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Abstract

For dimensionality reduction of HSI, many clustering-based unsupervised band

selection (UBS) methods have been proposed due to their superiority of re-

ducing the high redundancy between selected bands. However, most of these

methods fail to reflect the data structure of HSI, leading to inconsistent results

of band selection. To tackle this particular issue, we have proposed a novel

hyperbolic clustering-based band hierarchy (HCBH) to fully represent the un-

derlying spectral structure and obtain a more consistent band selection. With

the proposed adaptive hyperbolic clustering, the performance can be effectively

improved with the aid of geometrical information. By introducing a cluster-

centre based ranking metric, the desired band subset can be naturally obtained

during the clustering process. Experimental results on three popularly used

datasets have validated the superior performance of the proposed approach,

which outperforms a few state-of-the-art (SOTA) UBS approaches.
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1. Introduction

Hyperspectral images (HSI) can provide rich spectral information with hun-

dreds of contiguous bands, which is beneficial to a wide range of remote sens-

ing applications, such as land cover analysis [1, 2, 3, 4]. However, numerous

bands increase the dimension of HSI and result in challenging issues for HSI

data processing. As there are unlikely sufficient training samples in real ap-

plications, the HSI processing may suffer from the Hughes phenomenon, which

affect subsequent tasks, e.g. image classification/recognition and target detec-

tion. Additionally, the redundant bands within a narrow range may affect the

effectiveness of data analysis. Furthermore, the high dimensionality of HSI may

result a huge computational burden. Therefore, the dimensionality reduction

becomes a major challenge in HSI.

The dimensionality reduction methods of HSI is generally classified into two

categories, i.e. the feature extraction based and band selection based. Although

feature extraction methods [5, 6] maintain the discriminative information of

HSI, they rely heavily on some mathematical operations, such as the principal

component analysis (PCA) and its variations folded-PCA [3], 1D/2D singular

spectrum analysis (SSA) [7], etc. The band selection in HSI [8] can directly se-

lect a desired band subset from the original data whilst discarding the redundant

bands. In this manner, the band selection methods can retain the sequential

information of the original hypercube for ease of further physical interpreta-

tion, which is more preferred in the HSI data processing. The band selection

methods are usually comprised of three groups, supervised, semi-supervised,

and unsupervised based on if training samples are involved or not [9]. As it

is not straightforward to acquire the label information, the unsupervised band

selection (UBS) is more preferable [10].

Current UBS methods can be grouped into five main categories, i.e. ranking-

based [11], searching-based [12, 13, 14, 15, 16], clustering-based [17, 18, 19,

20, 21], sparsity-based [22, 23], and embedding-based [24, 25]. Ranking-based

methods weight each band and select the top-ranked bands, but the correlation
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between selected bands are ignored. Searching-based methods normally define

an objective function to obtain a band subset via an iterative optimization

process, which usually results a huge computational burden. Clustering-based

methods first group all bands into different clusters and then choose the most

significant band from each group to form the band subset, which can effectively

avoid the high redundancy among the chosen bands. Sparsity-based methods

first assume that each band can be represented by several other bands, and the

calculated sparse coefficients can reflect the importance of each band. However,

the sparse coefficients are very sensitive to the employed optimization methods.

The embedding-based UBS aim to find the desired band subset by investigating

the intrinsic geometric structural information, but they often suffers from high

computational burden due to their learning process. Among the above five

categories of UBS methods, clustering-based have attracted more attention due

to their superiority of lowering the redundancy among chosen bands.

Nevertheless, there are some challenging issues for the clustering-based UBS

methods. Firstly, the geometrical structure of the HSI data is not fully inves-

tigated, which may affect clustering results. Besides, existing clustering-based

UBS methods tend to apply a ranking strategy on the clustering result to obtain

the desired band subset. Although this strategy has achieved a good perfor-

mance, it increases the computational complexity.

As an effective tool for handling the high dimensional data, the hyperbolic

distance has achieved great success due to its strong ability of reflecting the

geometrical relationship within the hierarchical data [26, 27]. Compared to the

Euclidean distance, the hyperbolic one grows in an exponential way, and the

distance between nodes in a hierarchy also performs in an exponential manner

with the increase of depth in the hierarchy [27]. In this manner, the hyperbolic

distance is more suitable for a tree-like data. For HSI data, contained bands

are contiguous according to their wavelength spectrum, and the HSI can be

treated as a tree and each node represents a single band [21]. As the hyperbolic

distance measures the similarity of two data points in consideration of both

their distance and data representations, the geometrical structure of HSI can
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be better revealed, and a more efficient ranking strategy can be designed after

revealing the inherent structure of HSI.

