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Abstract

Recent advances in unsupervised domain adaptation have significantly improved the

recognition accuracy of CNNs by alleviating the domain shift between (labeled) source

and (unlabeled) target data distributions. While the problem of single-target domain

adaptation (STDA) for object detection has recently received much attention, multi-

target domain adaptation (MTDA) remains largely unexplored, despite its practical

relevance in several real-world applications, such as multi-camera video surveillance.

Compared to the STDA problem that may involve large domain shifts between complex

source and target distributions, MTDA faces additional challenges, most notably the

computational requirements and catastrophic forgetting of previously-learned targets,

which can depend on the order of target adaptations. STDA for detection can be

applied to MTDA by adapting one model per target, or one common model with a

mixture of data from target domains. However, these approaches are either costly

or inaccurate. The only state-of-art MTDA method specialized for detection learns

targets incrementally, one target at a time, and mitigates the loss of knowledge by

using a duplicated detection model for knowledge distillation, which is computationally

expensive and does not scale well to many domains. In this paper, we introduce an

efficient approach for incremental learning that generalizes well to multiple target

domains. Our MTDA approach is more suitable for real-world applications since it

allows updating the detection model incrementally, without storing data from previous-

∗Corresponding author
Email addresses: le-thanh.nguyen-meidine.1@ens.etsmtl.ca (Le Thanh

Nguyen-Meidinea), madhu.kiran.1@ens.etsmtl.ca (Madhu Kirana),
Marco.Pedersoli@etsmtl.ca (Marco Pedersolia), jose.dolz@etsmtl.ca (Jose Dolza),
lablaismorin@genetec.com (Louis-Antoine Blais-Morinb), eric.granger@etsmtl.ca (Eric
Grangera)

Preprint submitted to Journal of Pattern Recognition May 13, 2022

ar
X

iv
:2

10
4.

06
47

6v
4 

 [
cs

.C
V

] 
 1

1 
M

ay
 2

02
2



learned target domains, nor retraining when a new target domain becomes available.

Our approach leverages domain discriminators to train a novel Domain Transfer Module

(DTM), which only incurs a modest overhead. The DTM transforms source images

according to diverse target domains, allowing the model to access a joint representation

of previously-learned target domains, and to effectively limit catastrophic forgetting.

Our proposed method – called MTDA with DTM (MTDA-DTM) – is compared against

state-of-the-art approaches on several MTDA detection benchmarks and Wildtrack, a

benchmark for multi-camera pedestrian detection. Results indicate that MTDA-DTM

achieves the highest level of detection accuracy across multiple target domains, yet

requires significantly fewer computational resources. Our code is available1.

Keywords: Deep Learning, Convolutional NNs, Object Detection, Unsupervised

Domain Adaptation, Multi-Target Domain Adaptation, Incremental Learning.

1. Introduction

With the advent of deep learning (DL) models such as Faster-CNN [1], object

detection has experienced significant improvements. Despite the high level of accuracy

provided by these models in a wide range of benchmark datasets and applications [2, 3],

current object detectors still suffer from poor generalization in the presence of domain

shift between training and test datasets. For instance, in video surveillance applications,

videos are captured over a distributed set of cameras with non-overlapping viewpoints.

The shift between the source (e.g., lab setting) and target (e.g., cameras) domains may

lead to a significant decline in detection accuracy. A straightforward solution would

involve a supervised fine-tuning of a given model using annotated target domain samples.

However, the high cost associated with the collection and annotation of target data may

prohibit the adoption and deployment of such models in many practical scenarios.

Unsupervised Domain Adaptation (UDA) has been proposed to alleviate the problem

of domain shift when labeled target data is not available. Depending on the number

of target domains, UDA methods may either address single-target domain adaptation

(STDA) or multi-target domain adaptation (MTDA) problems. STDA methods range

1https://github.com/Natlem/M-HTCN
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from learning discriminant domain-invariant features using an adversarial loss [4, 5], to

learning mappings between a source and target domain for domain transfer [6, 7], or

to using well-known generative models, such as CycleGAN [8] in combination with

previous methods for learning domain-invariant features. Existing STDA techniques

can be extended to MTDA by either adapting multiple object detection models, one

for each target domain (Fig.1 (a)), or by treating multiple target domains as one target

domain, and then applying STDA on a mixture of target data. Nevertheless, these

approaches are complex because the number of models equals the number of target

domains (Fig.1 (a)), or generalize poorly on several distinct target domains, particularly

when the number of target domains increases as shown in [9, 10]. The poor performance

of STDA in the MTDA setting, especially in object detection, is mainly due to the fact

that generalizing on multiple target domains as a single domain is difficult since the

underlying data distribution of these targets are still very different. This is why specific

MTDA techniques need to be developed. In this way, the model can learn multiple

underlying data distributions without sacrificing computation cost by using only one

common multiple-target model.

Despite its importance for many real-world applications, MTDA remains largely

unexplored. For example, given a multi-camera detection problem in video surveillance,

where videos are captured using several cameras with different viewpoints, backgrounds,

and capture conditions (i.e., target domain), MTDA methods are required so that the

object detector may generalize well to multiple target domains. Several techniques for

MTDA have been proposed in the context of image classification [11, 12]. Among

these, AMEAN [11] assumes that there are no domain labels for targets and a common

model can be optimized by minimizing the discrepancy between the source and clusters

of pseudo sub-targets. This technique is, however, unsuitable for detection due to the

lack of instances annotations for object clustering [11]. More recently, MT-MTDA [9]

was proposed, which significantly outperforms [11] by training one specialized teacher

per target domain and iteratively distilling each teacher to a common model (Fig.1 (c)).

While [9] can be extended to detection by simply having one teacher detector per target

and then apply feature distillation, it is unsuitable for real-world application due to the

high computational requirements of [9], where one teacher detector per target domain
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Figure 1: Illustration of different MTDA strategies for object detection: a) MTDA with a detection model per
target. b) MTDA with one common model trained with a mixture of data from all targets or with separate
targets. c) MTDA with one teacher detector per target domain and a common model is obtained by through
knowledge distillation d) Incremental MTDA, where a common model is adapted incrementally on one target
at time using an additional module (mitigation of catastrophic forgetting, i.e. duplicated model for distillation
in [10]) that limits catastrophic forgetting. (S represents the source domain dataset, and T1, T2, ...Tn the n
target domain datasets.

is required. Furthermore, these methods are inflexible since they require access to

previous target data when adapting for a new target domain. These limitations impede

the deployment of these models in scenarios with limited storage or for privacy concerns

on previous target domains.

Motivated by above issues with current MTDA strategies (i.e., low level of perfor-

mance or high complexity), this paper focuses on low-cost incremental MTDA strategies

for object detection tasks. Unsupervised incremental learning is leveraged with the goal

of adapting a common model that can generalize well across multiple target domains

without labels and without having to retrain on previously learned target data (see

Fig. 1 (d)). To be the best of our knowledge, [10] is the only other method proposed

to tackle incremental MTDA for the detection task. When adapting to a new target

domain, it relies on knowledge distillation with a duplicated model trained on source

data. This method distills knowledge from this duplicated to a common model, and

constrains the output of the common model such that it does not deviate too much from

the duplicated model. While this approach can alleviate knowledge corruption (i.e.,
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catastrophic forgetting), its improvement in terms of detection accuracy remains limited,

as it does not employ source-target feature alignment after adaptation, nor existing

domain discriminators at different levels – image and instances (i.e., bounding box

level) – of the detector. As shown in [13], the performance of this method may also

decline because the duplicate model only uses source data for distillation, as it does not

have access to previous target data. Lastly, this approach is costly in terms of resources

since it requires a duplicate model for adaptation, making it less practical in real-world

scenarios.

In order to address the aforementioned limitations, we propose an efficient MTDA

with a Domain Transfer Module (MTDA-DTM). Our method allows training a common

detector incrementally such that can achieve good generalization on multiple target

domains. The proposed learning strategy allows domain adaptation to new target

domains, without using data from previously-learned target domains, resulting in a more

suitable technique for realistic scenarios. To prevent catastrophic forgetting our model

integrates a Domain Transfer Module (DTM) to transfer source domain images to a joint

image representation space shared across previous target domains. In particular, once

a model has been adapted to a new domain, the features representation of source and

target images should be similar as the feature extractor was trained to maximize domain

confusion. As shown in Fig. 2, the proposed DTM leverages this feature alignment

and transfers source images to the target domains. It is optimized such that the DTM

output will be classified by domain discriminators as ”target”. When adapting to a

new target domain, the DTM is used to generate pseudo images from previous target

data distribution, thus alleviating catastrophic forgetting. Once the adaptation to a new

target domain is achieved, the DTM training can be repeated to create a new DTM

that includes the latest target. One of the advantages of our approach is that DTM

can be trained without constraints, such as that transferred source images need to be

realistic. This contrasts with adversarial [14] or GAN generated [8, 15] image samples,

as discussed in 7. Compared to finding adversarial examples, where the distance

between original and generated images must minimize a distance metric (i.e. L0, L1, L2,

etc.), DTM provides more freedom to optimize a domain-invariant representation that’s

close to previously-learned targets. MTDA-DTM improves upon [10] by providing
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pseudo-target data drawn from the joint representation obtained with DTM, thereby

improving accuracy since the approach proposed in [10] only uses source data to prevent

catastrophic forgetting. Finally, our method allows for a considerable reduction in

computational complexity when compared to [10] since DTM only needs 2 convolution

layers as opposed to using a duplicated object detector to prevent catastrophic forgetting.

Target

Source

Target

Source

a) Source-Target feature alignment after adaptation b) Transferring Source to Target using DTM

Figure 2: a) An illustration of the alignment of source (red circle) and target (blue cross) feature representations
after domain adaptation. b) An illustration of the transfer of source feature (red circle) to pseudo-target feature
representations (orange circle) that will be classified the same as target features (blue cross). Best viewed in
color.

The main contributions of this paper are summarized as follows.

