, attributes may be correlated 

with other data including clinical reports, and can be used in guiding patient management [4].   

The characterisation of high-level attributes of lung nodules from CT images is non-

trivial as it involves analysing a 3D stack of image slices where the nodule’s visual appearance 

changes across each image (as shown in Fig. 1). These nodules exhibit different slice 

thicknesses from different image acquisition setups, and different numbers of image slices for 

each nodule. Visual features can often seem ambiguous and vague, which exacerbates the 

subjectivity of this task, and leads to inaccuracies and high inter- and intra-observer variability 

[6, 7]. Furthermore, the accurate assessment of nodules involves simultaneously considering 

multiple visual features, which is complex and may be influenced by the experience of the 

radiologist [6]. A robust automated method may assist in overcoming the limitations of manual 

assessment. 
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Fig. 1. Sections of a transaxial CT image showing the extent of a lung nodule using soft tissue windows. Individual 

image slices show the irregular outline of the nodule abutting the lateral pleura. 

 

Earlier methods were mainly directed at scoring or classifying individual attributes, 

especially malignancy, independently. Various techniques such as a bag-of-frequencies 

descriptor [8], patch-based handcrafted features (including Scale-Invariant Feature Transform 

[SIFT] and Histogram of Oriented Gradients [HOG]) [9], and decision trees [10] have been 

applied. More recent methods are based on deep learning (DL) using convolutional neural 

networks (CNNs), and multi-task learning (MTL) has been the framework of choice for 

simultaneously scoring multiple attributes of lung nodules [11-14]. In MTL, relationships 

between attributes are implicitly leveraged through supervised co-training across multiple tasks. 

This strategy assumes that the different attributes can be derived from overlapping visual 

information, so a single model can classify multiple attributes. The earlier stages of the model 

compute collective features that are shared between the different tasks, while the later stages 

become more task specific. Chen et al. [11] reported a model that combined features extracted 

from a CNN and stacked denoising autoencoder, with handcrafted Haar-like and HOG features. 

They also showed that MTL outperforms single task methods at rating lung nodule attributes. 

Liu et al. [12] reported Multi-Task deep model with Margin Ranking loss (MTMR-Net), which 

leveraged the Siamese network architecture with a 152-layer ResNet [15] backbone to 

simultaneously score attributes and classify nodules as benign or malignant. 

The wide variation of lung nodule volume sizes hinders the application of 3D 

approaches, so existing methods typically adopt a 2D approach which produces classifications 

on each slice, followed by averaging across the slices of each nodule. However, some slices 
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contain more useful information while others are less useful and may appear misleading. This 

can impair the classification accuracy of the conventional approach, which analyses slices 

individually. Additionally, inter-attribute relationships have only been investigated implicitly 

by previous methods that adopt an MTL framework, typically by sharing CNN features across 

attributes. This approach, however, does not expose correlations between attributes. 

Furthermore, studies were limited to the relations between malignancy and the other attributes, 

while the rest were not explored. Malignancy can be inferred by certain patterns of 

morphological characteristics such as irregular, lobulated or spiculated margins; while popcorn, 

diffuse, central, and laminated calcification patterns are usually associated with benign nodules 

[4, 5, 16, 17]. A previous approach first predicted these characteristics, then used the 

predictions or intermediate CNN features to infer malignancy [18, 19]. Liu et al. [12] used a 

model that, with further processing via recursive feature elimination and logistic regression, 

could score the importance of each attribute towards malignancy. 

In DL-based MTL, attention mechanisms that explore cross-task relations have been 

reported [20]. These approaches learn weights to emphasise elements of intermediate feature 

vectors by extracting and highlighting more relevant information regarding the present task. 

Misra et al. [21] reported cross-stitch units to learn optimal linear combinations of shared and 

task-specific features between different parallel tasks. Other studies have built upon these 

cross-task connections [22, 23]. Liu et al. [24] used soft attention units that learn task-specific 

features from a global pool. Zhao et al. [25] used attention-based modules for task-task 

knowledge transfer, task-feature dependence, and feature-feature interactions to explore 

relationships between tasks. Coppola et al. [26] presented a gating mechanism to understand 

the similarities between multiple attributes in skin cancer diagnosis. They formulated the 

relationship between two attributes as the proportion of shared features. For more abstract 

clinical attributes, however, there is not a method to expose cross-task interdependencies in a 
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format that encapsulates high-level content and allows for direct understanding of the 

relationships. 