Therefore, we have constructed a band hierarchy based on the hyperbolic

clustering. From our knowledge, HCBH is the first UBS method in the hyper-

bolic space. We formulate the major contributions of this paper as follows:

1) A novel hyperbolic clustering-based band hierarchy is proposed for unsu-

pervised hyperspectral band selection. With a tree-based hierarchy in the

hyperbolic space, the proposed HCBH can effectively reveal the geomet-

rical structure of the HSI dataset.

2) Compared to the widely used Euclidean metric, the introduced adaptive

hyperbolic distance can effectively evaluate both geometrical and infor-

mative similarities between different bands, and the effectiveness of band

selection can be improved even with less data samples.

3) Instead of applying a specific ranking metric, a hyperbolic distance-based

cluster-centre ranking strategy is employed to weight the significance of

each band and locate the centre of each cluster, which can directly output

a better band selection result during the clustering process.

The reminder of this paper are organized as follows. Section II summarizes

related clustering-based methods. In Section III, the detail of our proposed

HCBH framework are given, including hyperbolic band hierarchy, adaptive hy-

perbolic distance, cluster-centre ranking strategy, and the merits of HCBH. Af-

terwards, section IV presents the experiments conducted on three HSI datasets.

Finally, conclusions of this paper are give in the Section V.

2. Related Work

According to the defined strategy of our HCBH method, some related clustering-

based UBS approaches will be introduced as follows.

Clustering-based UBS methods usually build a similarity matrix first based

on predefined criteria, such as the Euclidean distance. Afterwards, HSI bands

can be divided into different groups according to the similarity matrix, where
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each cluster-centre is usually selected to form the desired band subset. As chosen

bands are from different groups, there will be low correlation in the band subset.

In WaLuMi and WaLuDi [17], a hierarchical clustering structure has been

proposed to perform the UBS. To simultaneously minimize the intra-cluster

and maximize the inter-cluster variance, two information metrics, the mutual

information and the Kullback-Leibler (K-L) divergence, are employed to reduce

data redundancy between selected bands. With these two metrics, the Ward’s

linkage method is utilized to perform a hierarchical clustering and the total band

set is divided into different groups. Afterwards, the band in each cluster with

the highest averaged similarity to the rest is chosen. As noisy bands are not

similar to their adjacent bands and can easily become single-band clusters, both

WaLuMi and WaLuDi are sensitive to noisy bands. In addition, both methods

have high computational costs due to their utilized information metrics.

Aiming to take advantages of both ranking-based and clustering-based UBS

methods, an enhanced fast-peak-based clustering (E-FDPC) method [11] has

been developed. Based on the hypothesis that a cluster-centre should be with

a higher local density and a larger distance to other clusters, all bands are

ranked based on the above metrics estimated from an Euclidean-based matrix,

and the top-ranked bands are chosen eventually. Although the E-FDPC can be

considered as an efficient clustering-based method, its chosen band subset still

has a higher redundancy.

Recently, an optimal clustering framework (OCF) [18] has been proposed

based on the dynamic programming. According to the top-ranked cut and

the normalized cut mechanisms, OCF has attempted to optimize the cluster-

ing result with constraints for HSI. After segmenting the HSI bands into sepa-

rated clusters, three ranking metrics, including the E-FDPC, maximum-variance

PCA-based criterion, and information entropy (IE), have been applied for eval-

uating and choosing the most significant band within each cluster. The experi-

ments have validated the superiority of combining a clustering framework with

effective ranking strategies.

With a coarse-to-fine process, Wang et. al. has proposed a clustering-based
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UBS method, an adaptive subspace partition strategy (ASPS) [19], to segment

the whole HSI data into several sub-cubes by maximizing the ratio of inter-class

to intra-class distance. In ASPS, a band is divided into several blocks, where

the local mean and variance are utilized to represent the noisy level of each

band. Afterwards, the band with minimum noise in each sub-cube is picked as

part of the desired band subset. However, the noisy level estimation relies on

the extracted blocks, which may heavily affect the performance of ASPS.

