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Abstract

Most deep learning-based super-resolution (SR) methods are not image-specific: 1)

They are trained on samples synthesized by predefined degradations (e.g. bicubic down-

sampling), regardless of the domain gap between training and testing data. 2) During

testing, they super-resolve all images by the same set of model weights, ignoring the

degradation variety. As a result, most previous methods may suffer a performance drop

when the degradations of test images are unknown and various (i.e. the case of blind

SR). To address these issues, we propose an online SR (ONSR) method. It does not rely

on predefined degradations and allows the model weights to be updated according to

the degradation of the test image. Specifically, ONSR consists of two branches, namely

internal branch (IB) and external branch (EB). IB could learn the specific degradation

of the given test LR image, and EB could learn to super resolve images degraded by

the learned degradation. In this way, ONSR could customize a specific model for each

test image, and thus get more robust to various degradations. Extensive experiments on

both synthesized and real-world images show that ONSR can generate more visually

favorable SR results and achieve state-of-the-art performance in blind SR.
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HR SR results of bicubically pretrained models.

Figure 1: The adaptation problem of the offline trained ESRGAN and RCAN. The corresponding blur kernel

is at the bottom right of each image.

1. Introduction

Single image super-resolution (SISR) aims to reconstruct a plausible high-resolution

(HR) image from its low-resolution (LR) counterpart. As a fundamental vision task,

it has been widely applied in video enhancement, medical imaging and surveillance

imaging. Mathematically, the HR image x and LR image y are related by a degrada-

tion model

y = (k⊗ x) ↓s +n, (1)

where ⊗ represents two-dimensional convolution of x with blur kernel k, ↓s denotes

the s-fold downsampler, and n is usually assumed to be additive, white Gaussian noise

(AWGN) [1]. The goal of SISR is to restore the corresponding HR image of the given

LR image, which is a classical ill-posed inverse problem.

Recently, super-resolution (SR) has been continuously advanced by various deep

learning-based methods. Although these methods have exhibited promising perfor-

mance, there is a common limitation: they are too ’general’ and not image-specific.

Firstly, they are exhaustively trained via LR-HR image pairs synthesized by predefined

degradations, ignoring the real degradations of test images (i.e. non-blind SR). For ex-

ample, most no-blind SR methods are optimized by paired samples synthesized with
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Bicubic degradation [2, 3, 4]. And many blind SR methods also use Gaussian blur ker-

nels to synthesize data to optimize their SR modules, such as IKC [5] and DASR [6].

When the degradations of test images are different from the predefined ones, they may

suffer a significant performance drop. Secondly, their model weights are fixed during

testing, and all images are super-resolved by the same set of weights. However, test im-

ages are usually degraded by a wide range of degradations. If the model performs well

for certain degradations, it is likely to perform badly for others. Thus, super-resolving

all images with the same model weights may lead to sub-optimal results. For example,

as shown in Figure 1, ESRGAN [3], and RCAN [2] are trained via bicubically syn-

thesized LR-HR pairs. They have excellent performance on bicubically downscaled

images but may produce undesirable results when the images are blurred by unseen

kernels.

Towards these issues, we propose an online updating network namely ONSR, which

1) synthesizes the training data according to the degradation of the test image, instead

of by predefined degradations, and 2) updates the SR model weights for each test im-

age instead of keeping the model fixed. Specifically, we design two branches, namely

internal branch (IB) and external branch (EB). For each given test image, IB tries to

learn the internal degradation via adversarial training [7]. With the learned degradation,

EB degrades HR images from external datasets to LR-HR pairs, which are then used

to update the SR module. Since the degradation is adaptively learned, the domain gap

between synthesized training data and the test image could be bridged. And as the SR

module can be updated for each test image, it may also get more robust to test images

with a large degradation variety.

In summary, our main contributions are as follows:

• Towards the unknown and various degradations in blind SR, we propose an on-

line SR method. It could customize a specific model for each test LR image and

thus could have more robust performance in different cases.

• We design two learning branches, IB and EB. They could learn the degradation

of the given test image and adaptively update the SR module according to learned

degradation.
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• Extensive experiments on both synthesized and real-world images show that

ONSR can generate more visually favorable SR results and achieve state-of-the-

art performance on blind SR.

2. Related Works

As shown in Table 1, nowadays SR methods can be roughly divided into two cat-

egories: non-blind and blind. Blind SR methods assume that the degradation of the

test image is predefined (such as bicubic downsampling) or has been estimated by

degradation-prediction methods. While blind SR methods do not need extra informa-

tion about the degradation.

Table 1: Examples of non-blind and blind SR methods. Non-blind SR methods assume that the degradation

of the test image is predefined or has been estimated by other methods. While blind SR methods assume that

the degradation is unavailable.