• An cost-effective method, referred to as MTDA with Domain Transfer Module

(MTDA-DTM), which can adapt to novel target domains incrementally, while

avoiding the problem of catastrophic forgetting.

• In particular, our approach integrates the new DTM, which transfers source images

to a joint image space shared across previous target domains. This module allows

for efficient training and adaptation compared to relevant state-of-the-art methods

[10].

• The proposed MTDA-DTM is compared extensively against state-of-the-art

MTDA techniques for object detection, consistently outperforming these methods

across public MTDA detection benchmarks: PascalVOC-Clipart-Watercolor-

Comic [16, 17] and Cityscape-FoggyCityscape-RainCityscape [18, 19, 20]. Fur-

thermore, we compared the proposed MTDA-DTM in a real-world video-surveillance

application, addressing the problem of multi-camera person detection using the

6



Wildtrack [21] dataset. Results show that our method brings a substantial improve-

ment of up to 5%, in terms of accuracy, on the popular PascalVOC benchmark,

and up to 2% on a real-world application dataset, i.e., Wildtrack.

2. Related Work

2.1. Single-Target Domain Adaptation (STDA) for Object Detection:

While the literature for unsupervised domain adaptation in classification [5, 22] or

segmentation[23, 24] is well explored, adaptation to the object detection task is not

straightforward since domain adaptation for regression differs greatly from classifica-

tion. This is mostly due to the difference between representation, and losses used by

classification and regression. Several methods exist in the literature for this specific

task [6, 4, 25]. In particular, authors in [4] propose to find domain-invariant features

in both image and instances level using domain discriminators to encourage domain

confusion through adversarial training. Most techniques have improved upon [4] by

focusing on aligning local features such as color and texture [26]. [27] finds local region

of interest for detection and aligns them. Recently, [28] applied domain adaptation on

multiple layers of the feature extractor in addition to a weighted gradient reversal layer

to handle hard confused domain samples. Using data augmentation, [29] proposes to

apply single target domain adaptation by finding multi-domain invariant features of

randomly augmented source and target domains. [30] proposes to evaluate the sample

alignment using an uncertainty metric in order to apply conditional domain adapta-

tion with curriculum learning. Similarly, [31] proposes to evaluate the ”hardness” of

samples in order to formulate an ”easy-to-hard” adaptation, in addition to hierarchical

feature alignment. Lastly, [25] improves upon state-of-the-art methods by extracting

domain-invariant features by disentangling them from domain-specific features.

More recently, some techniques have introduced CycleGAN [8] to map source data

to target domains and vice versa in order to progressively adapt a detector step by step

[6, 7]. While this can significantly improve the results of STDA for object detection, it

is not scalable for MTDA approaches, due to the number of generated (intermediate)

datasets that scales linearly with the number of target domains (i.e. for the case of one
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source and one target domain, it would generate four dataset in total [6] ). The actual

number of intermediate/generated and original datasets is 3n+ 1, with n the number of

target domains, thus making CycleGAN unrealistic for MTDA approaches. In addition,

CycleGAN needs to access to previous target data for training, whereas our proposed

MTDA-DTM does not require data from previous targets for training.

2.2. Multi-Target Domain Adaptation:

Current approaches for MTDA mainly focus on the classification task. These

approaches can essentially be categorized into two groups: 1) methods using domain

labels [32, 9] as additional information or 2) approaches assuming domain labels are

unavailable [11, 9, 12]. Nevertheless, as in the case of STDA techniques, MTDA

approaches designed for classification are not suitable for object detection. AMEAN

[11], one of the first techniques proposed for MTDA classification, assumes that no

domain labels are available and tries to discover multiple hidden target domains using

clustering on classification images. While AMEAN works for classification, it cannot

be directly extended for object detection since, in this scenario, the object is among

the background and there are not bounding box annotations, making the clustering of

objects significantly difficult.

With the state-of-the-art MT-MTDA[9] technique for classification, one teacher

classification model is used for each target domain with logits distillation for a common

student. This technique can be employed with or without domain labels. While [9] can

be extended to detection by simply having one teacher detector per target domain, and

applying feature distillation instead of logits. However, this MTDA approach would

be prohibitively costly for detection, since object detection models are already large by

themselves. Furthermore, this approach is not scalable in the case of multiple target

domains. Recently, another MTDA technique [33] has been also proposed for semantic

segmentation using multiple teachers, where each teacher is responsible for a target

domain, and distill to a single student. Although this method performs well on semantic

segmentation tasks, it cannot be easily transferred to object detection as it uses specific

features for the segmentation task, e.g. probability map for distillation, to improve

performance. While, both these techniques achieve good generalization over multiple
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target domains, they lack flexibility to adapt the student model to new target domains,

and require access to all target domains for learning.

2.3. Incremental Learning for Object Detection:

Incremental or continual learning refers to the ability of a model to learn new data

while preserving previously-learned knowledge, without accessing all the previously-

learned data. This information can range from new classes, new tasks, or even new

domains, such as in our case. In the current literature, there are three families of

incremental learning. The first family of approaches is based on regularization using

either weight-based [34, 35] or, more recently, based on knowledge distillation [36,

37], which have shown to achieve better performance. Additionally, both types of

regularization can also be combined [38, 39] to further improve the performance. The

second type of approaches is based on memory replay where a fraction of data from

previous tasks is retained. The manner in which the data is kept can range from directly

storing raw data [40], using generative networks such as GAN or VAE to learn previous

data distribution [41]. The third is based on architecture design [42, 43] where the

architecture of the CNN models can be adapted for new information. This can range

from adding weights or even duplicated CNNs to an existing architecture.

While these techniques can perform well on supervised classification, they are

ill-suited for tasks such as unsupervised detection due to the missing label information

that is needed to select weights/samples or storing unsuitable information in detection.

For instance, DER [44], employs logits and even labels of certain samples to distill

information from previous tasks. This is not possible in the context of object detection,

where logits only help to mitigate catastrophic on the classification module and there is

nothing to prevent the bounding box proposal module (RPN) to degrade on previously-

learned knowledge.

Even though a few attempts have been presented in few-shot detection[45], current

literature in unsupervised incremental is very limited. The work of [46] handles the

problem of incremental learning in object detection by introducing a replica of the

detector trained on the previous task. This detector serves as a teacher and preserves

knowledge of the previous task when the current detector learns a new task using

9



distillation. [10] employs the approach in [46] in an unsupervised manner for MTDA by

re-using features from the duplicated detector for domain confusion and a L2 distillation

on outputs to avoid catastrophic forgetting. While [10] achieves good performance for

MTDA, we argue that it does not take full advantage of the current UDA techniques and

both these techniques require substantial resources. In addition, it only uses the source

domain for distillation which has been shown in[13] to have limited knowledge transfer

and can reduce accuracy. Also, this distillation with source only guarantees consistency

w.r.t source domain and does not guarantee that features will remain domain-invariant

with previous target domains. In this work, we take advantage of the close nature of the

source and target features thanks to UDA, along with domain discriminators to produce

synthetic examples from the joint representation of previous target domains to avoid

knowledge corruption, while only introducing a slight overhead.

2.4. Multi-Task Learning for Object Detection:

Currently, most works on Multi-Task Learning (MTL) for object detection [47, 48]

seek to improve the performance of the main task (detection) instead of aiming at

performing well across all tasks. In addition, these techniques assume either the datasets

are labeled, or that they belong to the same domain, thus allowing the use of semi-

supervised techniques. This contrasts with our learning strategy, which does not make

any of these assumptions. Recently, [49] proposes to tackle the problem of multi-domain

detection. Their approach uses incremental learning by keeping samples from previous

tasks to be used with distillation. This approach is not only computationally costly, but

it also requires all task/target datasets to be labeled.

3. Proposed approach

3.1. Preliminaries on Domain Adaptation for Object Detection:

Let us define a source labeled dataset S = {(X,y)}, where Xi ∈ RH×W×3 repre-

sents the i-th image, and H and W its spatial dimension. Furthermore, yi denotes the

corresponding ground truth vector, which contains 5 elements, yi = [xi, yi, wi, hi, ci],

with x, y defining the top-left coordinates of the bounding box, w, h its width and length,

and c denotes the corresponding class label (c ∈ C). In addition, we have access to an

ensemble of multiple target domains T = {T1, T2, ..., Tn}, where each target domain
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contains only unlabeled images, i.e., Ti = {X}. A feature extractor, φ, is used to output

a non-flattened feature map z ∈ RHf×Wf×Cf , where Hf , Wf and Cf represent the

feature representation dimension from an input image X, so that z = φ(X). Further, a

function r(·) is used to extract instance-level features using the region proposal network

(RPN) as in [1], resulting into a vector p ∈ RV where V is an arbitrary size [1]. Last, a

detector parameterized by Φ is used to provide the predicted vector ŷ from training sam-

ples in S. Furthermore, since our problem focus on unsupervised targets, we consider

that Φ(X) also used to provide z and p from training samples in Ti.

Currently, most state-of-the-art UDA techniques for object detection is based on

[4], where domain-invariant features are found by encouraging domain confusion on

both image-level (global feature map produced by feature extractor) and instance-level

(feature map of bounding boxes) with losses:

LImg−DA(Φ, Dimg, T1) =
∑

X∈S∪T1

LC(Dimg(z), d) (1)

LInst−DA(Φ, Dinst, T1) =
∑

X∈S∪T1

LC(Dinst(p), d) (2)

Where T1 indicate (first) target domain and z and p are obtained from X using Φ. LC

is a binary classification loss (e.g. focal loss [50] or standard cross-entropy) and the

domain label d with d = 0 indicates source domain and d = 1 for target. Dimg and

Dinst are domain discriminators for the image-level and instance-level, respectively.