Similar to ASPS, a fast neighbourhood grouping band selection method

(FNGBS) [20] has been further introduced in a coarse-to-fine mechanism. Based

on the Euclidean distance, a similarity matrix is constructed to measure dis-

tances between bands and the coarse cluster centre. With the aid of contextual

information, the clustering result is further refined so that continuous bands

are grouped into a cluster based on their similarities. Following the clustering

result, the band with a larger product of local density and information entropy

is selected in each group.

In our former work[21], we have proposed an adaptive distance-based band

hierarchy (ADBH) for extracting the hierarchical structure in spectral domain

of HSI and generate a more consistent UBS result with varying numbers of

selected bands. Firstly, the hierarchy clustering is performed to group similar

bands according to a bottom-up manner. To solve the noisy sensitive prob-

lem of clustering-based UBS methods, an adaptive Euclidean-based distance is

designed with the consideration of cluster density.

Although the above approaches have achieved a good performance for UBS,

all these methods implement the clustering process with the aid of Euclidean-

based metrics. In HSI, each band represents the reflectance of certain response

with a range of wavelength, and similar bands usually share some physical char-

acteristics, such as contiguous wavelengths. Hence, the inherent structure of a

HSI may fit a tree hierarchy as each band represents a node and adjacent bands

in HSI are closer. Recently, The hyperbolic distance-based methods have been

successfully applied into several areas, including the 3D shape index [28] and

the person re-identification [29], etc. It is found that a specific non-Euclidean
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space, the hyperbolic space, is more suitable for a tree-based data structure

[26], which motivates this work to combine the hyperbolic distance with band

hierarchy for more effective UBS as detailed in the next section.

3. The Proposed Method

Figure 1: The overall architecture of our proposed HCBH.

In this section, we detail the proposed HCBH method, including our pro-

posed tree-based hierarchy strategy, the description of the adaptive hyperbolic

distance, a further developed cluster-centre strategy for choosing desired band

subsets in the clustering process, and merits of our proposed HCBH. As shown

in Fig. 1, a hierarchical clustering process is performed in a bottom-up manner

after estimating the similarity matrix. With the cluster-centre ranking strat-

egy, consistent results of band selection can be yielded. Relevant details are

presented in the following subsections.

3.1. Hyperbolic Band Hierarchy

For clustering-based UBS methods, the whole band set is usually grouped

into different clusters first, then the representative band in each cluster is se-

lected. However, inconsistent results of band selection can be produced with

different numbers of clusters. In our previous work ADBH [21], we have built
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a tree-based band hierarchy for UBS in HSI. With a bottom-up clustering pro-

cess, the ADBH can guarantee a consistent band selection result with various

numbers of clusters, and the robust performance of ADBH on several datasets

have shown the superiority of tree-based hierarchy for UBS.

Although ADBH has achieved certain success, it cannot fully reflect the hi-

erarchical structure of HSI data within the used Euclidean space. In general,

the Euclidean space is assumed to be flat and symmetric [26], which can not

better fit the hierarchy structure [26]. On the contrary, the hyperbolic space, as

a non-Euclidean space, has received more attention recently due to its strong

ability to fit a tree-based hierarchy and provide a more flexible data represen-

tation [27]. For a HSI, its contained bands can fit in a tree-like structure, i.e.

a hierarchy, based on their wavelength. With a Euclidean-based metric, the

distance between two bands can be obtained, but it is hard to find out their

locations within the tree-like structure. The location of each band on the tree

can be easily obtained if their distances to the root of the tree is known. In a

hyperbolic space, such as a Poincaré ball, the ‘origin’ of the ball can be assumed

as the root and the distance between each point on the ball and the ‘origin’ can

be estimated. This property is very useful to understand the hierarchical struc-

ture of HSI. By fitting a HSI in a hyperbolic space like the Poincaré ball, the

distance between each band to the ‘origin’ of the ball can be estimated. In this

way, each band can be naturally located in the tree-like hierarchy. Hence, we

can build a band hierarchy in the hyperbolic space, the HCBH, for improving

the band selection performance and revealing the hierarchical structure of HSI.

Let X ∈ RW×H×L be a 3D hypercube, where W×H is the spatial dimension

and L is the spectral dimension. By projecting the hypercube into a 2-D matrix,

a HSI can be reshaped as X ∈ RN×L = (x1, ..., xl, ..., xL) and normalized to

(0, 1), where the number of pixels in the band equals to N = W × H and xl

represents the lth band. With the assumption that a HSI fit a tree hierarchy T =

(V,E,Z), V = (1, 2, ..., L) denotes a set of nodes, where each node represents

a spectral band, and the E denotes the linkage set between different nodes.