Non-blind SR methods Blind SR methods

SRCNN [8], RCAN [2], RRDB [3]

ZSSR [9], SRMD [10], USRNet [1]

Ji et al. [11], Cornillere et al. [12], dSRVAE [13]

KernelGAN+ZSSR [14], IKC [1], DASR [6]

2.1. Non-Blind Super-Resolution

In non-blind SR the degradation is predefined or known beforehand, which is easier

to be studied. Thus most early SR methods are non-blind. These methods are usually

trained with paired LR-HR samples synthesized by predefined degradation [15], such

as bicubic downsampling. Since Dong et al. propose the first convolution neural net-

work for SR (SRCNN) of bicubically downscaled images and achieves remarkable

performance. In the following years, researchers focus on developing various network

architectures. For example, the residual dense network (RDN) [16] proposed by Zhang

et al. and the residual-in-residual dense block (RRDB) [3] proposed by Wang et al. ap-

ply skip connections [17] and dense connections [18] to make the SR network deeper

and hierarchical features more discriminative. The residual channel attention network
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(RCAN) [2] proposed by Zhang et al., the channel attention and spatial graph con-

volutional network (CASG) [4] proposed by Yang et al., and the multi-attention aug-

mented network (MAAN) [19] proposed by Chen et al. all use attention mechanism

to further enhance the representation capability. Although these methods have largely

advanced the SR performance for bicubic downsampling, they usually perform poorly

for other degradations. To alleviate this problem, Zhang et al. propose two networks

namely SRMD [10] and USRNet [1]. They input the test image and its degradation

simultaneously into the network, in which way, the SR network can handle test images

with various degradations. However, these methods require extra accurate degradation-

estimation methods which are also left to be studied. Thus, in this paper, the proposed

method focuses on blind SR, which does not need degradation prediction and is more

applicable.

2.2. Blind Super-Resolution

Blind SR is much more challenging, as it is difficult for a single model to general-

ize to different degradations. In [20], the final results are ensembled from models that

are capable of handling different cases. The SR modules in IKC [5], DASR [6] and

that proposed by Cornillere [12] are all pretrained by synthesized data pairs containing

a variety of degradations to be more robust to different degradations. But there are

countless degradations, and we cannot train a model for each of them. Other methods

try to utilize the internal prior of the test image itself. In [21], the model is finetuned

via similar pairs searched from the test image. Irani et al. propose [22] and Ker-

nelGAN [14] where the blur kernel is firstly estimated by maximizing the similarity

of recurring patches across multi-scale of the LR image, and then used to synthesize

LR-HR training samples. Ji et al. [11] also use a similar idea as KernelGAN to esti-

mate degradations. However, the number of internal patches is limited, which heavily

restricts the performance of these methods. Different from these completely internal

learning-based methods, our ONSR can apply the degradation information via internal

learning to external HR data, which helps to better optimize the SR module. In this

way, ONSR can simultaneously take the benefits of internal and external priors in the

LR and HR images respectively.

5



···

···

HR

LR

1 1{(I , I ),..., I , I }n n

LR HR LR HR( )

···

···

f

ILR IHRISR

f

ILR ISR

ILR

/
f

f

ILR

ILR

ISR

'ILR
'ISR

Training Dataset Offline Online

(a)

(b)

Figure 2: (a) Offline training scheme. Training datasets are synthesized from external HR image. The SR

model are trained offline and only perform inference online. (b) The online training scheme of ZSSR [9].

Only the test image is used as the training data. The SR model is trained online.

2.3. Offline & Online Training in Super-Resolution

Most deep learning-based SR methods are offline optimized, i.e. their model weights

are only updated during training via the LR-HR pairs synthesized from external data,

while keep fixed during testing. Thus, the learned model weights are completely deter-

mined by external data, without considering the inherent information of the test image.

Consequently, LR images degraded by various degradations may get super-resolved by

the same set of model weights. It is likely that the model only performs well on certain

types of images while failing on others. Contrary to offline training, online training

can get the test LR image involved in model optimization. For example, ZSSR [9] is

an online trained SR method. It is optimized by the test LR image and its downscaled

version. Therefore, it can customize the network weights for each test LR image, and

could have more robust performance over different images. However, the training sam-

ples of most online trained models are limited to only one test image [22, 9, 14]. It will

heavily restrict their performance. Instead, in addition to the test LR image, our ONSR

can also utilize the external HR images during the online training phase. And in this

way, it could better incorporate general priors of the external data and the inherent

information of the test LR image.
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3. Method

3.1. Motivation

As we have discussed above, previous non-blind SR methods are usually offline

trained (as shown in Figure 2(a)) [15], which means LR images with various degrada-

tions are super-resolved with the same set of weights, regardless of the specific degra-

dation of the test image. Towards this problem, a straightforward idea is to adopt an

online training algorithm, i.e. adjust the model weights for each test LR image with

different degradations. A similar idea namely “zero-shot” learning is used in ZSSR.

As shown in Figure 2(b), ZSSR is trained with the test LR image and its downscaled

version. However, this pipeline has two in-born drawbacks: 1) with a limited num-

ber of training samples, it only allows relatively simple network architectures to avoid

overfitting, thus adversely affecting the representation capability of deep learning. 2)

No HR images are involved. It is difficult for the model to learn general priors of HR

images, which is also essential for SR reconstruction [23].

The drawbacks of ZSSR motivate us to think: a better online updating algorithm

should be able to utilize both the test LR image and external HR images. The former

provides inherent information about the degradation method, and the latter enables

the model to exploit better general priors. Therefore, a “general” SR model can be

adjusted to process the test LR image according to its “specific” degradation, which we

call: from “general” to “specific”.