We note that [4] also uses a consistency loss between image and instances. However,

recent works [6, 26] have found that including this consistency term does not provide

any improvement. Let us assume that a pre-trained detector is adapted to a target domain

T1 based on source data S, the overall domain adaptation loss for detection to update

parameters of Φ and Dimg and Dinst are characterized as:

LDA(Φ, Dimg, Dinst, T1) = λ(LImg−DA(Φ, Dimg, T1)

+LInst−Da(Φ, Dinst, T1)) + LSup(S)
(3)

where LSup is the supervised loss on labeled source S, defined as LSup = Lreg + Lcls,
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with Lreg the bounding box regression and Lcls the object classification losses. Further

detail can be found in [1]. Parameter λ controls the importance of domain adaptation

losses. Recent works like [26] or [6] (used in our experiments) also have additional

domain adaptation losses on different feature levels of the feature extractor. For the

simplification of notation, we consider all domain discriminators (i.e. Dimg, Dinst

or others in [6]) as DC and all domain adaptation losses as LOD−DA since they only

differ on whether its images or instances features. In addition, since bounding boxes

and labels are only important for evaluation on source domain supervised training, we

omit them in our notation:

LDA(Φ, DC , T1) = λLOD−DA(Φ, DC , T1) + LSup(S) (4)

3.2. Preliminaries on Incremental Learning:

For incremental learning to a new target T2, a basic approach involves applying Eq.

4 for unsupervised domain adaptation of the detection model, on a new target data T2:

LUFT (Φ1, DC1
, T2) = λLOD−DA(Φ1, DC1

, T2) + LSup(S) (5)

where Φ1 and DC1 , are respectively, a detector and domain discriminators that are

already adapted to previous target domains (T1), and (T2) is the new target to be learned.

While this simple approach can work because the source domain can serve as an

anchor for all the targets, it may still skew the detector toward the latest target domain.

Indeed, using the source domain as an anchor only has a limited ability to prevent

catastrophic forgetting since there are no explicit constraints on previous targets. To

overcome this, we can retain the data of the previously-learned target domain, T1:

LUFT−Prev(Φ1, DC1
, T1 ∪ T2) = λLOD−DA(Φ1, DC1

, T1 ∪ T2) + LSup(S) (6)

However, it is prohibitively costly in many real-world detection applications to store

and retrain on a mixture of data from all domains, especially with a growing number

of target domains. In addition, incremental learning scenarios seek to learn new data

without having access to previously-learned data.
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3.3. MTDA with Domain Transfer Module:

With our proposed approach – MTDA-DTM, we perform unsupervised incremental

learning of new target data using pseudo data of previous targets. This data is obtained

via our DTM that is trained to trick the domain discriminators into classifying source-

transferred images as target. Once the DTM is trained, the detector can be adapted

incrementally to a new target domain. The rest of this section details the training of

DTM and our approach for incremental domain adaptation.

S R
EL

U

(256x3x1x1) (3x256x1x1)

Domain Transfer Module 

pS

Domain
Discriminatorn-1

(Image)
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Instance Features

C
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v

C
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Source Target Source Target
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Discriminatorn-1

(Instances)

Figure 3: Training the DTM prior to incremental DA of the detector to data of target Ti. The detector is
already adapted to targets T1...Ti−1. The pseudo-samples (pS) are generated by DTM. The dimension of the

convolutional weights tensor of DTM are presented as (out channels × in channels × height × width)

In order to access previously-learned target domains, we rely on the DTM, which

transfers source domain samples to a joint representation of target domains. The transfer

is performed using two convolution layers and a ReLU layer in between. As shown

in 3, the first convolution layer provides an expansion of the image channel-wise in

order to project the image into a higher dimension space, and the second layer reduces

the number of channels such that the output has the same number of channels as an

image. This architecture was chosen since it is the simplest possible architecture, thus,

allowing us to show the performance gain despite its simplicity. The optimization of

DTM depends on how well pseudo-samples transferred by DTM from the source can

force the domain discriminators to classify them as targets. We start by defining g(·) as

the transformation learned by our DTM which is achieved by minimizing the binary
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classification loss with domain label d = 1 when samples are produced by DTM:

LDTM =
∑
X∈S

LC(DCi
(Φi(g(X)), d = 1) (7)

where detector Φi and domain discriminator DCi
are already adapted to target Ti. Eq.7

S pS Faster R-CNNDTM

Domain Discriminatorsi-1

Target Source

Gradient Reveral Layer

Source data
Target data
DTM data
Backprop.

Figure 4: Incremental adaption to target Ti given a DTM already trained with data from targets T1...Ti−1.
θΦ represents all the parameters (feature extractor, RPN, classifier) of our detector.

is used to update the parameter of the DTM. Once the DTM is trained, the pseudo-

samples transferred by DTM will be drawn from a joint representation of all targets,

since Φi is adapted to i previous target domain {T1...Ti} and its domain discriminators

DC have been trained to distinguish between source vs i prior target domains. Given that

DOD−DA is just a simplification of other domain discriminators such as Dimg, Dinst,

etc., the pseudo-samples transferred by DTM will have both its domain transferred

on both image and instance level providing both local and global translation. Also,

pseudo-samples transferred by DTM are unbound by constraints such as the realism as

in GAN, CycleGAN, etc., or affecting minimal changes (adversarial attack). Once the

DTM is trained, previously-learned target domain in Eq.6 can be replaced to use the

learned g() of DTM to prevent catastrophic forgetting:

LIDA(Φi−1, DCi−1
, Ti) = λ

∑
X∈S∪Ti

LC(DCi−1
(Φi−1(X)), d)

+α
∑
X∈S

LC(DCi−1(Φi−1(g(X))), d = 1) + Lsup(S)
(8)
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where α represents the parameter to balance the importance of the loss on pseudo-

samples from DTM. Fig. 4 illustrates an incremental adaptation step to a new target

domain Ti of our detection model with a DTM trained using Eq. 7 with Φi−1 . Compared

to Eq.6, our optimization is more efficient since the DTM generates samples drawn

from a joint representation of previously-learned targets, where there is less discrepancy

between its samples compared to having different targets to optimize on as in Eq.6.

Algorithm 1 presents the overall training strategy.

Algorithm 1: MTDA-DTM Training Strategy.
Input :a source domain dataset S, a set of target dataset T1, ...Tn and a pretrained detection

model Φ0

Output :a detection model Φn, adapted to n targets
for Ti ∈ (T1, ...Tn) do

if i = 1 then
STDA using Eq. 4
Update domain discriminators DC0

and detection model Φ0 (feature extractor, RPN,
classification and detection)

else
Incr. DA using Eq. 8
Update domain discriminators DCi−1

and detection model Φi−1 (feature extractor, RPN,
classification and detection)

Freeze the current detector model and domain discriminators
Train a new DTM with LDTM from Eq. 7 using current domain discriminators DCi

and
detection model Φi

end

4. Experimental Methodology

4.1. Datasets:

4.1.1. MTDA across datasets:

PascalVOC/Clipart/Watercolor/Comic:. This scenario regroups a set of well-known

object detection benchmarks: PascalVOC (2007 + 2012) [16], Clipart, Watercolor, and

Comic [17]. In this scenario, PascalVOC is considered as the source, while and the

three others as target domain datasets. PASCAL VOC 2007 is compiled of 2501 images

for training, 2510 images for validation, and 4952 as test images, whereas PASCAL

VOC 2012 contains 5717 images for training and 5823 images for evaluation. Clipart,

Watercolor, and Comic have respectively 1000, 2000, and 2000 images, which are split

to have 50% for training and 50% for the test set. For our scenario of MTDA with
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incremental learning, six common classes are selected among these datasets for training

and evaluation. Examples from these datasets are shown in Fig.5.

Foggy/Rain/Cityscape:. This ensemble of datasets contains three different datasets:

Cityscape [18] as the source, and FoggyCityscape [19] and RainCityscape [20] as target

domains. In Cityscape, there are 3475 images of 8 categories, while FoggyCityscape

provides 2500 images for training and 500 for test. As for RainCityscape, there are

9432 images for training and 1188 for test. Both FoggyCityscape and RainCityscape

are synthetic datasets generated from Cityscape using [19] and [20], with several image

samples depicted in Fig.5. In RainCityscape, we noticed a lack of samples for the class

”train” in the evaluation subset. Thus, a set of 100 randomly selected images with class

”train” was extracted out of 500 images in the training set and transferred to evaluation.

We provide this list of images on our repository for the community.

4.1.2. MTDA across cameras:

Wildtrack:. This scenario [21] is comprised of video data from seven different cameras

made for supervised pedestrian detection and person re-identification. Each camera

captured 400 frames at 1920× 1080 resolution. This corresponds to a multi-camera DA

scenario that’s close to real-world applications. For our experiment on unsupervised IL,

we will use Camera 1 (C1) as the source domain and all the other cameras (C2 −→ C7)

as target domains. Since the dataset is not provided with a standard split, a split of 2/3

(train) and 1/3 (test) was used for each camera to obtain a training set and an evaluation

set, respectively. Fig.5 shows some image samples from Cameras (C1, C2, C4 and C7).

4.2. Implementation Details:

For our experiments, for PascalVOC and Cityscape, we use the same settings as

in [6] and other papers [1, 4]. The detection model is first trained with a learning

rate of 0.001 for 50k iterations, and then it is decreased by a factor of 10 for the last

20k iterations. We use ResNet50 and VGG16 as a backbone CNN with weights pre-

trained on ImageNet. For the domain adaptation technique, we use HTCN[6] for all our

baselines. Since HTCN is currently the state-of-the-art for STDA in object detection

and it can work without CycleGAN, our method is orthogonal to most techniques. In

our incremental setting, starting from the second target domain adaptation, the learning
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Cityscape FoggyCityscape RainCityscape

PascalVOC Watercolor ComicClipart

Camera 1 Camera 2 Camera 4 Camera 7

Figure 5: Examples of images from different targets of each scenario. Best viewed in color.

rate will always be 0.0001 and we run the algorithm for 70k iterations with the same

learning rate scheduling. α is set as 0.1 for the Cityscape related scenario as there is a

smaller shift between Foggy/Rain/Cityscape, since, the only change in images is the

synthetic weather. On the other hand, α is fixed to 1 in the other settings, since the shift

is larger between domains. This choice of α is also confirmed with a separate hold-out

validation and its importance is evaluated in the Appendix B. Since our base STDA

method is HTCN, we use the same value for λ and other parameters such as UDA losses

(attention losses, and instances). For Wildtrack scenario, we use a ResNet50 as the

backbone, and the hyper-parameters differ with the PascalVOC only by the number of

iterations: the detector is first trained for 4000 iterations with 0.001 learning rate and

then 1600 iterations with a learning rate reduced by a factor of 10. Further details are

provided in our Appendix A.