Similar to [18, 20, 21], we assume that each band is more likely to be in the200
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Figure 2: The introduced hierarchical distance Z of the Indian Pines dataset.

same cluster with its adjacent bands because of the contiguous characteristic of

HSI in the spectral domain. For example, the lth node can be only clustered

with the (l−1)th and (l+1)th node initially. Hence, the linkage set E is defined

as E = (e1, ...el, ..., eL−1) that the ‘edge’ linked the lth node and the (l + 1)th

node is denoted by el.

As a key factor of our proposed HCBH, a novel hierarchical distance Z =

(z1, ..., zl, ..., zL) is introduced to illustrate the hierarchical information of each

node. The basic idea is to embed our proposed T into the Poincaré ball model

of the hyperbolic space [30], i.e. a Riemannian manifold, and the root of the

tree is put at the ‘origin’ O of the Poincaré ball, i.e. the top of the tree-based

hierarchy. All nodes will be placed around the ‘origin’, and the hierarchical

information of the lth node will be represented by its distance zl to the ‘origin’.

In the proposed HCBH, the ‘origin’ is set to be at the centre of the Poincaré

ball and its value is 0. Although the ‘origin’ does not represent any physical

meaning, it can help to locate the position of each band in the tree hierarchy.

In the proposed band hierarchy, the band closer to the ‘origin’ will be in the

higher level. Therefore, we assume that the band closer to the ‘origin’ is more

important in its cluster. As shown in Fig. 2, the distance to the ‘origin’ of each

band can be easily obtained, and spectral bands are placed around the ‘origin’

based on their hierarchical distance Z. With this proposed Poincaré ball model,

the spectral band with a closer distance to the origin is more important than
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Figure 3: The obtained band hierarchy by the proposed method. The grey circle represents

the Poincaré ball model, and the red circle denotes the ‘origin’ of the ball. Each spectral band

is denoted by a blue circle and the relationship between different bands and the ‘origin’ are

determined by the proposed hierarchical distance Z.

others. The definition of zl is given by:

zl = acosh(1 + 2
||xl −O||22

(1− ||xl||22)(1−O) + ε1
)

= acosh(1 + 2
||xl||22

(1− ||xl||22) + ε1
)

= acosh(
1 + ||xl||22

(1− ||xl||22) + ε1
)

= 2atanh(||xl||2)

(1)

where ε1 is a small positive constant.

After that, the hierarchical clustering is implemented in a bottom-up manner

as follows. Firstly, the initialization process is performed that each node, i.e.

each spectral band, in the tree is treated as a single-band cluster. After that, a

similarity matrix is built between different nodes. Based on the ‘mutual nearest

neighbouring’ searching strategy [21], two neighbouring nodes are merged into

one cluster if and only if both of them have the lightest edge compared to others.

Following this criterion, the clustering process is implemented iteratively.

During the merging process, it is necessary to determine the relationship

between two nodes, which can be used to indicate the latent structure of the

HSI. In our previous work [21], this relationship is ignored as the position of each

node or cluster cannot be located in the Euclidean space. Therefore, the ADBH

treats each node equally. With the newly introduced Z, the position of each

node in a tree hierarchy can be located by weighting the distance between each
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node and the ‘origin’. To this end, a ‘parent-child’ relationship between these

two nodes can be established where the node closer to the ‘origin’ is assumed to

be the ‘parent’. For each new cluster, we utilize the mean spectral information

to represent the whole cluster. This iterative process will continue until only

one cluster is left, and the clustering results with the number of clusters from

L to 1 can be obtained progressively. As a result, a band hierarchy as shown in

Fig. 3 can be built by the proposed bottom-up clustering.

3.2. Adaptive Hyperbolic Distance

For hierarchical clustering, there are two crucial issues, i.e. the similarity

metric and the effect of noisy bands. In hierarchical clustering, the similarity

metric has to be calculated repeatedly when clusters are updated iteratively,

a robust measurement can guarantee the clustering performance and avoid the

huge computational burden simultaneously. Due to the nature of the bottom-up

clustering, a noisy band is unlikely to be grouped for its large difference against

its neighbours. If a noisy band becomes a single-band cluster after numerous

iterations, it will be selected in the final band subset. Hence, an efficient and

robust hyperbolic distance measurement is given as follows towards the above

two issues.