In this study, we propose a CNN-based deep MTL model to simultaneously score 

multiple attributes in lung nodules. Our model manages variations in size and slice thickness, 

and extracts and aggregates features from all cross-sections simultaneously for each nodule, 

yielding a single prediction set. We introduce three attention modules to enhance the accuracy 

of the model and help elucidate the mechanisms behind predictions. The first module deals 

with inconsistencies in visual appearances through an image volume by assigning importance 

to slices containing more useful attribute information and de-emphasising slices in which 

attributes appear ambiguous or misleading. Our other two attention modules explore the inter-

relatedness between attributes explicitly, by defining the relationships as readily interpretable 

weights. We build on the standard MTL configuration by cross-pollinating between the 

meaningful and attribute-specific features in the later stages of the model.  

Our contributions to the state-of-the-art are: 

a) A DL-based MTL model with attention modules that processes entire image 

volumes of arbitrary depth and scores multiple nodule attributes simultaneously. 

The importance of each slice is proportionally accounted for via an attention module 

that decreases the influence of less important slices. 

b) A cross-task feature learning attention module to explicitly use inter-attribute 

dependencies via the combination of high-level CNN representations, and reveal 

such relationships in an easy-to-understand format that can be used for clinical 

interpretation. 

c) An attribute specialisation attention module to ensure that the high-level CNN 

representations are meaningful to the attributes. 
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2. Methods 

 

Our proposed model is an MTL framework that scores attributes (subtlety, internal 

structure, calcification, sphericity, margin, lobulation, spiculation, texture, and malignancy) of 

a nodule simultaneously. The model has several components, which are illustrated in Fig. 2. 

The initial stages are concerned with the extraction of deep visual features from the input 

images that are shared across all attributes. The product of this common pathway is a feature 

vector that characterises the content of the input stack. Subsequent components further process 

the nodule content vector in branches that specialise to individual attributes. Given a stack of 

2D image slices of the nodule, a single score for each attribute is predicted for the input nodule. 

All the slices of a 3D nodule are processed simultaneously by arranging slices to be in the batch 

dimension of the input. In this way, the model supports arbitrary slice numbers and thicknesses 

without needing interpolation or padding in the axial dimension. Our model regresses floating-

point scores for each attribute, as was done by previous studies [11, 12] to accommodate for 

inter-rater variability in the ground truth ratings. 
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Fig. 2. Our proposed deep learning model with attention modules, and expanded diagrams of the components 

(best viewed in colour). A high-resolution version is included in the Supplementary Materials. 

 

 

2.1. Shared Feature Extraction 

 

The first component of the model is a CNN backbone (coloured orange in Fig. 2) that 

extracts deep convolutional features from the input images through several sequential blocks 

of 3 × 3 convolutions, ReLU [27], and max pooling operations. In this component, the image 

slices of an input volume are regarded as 2D by the CNN. One feature volume with 256 

channels per slice is produced, i.e., an image volume of x × y × z is input as z × x × y × 1, and 

the backbone outputs z × h × w × d (where d is 256). The CNN automatically learns to discern 

general visual features that will be leveraged by the scoring tasks downstream.  

Immediately after the CNN, we use global average pooling (GAP) [28] to vectorise the 

feature volumes, reducing the dimensionality from h × w × d to 1 × 1 × d, by averaging over 

each feature channel. GAP is an established technique used in image-based DL models (such 

as ResNets [15]) for producing more meaningful feature vectors. Elements of the vector may 
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be interpreted as confidence in the different convolutional features. GAP reduces overfitting 

compared to a simple flatten operation as it yields a shorter vector, thus subsequent fully 

connected layers will have fewer parameters. GAP is also robust to spatial translations of the 

input. 

 

2.2.  Attention Modules 

 

2.2.1. Slice Attention 

 

In a nodule volume, some image slices offer greater utility for scoring attributes. As our 

approach involves considering the entire stack of images of a nodule at one time, it is beneficial 

to determine which slices contain more useful information and scale their influence on 

predictions accordingly, rather than simply assume that all slices are equally important.  

We propose the slice attention module (SAM) to automatically determine the influence 

of each slice in a stack of arbitrary z-size. The SAM learns to place more weight on slices which 

contain more relevant information regarding the attributes.  

In our model, SAM (coloured blue in Fig. 2) is placed after the GAP layer. The feature 

vectors for each slice produced by the GAP layer are fed to SAM, yielding a scalar weight per 

slice according to the following equations: 

 

𝒒𝑺𝑨𝑴(𝒙𝒈) = 𝑾𝟏𝛹(𝑾𝟎𝒙𝒈 + 𝒃𝟎) + 𝒃𝟏                                          (1) 

let 𝒑 = 𝒒𝑺𝑨𝑴(𝒙𝒈) 

𝛼(𝒑)𝑖 =
𝑒𝑝𝑖

∑ 𝑒𝑝𝑗
𝑗

                                                                 (2) 

where 𝜶 ∈ ℝ1 x 𝑀 denotes the SAM weights for a nodule with M slices, 𝒑 ∈ ℝ1 x 𝑀 denotes the 

pre-softmax SAM weights, and 𝒙𝒈 ∈ ℝ𝑀 x 256  is the SAM input, namely the GAP feature 

vectors for each slice. SAM is characterised by a set of trainable weights and biases of two 
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fully connected layers, comprising of 𝑾𝟎 ∈ ℝ128 x 256 , 𝑾𝟏 ∈ ℝ128 x 1 , 𝒃𝟎 ∈ ℝ128 x 1 , and 

𝒃𝟏 ∈ ℝ1 x 1 . 𝛹  denotes the ReLU activation between the two fully connected layers. The 

softmax function ensures that all SAM weights per stack sum to 1. Thus, the weights indicate 

the relative importance of each image slice of a nodule. 