4.3. Baseline Models:

Several baseline are compared to our method, they are divided into three categories:

1) lower bound, 2) incr. MTDA baselines, 3) ideal baselines and 4) fully-supervised

baseline (upper bound). For the first category, there is Source Only for the lower-bound,

where a detection model is only trained on the source domain. For incr. MTDA baselines,

the first baseline is UFT, where the detector is fine-tuned through unsupervised domain

adaptation to the next target. For ideal baselines, we consider the baselines shown

in Figs.1 a) and b). The baseline Only DA represents a detector only adapted to one
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target domain using [6], the baseline UFT Prev., similar to UFT but with the addition of

having access to previous target domains and lastly Mixed baseline, where the detection

model has access and is adapted to all the target domains at the same time. Lastly, when

bounding box labels are available for the training subsets of target datasets, we provide

supervised baselines (upper bound), such as: Only Sup., with supervised training of

one detector per target, Supervised Mixed, where the detector is trained in a supervised

manner, directly on mixture of all target datasets, and Supervised FT, where the detection

model is fine-tuned in a supervised way from one target dataset to another. In terms of

the state-of-the-art, we compare to Wei et al.[10], which we refer to as ”Incr. MTDA

KD” 2. It uses distillation between a duplicated detector and the current detector to avoid

catastrophic forgetting. Similar scenarios as in [10] are used for comparison: Cityscape

(S) −→ FoggyCityscape (T1) −→ RainyCityscape (T2) and PascalVOC (S) −→ Clipart

(T1) −→Watercolor (T2) while adding the target dataset Comic (T3). For Wildtrack, we

consider the following scenario: C1 (S) −→ C2 (T1) −→ C3 (T2) −→ C4 (T3) −→ C5 (T4)

−→ C6 (T5) −→ C7 (T6).

In all our experiments, we evaluate the accuracy of detection models according to

the a mean average precision (mAP) with an IoU threshold = 0.5, where NC is the

number of classes, and APi is the average precision for class i:

mAP =
1

NC

NC∑
i=0

APi (9)

To compare the resource requirements of detection models, we show the number of

parameters of a detector for memory complexity, and the number of floating-point oper-

ations per second (FLOPS) for time complexity. All our experiments were performed

using an Nvidia Tesla-P100 GPU.

5. Results and Discussion

In this section, we first show the results of our method on MTDA benchmarks and

then on the multi-camera problem. In a similar way to Incr. MTDA KD [10], results will

2No public code was provided, thus we use our own implementation for experiments.
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be shown at each step and for each target on both scenarios of MTDA across datasets:

Cityscape (S) −→ FoggyCityscape (T1) −→ RainyCityscape (T2), and PascalVOC (S) −→

Clipart (T1) −→Watercolor (T2) −→ Comic (T3). However, for the ablation study, we

will only show the average accuracy of each target on each class. For the Wildtrack

dataset, there is only one class (”pedestrian/person”), and we show the result at the end

of incremental domain adaptations. Results at each incremental step of Wildtrack on

Camera 2 are presented in an ablation study. In addition, a comparison with MT-MTDA

[9] (adapted to detection) is also provide on the Cityscape scenario, since MT-MTDA [9]

requires one teacher detection model per target, which makes it unusable for scenarios

with multiple domains.

5.1. MTDA across datasets:
Cityscape (S) −→ FoggyCityscape (T1) −→ RainCityscape (T2). Table 1 shows that

our method performs slightly better than other baselines. We also noticed that ”UFT”

performs well for a naive solution. This suggests that existing STDA techniques are well-

suited for incremental learning because it learned domain-invariant features. However,

we also observe that on ”UFT” and method of Wei et al. [10]. ”Incr. MTDA KD”, the

performance on previous target FoggyCityscape is lower than ours. This shows that

our DTM is capable of generating samples that are close to previously-learned target of

FoggyCityscape, thus our method has better abilities to limit the effects of catastrophic

forgetting, therefore, increasing the accuracy. While the ”Only DA” baseline has a

better performance accuracy (it uses one detection model per target) because there

are more parameters overall to optimize since each detector can specialize to a target,

and it also requires significantly more resources. As for Mixed and UFT Prev, their

performance is lower than MTDA-DTM due to the difficulty of directly generalizing

on multiple target domains simultaneously. This difficulty of generalization is because

target domains are far from each other which makes common domain-invariant features

more difficult to find compared to finding domain-invariant for one target at a time.

Compared to supervised baselines, our method can achieve comparable or even better

accuracy in several cases. Results suggest that it is easier to generalize to one target

domain at a time. In addition, having multiple target domains may help improving

performance since the results of ”Only Sup.” in RainCityscape is lower than other
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Table 1: Average Precision of the proposed MTDA-DTM, baselines and state-of-the-art models for MTDA on
the Cityscape (S) −→ FoggyCityscape (T1) −→ RainCityscape (T2) scenario.

Backbone: VGG16 Accuracy
Models bus bicycle car m. cycle person rider train truck mAP
Train: Cityscape (S) −→ FoggyCityscape (T1) −→ RainCityscape (T2) – Test: FoggyCityscape (T1)
Source Only 24.4 28.4 27.0 16.4 24.5 31.0 9.2 13.3 21.8
UFT 47.6 34.8 44.5 28.5 29.9 45.5 34.6 27.8 36.6
Incr. MTDA KD [10] 45.6 35.3 44.7 31.9 31.5 44.0 29.3 25.8 36.0
MTDA-DTM (ours) 46.9 35.3 44.8 32.2 31.5 45.5 34.4 29.1 37.5
Only DA [6] 48.0 34.4 47.1 29.4 33.0 48.5 37.4 29.3 38.4
UFT Prev. 45.2 34.9 44.8 29.9 32.0 47.9 33.1 27.0 36.8
Mixed 44.6 32.8 44.1 25.1 31.6 43.2 36.5 28.4 35.8
Only Supervised 50.6 35.5 50.1 35.5 33.3 46.2 42.8 34.9 41.1
Supervised FT 40.2 33.7 44.0 29.3 30.3 41.4 19.8 22.2 32.6
Supervised Mixed 42.9 35.3 47.7 30.5 31.9 43.9 15.8 25.4 34.2
Train: Cityscape (S) −→ FoggyCityscape (T1) −→ RainCityscape (T2) – Test: RainCityscape (T2)
Source Only 63.7 24.8 41.6 5.4 23.3 53.8 23.9 9.8 30.8
UFT 83.4 33.8 51.7 8.9 26.1 61.1 36.4 24.0 40.7
Incr. MTDA KD [10] 78.2 33.1 52.4 10.5 26.1 61.6 36.4 23.4 40.2
MTDA-DTM (ours) 85.1 34.0 52.1 4.2 26.7 61.5 36.5 26.2 40.8
Only DA [6] 83.1 34.7 48.5 8.2 26.2 61.9 36.1 27.1 40.7
UFT Prev. 80.7 31.4 52.2 4.8 26.0 61.7 36.1 23.7 39.6
Mixed 80.2 34.3 48.6 10.0 25.7 59.0 37.3 20.8 39.5
Only Supervised 42.4 22.7 51.4 3.2 23.8 55.5 81.8 9.3 36.2
Supervised FT 63.8 31.9 51.5 27.4 26.9 58.7 81.8 27.2 46.2
Supervised Mixed 74.2 30.2 51.9 10.3 27.0 61.3 81.6 11.5 43.5
Train: Cityscape (S) −→ FoggyCityscape (T1) −→ RainCityscape (T2) - Test: all targets
Source Only 44.0 26.6 34.3 10.9 23.9 42.4 16.5 11.5 26.3
UFT 65.5 34.3 48.1 18.7 28.0 53.3 35.5 25.9 38.6
Incr. MTDA KD [10] 61.9 34.2 48.5 21.2 28.8 52.8 32.8 24.6 38.1
MTDA-DTM (ours) 66.0 34.6 48.4 18.2 29.3 53.5 35.4 27.6 39.1
Only DA [6] 65.5 34.5 47.8 18.8 29.6 55.2 36.7 28.2 39.5
UFT Prev. 62.9 33.1 48.5 17.3 29.0 54.8 34.6 25.3 38.2
Mixed 62.4 33.5 46.3 17.5 28.6 51.1 36.9 24.6 37.6
Only Supervised 65.0 34.3 48.4 18.6 29.1 53.7 35.9 27.6 39.1
Supervised FT 52.0 32.8 47.7 28.3 28.6 50.1 50.8 24.7 39.4
Supervised Mixed 58.5 32.7 49.8 20.4 29.4 52.6 48.7 18.4 38.8

baselines that have multiple target domains. Compared to Supervised FT, where the

performance is skewed toward RainCityscape, and suffers performance degradation in

FoggyCityscape, our MTDA-DTM achieves high performance on both target domains.

In the next scenario, the difference between our methods and unsupervised baselines is

even more pronounced as the number of target domains grows.

PascalVOC (S) −→ Clipart (T1) −→ Watercolor (T2). Table 2 reports the accuracy of

MTDA-DTM on both Clipart (T1) and Watercolor (the new target domain, T2). Results

indicate that it still performs better than MTDA baselines and the state-of-the-art,

especially on Clipart. Regarding the performance on Watercolor (the second target

domain), our method achieves results comparable to Incr. MTDA KD [10]. Table 2
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Table 2: Average precision of the proposed MTDA-DTM, baselines and state-of-the-art models for MTDA on
the PascalVOC −→ Clipart −→Watercolor scenario.