3.2. Formulation

Accoring to the framework of MAP (maximum a posterior) [24], the blind SR can

be formulated as:

(k,x) = arg max
k,x

‖y − (k⊗ x) ↓s ‖2 + µφ(x) + νϕ(k) (2)

where ‖y − (k ⊗ x) ↓s ‖2 is the fidelity term. φ(x) and ϕ(k) model the priors of

sharp image and blur kernel. µ and ν are trade-off regularization parameters. Although

many delicate handcrafted priors, such as the sparsity of the dark channel [25], L0-

regularized intensity [26], and the recurrence of the internal patch [27], have been
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Figure 3: The online updating scheme of ONSR. Top: internal branch. Bottom: external branch. Images

with solid borders are the input. Images with dotted borders are the output of Gr or Gd.

suggested for φ(x) and ϕ(k), these heuristic priors could not cover more concrete and

essential characteristics of different LR images. To circumvent this issue, we design

two modules, i.e. the reconstruction moduleGr and the degradation estimation module

Gd, which can capture priors of x and k in a learnable manner. We substitute x by

Gr(y), and denote the degradation process as Gd(·), then the problem becomes:

arg min
θGr ,θGd

‖y −Gd(Gr(y; θGr
); θGd

)‖, (3)

The prior terms are removed because they could also be captured by the generative

networks Gr(·) and Gd(·) [23].

This problem involves the optimization of two neural networks, i.e. Gr and Gd.

Thus, we can adopt an alternating optimization strategy:
θi+1
Gr

= arg min
θGr

‖y −Gd(Gr(y; θGr
); θiGd

)‖

θi+1
Gd

= arg min
θGd

‖y −Gd(Gr(y; θiGr
); θGd

)‖.
(4)

In the first step, we fix Gd and optimize Gr, while in the second step we fix Gr and

optimize Gd.

So far only the given LR image is involved in this optimization. However, as we

have discussed in Sec 3.1, the limited training sample may be not enough to get Gr

sufficiently optimized, because there are usually too many learnable parameters in Gr.
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Thus, we introduce the external HR images xe in the optimization of Gr. In the ith

step, we degrade the xe by Gd( · ; θiGd
) to ye. Then xe and ye could form a paired

sample that could be used to optimize Gr. Thus, the alternating optimization process

becomes: 

ye = Gd(xe; θ
i
Gd

)

θi+1
Gr

= arg min
θGr

‖xe −Gr(ye; θGr
)‖

θi+1
Gd

= arg min
θGd

‖y −Gd(Gr(y; θiGr
); θGd

)‖,

(5)

in which, Gr is optimized by external datasets, while Gd is optimized by the given LR

image only. At this point, we have derived the proposed method from the perspective

of alternating optimization. This may help better understand OSNR.

3.3. Online Super-Resolution

As illustrated in Figure 3, our online SR (ONSR) consists of two branches, i.e. IB

and EB. IB and EB share the reconstruction module Gr and the degradation estimation

moduleGd. Gr aims to map the given LR image y from the LR domain Y ⊂ R3×H×W

to the HR domain X ⊂ R3×sH×sW , i.e. reconstructing an SR image x. WhileGd aims

to estimate the specific degradation of the test LR image.

In IB, only the given LR image is involved. As shown in Figure 3, the input of IB

are patches randomly selected from the test LR image. The input LR patch y ∼ pY is

firstly super resolved by Gr to an SR patch. Then this SR patch is further degraded by

Gd to a fake LR patch. To guarantee that the fake LR can be translated to the original

LR domain, It is supervised by the original LR patch via L1 loss. The paired SR and

LR patches could help Gd to learn the specific degradation of the test image. The

optimization details will be further explained in Section 3.4.

In EB, only external HR images are involved. The input of EB are patches randomly

selected from different external HR images. Conversely, the external patch xe ∼ pX is

firstly degraded by Gd to a fake LR patch, . As the weights of Gd are shared between

IB and EB, the external patches are actually degraded by the learned degradation. Thus,

the paired HR and fake LR patches could help Gr learn to super resolve LR images

with specific degradations.
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According to the above analysis, the loss functions of IB and EB can be formulated

as:

LIB = Ey∼pY‖y −Gd(Gr(y; θGr
); θGd

)‖1, (6)

LEB = Exe∼pX ‖xe −Gr(Gd(xe; θGd
); θGr

)‖1. (7)

Since information in the single test LR image is limited, to help Gd better learn the

specific degradation, we further adopt the adversarial learning strategy. As shown in

Figure 3, we introduce a discriminator Dl. Dl is used to discriminate the distribution

characteristics of the LR image. It could force Gd to generate fake LR patches that are

more similar to the real ones. Thus more accurate degradations could be learned by

Gd. We use the GAN formulation as follows,

LGAN = Ey∼pY [logDl(y; θDl
)] + Exe∼pX [log(1−Dl(Gd(xe; θGd

); θDl
))]. (8)

Adversarial training is not used for the intermediate output Gr(y), because it may lead

Gr(y) to generate unrealistic textures [3].We also experimentally explain this problem

in Section 4.4.3.

3.4. Separate Optimization

Generally, most SR networks are optimized by the weighted sum of all objectives.