In the Euclidean space, the most common way to determine the difference

between two adjacent bands xl and xl+1 is by:

dl,l+1 = ||xl − xl+1||2 (2)

In this paper, we introduce the fundamental hyperbolic distance h into the

UBS work, where the distance between two adjacent bands is defined as:

hl,l+1 = acosh(1 + 2
||xl − xl+1||22

(1− ||xl||22)(1− ||xl+1||22) + ε2
) (3)

where ε2 is a small positive constant.

Compared to the commonly used Euclidean distance, the hyperbolic distance

has several advantages. As seen in (3), the hyperbolic distance includes the angle

information with the acosh function. To this end, the hyperbolic distance can
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derive more geometrical information between different bands, which is more

favourable for a tree-based band hierarchy. Besides, the hyperbolic distance

focuses more on HSI data representation itself by adding two data norms in the

denominator part, where the Euclidean distance only measures the difference

between two bands. As a result, the hyperbolic distance has a better capacity

than the Euclidean one to estimate the similarities between two bands in an

informative view. Moreover, the efficiency of hyperbolic distance is acceptable.

To avoid the single-band cluster caused by noisy bands, we have designed an

adaptive mechanism on the hyperbolic distance by combining the cluster density

and band representation. As a noisy band is easy to become a single-band

cluster, the density ml is introduced to illustrate that how many bands the lth

cluster contains, initially ml = 1. For an effective characteristic measurement,

the L2 norm of each band is used to indicate the representation of spectral data.

By combining the cluster density and norm of each band, the data representation

µl of the lth band (cluster) is obtained as:

µl = ml ∗ norm(xl) (4)

and the similarity between the lth band and neighbouring (l + 1)th can be

estimated by an adaptive hyperbolic distance as:

ηl,l+1 = hl,l+1 ∗ µl ∗ µl+1 (5)

In our proposed HCBH, the edge between the l and (l+ 1) nodes is denoted

as ηl,l+1. According to this adaptive mechanism, the cluster with less bands

will be merged effortlessly than others, which can suppress noisy bands.

3.3. Cluster-Centre Ranking Strategy

In conventional clustering-based UBS approaches such as OCF [18] and

ADBH [21], the most representative band is chosen by using some ranking met-

rics such as E-FDPC. Although this kind of strategy is found to be effective on

some datasets, it has two major drawbacks. The first is the computational cost,
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which may decrease the efficiency. Additionally, the ranking metric may have

some crucial parameters and increase the complexity.

To tackle these drawbacks, we have proposed a simple yet effective ranking

metric to select bands during the clustering process. As we have introduced

a novel hierarchical distance Z = [z1, ..., zl, ...zL], and this corresponds to the

importance of each band in our proposed band hierarchy. With the metric Z,

the ‘parent’ of each cluster can be taken as the cluster-centre. To this end, the

hierarchical distance Z is an effective metric to indicate the most vital band in

each cluster. Therefore, we have applied Z as a cluster-centre ranking metric,

and the specified ranking process is given as follows.

Let K be the desired number of selected bands, the clustering result can be

represented as R = r1, ...rk, ..., rK , where rk indexes of kth cluster. For each

cluster rk, the band bk with minimum distance zk to the ‘origin’ is chosen, and

the band subset B = [b1, ...bk, ..., bK ] can be formed. With the above strategy,

spectral bands closest to the ‘origin’ of the tree-based hierarchy in each cluster

construct the band subset B during the clustering process, which improves the

efficiency of the HCBH.

Algorithm 1 Hyperbolic Clustering-based Band Hierarchy (HCBH)

1: Input: The original HSI X, the desired number of bands K.

2: Compute the η between neighbouring bands using (3), (4) and (5);

3: If mutual neighbouring exist, then merge these cluster pairs sequentially.

Otherwise, merge two clusters with the lightest edge.

4: Update clustering result after one merging operation.

5: Repeat the above operations until the number of clusters equals to K

6: Select the band with minimum distance to the origin in each cluster to form

the subset B.