Backbone: Resnet50 Accuracy
Models bicycle bird car cat dog person mAP
Train: PascalVOC (S) −→ Clipart (T1) −→Watercolor (T2) - Test: Clipart (T1)
Source Only 44.7 28.2 16.8 10.8 12.6 46.0 26.5
UFT 30.5 24.5 24.1 3.1 8.3 57.6 24.7
Incr. MTDA KD [10] 29.1 28.1 26.8 10.6 20.3 64.8 29.9
MTDA-DTM (ours) 51.2 26.3 28.4 3.7 17.4 64.7 31.9
Only DA [6] 19.3 25.1 25.9 2.0 7.8 62.5 23.8
UFT Prev. 35.1 27.5 26.1 2.2 16.3 63.3 28.4
Mixed 43.2 25.9 23.2 14.1 7.1 61.4 29.1
Only Supervised 42.7 41.1 41.3 21.6 29.9 70.6 41.0
Supervised FT 36.4 30.7 17.1 7.8 15.1 55.6 27.1
Supervised Mixed 41.1 39.0 44.6 28.4 20.8 70.4 40.7
Train: PascalVOC (S) −→ Clipart (T1) −→Watercolor (T2) - Test: Watercolor (T2)
Source Only 62.7 45.6 42.5 30.0 29.4 59.0 44.9
UFT 64.5 43.9 49.3 30.8 32.5 58.6 46.6
Incr. MTDA KD [10] 74.1 42.5 48.8 29.7 33.4 58.7 47.8
MTDA-DTM (ours) 74.5 44.9 47.9 25.0 30.9 62.7 47.6
Only DA [6] 50.8 47.5 48.4 40.0 30.9 56.3 45.6
UFT Prev. 63.6 44.8 52.5 31.1 31.4 61.8 47.5
Mixed 54.4 47.6 49.2 33.6 30.2 62.0 46.2
Only Supervised 57.8 49.4 42.6 40.6 36.5 68.3 49.2
Supervised FT 62.5 47.6 31.3 36.6 39.3 66.1 47.2
Supervised Mixed 65.5 52.3 45.7 36.7 38.2 68.2 51.1
Train: PascalVOC (S) −→ Clipart (T1) −→Watercolor (T2) - Test: all targets
Source Only 53.7 36.9 29.6 20.4 21.0 52.5 35.7
UFT 47.5 34.2 36.7 16.9 20.4 58.1 35.6
Incr. MTDA KD [10] 51.6 35.3 37.8 20.1 26.8 61.7 38.9
MTDA-DTM (ours) 62.8 35.6 38.1 14.3 24.1 63.7 39.8
Only DA [6] 35.0 36.3 37.1 21.0 19.3 59.4 34.7
UFT Prev. 49.3 36.1 39.3 16.6 23.8 62.5 37.9
Mixed 48.8 36.7 36.2 23.8 18.6 61.7 37.6
Only Supervised 50.2 45.4 41.9 31.1 33.3 69.4 45.2
Supervised FT 49.5 39.1 24.2 22.2 27.2 60.8 37.2
Supervised Mixed 53.2 45.7 45.1 32.5 32.5 29.5 69.3

also show the benefits of having multiple target domains. By comparing ”UFT”, Incr.

MTDA KD [10], MTDA-DTM, and ”Only DA”, results show that having multiple

targets can lead to better performance than one detection model per target. Comparing

with ”UFT Prev.” and ”Mixed”, results again confirm our analysis that generalizing

directly on multiple targets can reduce performance. As for the supervised case (upper

bounds), we confirm that the baselines with access to all domains, ”Supervised Mixed,”
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and that trains on one dataset, ”Only Supervised,” achieve higher performance thanks to

class labels. However, performance degrades once there is fine-tuning to a new domain

without having access to previously-learned domains in ”Supervised FT”. For the next

incremental step, the Comic dataset is learned, and the effectiveness of our MTDA-DTM

in the presence of multiple domains can be observed.

PascalVOC (S) −→ Clipart (T1) −→ Watercolor (T2) −→ Comic (T3). Table 3 shows the

accuracy when our previous detection model is incrementally adapted to a third target

domain (Comic, T3). While results show that our model has slightly lower accuracy for

Watercolor, it provides a significant improvement on Clipart, up to 6%, and Comic, up

to 9% mAP. Compared to ”Only DA”, results still confirm our previous analysis that

multiple target domains can help improve performance. Results indicate that incremental

approaches such as Incr. MTDA KD [10] and MTDA-DTM, can achieve a high level

of accuracy by adapting to one target domain at a time compared to simultaneously

adaptation. This increase in accuracy is due to the learned joint representation of

DTM which proves to be more suitable for optimization since the generated samples

are from the joint representation compared to samples that are drawn directly from

different target domains with different underlying distributions. Finally, results with

the supervised baselines further confirm our previous observations. Overall, our results

for general MTDA benchmarks across datasets show that MTDA-DTM outperforms

all unsupervised baselines and can have comparable performance to some upper bound

supervised baselines.

5.2. MTDA across cameras:

Wildtrack C1 (S) −→ C2 (T1) −→ ... −→ C7 (T6).. Table 4 confirms our results from

previous tables and shows that our model outperforms comparable baselines and state-

of-the-art, with performance gains of up to 2% in terms of accuracy. Compared to

several ideal unsupervised baselines, such as ”Only DA” --where one target is handled

by one model– or ”Mixed” --where all the target domains are mixed--, our method also

provides higher accuracy. This shows that using a common model for all the target

domains and adapt to one target at a time can improve performance. Nevertheless,

although our MTDA-DTM has lower accuracy than ”Supervised Mixed’, it is expected
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Table 3: Average Precision of the proposed MTDA-DTM, baselines and state-of-the-art models for MTDA on
the PascalVOC −→Watercolor −→ Comic scenario.

Backbone: Resnet50 Accuracy
Models bicycle bird car cat dog person mAP
Train: PascalVOC (S) −→ Clipart (T1) −→Watercolor (T2) −→ Comic (T3) - Test: Clipart (T1)
Source Only 44.7 28.2 16.8 10.8 12.6 46.0 26.5
UFT 34.7 29.8 29.7 2.0 8.7 62.5 27.9
Incr. MTDA KD [10] 42.2 25.5 23.7 1.1 14.2 63.7 28.4
MTDA-DTM (ours) 50.7 34.0 32.1 5.2 16.3 64.9 33.9
Only DA [6] 19.3 25.1 25.9 2.0 7.8 62.5 23.8
UFT Prev. 41.2 23.4 28.7 10.6 15.4 55.7 29.2
Mixed 43.7 28.9 25.9 11.3 10.2 57.7 29.6
Only Supervised 42.7 41.1 41.3 21.6 29.9 70.6 41.0
Supervised FT 50.4 22.4 16.6 21.2 21.0 60.0 31.9
Supervised Mixed 58.4 40.6 44.4 23.3 31.1 69.9 44.6
Train: PascalVOC (S) −→ Clipart (T1) −→Watercolor (T2) −→ Comic (T3) - Test: Watercolor (T2)
Source Only 62.7 45.6 42.5 30.0 29.4 59.0 44.9
UFT 72.3 46.5 48.0 30.7 29.1 63.9 48.4
Incr. MTDA KD [10] 68.3 43.5 49.1 24.4 28.2 62.3 46.0
MTDA-DTM (ours) 66.4 48.0 49.5 29.9 30.8 62.2 47.8
Only DA [6] 50.8 47.5 48.4 40.0 30.9 56.3 45.6
UFT Prev. 60.7 40.4 46.1 25.1 21.0 53.3 41.1
Mixed 67.2 47.4 52.0 32.7 33.3 61.4 49.0
Only Supervised 57.8 49.4 42.6 40.6 36.5 68.3 49.2
Supervised FT 38.1 40.6 24.5 32.2 15.7 63.9 35.8
Supervised Mixed 68.1 52.1 47.5 47.6 40.7 73.5 54.9
Train: PascalVOC (S) −→ Clipart (T1) −→Watercolor (T2) −→ Comic (T3 - Test: Comic (T3)
Source Only 28.5 12.4 13.7 13.5 12.5 34.5 19.2
UFT 21.8 17.2 28.5 10.8 17.7 47.0 23.8
Incr. MTDA KD [10] 28.1 19.9 27.1 11.5 23.0 53.5 27.2
MTDA-DTM (ours) 38.9 22.5 32.3 15.3 30.9 56.8 32.8
Only DA [6] 35.3 18.3 24.8 11.6 19.8 49.5 26.5
UFT Prev. 25.1 15.9 26.8 11.0 23.4 44.9 24.5
Mixed 24.6 20.0 26.6 6.3 21.8 48.9 24.7
Only Supervised 38.3 22.1 37.6 37.4 42.2 70.1 41.3
Supervised FT 40.7 22.1 38.2 40.5 39.0 63.8 36.2
Supervised Mixed 48.5 31.0 43.6 48.6 47.9 72.0 48.6
Train: PascalVOC (S) −→ Clipart (T1) −→Watercolor (T2) −→ Comic (T3) - Test: all targets
Source Only 45.3 28.7 24.3 18.1 18.2 46.5 30.2
UFT 42.9 31.2 35.4 14.5 18.5 57.8 33.4
Incr. MTDA KD [10] 46.2 29.6 33.3 12.3 21.8 59.8 33.8
MTDA-DTM (ours) 52.0 34.9 38.0 16.8 26.0 61.3 38.1
Only DA [6] 35.1 30.3 33.0 17.9 19.5 56.1 32.0
UFT Prev. 42.9 28.1 36.4 18.0 22.2 49.1 32.8
Mixed 45.2 32.1 34.8 16.8 21.8 56.0 34.4
Only Supervised 46.3 37.5 40.5 33.2 36.2 69.7 43.8
Supervised FT 43.1 28.3 26.4 31.3 25.2 62.6 36.2
Supervised Mixed 58.3 41.2 45.2 39.8 40.0 71.8 49.4

since the latter has access to labels. Our model has very similar accuracy to ”Supervised

FT”, mainly due to catastrophic forgetting in ”Sup.FT”. The performance degradation

can be seen in the evolution of accuracy of Camera 2 at each incremental step in the
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Table 4: Average Precision for Incremental Multi-Target Domain Adaptation from Wildtrack Camera 1 (S.)
−→ Camera 2 (T1) −→ ... −→ Camera 7 (T6).