Subsequently, we use a content-wise weighted sum to aggregate all the slice vectors 

into a single 256-dimensional vector that characterises the content of each image stack, based 

on the weights produced by SAM: 

𝒇𝒄 = ∑(𝛼𝑖𝑥𝑔,𝑖)

𝑖

                                                              (3) 

where 𝒇𝒄 ∈ ℝ1 x 256 is the content vector of the nodule. 

 

 

2.2.2. Attribute-Specific Content Modulation and Cross-Attribute Attention 

 

As in typical general MTL frameworks, the latter part of our model branches into task-

specific pathways and becomes more specialised for individual attributes. However, we 

hypothesise that it is beneficial to increase flexibility in mixing more specialised features 

between tasks. To this end, we alter the traditional task specialisation process by introducing 

two cooperative modules: an attribute-specific content modulation module (ASCMM, purple 

in Fig. 2) and cross-attribute attention module (CAAM, pink in Fig. 2), to perform cross-

attribute feature learning. There is one ASCMM and CAAM unit per attribute. 

The ASCMM prompts the specialisation of each attribute pathway via the utilisation of 

an auxiliary score regression and mean squared error (MSE) loss during training: 

𝐿𝐴𝑆𝐶𝑀𝑀 =
1

𝑁
∑ ||

𝑖

ŷ𝑖 − y𝑖
𝐴𝑆𝐶𝑀𝑀||2

2                                                 (4) 

where N is the total number of nodules in the training set; ŷ𝑖 ∈ ℝ1 x 𝐾 and y𝑖
𝐴𝑆𝐶𝑀𝑀 ∈ ℝ1 x 𝐾 are 

the ground truth and auxiliary score predictions of all attributes, with 𝐾 = 9, corresponding to 
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the 9 attributes. This facilitates the production of a content vector that is more specific to each 

attribute. During inference, the ASCMM is not used, and auxiliary predictions do not contribute 

towards the final predictions of the model. 

After the specialisation of the content vectors for each task, we use CAAM to cross-

pollinate content between branches to leverage useful inter-attribute relationships. Each 

CAAM unit learns the importance of all attributes towards the score regression for its own 

attribute: 

𝒒𝑪𝑨𝑨𝑴
𝒕 (𝒙𝒔) = 𝑾𝟏

𝒕 𝛹(𝑾𝟎
𝒕 𝒙𝒔 + 𝒃𝟎

𝒕 ) + 𝒃𝟏
𝒕                                            (5) 

 

where 𝒒𝑪𝑨𝑨
𝒕 ∈ ℝ1 x 9 denotes the CAAM weights for attribute t, and 𝒙𝒔 ∈ ℝ9 x 256 is the input 

comprising of the specialised content vectors from all attributes. The CAAM unit for attribute 

t is characterised by a set of trainable weights and biases of two fully connected layers, 

comprising of 𝑾𝟎
𝒕 ∈  ℝ128 x 256, 𝑾𝟏

𝒕 ∈ ℝ128 x 1, 𝒃𝟎
𝒕 ∈ ℝ128 x 1, and 𝒃𝟏

𝒕 ∈ ℝ1 x 1. 𝛹 denotes the 

ReLU activation between the two fully connected layers. 

Next, the weights produced by the CAAM unit are used via a weighted sum to combine 

representations from the content vectors of all attributes into a single 256-dimensional vector: 

𝒇𝒔
𝒕 = ∑(𝑞𝐶𝐴𝐴𝑀,𝑘

𝑡 𝑥𝑠,𝑘)

𝑘

                                                        (6) 

where 𝒇𝒔
𝒕 ∈ ℝ1 x 256 is the final output CAAM feature vector for attribute t. 