All modules in an SR network are treated indiscriminately. Unlike this commonly used

joint optimization method, we propose a separate optimization strategy. Specifically,

Gd is optimized by the objectives that are directly related to the test LR image, while

Gr is optimized by objectives that are related to external HR images. The losses for

these two modules are as follows,

LGd
= LIB + λLGAN (9)

LGr
= LEB (10)

where λ controls the relative importance of the two losses.
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Algorithm 1 Algorithm of ONSR

Input: The LR image to be reconstructed: ILR

The external HR image dataset: SHR

Maximum updating step: T

Online testing step interval: t

Output: The best SR image: ISR = Gr(ILR; gr)

1: Load the pretrained model Gr

2: i = 0

3: while i ≤ T do

4: i← i+ 1

5: Sample n LR image patches {yj}
n

j=1 from ILR

6: Sample n HR image patches {xje}
n

j=1
from SHR

7: // Online testing

8: if i%t == 0 then

9: IiSR = Gir(ILR; gir)

10: end if

11: // Online updating different modules

12: Update θGd
← θGd

− (∇θGd
LIB + λ∇θGd

LGAN )

13: Update θGr ← θGr −∇θGr
LEB

14: Update ∆θDl
← θDl

− λ∇θDl
LGAN

15: end while

We adopt this separate optimization strategy for two reasons. Firstly, as the analysis

in Section 3.2 that Gd and Gr are alternately optimized in ONSR, separate optimiza-

tion may make these modules easier to converge [1]. Secondly, Gd aims to learn the

specific degradation of the test image, while Gr needs to learn the general priors from

external HR images. Thus it is more targeted for them to be separately optimized. We

experimentally prove the superiority of separate optimization in Sec 4.4.4. The overall

algorithm is shown in Algorithm 1.
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Kernel initializationx2
Kernel initializationx4

Bicubic downsampling layer

Convolutional layer

Figure 4: The architecture and initialization of Gd.

3.5. Network Instantiation

Most existing SR structures can be used as Gr and integrated into ONSR. In this

paper, we mainly use Residual-in-Residual Dense Block (RRDB) [3]. RRDB combines

the multi-level residual network and dense connections, which is easy to be trained

and has promising performance on SR. Gr consists of 23 RRDBs and an upsampling

module. It is initialized using the pre-trained network parameters, which could render

additional priors of external data, and also provide a comparatively reasonable initial

point to accelerate optimization.

The architecture of the degradation module Gd is shown in Figure 4. We can see

that blurring and downsampling are linear transforms in Eq. 1, so Gd is designed as a

deep linear network. Theoretically, a single convolutional layer should be able to repre-

sent all possible downsampling blur methods in Eq. 1. However, linear networks have

infinitely many equal global minimums according to [28], which makes the gradient-

based optimization faster for deeper linear networks than shallower ones. Thus, we

employ three convolutional layers with no activations and a bicubic downsampling

layer in Gd. The bicubic downsampling layer could help obtain a reasonable initial

point, which is similar to that in [14] but simpler. Additionally, to accelerate the con-

vergence of Gd, we use isotropic Gaussian kernels with a standard deviation of 1 to
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initialize all convolutional layers, as shown in Figure 4. Considering that images with

larger downsampling factor are usually more seriously degraded, we set the size of the

three convolutional layers to 3× 3, 7× 7, 9× 9 for scale factor×2, and 9× 9, 15× 15,

17× 17 for scale factor ×4.

Dl is a VGG-style network [29] to perform discrimination. The input size of Dl is

32× 32.

Bicubic RCAN RRDB ESRGAN

ZSSR KernelGAN+ZSSRCornillere et al. ONSR

045 in DIV2KRK

16.79/0.4279 16.91/0.3989 17.12/0.4828 17.17/0.4855

17.10/0.4870 19.10/0.749720.20/0.8196 21.18/0.8981

HR

Bicubic RCAN RRDB ESRGAN

ZSSR KernelGAN+ZSSR ONSR

085 in DIV2KRK

22.05/0.6075 21.28/0.6363 21.40/0.6366

21.15/0.6371 21.63/0.7123 22.02/0.7735 22.46/0.8327

Cornillere et al.HR

21.19/0.6194

Bicubic RCAN RRDB ESRGAN

ZSSR KernelGAN+ZSSR ONSR

092 in DIV2KRK

23.58/0.7299 24.13/0.7554 24.10/0.7538

24.12/0.7563 26.10/0.8438 27.65/0.8811 29.42/0.9084

Cornillere et al.HR

23.94/0.7428

Figure 5: Visual comparison of ONSR and SotA SR methods for 2× SR. The model name is denoted above

the corresponding patch and PSNR/SSIM is denoted below.
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HR Bicubic RCAN RRDB ESRGAN

ZSSR dSRVAE KernelGAN+ZSSR Ji et al. ONSR

003 in DIV2KRK

PSNR/SSIM 33.74/0.9214 29.67/0.8172 32.07/0.9089 31.87/0.9038

30.09/0.8404 31.67/0.9271 32.05/0.9066 30.64/0.8985 35.87/0.9535

HR Bicubic RCAN RRDB ESRGAN

ZSSR KernelGAN+ZSSR Ji et al. ONSR

046 in DIV2KRK

PSNR/SSIM 20.75/0.4843 19.90/0.4472 21.44/0.5619 21.29/0.5635

21.22/0.5515 20.15/0.4615 21.31/0.5827 22.50/0.6370

dSRVAE

20.89/0.4775

HR Bicubic RCAN RRDB ESRGAN

ZSSR KernelGAN+ZSSR Ji et al. Bi-CycleSR

021 in DIV2KRK

PSNR/SSIM 20.80/0.6684 20.30/0.6146 20.97/0.6839 20.84/0.6781

20.93/0.6826 24.69/0.8179 20.90/0.6774 27.24/0.8562

dSRVAE

20.83/0.6573

Figure 6: Visual comparison of ONSR and SotA SR methods for 4× SR. The model name is denoted above

the corresponding patch and PSNR/SSIM is denoted below.