Backbone: Resnet50 Accuracy
Models C2 C3 C4 C5 C6 C7 Average
Train: C1 (S) −→ C2 (T1) −→ C3 (T2) −→ C4 (T3) −→ C5 (T4) −→ C6 (T5) −→ C7 (T6) - Test: all targets
Source Only 41.5 57.5 51.9 29.4 33.2 63.0 46.1
UFT 47.4 59.4 53.0 53.0 41.0 67.1 53.5
Incr. MTDA KD [10] 47.2 58.4 55.5 57.4 39.0 67.8 54.2
MTDA-DTM (ours) 50.0 65.9 54.3 57.2 40.8 68.2 56.1
Only DA 47.4 55.9 51.6 57.9 38.8 65.8 52.9
UFT Prev. 48.6 59.2 44.8 48.8 38.4 63.2 50.5
Mixed 49.8 64.0 53.0 58.4 41.7 68.5 55.9
Only Supervised 61.8 70.6 59.1 72.2 50.7 80.5 65.8
Supervised FT 47.1 58.3 55.7 71.3 24.4 80.6 56.2
Supervised Mixed 60.3 69.5 60.0 74.0 49.5 77.5 65.1

Figure 6. In addition, from the same figure, we again confirm that DTM provides better

samples for optimization compared to using directly samples from previously-learned

targets or using simultaneously samples of all the targets at once since MTDA-DTM

mitigates catastrophic forgetting better than other methods.
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Figure 6: Evolution of detection accuracy on Wildtrack C2 at each incremental step. Best viewed in color. 3

From this figure, we observe that most methods tend to have a decrease in accuracy

between the first adaptation and the last. In addition, we notice a performance drop

3For ease of visualization, some non-incremental baselines such as Only DA, and Mixed were not included
since they would remain the same as in Table 4
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for Incr. MTDA KD [10] at C3, which is due to its knowledge distillation although it

managed to recover afterward thanks to learning from other domains. Comparing Incr.

MTDA KD [10] to ”UFT” suggests that there’s instability in the incremental learning

process of Incr. MTDA KD [10] since ”UFT” does not suffer catastrophic forgetting

even without any module to prevent. This further indicates that the distillation of only

source samples can eschew the feature representation and cause instability to the model.

This problem is better mitigated by our algorithm as we can see that it managed to

maintain a stable accuracy over all the incremental steps.

5.3. Ablation Studies:

Comparison with MT-MTDA. For this experiment, we adapted MT-MTDA [9], one of

the current state-of-the-art in MTDA for image classification, using a feature-based [51]

instead of logits-based distillation of the detection model. For MT-MTDA, we chose

Resnet34 CNN backbone as teachers and Resnet18 as a common student to allow all the

models to fit in memory. The same Resnet18 CNN backbone was used with our MTDA-

DTM for a fair comparison. The Cityscape scenario was chosen for this experiment

since MT-MTDA could not be run on either PascalVOC or Wildtrack due to memory

limitation (one model per target domain). Hyper-parameters used for MTDA-DTM are

the same as the one used for Table 1. As for MT-MTDA, hyper-parameters that give the

best results were chosen using a validation set.

Table 5: Comparison of the proposed and MT-MTDA [9] methods on the Cityscape scenario.

Backbone: Resnet18 Accuracy
Models bus bicycle car m.cycle person rider train truck mAP
Train: Cityscape (S) −→ FoggyCityscape (T1) −→ RainCityscape (T2) - Test: FoggyCityscape
MT-MTDA Res34 −→ Res18 35.9 30.8 40.5 19.2 28.4 41.0 9.2 14.0 27.4
MTDA-DTM (ours) 42.8 31.1 43.6 17.9 27.6 42.2 10.7 24.7 30.1
Train: Cityscape (S) −→ FoggyCityscape (T1) −→ RainCityscape (T2) - Test: RainCityscape
MT-MTDA Res34 −→ Res18 67.8 31.6 48.4 4.9 23.6 57.1 26.4 3.3 32.9
MTDA-DTM (ours) 72.8 31.1 50.2 2.7 24.0 58.2 31.4 15.8 35.8
Train: Cityscape (S) −→ FoggyCityscape (T1) −→ RainCityscape (T2) - Test: all targets
MT-MTDA Res34 −→ Res18 51.8 31.2 44.4 12.0 26.0 49.0 17.8 8.6 30.1
MTDA-DTM (ours) 57.8 31.1 46.9 10.3 25.8 50.2 21.0 20.2 32.9

From Table 5, we observe that our model outperforms MT-MTDA [9] on all datasets

of the Cityscape scenario. Results show that an incremental approach, where target

domains are adapted one at a time, can be beneficial compared to an approach trying
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to directly generalize on several domains even, when it uses compressed knowledge.

To further confirm these results, we adapt our technique to image classification, and

evaluate on PACS dataset. Table 6 shows that MTDA-DTM can outperform MT-MTDA

in a classification setting by adapting to one model at a time, instead of simultaneously

adapting to multiple domains.

Table 6: Comparison of the proposed and [32] methods on the PACS dataset for a classification setting.

Backbone: LeNet Accuracy
Train: P (S) −→ Ap (T1) −→ Cr (T2) −→ S (T3) - Test: all targets
Models Ap Cr S Average
MT-MTDA Res50 −→ LeNet 24.6 32.2 33.8 30.2
MTDA-DTM (Ours) 52.0 37.0 39.6 43.0
Train: Ap (S) −→ Cr (T1) −→ S (T2) −→ P (T3) - Test: all targets
Models Cr S P Average
MT-MTDA Res50 −→ LeNet 46.6 57.5 35.6 46.6
MTDA-DTM (Ours) 61.2 47.0 83.0 63.7

Open Domain Adaptation. In this experiment, our model is evaluated in an open

domain adaptation scenario, i.e. our model is evaluated on a target domain that was not

employed for training/domain adaptation. In this open domain scenario, we assume

that the ”unseen” Comic would have the same number of classes and the same labels

as our existing domains. Our model and baselines are trained on Pascal (S) −→ Clipart

(T1) −→Watercolor (T2) data and evaluated directly on Comic. In this scenario, ”UDA

Comic Only” represents a model trained with HTCN [6] from PascalVOC to only Comic

without any intermediate targets.

Table 7: Average Precision for Open Domain Adaptation by evaluating models of Pascal (S)−→ Clipart (T1)
−→Watercolor (T2) on Comic (T3).

Backbone: Resnet50 Accuracy
Models bicycle bird car cat dog person mAP
Train: PascalVOC (S) −→ Clipart (T1) −→Watercolor (T2) - Test: Comic (T3)
UFT 15.6 11.6 23.6 10.1 17.6 40.0 19.7
Incr. MTDA KD[10] 22.7 16.1 27.1 12.1 22.3 47.8 24.7
MTDA-DTM (ours) 33.7 20.5 29.6 14.6 26.9 55.0 30.0
UFT Prev. 28.6 19.5 28.5 9.4 19.9 47.0 25.5
UDA Comic Only [6] 35.3 18.3 24.8 11.6 19.8 49.5 26.5

Table 7 shows that our model from Pascal (S) −→ Clipart (T1) −→Watercolor (T2)

outperforms all the other baselines on the unseen Comic target domain, including the

baseline, ”UDA Comic Only” that’s only domain adapted to ”Comic”. Results shows
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that training with other diverse target domains data help improve the robustness of our

features. Overall, results show that MTDA-DTM can provide robustness on an unseen

target by providing pseudo-samples designed to trick the domain discriminator.

Impact of DTM. In this case, the impact of using a trained DTM is compared to a

non-trained DTM (i.e initial weights) on the scenario PascalVOC with three target

domains. The goal of this experiment is to show the effectiveness of our adversarial

training.

Figure 7: Examples of samples of DTM projected to image space (c) compared to original images (a) and a
non-trained DTM (b) . Best viewed in color.

Source-transferred
clipart
waterclor

Figure 8: UMAP feature visualization of domain-transferred source domain (orange), all target domains:
Clipart (purple) and Watercolor (green) from DTM trained for scenario PascalVOC (S) −→ Clipart (T1) −→
Watercolor (T2) −→ Comic (T3) . This figure shows the desired outcome of our DTM. Best viewed in color.

In Fig. 7, the pseudo-samples generated by DTM are projected back to image

space in our Pascal (S) −→ Clipart (T1) −→ Watercolor (T2) −→ Comic (T3) scenario.
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Table 8: Comparison of trained DTM vs not-trained DTM on Clipart, Watercolor, Comic.

Backbone: Resnet50 Accuracy
Models bicycle bird car cat dog person mAP
Train: PascalVOC (S) −→ Clipart (T1) −→Watercolor (T2) −→ Comic (T3) - Test: all targets
UFT 15.6 11.6 23.6 10.1 17.6 40.0 19.7
Incr. MTDA KD[10] 22.7 16.1 27.1 12.1 22.3 47.8 24.7
MTDA-DTM Not Trained 48.3 30.5 36.9 14.4 24.9 56.2 35.2
MTDA-DTM Trained 51.5 34.8 38.1 16.8 26.0 61.3 38.1

Based on this figure, DTM seems to focus on light intensity of the images, which

can be the underlying common features between target domains. Results of Table 8

show that having an optimized DTM by using domain discriminators can achieve a

significant increase in accuracy. In addition, ”Not Trained” still has better accuracy

than the other baselines. This is can be explained by the robustness of our detection

model to open domain adaptation, as seen previously in Table 7. Fig. 8 shows an UMAP

[52] visualization of features from all target domains and the pseudo-samples using the

feature extractor and DTM from PascalVOC (S) −→ Clipart (T1) −→Watercolor (T2) .

In this Figure, the features of samples from DTM, not only overlap with both previous

target domains, which is our desired outcome, but they are also found outside of the

distribution of previous targets, which can help improve accuracy. We employed UMAP

[52] instead of TSNE [53] since it is better at preserving the global structure and it is

also faster to compute.