 

 

2.3. Attribute Score Regression and Training 

 

The final component of the model is output prediction (Fig. 2 in green), and this consists 

of a unique block of two fully connected layers per attribute. Sigmoid activation ensures that 

output regression scores are normalised within [0, 1].  
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To train the model we minimise the MSE loss between predicted and ground truth 

scores, 𝐿𝑃: 

𝐿𝑃 =
1

𝑁
∑ ||

𝑖

ŷ𝑖 − y𝑖
𝑃||2

2                                                         (7) 

where ŷ𝑖 ∈ ℝ1 x 𝐾  and y𝑖
𝑃  ∈ ℝ1 x 𝐾  are the ground truth and final score predictions of all 

attributes. The final regression loss value that we minimise via standard backpropagation is the 

sum of the losses from the ASCMM and output components: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝐿𝐴𝑆𝐶𝑀𝑀 + 𝐿𝑃                                                        (8) 

where 𝜆  is the scalar hyperparameter which balances the ASCMM loss relative to the 

prediction loss. 

 

3. Experiments 

 

3.1. Materials  

 

We used the publicly available LIDC-IDRI dataset [7] to evaluate our model. The 

dataset comprises CT scans of nodules from 1,010 patients. The scans were acquired with a 

range of scanner models and imaging parameters, obtained from several medical centres in the 

United States. The nodules were identified and delineated by multiple radiologists. We used 

nodules that were marked by at least one radiologist with a diameter greater than 3 mm and 

were further rated for attributes (from 875 patients), as done by comparable studies [11, 12].  

Nine high-level attributes were independently scored by up to 4 radiologists per nodule 

(i.e., not every nodule was scored by 4 radiologists). The attributes were rated from 1 to 5 

inclusive, except internal structure (scored 1 to 4) and calcification (scored 1 to 6). The value 

of attribute rating generally related to the prominence of the attribute in the images (Fig. 3). 
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For example, a rating of 6 for sphericity indicate that the nodule was very round; a score of 6 

for subtlety indicated the nodule was very clearly apparent in the image. 

 

 

Fig. 3. Sections of CT images showing 3 lung nodules from different patients using soft tissue windows and their 

attribute ratings by radiologists. The images were cropped to the nodule ROIs and resized to the same spatial 

resolution. Ratings were scored on a scale of 1 to 5, except for internal structure (1 to 4) and calcification (1 to 6).  

 

There was considerable variability between radiologists’ scores and in the number of 

rating instances per nodule, so we used the average radiologist scores for each attribute as the 

ground truth, as adopted by comparable studies [11, 12]. Ground truth ratings were normalised 

to be within [0, 1] for model training. 

For image processing, we used the pylidc Python package [29] that was created for the 

LIDC-IDRI dataset. We extracted the volume of interest (VOI) of each nodule based on the 

common bounding box of the radiologists’ annotations that was computed via a consensus 

consolidation at 50% agreement level. The VOIs were adaptively padded to be square in the 

lateral x-y plane such that the larger diameter in x or y was 80% of the final lateral dimension. 

We preserved the anisotropic resolutions between the x-y and z dimensions as we found that 

isotropic conversion provided no benefit to prediction error. Only slices that contained nodule-
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positive pixels as labelled in the annotations were considered; the number of slices ranged from 

1 to 45 with a mean of 5.6 (distribution presented in Fig. 4). The annotated bounding boxes 

had a mean height and width of 15.8 pixels, ranging from 5 to 98 and 5 to 86 pixels, respectively. 

All images were bilinearly interpolated to 64 × 64 in lateral resolution. Image intensities were 

converted to Hounsfield units. There was a total of 2,622 nodules. 

 

Fig. 4. Number of image slices per nodule in the dataset. 

 

 

3.2. Implementation Details 

 

We kept the following implementation and hyperparameter choices consistent for all 

experiments to ensure a fair comparison. The networks were trained end-to-end from scratch 

for 150 epochs using stochastic gradient descent with a nodule batch size of 1 (all the slices for 

a single nodule at a time). We employed the Adam optimiser [30] to minimise the total multi-

task MSE loss at a fixed learning rate of 0.0001, with a first moment estimate of 0.9, second 

moment estimate of 0.999, and a weight decay constant of 0.0001. We set the weight of the 

auxiliary loss 𝜆 to be 0.1, as determined empirically (evaluation in Supplementary Materials 

Table S1). Convolutional filter weights were initialised using He et al.’s method [31] while 

biases were initialised to zero. Glorot (Xavier) initialisation [32] was used for fully connected 

layers. Dropout was not used in any experiment. 



15 

 

Each image was mean-subtracted and normalised to unit variance (using the training 

set mean and standard deviation). We employed standard online (on-the-fly) image data 

augmentation by randomly applying a flip (horizontal or vertical), rotation (of 90, 180 or 270 

degrees), or reversing the z-order of slices, to the input volume. For flips and rotations, identical 

transformations were used for all slices in a volume. The order of training examples was 

shuffled every epoch. All networks were implemented using the PyTorch framework [33]. Both 

training and testing were performed with a 12GB NVIDIA GTX Titan X GPU. Training 

required about 3 hours for completion. 