4. Experiments

4.1. Experimental Setup

Datasets. We use 800 HR images from the training set of DIV2K [30] as the ex-

ternal HR dataset and evaluate the SR performance on DIV2KRK [14]. LR images

in DIV2KRK are generated by blurring and subsampling each image from the valida-

tion set (100 images) of DIV2K with randomly generated kernels. These kernels are

isotropic or anisotropic Gaussian kernels with random lengths λ1, λ2 ∼ U(0.6, 5) in-

dependently distributed for each axis, rotated by a random angle θ ∼ U [−π, π]. To

14



Table 2: Quantitative comparison on DIV2KRK dataset. ×2 and ×4 denote the scale factors. ↑ denotes

the larger the better. ↓ denotes the smaller the better. Best and second best results are highlighted and

underlined.

Type Method
×2 ×4

PSNR ↑ SSIM ↑ PI ↓ LPIPS ↓ PSNR ↑ SSIM ↑ PI ↓ LPIPS ↓

Type 1:

Non-BlindSR

Bicubic 28.81 0.8090 6.7039 0.3609 25.46 0.6837 8.6414 0.5572

ZSSR [9] 29.09 0.8215 6.2707 0.3252 25.61 0.6920 8.1941 0.5192

ESRGAN [3] 29.18 0.8212 6.1826 0.3178 25.57 0.6906 8.3554 0.5266

RRDB [3] 29.19 0.8224 6.4801 0.3376 25.66 0.6937 8.5510 0.5416

RCAN [2] 27.94 0.7885 6.8855 0.3417 24.75 0.6337 8.4560 0.5830

Type 2:

BlindSR

Cornillere et al. [12] 29.42 0.8459 4.8343 0.1957 - - - -

dSRVAE [13] - - - - 25.07 0.6553 5.7329 0.4664

Ji et al. [11] - - - - 25.41 0.6890 8.2348 0.5219

KernelGAN+ZSSR [14] 29.93 0.8548 5.2483 0.2430 26.76 0.7302 7.2357 0.4449

ONSR (Ours) 31.34 0.8866 4.7952 0.2207 27.66 0.7620 7.2298 0.4071

deviate from a regular Gaussian kernel, uniform multiplicative noise (up to 25% of

each pixel value of the kernel) is further applied.

Evaluation Metrics. To quantitatively compare the SR performance different meth-

ods, we use PSNR, SSIM [31], Perceptual Index (PI) [32] and Learned Perceptual Im-

age Patch Similarity(LPIPS) [33]. Contrary to PSNR and SSIM, lower PI and LPIPS

indicate higher perceptual quality.

Training Details. We randomly sample 10 patches of 32× 32 from the LR image

and 10 patches of 32s×32s from different HR images for each input minibatch, where

s denotes the scaling factor. ADAM [34] optimizer with β1 = 0.9, β2 = 0.999 is used

for optimization. We set the online updating step to 500 for each image, and the LR

image is tested every 10 steps. To accelerate the optimization, we initialize ONSR with

the bicubically pretrained model of RRDB, which is publicly available.

4.2. Super-Resolution on Synthetic Data

We compare ONSR with other state-of-the-art (SotA) methods on the synthetic

dataset DIV2KRK. We present two types of algorithms for analysis: 1) Type1 includes

ESRGAN [3], RRDB [3], RCAN [2] and ZSSR [9]. They are non-blind SotA SR

methods trained on bicubically downsampled images. 2) Type 2 are blind SR methods

15



including KernelGAN+ZSSR [14], dSRVAE [13], Ji et al. [11] and Cornillere et al.

[12].

Quantitative Results. SotA non-bind SR methods such as ESRGAN and RRDB

have remarkable performance on bicubically downscaled images. However, as shown

in Table 2 Type 1, when tested on DIV2KRK, they perform only slightly better than the

naive bicubic interpolation. And RCAN is even worse. The performance drop suggests

that these methods fail to generalize to the test images with various degradations in

DIV2KRK. As a comparison, our ONSR outperforms these non-blind SR methods by

a large margin. Specifically, RRDB shares the same network architectures with Gr

in ONSR, while ONSR outperforms it by 2.15 dB and 2 dB for scales ×2 and ×4

respectively. This comparison demonstrates the effectiveness of the online updating

strategy adopted by ONSR.

As shown in Table 2 Type 2, ONSR also shows its superiority over other blind SR

methods. KernelGAN+ZSSR is a blind SR method that also adopts an online updating

strategy. However, as we have discussed in Sec 3.1, it does not exploit information

from the external dataset, which may restrict its performance. As a result, ONSR

outperforms it by 1.41 dB and 0.90 dB for scales ×2 and ×4 respectively. This com-

parison indicates that ONSR successfully integrates information from both internal and

external branches and achieves better SR performance.