Order of incremental learning. For this experiment, we evaluate the impact of the order

of our incremental learning among the three target domains of Clipart (Cl), Watercolor

(W), and Comic (Co) for the PascalVOC scenario and several pertinent target learning

orders for Wildtrack scenario.

Table 9: Overall accuracy per class with MTDA-DTM for different target adaptation orders on the PascalVOC
scenario.

Backbone: Resnet50 Accuracy
Order bicycle bird car cat dog person mAP
Train: Different Target Orders - Test: all targets
P −→ Cl −→W −→ Co 51.5 34.8 38.1 16.8 26.0 61.3 38.1
P −→ Cl −→ Co −→W 53.3 30.9 37.4 16.4 25.1 60.3 37.2
P −→ Co −→ Cl −→W 54.7 30.1 37.7 20.2 24.5 57.2 37.4
P −→ Co −→W −→ Cl 47.8 29.0 40.0 15.5 23.4 58.8 35.7
P −→W −→ Cl −→ Co 53.7 29.0 31.1 17.4 18.0 55.7 34.2
P −→W −→ Co −→ Cl 49.8 31.3 33.1 18.4 20.7 56.4 34.9
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Table 9 shows that there can be a significant change in accuracy depending on

which target domain we start with. These results suggest that starting with an easy

target domain does not necessarily lead to better performance. A harder target(larger

domain shift) seems to be preferred for our method to obtain a better accuracy for future

target domains. This is potentially due to the fact that features learned from a harder

(larger domain shift) target tends to be more robust and more generalized than features

learned with an easier target(small domain shift). While there can be a decrease given a

scenario, overall, the results of different orders still perform better than the baselines. In

addition, while the selection order can be important for good performance, in real-world

applications, the order of targets is determined by the availability of data since we may

not have access to all the targets at the same time. For the Wildtrack scenario, since

there are six target domains, it means there are 720 permutations possible of the order

of targets thus we selected a few orders based on domain shift (cosine distance) in Table

11 in order to help our analysis. The chosen orders are: 1) small to large domain shift 2)

Large to small domain shift 3) Alternate (alt.) between small and large shift starting

with small shift 4) Alternate (alt.) between large and small shift starting with large shift

5) Our original order is actually another alternate (alt.) between large and small shift

starting with a large shift.

Table 10: Overall accuracy of MTDA-DTM on Wildtrack scenario with different target adaptation orders.

Backbone: Resnet50 C2 C3 C4 C5 C6 C7 Average
Train: Different Target Orders - Test: all targets
C1 −→ C3 −→ C4 −→ C6 −→ C5 −→ C2 −→ C7 (small −→ large shift) 49.4 57.7 54.2 56.3 39.1 68.8 54.2
C1 −→ C2 −→ C7 −→ C5 −→ C6 −→ C3 −→ C4 (large −→ small shift) 48.4 58.4 51.6 58.7 40.3 68.4 54.3
C1 −→ C3 −→ C2 −→ C4 −→ C7 −→ C6 −→ C5 (small/large shift alt.) 49.1 64.0 51.1 55.4 38.1 67.9 54.3
C1 −→ C2 −→ C3 −→ C7 −→ C4 −→ C5 −→ C6 (large/small shift alt. 1) 49.7 65.3 53.9 57.7 40.4 68.0 55.8
C1 −→ C2 −→ C3 −→ C4 −→ C5 −→ C6 −→ C7 (large/small shift alt. 2) 50.0 65.9 54.3 57.2 40.8 68.2 56.1

Table 10 gives us deeper insights compared to Table 9 since it contains more target

domains. Based on the results, we observe that, for this dataset, the orders that give the

best results are the ones that start with large domain shift while alternating with smaller

domain shift. This ordering makes sense since the detection model would always try

to balance out between large domain shift and small domain shift thus allowing better

domain-invariant features. As for starting with a target of large domains shift, this

confirms the previous conclusion and this would mean a better starting weight for future
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target domains since adapting to large domain shift will allow the detector to have

better domain-invariant features for the next target thus allowing an increase in accuracy.

While these two factors, domain shift, and starting target, are the main factors that come

out in our experiments. Other factors can potentially affect the final accuracy such as

the difficulty of targets themselves or the number of classes.

Domain Shift Analysis. In this experiment, we provide a visualization of the domain

shift in the problem of detection and incremental learning. First, we evaluate the domain

shift using cosine distance on sources vs target features which is the most used in domain

shift evaluation for classification. The features for the distance are computed using a

detector trained only on the source to show the shift between source and target.

Table 11: Cosine distance between source and target features on MTDA benchmarks.

Targets FoggyCityscape RainCityscape
Source: Cityscape 0.41 0.43
Targets Clipart Watercolor Comic
Source: PascalVOC 0.67 0.66 0.67
Targets C2 C3 C4 C5 C6 C7
Source: C1 0.66 0.63 0.63 0.65 0.64 0.66

From Table 11, we can confirm that there is a domain shift between features of

source and target domains at the global level. The problem with this in detection is

that we cannot identify whether the domain shift comes from detection, i.e. region

proposal, or it comes from the classification process. In order to see the domain shift

at both detection and classification levels, we use the histogram of confidence score

from both detection and classification on a source-only detector. For classification, we

select the class ”Person” for the classification confidence score between domains. For

our histogram, a bin of 100 is used for detection since there are many bounding box

proposals at the region proposal stage, the number of bins for classification is 10 for

better visualization. For ease of visualization, we only show the shift between the source

domain and one target domain.

From Figure 9, we observe that the shift comes mostly from the detection task while

there is only a slight shift on classification. This makes sense since Fog was added to

Cityscape in an artificial way thus changing the detection problem without changing
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Detection Shift Classification Shift

Figure 9: Visualization of shift in confidence scores on both detection and classification between Cityscape
(source) and FoggyCityscape (target). The class used for classification shift is ”Person”.

Detection Shift Classification Shift

Figure 10: Visualization of shift in confidence scores on both detection and classification between PascalVOC
(source) and Comic (target). The class used for classification shift is ”Person”.

Detection Shift Classification Shift

Figure 11: Visualization of shift in confidence scores on both detection and classification between Wildtrack
(source) Camera 1 and Wildtrack Camera 4 (target). The class used for classification shift is ”Person”.

so much on the instances. In the Wildtrack problem, while the detection shift is still

more pronounced albeit not as much as in Cityscape, the shift in classification is more

pronounced. Finally, for the scenario of PascalVOC, we observe that there’s not much
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change in confidence shift, this is confirmed by the results in Table 2 where the Source

Only has similar performance compared to state-of-the-art like [10] or UFT baseline.

5.4. Complexity Analysis:

Object detectors can require a high computational complexity, especially region-

based detectors like Faster R-CNN. While the inference complexity is important, in this

work, we are interested in the domain adaptation complexity since it’s very important

for a technique to have an efficient training so that it can be easily adopted in real-

world applications. In addition, since our method and existing baselines do not add

extra complexity, the measured complexity would be the same. The (memory and

computation) complexity for adaptation between our method and the current state-of-

the-art is analyzed. For incremental domain adaptation, the method in Incr. MTDA

KD [10] uses a duplicated detector and distillation to avoid catastrophic forgetting.

This approach, however, introduces a significant overhead. Theoretically, a detector

that uses Cm amount of memory and Cf amount of computation, for an incremental

domain adaptation with a duplicated detection model it would take 2 × CM and 2 ×

Cf during each incremental step. Using MT-MTDA [9], (state-of-the-art in image

classification), has one teacher model per target domain, as well as one single student

detector. Assuming that backbone of teachers and student is ResNet50, where n is the

number of target domains. Then this approach requires n × CM and n × Cf . In the

following Table 12, we show the complexity of these methods, Incr. MTDA KD[10]

and MT-MTDA [9] with an image RGB of size 3 × 1200 × 600 with 3 and 7 target

domains. The complexity is measured over one iteration (one forward pass), for a whole

training, the measure can be obtained by multiplying these measurements with the total

number of iterations.

Table 12: Comparison of memory complexity (number of detection model parameters) and time complexity
(FLOPS for training with 3 or 7 target domains) given input images of 1200× 600 for one forward pass.

Backbone CNN Resnet50 Resnet101
No. of target domains 3 7 7
Methods # para. (M) GFLOPS # para. (M) GFLOPS # para. (M) GFLOPS
Incr. MTDA KD [10] 74 322 74 322 112 430
MT-MTDA 148 644 259 1127 392 1505
MTDA-DTM (ours) 38 162 38 162 56 216
UFT 37 161 37 161 55 215
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From Table 12, MT-MTDA [9] requires the most in term of resources and is clearly

not scalable for more target domains. While it improves over MT-MTDA, Incr. MTDA

KD [10], it is still 2 more complex than MTDA-DTM. Not only can MTDA-DTM

achieve better performance in terms of accuracy, it only requires an overhead of 1G of

total FLOPS and 1.5k parameters regardless of any architecture.

a) UFT

b) Incr. MTDA KD [15]

c) MTDA-DTM (ours)

Clipart Watercolor Comic

Figure 12: UMAP feature visualization of (a) UFT, (b) Incr. MTDA KD of Wei et al. [10] and (c) MTDA-
DTM (ours) after Pascal (S)−→ Clipart (T1)−→Watercolor (T2)−→ Comic (T3) on each target domains, with
source (red) and target(blue). Best viewed in color.

5.5. Feature Visualization:

The UMAP method was employed for feature visualization of baselines such as

UFT, Incr. MTDA KD [10] on 200 samples of deep features of each target domains

of PascalVOC scenario using a detection model after Pascal (S) −→ Clipart (T1) −→

Watercolor (T2) −→ Comic (T3).

From Fig. 12, we can see that all detectors can mix the data between source and

latest domain relatively well. One notable difference can be observed at the Clipart

target domain, where target features of ”a) UFT” and ”b) Incr. MTDA KD of Wei et al.