 

 

3.3. Evaluation Setup 

 

We performed an ablation study to determine the contributions of each module. We 

used an attention-free baseline model in which SAM, ASCMM, and CAAM were removed 

from our model. We evaluated the performance of this baseline, and its performance with the 

incorporation of only SAM, only CAAM, or both ASCMM and CAAM. 

Furthermore, we assessed the performance of the 3D variant of our attention-free 

baseline. For this model, each input image volume was padded in the axial dimension such that 

the input size was 64 × 64 × 64 pixels. This was done to accommodate the volume with the 

largest depth (45 slices), and extends the model to 3D whilst maintaining the same architectural 

parameters in the extra dimension. 

A 5-fold cross-validation was performed for each experimental setup. The nodules were 

randomly divided into training and testing sets with an 80/20 percent split, resulting in 2098 or 

2087 samples for training and 524 or 525 samples for testing. Identical nodule splits were used 

for each method and we ensured that no nodule was in both the training and test sets of a fold. 
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Our main performance metric was the mean absolute error (MAE) per attribute between 

the average radiologist scores and predictions, as adopted by previous studies: 

𝑀𝐴𝐸 =
1

𝑁
∑ |

𝑖

ŷ𝑖 − y𝑖
𝑃|                                                            (9) 

where N is the total number of nodules in the training set; ŷ𝑖 ∈ ℝ1 x 𝐾 and y𝑖
𝑃 ∈ ℝ1 x 𝐾 are the 

ground truth and final score predictions of all attributes, with 𝐾 = 9, corresponding to the 9 

attributes. All our computations during testing were based on de-normalised scores, according 

to original rating scales. The best model per experiment was that which scored the lowest in 

average MAE across all nodules and attributes. We benchmarked the proposed model to the 

state-of-the-art methods of Chen et al. [11] and Liu et al. [12], and against methods designed 

for benign-malignant classification [34-39]. 

 

4. Results 

 

4.1. Ablation Study 

 

The ablation study (Table 1) revealed that prediction performance improved when each 

attention module was integrated with the attention-free version of the proposed model. Overall, 

prediction errors with the attention modules were significantly (p<0.05) lower than the 

attention-free baseline, as determined by t-tests which compared the absolute errors of the 

predictions. Performance on ‘calcification’ improved by the largest margin compared to other 

attributes. 
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Table 1. Prediction performance per attribute with or without our attention modules. 

Method  Performance (Mean Absolute Error) 

   Sub IS Cal Sph Mar Lob Spi Tex Mal Mean 

No Attention 0.741 0.031 0.228 0.542 0.610 0.483 0.450 0.498 0.510 0.455* 

SAM 0.658 0.026 0.165 0.489 0.549 0.460 0.423 0.409 0.457 0.404* 

CAAM 0.664 0.024 0.156 0.494 0.549 0.462 0.427 0.411 0.457 0.405* 

CAAM+ASCMM 0.671 0.022 0.146 0.490 0.550 0.454 0.423 0.408 0.453 0.402* 

SAM+CAAM+ASCMM 0.664 0.020 0.141 0.484 0.536 0.460 0.424 0.399 0.453 0.398* 

* = p-value < 0.05 compared to the No Attention baseline 

Sub = Subtlety, IS = Internal Structure, Cal = Calcification, Sph = Sphericity, Mar = Margin, Lob = Lobulation, Spi = 

Spiculation, Tex = Texture, Mal = Malignancy 

Best results are indicated by red, second-best by blue 

 

We inspected SAM weights to understand the module’s behaviour. SAM weights 

tended to be lower for slices at the ends of a stack (i.e., first and last slices). For stacks 

containing at least 3 slices, the mean weight for end slices was about 4.7 times lower (0.28 vs. 

1.32) than that for non-end slices. Note that for this comparison, we normalised SAM weights 

such that a volume of equally important slices each have a weight of 1, to overcome the 

variation in the number of slices per nodule. Fig. 5 provides examples of this disparity in SAM 

weights between end and non-end slices. End slices tended to contain smaller cross-sectional 

areas of the nodule that were less representative of the overall visual characteristics. 

 

 

Fig. 5. Sections of transaxial CT images of two nodules. Slice attention weights for each slice are presented. 

Weights sum to 1 for each nodule; higher values indicate greater importance of that slice.  

 

A performance comparison between the baseline 2D model with and without SAM 

against the 3D variant is presented in Table 2. The overall error of the 2D baseline without 

attention was higher than its 3D version, but the performance was superior with SAM. 
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Table 2. Comparison of performance between the 2D slice-based model against its 3D volume-based version. 