Qualitative Results. In Figure 5 and 6, we present visual comparisons between

these methods on scales ×2 and ×4 respectively. As shown in these figures, the

images produced by SotA non-blind SR methods are not sharp enough. RCAN even

changes the colors of the original images. The results produced by blind SR methods

are relatively sharper, but they also tend to contain undesirable artifacts and distortions,

such as the window contours in image 046. As a comparison, the SR images produced

by ONSR are cleaner and more visually favorable.
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dSRVAE

Bicubic

Figure 7: Visual comparison of model adaptation to the real image “Chip” and real-world video frames (from

YouTube) for 4× SR.
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4.3. Super-Resolution on Real-World Data

To further demonstrate the effectiveness of ONSR in real scenarios, we conduct

experiments on real images, which are more challenging due to the complicated and

unknown degradations. Since there are no ground-truth HR images for calculating

quantitative metrics, we only provide visual comparisons. As shown in Figure 7, the

letter “X” in the real image “Chip” restored by RRDB, RCAN, Ji et al. and ZSSR

are blurry or have unpleasant artifacts. As a comparison, the super-resolved image

of ONSR has more shaper edges and is more visually pleasing. We also apply these

methods to video frames from YouTube 1. As shown in Figure 7, the generated 4× SR

frames from most methods are seriously blurred or contain numerous mosaics. While

ONSR can produce visually promising images with clearer edges and fewer artifacts.

This comparison further demonstrates the robustness of ONSR against various degra-

dations in real scenarios.

Table 3: Quantitative comparison between ONSR with other SotA blind SR methods. The Gr in ONSR

is initialized with RRDB-G, in which case our method is denoted as ONSR-G. Results on DIV2KRK are

reported. Best and second best results are highlighted and underlined

Method Scale PSNR ↑ SSIM ↑ PI↓ LPIPS↓

IKC [5]

×2

31.20 0.8767 5.1511 0.2350

DASR [6] 30.72 0.8606 5.3947 0.2501

RRDB-G [3] 31.18 0.8763 4.8995 0.2213

ONSR-G (Ours) 31.69 0.8907 4.6036 0.1947

KernelGAN [14] + USRNet [1]

×4

24.32 0.6617 8.4425 0.5413

IKC [5] 27.69 0.7657 6.9027 0.3863

DASR [6] 27.48 0.7549 7.2024 0.4027

RRDB-G [3] 27.73 0.7660 6.8767 0.3834

ONSR-G (Ours) 28.05 0.7775 6.7716 0.3781

1https://www.youtube.com
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(a) 𝐺𝑟 is randomly initialized

(b) 𝐺𝑟 is initialized by RRDB

(c) 𝐺𝑟 is initialized by RRDB-G

Figure 8: PSNR and visual results of ONSR with Gr is initialized (a) randomly, (b) by model trained on data

synthesized by bicubic downsampling, and (c) by model trained on data synthesized by multiple Gaussian

kernels.

4.4. Ablation Study

4.4.1. Study on the initialization of Gr

As we have discussed above, the SR module Gr in our ONSR is usually initialized

with pretrained model weights to reduce the updating steps. In this section, we experi-

mentally investigate the influence of different initialization methods. Two initialization

methods are firstly considered: a) random initialization, and b) model pretrained on

data synthesized by bicubic downsampling. As shown in Figure 8 (a) and (b), ONSR

can converge well under both initialization, which demonstrates the good convergence

of ONSR. In the meanwhile, carefully initialized Gr (case (b)) helps ONSR converge

faster and has a better optimum point. It indicates that more powerful initialized Gr

may further improve the performance of ONSR.

Recently, some methods (such as IKC [5] and DASR [6]) are proposed to train

the SR model with data synthesized by multiple Gaussian kernels to improve its ro-

bustness. This strategy has proved to be effective in training an accurate model for
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Figure 9: Visual comparison of ONSR-G and other methods for ×4 SR (image 026 and image 099).

blind SR [35]. To explore the performance of ONSR when Gr is initialized with such

a powerful model, we also train an RRDB on data synthesized by multiple isotropic

Gaussian kernels, which is denoted as RRDB-G. We initialize Gr with RRDB-G, in

which case our method is denoted as ONSR-G. As shown in Figure 8 (c), ONSR-G

can still further improve the performance of the initialization model from 27.80 dB to

a better point of 28.05 dB. As shown in Table 3, ONSR-G outperforms IKC by about

+0.4 dB on PSNR and +0.012 on SSIM for scale factors ×2 and ×4 respectively.

The visual comparisons are shown in Figure 9. As one can see, the results produced by

ONSR-G are clearer and more visually favorable. This comparison indicates that our

method can easily enjoy the merits of other powerful SR methods by taking them as

the initialization models.

4.4.2. Study on the architecture of Gr

In the experiments above, we only use RRDB as Gr in our ONSR. In this subsec-

tion, we experimentally prove that the proposed method works well for Gr of different
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Table 4: The performance of ONSR with Gr of different architectures. ON-Arch denotes ONSR with the

Gr of architecture named Arch. Results are reported on DIV2KRK with scale factor ×4.

Method PSNR↑ SSIM↑ PI↓ LPIPS↓

RDN [16] 25.66 0.6935 8.5341 0.5411

ON-RDN 27.30 0.7498 7.4274 0.4377

RCAN [2] 24.75 0.6337 8.4560 0.5830

ON-RCAN 27.58 0.7612 7.1290 0.4020

architectures. Specifically, we perform experiments on Gr of two other architectures,

i.e. RDN [16] and RCAN [2]. As shown in Table 4, the original RDN and RCAN do

not perform well on DIV2KRK. This is because their original models are trained on

data synthesized by bicubic downsampling and can not well generalize to test images

in DIV2KRK. As a comparison, Our online updating strategy can largely improve the

performance of both models (denoted as ON-RDN and ON-RCAN respectively). For

example, as shown in 4, the online updating strategy improves the PSNR results of

RDN and RCAN by +1.64 dB and +2.73 dB respectively. It indicates that the online

updating strategy of ONSR works well for Gr of different architectures.