[10]” are further and have less overlap with source features. Since the source domain is

where detectors are supposed to excel given they have access to labels, it makes sense

that our MTDA-DTM performs better than others given that target features are closer to

the source and there are more target features overlapping with source features.
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6. Conclusion

In this paper, a novel approach is introduced for efficient MTDA of object detectors

that can achieve a high level of accuracy on multiple target domains without labels. The

proposed approach, MTDA-DTM, is suitable for real-world applications since it allows

the detector to be incrementally updated without degrading performance on data from

previously-learned target domains. This is achieved using a Domain Transfer Module

(DTM), that takes advantage of domain discriminators and does not need data from

previously-learned target domains. In addition, DTM only requires a small memory and

computational overhead compared to existing methods.

Results indicate that our proposed method outperforms the state-of-art methods, and

even ideal baselines, especially when dealing a growing number of target domains. In

some cases, our MTDA-DTM can provide comparable performance with supervised

training. One of our ablation studies also shows that MTDA-DTM outperforms the state-

of-the-art in MTDA that uses multiple teachers to distill to a single student. Therefore,

adapting to a target one at a time can be very beneficial for MTDA. In addition to

showing our performance on MTDA across dataset benchmarks, we also show results

of our detector in real-world application settings like multi-camera adaptation for object

detection. Results indicate that our detection model still improves upon baseline and

state-of-the-art models. Finally, our method generalizes well on adapted domains, and is

robust to unseen target domains, and thus more suitable for real-world applications. Our

proposed MTDA-DTM depends on the order of targets selected for incremental leaning.

Future work should be focused on techniques that are independent of the training order,

or that determine the optimal order based on the properties of target domains.
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Appendices

Appendix A. Hyper-Parameter Values

Table A.13 shows hyper-parameters values selected for our incremental domain

adaptation and DTM module. The HTCN [6] model is used as the baseline for our

MTDA approach, and specific details on HTCN can be found in their original paper

[6]. Hyper-parameters for the first domain adaptation are therefore based on HTCN.

For 2-7 incremental domain adaptation step, the number of iterations and the number

of epochs remain the same, while others and hyper-parameters for DTM were chosen

using a separate hold-out validation process.

Table A.13: Value of hyper-parameters selected for our proposed model.

Hyper-parameters Wildtrack Cityscape PascalVOC
incremental adaptation step 1 2-7 1 2 1 2-3
Incremental Domain Adaptation
learning rate 0.001 0.0001 0.001 0.0001 0.001 0.0001
momentum 0.9
α - 1 - 0.1 - 1
number of iterations per epoch 800 10000
number of epochs 7
learning rate after 5 epochs 0.0001 0.00001 0.0001 0.00001 0.0001 0.00001
λ of HTCN 1
DTM
learning rate 0.01
momentum 0.9
number of iterations 800 10000

Appendix B. Importance of α

In this experiment, the importance of α used in Equation 8 is empirically validated.

For this experiment, we used the Cityscape scenario and the PascalVOC −→ Clipart −→

Watercolor scenario as these two scenarios have used different α

Table B.14 shows that the further we increase the value of α, the worse the perfor-

mance drops, as seen in the case of α = 1.0. From the same Table B.14, we see that our

training can be relatively stable. There is no significant difference between variations
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Table B.14: Average Precision of MTDA-DTM when varying the α parameter on Cityscape scenario.

Backbone: VGG16 Accuracy
α value bus bicycle car m.cycle person rider train truck mAP
Train: Cityscape (S) −→ FoggyCityscape (T1) −→ RainCityscape (T2) - Test: all targets
0.1 66.0 34.6 48.4 18.2 29.3 53.5 35.4 27.6 39.1
0.2 66.0 34.4 48.4 18.0 29.0 53.9 32.9 27.5 38.8
0.3 65.2 35.8 48.7 21.0 29.3 53.1 32.5 26.9 39.0
0.4 65.1 34.6 48.2 20.1 29.2 53.5 34.9 26.1 38.9
0.5 64.0 33.9 48.6 22.0 28.8 54.1 34.7 26.2 39.0
0.6 64.6 34.2 48.3 20.4 29.1 52.6 34.3 26.5 38.7
0.7 64.2 34.7 47.8 24.0 30.0 53.4 32.1 24.2 38.8
0.8 64.3 33.6 48.3 20.4 28.9 53.1 35.8 24.9 38.6
0.9 62.3 34.5 48.5 22.3 29.0 53.5 32.6 25.5 38.5
1.0 65.3 33.9 48.2 19.9 29.2 53.0 34.7 22.5 38.3

Table B.15: Average Precision of the proposed MTDA-DTM, baselines and state-of-the-art models for MTDA
on PascalVOC −→ Clipart −→Watercolor scenario.

Backbone: Resnet50 Accuracy
α value bicycle bird car cat dog person mAP
Train: PascalVOC (S) −→ Clipart (T1) −→Watercolor (T2) - Test: all targets
0.1 56.7 34.6 37.4 13.3 24.4 62.3 38.1
0.2 58.2 37.3 37.9 16.7 19.2 62.6 38.5
0.3 57.7 38.4 39.1 18.2 19.8 62.7 39.3
0.4 56.2 38.3 40.6 14.6 24.0 61.8 39.1
0.5 53.0 39.0 35.5 15.7 28.2 63.5 39.1
0.6 46.6 38.2 37.3 19.8 23.2 62.7 39.1
0.7 52.1 37.0 38.5 19.4 26.1 63.1 39.4
0.8 52.6 35.5 40.8 15.5 29.4 64.1 39.6
0.9 52.8 37.2 41.4 18.7 24.6 64.1 39.8
1 62.8 35.6 38.1 14.3 24.1 63.7 39.8

of α, the biggest difference is of 0.8 in mAP between α = 0.1 and α = 1 and the

difference between two sequential values of α is mostly around 0.2, which means that

our training is quite stable overall. From the Table B.15, we observe that our hypothesis

about the value of α is confirmed. Our results increase when α is closer to 1 as this

scenario has a bigger shift that Cityscape.

Appendix C. Architecture of DTM

In this experiment, we vary the architecture of DTM in order to evaluate its impact

on performance. We explore 3 variations of DTM: 1) A wider DTM with 2 layers 2) A

DTM with 4 layers 3) A DTM with 6 layers. These different architectures are described

in Table C.16.

From Table C.17, we observe that varying DTM’s architecture only results in a slight

change in performance. In this experiment, using a wider DTM lead to slight decreases
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Table C.16: Average Precision of MTDA-DTM with different architecture of DTM on Cityscape scenario.

Architecture Original DTM Wider DTM 4 Layers DTM 6 Layers DTM
Tensor dimension: output channels × input channels × height × width

1st conv. layer 256 × 3 × 1 × 1 512 × 3 × 1 × 1 256 × 3 × 1 × 1 64 × 3 × 1 × 1
ReLU X X X X
2nd conv. layer 3 x 256 × 1 × 1 3 × 512 × 1 × 1 512 × 256 × 1 × 1 128 × 64 × 1 × 1
ReLU X X
3rd conv. layer 256 × 512 × 1 × 1 256 × 128 × 1 × 1
ReLU X X
4th conv. layer 3 × 256 × 1 × 1 128 × 256 × 1 × 1
ReLU X
3rd conv. layer 64 × 128 × 1 × 1
ReLU X
4th conv. layer 3 × 64 × 1 × 1

Table C.17: Average Precision of MTDA-DTM with different architecture of DTM on Cityscape scenario.

Backbone: VGG16 Accuracy
DTM’s architecture bus bicycle car m.cycle person rider train truck mAP
Train: Cityscape (S) −→ FoggyCityscape (T1) −→ RainCityscape (T2) - Test: all targets
Source Only 44.0 26.6 34.3 10.9 23.9 42.4 16.5 11.5 26.3
UFT 65.5 34.3 48.1 18.7 28.0 53.3 35.5 25.9 38.6
Incr. MTDA KD [10] 61.9 34.2 48.5 21.2 28.8 52.8 32.8 24.6 38.1
Original DTM 66.0 34.6 48.4 18.2 29.3 53.5 35.4 27.6 39.1
Wider DTM 65.2 34.0 47.6 21.8 28.2 56.4 35.6 25.5 38.9
4 Layers DTM 64.7 34.8 48.2 21.5 29.3 53.6 36.1 26.7 39.4
6 Layers DTM 60.3 35.8 48.7 21.7 29.5 53.9 33.3 26.9 38.8

performance, whereas a deeper DTM like the ”4 Layers DTM” can lead to a slight

increase in results. Observing the results of ”6 Layers DTM”, we can see a decrease in

performance of 3%, which indicate the presence of a diminish return problem where a

deeper DTM can impact performance negatively. In spite of this, our experiment shows

that the performance of DTM is stable when there are small variations in the DTM

architecture.

Appendix D. UMAP of features of Source, DTM-transferred and Targets

For ease of visualization, we add a separate figure for UMAP visualization of

source, DTM-transferred, and target features. Figure D.13 shows that DTM features are

slightly offset compared to source features. DTM does tend to shift the source features

but, as shown in Figure 2, this shift is small. In addition, our loss in Eq. 7 does not

encourage a large shift since we do not minimize the probabilities of classifying DTM

features from the source to be zero. Rather, it encourages DTM features to remain

consistent with the common source-target features while pushing the features closer to

target domains. Additionally, since DTM samples are based on the same principle as
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adversarial examples, specifically targeting features, thus these will not show a large

shift compared to the source. Finally, the visualization of these features from a trained

models is due to the domain adaptation method, that encourages domain confusion in a

model’s feature representation to overcome domain shift (as seen in the supplementary

material of [6]).

Source
Source-transferred
clipart
waterclor

Figure D.13: UMAP feature visualization of source domain (red), domain-transferred source domain (orange),
all target domains: Clipart (purple) and Watercolor (green) from the DTM trained for scenario PascalVOC
(S) −→ Clipart (T1) −→Watercolor (T2) −→ Comic (T3) . This figure shows the desired outcome of our DTM.
Best viewed in color.
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