Method  Performance (Mean Absolute Error) 

 Sub IS Cal Sph Mar Lob Spi Tex Mal Mean 

2D Slice-based 0.741 0.031 0.228 0.542 0.610 0.483 0.450 0.498 0.510   0.455* 

2D Slice-based + 

SAM 
0.658 0.026 0.165 0.489 0.549 0.460 0.423 0.409 0.457 0.404 

3D Volume-based 0.651 0.026 0.156 0.528 0.570 0.491 0.456 0.432 0.469 0.420 

 

 

We examined the CAAM weights to understand the relative importance of the 9 

attributes for each other; these are shown in Fig. 6. The weights of the CAAM + ASCMM 

variant (Fig. 6c) more closely resembled the relationships exhibited by the correlations between 

ground truth attribute scores (Fig. 6a) when compared with CAAM only (Fig. 6b). Notable 

interdependencies include those between shape-related attributes (sphericity, margin, 

lobulation, and spiculation), and between margin and texture. In contrast, the patterns shown 

by the CAAM weights of the model without ASCMM largely did not resemble the relationships 

suggested by the radiologists’ scores. 

We also assessed the relationships of the CAAM weights between each attribute pair 

via correlation to discern the similarity between the profiles of the weights. We computed the 

correlations between the weights of all pairs of attributes per nodule, and visualise the 

normalised mean correlations in Fig. 6d and e. The relationships shown by the CAAM + 

ASCMM variant closely mirrored those of the ground truth. While the CAAM-only model 

identified the associations between margin and texture, and lobulation and spiculation, its 

resemblance to ground truth was overall weaker. In addition, there were erroneous associations 

between sphericity and lobulation, and sphericity and spiculation.  
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Fig. 6. Relationships between attributes. Each entry ij in row i, column j shows the weight (purple) or correlation 

(orange) of attribute j for attribute i. a) Correlation magnitudes between radiologists’ scores for all attribute pairs. 

Normalised mean CAAM weights for the baseline model with b) CAAM only and c) both CAAM and ASCMM. 

Correlations between CAAM weights for all attribute pairs, for the baseline model with d) CAAM only and e) 

both CAAM and ASCMM. A version displaying the value of each square is included as Fig. S2 in the 

Supplementary Materials. 

 

The MAEs between the auxiliary and final predictions produced by the variant of the 

model with CAAM and ASCMM are compared in Table 3. The values indicate a large 

improvement in performance after further feature processing via the CAAM module. 

 
Table 3. Comparison of performance between auxiliary and final predictions of the baseline model with CAAM 

and ASCMM. 
Method  Performance (Mean Absolute Error) 

   Sub IS Cal Sph Mar Lob Spi Tex Mal Mean 

Auxiliary 0.681 0.062 0.354 0.495 0.567 0.475 0.437 0.423 0.462 0.440 

Final 0.671 0.022 0.146 0.490 0.550 0.454 0.423 0.408 0.453 0.402 

 

 

 

 

4.2. Comparison against the State-of-the-Art 

 

a) d) e)

b) c)

CAAM CAAM + ASCMMGround Truth
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Our model, with the attention modules (SAM, ASCMM, and CAAM), had an overall 

superior performance compared to state-of-the-art methods (Table 4). Note the absence of the 

MAE for malignancy of MTMR-Net is because the model carried out classification rather than 

score regression for this attribute. We also modified our model to carry out classification 

instead of regression for malignancy and achieved competitive performance compared to 

previous methods (Table 5). We include some example predictions from our model in Fig. 7. 

 
Table 4. Comparison of prediction performance of the proposed model against the state-of-the-art. 

Method  Performance (Mean Absolute Error) 

   Sub IS Cal Sph Mar Lob Spi Tex Mal Mean 

IB 0.84 0.02 0.20 0.85 0.85 0.79 0.67 0.46 0.88 0.62 

MTR [11] 0.65 0.06 0.33 0.67 0.72 0.76 0.70 0.53 0.70 0.57 

MTMR-Net [12] 0.54 0.03 0.56 0.59 0.54 0.54 0.49 0.44 N/A 0.47 

Proposed 0.66 0.02 0.14 0.48 0.54 0.46 0.42 0.40 0.45 0.40 

IB = Inter-observer variation computed across all pairs of radiologist ratings per nodule 

 

 

Table 5. Comparison of benign-malignant classification against the state-of-the-art. 

Method Performance (%) 

 Accuracy Sensitivity Specificity Precision AUC 

Song et al. 2017 [39] 84.2 84.0 84.3 N/A N/A 

Shen et al. 2017 [36] 87.1 77.0 93.0 N/A 93.0 

Xie et al. 2017 [38] 93.4 91.4 94.1 N/A 97.8 

Xie et al. 2019 [34] 91.6 86.5 94.0 87.8 95.7 

Xie et al. 2019 [37] 92.5 84.9 96.3 N/A 95.8 

Liu et al. 2020 [12] 93.5 93.0 89.4 N/A 97.9 

Xu et al. 2020 [35] 92.7 85.6 95.9 90.4 94.0 

Proposed 94.7 96.2 82.9 97.8 95.9 

 

 

 

Fig. 7. The middle transaxial CT image slice of three nodules along with predictions from the proposed model. 