4.4.3. Study on different modules in ONSR

To explain the roles of different modules (i.e. IB, EB and Dl) played in ONSR, we

study four different variants of ONSR, which are denoted as IBSR, EBSR, IB-EBSR,

and IB-EB-GSR. The details of these variants are shown in Figure 10 and explained
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(c) IB-EBSR (d) IB-EB-GSR

Figure 10: Details of different variants of ONSR.
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below:

IBSR. IBSR only has an internal branch to exploit the internal properties of the

test LR image for degradation estimation and SR reconstruction, which is optimized

online.

EBSR. Contrary to IBSR, EBSR only has an external branch to capture general

priors of external HR images, which is optimized offline. After offline training, we use

the fixed module Gr to test LR images.

IB-EBSR. IB-EBSR has both internal branch and external branch but no GAN

modules.

IB-EB-GSR. IB-EB-GSR has both Dl and Dh to explore the underlying distribu-

tion characteristics of the test LR and external HR images.

Table 5: Comparison of different variants of ONSR. Results are reported on DIV2KRK.

Method Scale PSNR SSIM Scale PSNR SSIM

IBSR

×2

28.05 0.8277

×4

25.51 0.6976

EBSR 30.82 0.8806 26.56 0.7249

IB-EBSR 31.10 0.8850 27.60 0.7609

IB-EB-GSR 31.29 0.8859 27.34 0.7507

ONSR 31.34 0.8866 27.66 0.7620

The quantitative comparisons on DIV2KRK are shown in Table 5. As one can see,

IB-EBSR outperforms both IBSR and EBSR by a large margin. It indicates that both

IB and EB are important for SR performance. The performance of IB-EBSR could be

further improved if Dl is introduced. It suggests that adversarial training can help Gr

to be better optimized. However, when Dl and Dh are both added in IB-EB-GSR, the

performance is inferior to ONSR. In IB-EB-GSR, the initial SR results of Gr(y) are

likely to have unpleasant artifacts or distortions. Besides, the external HR image xe

can not provide directly pixelwise supervision to Gr(y). Therefore, the application of

Dh may affect the optimization of IB-EB-GSR and make it inferior to ONSR.
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4.4.4. Study on separate optimization

As we have mentioned in Sec 3.4, we adopt separate optimization instead of the

typically used joint optimization in our ONSR. In this section, we experimentally com-

pare the two optimization strategies. In separate optimization, Gd and Gr are alter-

nately optimized via the test LR image and external HR images respectively. While

in joint optimization, both modules are optimized together. As shown in Table 6, sep-

arate optimization surpasses the joint optimization in all metrics for scale factors ×2

and ×4. We also compare the convergence of these two optimization strategies. We

plot the PSNR and SSIM results of the two strategies every 100 steps. As shown in

Figure 11, the results of separate optimization are not only higher but also grow faster

than that of joint optimization. It suggests that separate optimization could not only

help the network converge faster, but also help it converge to a better optimum point. It

may be because that separate optimization divides the original highly complex problem

into two simpler subproblems, and both of them are easier to be solved. Thus separate

optimization could converge faster and reach a better optimum point. This property

of separate optimization allows us to make a trade-off between SR effectiveness and

efficiency by setting different training iterations.

Table 6: Comparisons between separate optimization and joint optimization. Results are reported on

DIV2KRK.

Method Scale PSNR↑ SSIM↑ PI↓ LPIPS↓

Joint Optimization
×2

31.03 0.8827 4.8759 0.2212

Separate Optimization 31.34 0.8860 4.7952 0.2207

Joint Optimization
×4

26.97 0.7399 7.5985 0.4445

Separate Optimization 27.66 0.7620 7.2298 0.4071

4.4.5. Study on the External data

In this section, we perform experiments to study the influence of the external HR

data. Firstly, we investigate how the number of external HR images will influence SR

performance. we randomly sample 200, 400, 600, 700, and all 800 HR images from

the training set of DIV2K as the external data and perform 4× SR on DIV2KRK. As
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Figure 11: The average PSNR (left) and SSIM (right) of Joint Optimization and Separate Optimization for

4× SR in differente training steps.

shown in Table 7, the performance of ONSR is continuously improved as the number

of HR images increases. It indicates that more external HR images could help ONSR

learn better general priors. Secondly, we investigate the influence of different external

HR datasets. We use another popular dataset Flickr2K that consists of 2650 HR images

as the external dataset. As can be seen from Table 7, the SR performance achieved with

DIV2K is comparable to that with Flickr2K. Therefore, the SR performance tends to

be stable when the number of external HR images is large enough, and 800 HR images

from DIV2K could be sufficient for one test LR image.

Table 7: Performance of ONSR when different number of external HR images are used. Results are reported

on DIV2KRK.