Ground truth (GT) and predicted (P) scores are the left (orange) and right (blue) values in each column, 

respectively. A smaller error indicates better performance.  
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5. Discussion 

 

Our main findings are that: i) the ablation study showed that our SAM, CAAM, and 

ASCMM improved the performance of the attention-free baseline model; ii) the attention 

weights showed that the modules learned to de-emphasise less relevant image slices and exploit 

meaningful inter-attribute relationships; and iii) our model had superior performance when 

compared to state-of-the-art methods at scoring the attributes of lung nodules and improved on 

benign-malignant classification. 

 

5.1. Ablation Study 

 

The ablation study revealed the importance of our attention modules in enhancing 

prediction performance. For SAM, the large disparity between the importance of end and non-

end slices in nodule volumes appeared to be related to the representativeness of the slice (Fig. 

5). End slices tended to contain fewer nodule pixels, be misleading, and exhibited a stark 

contrast in subtlety compared to the rest of the stack, often appearing fainter (partly due to the 

partial volume effect). Hence downweighting end slices for nodules with at least 3 slices 

improved performance (Table 1). Overall, the results demonstrate that our proposed SAM is 

an effective module that can proportionally scale the importance of each image slice to filter 

out non-representative slices and enhance model performance. 

We used a 2D CNN as the shared feature extractor backbone of our proposed model. 

The relative performance of 2D and 3D CNNs for lung nodule analysis in CT shown by 

previous studies has been mixed, with reports of similar performance, or only slightly better 

performance from 3D networks [40, 41]. However, 3D CNNs are associated with greater 

computational expense and increased number of trainable parameters with a higher risk of 

overfitting. Moreover, 3D CNNs impose a restriction on the depth of the input volume, limiting 
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the compatible range of input nodule sizes. Our model with SAM combines advantages from 

both approaches in a computationally efficient manner, and it is superior to its 3D counterpart 

(Table 2). Our model considers information contained in all slices according to their utility as 

indicated by SAM, without limitations on nodule size and slice thickness, or extra padding to 

a fixed input dimension. 

Analyses of the CAAM weights revealed that the module exploited the inherent 

relatedness between the 9 attributes, as demonstrated by the similar patterns of inter-attribute 

relationships compared to ground truth (Fig. 6). With the incorporation of ASCMM into the 

model, such relationships were better captured and reflective of the inherent inter-attribute 

relations, translating to greater performance improvement (Table 1). This can be attributed to 

the auxiliary prediction and loss, which impart a task specialisation effect, as they encourage 

each attribute branch to be more specialised for its attribute just before CAAM units. The cross-

connections are subsequently able to uncover more meaningful interactions and use these 

interactions for further task refinement between the auxiliary and final predictions (Table 3). 

This is a distinction of our proposed cross-task attention modules compared to previous cross-

connection attention approaches in MTL schemes [21-23]. We also demonstrate that the overall 

performance is better than training and predicting each attribute individually in Table S2 of 

Supplementary Materials. 

In addition to boosting performance, our attention modules offer analytical and 

interpretability advantages as they can be used as tools to uncover the underlying complex 

relationships between the different attributes (Fig. 6). The cause-and-effect connections 

between attributes for malignancy are particularly useful in the clinical context. Our proposed 

attention modules are easily interpretable, requiring minimal further computation; the attention 

weights directly indicate which slices were more influential in prediction outputs and quantifies 

the strength of relationships between attributes.  
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The CAAM weights suggest that our model exploited the relatedness between the shape 

attributes of sphericity, lobulation, margin, and spiculation (Fig. 6c and e). These associations 

make intuitive sense, e.g. spiculation and lobulation are examples of irregular growth that is a 

common finding in malignant nodules [42, 43]. Furthermore, the CAAM indicated 

relationships for malignancy with lobulation, spiculation, margin, sphericity, and texture. 

These relationships were also indicated by the ground truth correlations and are widely 

described in literature [4, 5, 16, 17]. 

 

 

5.2. Comparison against the State-of-the-Art 

 

 Our model is also an MTL framework that leverages the inter-relatedness of all 

attributes via a shared feature extraction phase, like other state-of-the-art architectures [11, 12]. 

The previous MTMR-Net model [12] can explicitly explore the relationships between 

malignancy and the other attributes. Using MTMR-Net, an importance hierarchy of the 

attributes may be obtained for malignancy. However, this ranking requires an additional 

logistic regression classifier to be built and extra computation with recursive feature 

elimination. Our model is unique in its explicit use of all inter-attribute relationships via the 

proposed CAAM and ASCMM, and is not limited only to those relating to malignancy. 

Relationships between all attributes are leveraged in a straightforward and intuitive manner 

using the modules, without needing extra models or complex analyses. 

The difficulty of benign-malignant classification is indicated by the incremental 

improvements of previous models over their antecedent state-of-the-art (Table 5). Our model 

differs to the compared approaches as it is an MTL framework that also assesses multiple other 

attributes and does not place a greater priority on malignancy. When repurposed for benign-

malignant classification instead of regression, our model performed competitively and 

improved on overall accuracy (Table 5). Our model also provides the ability to interrogate the 
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pattern of attributes that leads to the overall diagnosis, which is important knowledge in clinical 

practice. 

The strong performance of our attention-free baseline compared to previous slice-based 

methods (Table 1 and Table 4) suggests that it is effective to assimilate information in all cross-

sections of a nodule simultaneously. Individual slices are often not reflective of the entire 

nodule. Proportionally scaling the influence of each slice on the final predictions according to 

their usefulness via the proposed SAM further boosts performance, as previously discussed. 

The most challenging attributes (aside from malignancy) for our model were subtlety, 

margin, and sphericity (Table 4). This was consistent with the relative difficulties indicated by 

the inter-observer variations of the radiologists’ scores (IB), and generally by the comparison 

methods. The high IBs indicate considerable ambiguity in the annotations. For example, for 

subtlety, nodules that appeared bright and obvious were often rated as ‘fairly subtle’, while 

similarly obvious nodules were assigned disparate scores (e.g., contrast Fig. 8a with b). Overall, 

our model outperformed manual assessment by a large margin. 

 

 

Fig. 8. Sections of transaxial CT images of 3 nodules that exhibit ambiguity in their ground truth score for subtlety. 

Ground truth (GT) scores are in orange and predicted (P) scores are in blue. 

 

 

6. Conclusion 

 

We proposed a multi-task deep learning model to simultaneously rate the strength of nine 

attributes of lung nodules on CT images. We introduced three attention modules that improved 

the performance of our model. Our slice attention module proportionally scales the importance 
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of each cross-sectional slice of a nodule according to its representation of the overall visual 

characteristics of the nodule. Our cross-attribute feature learning modules explicitly leverage 

the inter-attribute relationships, exposing such as easily interpretable weights. Our model 

outperformed state-of-the-art methods at scoring lung nodule attributes.  

For future work, the incorporation of nodule context into the model to improve 

performance on subtlety can be investigated. One possible approach includes characterising 

visual features of a larger field of view around the target nodule using a separate CNN, then 

fusing the features with the main model.  

 In our experiments and those of previous studies [11, 12, 44, 45], nodule ROI 

localisation was based upon radiologists’ annotations, thereby necessitating manual input. 

Ideally, the localisation pre-processing step should be automated. However, a substantial 

amount of error will be introduced into the pipeline and be further compounded by inaccuracies 

from the attribute-scoring model.  

 We suggest that our model may be extended to other multi-task or multi-modal image-

based prediction problems. In particular, our cross-attribute learning attention modules may be 

leveraged to expose or investigate latent inter-task relationships. Additionally, the interpretable 

attention weights may be correlated with other data related to the multi-task problem, such as 

those of genomics.  
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Supplementary Materials for Attention-Enhanced Cross-Task 

Network for Analysing Multiple Attributes of Lung Nodules in 

CT 
 

 

Fig. S1.  High-Resolution Figure of the Proposed Model 

 

To be included as a separate image file. 

 

 

Fig. S2.  Fig. 6 with Values  

 
 

 

Table S1.  Performance with Varying 𝜆 

 
𝜆  Performance (Mean Absolute Error) 

 Sub IS Cal Sph Mar Lob Spi Tex Mal Mean 

0.01 0.657 0.020 0.147 0.490 0.553 0.449 0.423 0.411 0.455 0.401 

0.1 0.664 0.020 0.141 0.484 0.536 0.460 0.424 0.400 0.453 0.398 

0.5 0.655 0.027 0.131 0.498 0.551 0.458 0.427 0.402 0.462 0.401 

1 0.650 0.020 0.132 0.494 0.550 0.464 0.425 0.414 0.456 0.401 

10 0.660 0.018 0.127 0.500 0.557 0.455 0.421 0.410 0.458 0.401 
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Table S2.  Performance of Individually Trained Attributes 

 
Method Performance (Mean Absolute Error) 

 Sub IS Cal Sph Mar Lob Spi Tex Mal Mean 

Individual 0.664 0.014 0.226 0.475 0.558 0.481 0.437 0.411 0.453 0.413 

Proposed 0.664 0.020 0.141 0.484 0.536 0.460 0.424 0.400 0.453 0.398 

 

 

 

 