# External HR 200 400 600 700 800 (DIV2K) 2650 (Flickr2K)

PSNR 26.93 26.97 27.58 27.60 27.66 27.65

SSIM 0.7390 0.7399 0.7606 0.7610 0.7620 0.7629

4.5. Non-Blind Setting

In this subsection, we explore the upper boundary of ONSR in a non-blind set-

ting. We replace Gd in ONSR with the ground-truth blur kernel (denoted as ONSR-

NonBlind). Following the setting in [1], we evaluate our methods on BSD68 [36],

and 12 representative and diverse blur kernels are used to synthesize test LR images,
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including 4 isotropic Gaussian kernels with different widths, 4 anisotropic Gaussian

kernels from [10], and 4 motion blur kernels from [37, 38]. The quantitative results

are shown in Table 8. As one can see, under the non-blind setting, ONSR achieves the

best performance among the reference methods. We need to note that USRNet [1] is

a SotA non-blind method, while ONSR still outperforms it by a large margin on all

12 kernels. For example, under the first blur kernel, ONSR outperforms USRNet by

+1.11 dB and +1.21 dB for scale factors ×2 and ×4 respectively. It demonstrates

that the online updating strategy of ONSR also works well in a non-blind setting.

Table 8: Average PSNR results of non-blind setting for 4× SR. Best and second best results are highlighted

and underlined.

Method Scale

EDSR [39]

×2

25.54 27.82 20.59 21.34 27.66 27.28 26.90 26.07 27.14 26.96 19.72 19.86

RCAN [2] 29.48 26.76 25.31 24.37 24.38 24.10 24.25 23.63 20.31 20.45 20.57 22.04

ZSSR [9] 29.44 29.48 28.57 27.42 27.15 26.81 27.09 26.25 14.22 14.22 16.02 19.39

IRCNN [40] 29.60 30.16 29.50 28.37 28.07 27.95 28.21 27.19 28.58 26.79 29.02 28.96

USRNet [1] 30.55 30.96 30.56 29.49 29.13 29.12 29.28 28.28 30.90 30.65 30.60 30.75

ONSR-NonBlind 31.66 31.98 31.40 30.17 29.76 29.63 29.86 28.87 30.93 30.78 30.80 31.12

EDSR [39]

×4

21.45 22.73 21.60 20.62 23.16 23.66 23.16 23.00 24.00 23.78 19.79 19.67

RCAN [2] 22.68 25.31 25.59 24.63 24.37 24.23 24.43 23.74 20.06 20.05 20.33 21.47

ZSSR [9] 23.50 24.33 24.56 24.65 24.52 24.20 24.56 24.55 16.94 16.43 18.01 20.68

IRCNN [40] 23.99 25.01 25.32 25.45 25.36 25.26 25.34 25.47 24.69 24.39 24.44 24.57

USRNet [1] 25.30 25.96 26.18 26.29 26.20 26.15 26.17 26.30 25.91 25.57 25.76 25.70

ONSR-NonBlind 26.51 27.24 27.50 27.57 27.43 27.30 27.36 27.51 26.17 26.17 26.21 26.30

4.6. Speed Comparison

We test the speed of different blind SR methods to compare their overall perfor-

mance in terms of effectiveness and efficiency. We evaluate their average running

time on DIV2KRK for ×2 on the same machine with an NVIDIA 2080Ti GPU. Since

IKC [5] and DASR [6] are included in the referring methods, we report the performance

of ONSR-G for fair comparisons. We need to note that the running time of ONSR-G is

closely related to its online updating steps. In previous experiments, the steps are set as

500 for best performance. However, as we have discussed in Sec 4.4.4, due to the good

convergence of ONSR-G, we can set fewer steps to make a balance between accuracy

and speed. Thus, we also test the performance of ONSR-G when steps are 5, 10, and
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100 for comparisons. We use ONSR-G-S to denote ONSR-G with updating steps as S.

As shown in Table 9, ONSR-G-5 outperforms KernelGAN + ZSSR [14] and Cornillere

et al. by +4.39 dB and +1.73 dB while with 174 times and 21 times faster speed

respectively. When compared with IKC, ONSR-G-10 also achieves a similar PSNR

result with a comparable speed. DASR is much faster than the other methods, but its

PNSR result is suboptimal. On the whole, ONSR-G can achieve competing perfor-

mance with the most recent blind SR methods. Moreover, the good convergence of

ONSR allows us to easily adjust its running time according to different scenarios.

Table 9: Average inference time comparison on DIV2KRK for ×2 SR. ONSR-G-S denotes ONSR-G with

updating steps as S.

Method Speed(s/image) PSNR(dB)

KernelGAN + ZSSR [14] 1127.84 26.76

Cornillere et al. [12] 135.51 29.42

IKC [5] 7.14 31.20

DASR [6] 0.24 30.72

ONSR-G-5 (Ours) 6.47 31.15

ONSR-G-10 (Ours) 8.00 31.21

ONSR-G-100 (Ours) 75.29 31.61

5. Conclusion and Future Work

In this paper, we argue that most nowadays SR methods are not image-specific.

Towards the limitation, we propose an online SR (ONSR) method, which could cus-

tomize a specific model for each test image. In detail, we design two branches, namely

internal branch (IB) and external branch (EB). IB could learn the specific degradation

of the test image, and EB could learn to super resolve images that are degraded by

the learned degradation. IB involves only the LR image, while EB uses external HR

images. In this way, ONSR could leverage the benefits of both inherent information

of the test LR image and general priors from external HR images. Extensive experi-

ments on both synthetic and real-world images prove the superiority of ONSR in the

blind SR problem. These results indicate that customizing a model for each test image

is more practical in real applications than training a general model for all LR images.
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Moreover, the speed of ONSR may be further improved by designing more lightweight

modules for faster inference or elaborating the training strategy to accelerate conver-

gence. Faster speed can help it to be more practical when processing large amounts

of test images, such as videos of low resolution, which is also the focus of our future

work.
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