7: Output: The selected band subset B.
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3.4. Merits of HCBH

With the aid of the hyperbolic distance, our HCBH aims to obtain the band

selection result with any desired number of selected bands whilst reflecting the

latent structure of the HSI in a tree-based band hierarchy. By fitting the HSI

in a hyperbolic space with a bottom-up clustering process, the relationship

between different bands can be better represented by their distances to the

‘origin’. Moreover, an adaptive hyperbolic distance is introduced to characterize

different bands by effectively considering both the geometrical and informative

representation. With the adaptive mechanism, the single-band cluster caused

by noisy bands can be avoided. Rather than selecting a most important band

from each group after the clustering process, we have designed a ranking metric

to locate the centre of each cluster, and the band selection result can be obtained

directly. According to the pseudocode shown in Algorithm 1, the HCBH requires

no input parameters and outputs a series of band selection results with any

specific number of bands, which can thus reduce the computational complexity.

4. Experiments

The experimental section validates the effectiveness and robustness of our

proposed HCBH method on several remote sensing datasets. The performance

is evaluated by the quantitative results, such as classification results with the

chosen band subset.

First, the datasets are briefly introduced. Then, the experimental settings

are discussed, including compared methods, benchmarking classifiers, and clas-

sification metrics. The comparison between our proposed method and eight

state-of-the-art UBS approaches are presented in the third subsection. In the

fourth subsection, the difference between HCBH and ADBH are analysed, in-

cluding some discussion about the hyperbolic and Euclidean space UBS. The

effectiveness of the proposed cluster-centre ranking strategy is further discussed

in the fifth subsection. To further verify the efficiency of our proposed HCBH

method the computational time comparison are also given in the final part.
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4.1. Datasets

In the experiments, we have utilized three public available datasets captured

by three different sensors, which is summarized in Table 1. The pseudo color

images of all datasets are shown in Fig. 4.

(a)

(b)

(c)

Figure 4: The pseudo color images of all datasets. (a) Indian Pines, (b) PaviaU, (c) Botswana.

Table 1: Summary of three utilized HSI datasets

Indian Pines PaviaU Botswana

Number of bands 200 103 145

Spectral range(nm) 400-2500 430-860 400-2500

Spatial size 145×145 610×340 1476×256

Spatial resolution(m/pixel) 20 1.3 30

Number of classes 16 9 16

Sensors AVIRIS ROSIS Hyperion

4.1.1. Indian Pines dataset

Collected by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS)

sensor, this dataset has 224 spectral bands with a spectral range from 400 to
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2500nm and a spatial size of 145×145 pixels. After removal of water absorp-

tion bands and severely noisy bands, only 200 bands in 16 semantic classes are

utilized for testing.

Table 2: The number of training and testing samples of the Indian Pines dataset in the

classification experiment.

Class No.Train No.Test No.Samples Class No.Train No.Test No.Samples

Alfalfa 5 41 46 Corn-notill 143 1285 1428

Corn-mintill 83 747 830 Corn 24 213 237

Grass-pasture 49 434 483 Grass-trees 73 657 730

Grass-pas-turemowed 3 25 28 Hay-windrowed 48 430 478

Oats 2 18 20 Soybean-notill 98 874 972

Soybean- mintill 246 2209 2455 Soybean-clean 60 533 593

Wheat 21 184 205 Woods 127 1138 1265

Building-grass-trees 39 347 386 Stone-steel-towers 10 83 93

Total 1031 9218 10249

4.1.2. Pavia University dataset (PaviaU)

With 103 spectral bands in a wavelength range of 430 to 860nm, PaviaU

was captured by the Reflective Optics System Imaging Spectrometer (ROSIS)

sensor. After discarding some less useful pixels, a cropped dataset with a spatial

size of 610×340 is used, in which 9 land-cover classes are labelled.

Table 3: The number of training and testing samples of the PaviaU dataset in the

classification experiment.

Class No.Train No.Test No.Samples Class No.Train No.Test No.Samples

Asphalt 664 5967 6631 Meadows 1865 16784 18649

Gravel 210 1889 2099 Trees 307 2757 3064

Painted metal sheets 135 1210 1345 Bare soil 503 4526 5029

Bitumen 133 1197 1330 Self-blocking bricks 369 3313 3682

Shadows 95 852 947 Total 4281 38495 42776
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4.1.3. Botswana dataset

Captured by NASA EO-1 satellite Hyperion sensor and with 242 bands rang-

ing from 400 to 2500nm in the spectral domain, this dataset has spatial size of

1476×256 pixels with 16 labelled semantic classes. Similar to the Indian Pines

dataset, a corrected version with 145 bands is utilized.

Table 4: The number of training and testing samples of the Botswana dataset in the

classification experiment.

Class No.Train No.Test No.Samples Class No.Train No.Test No.Samples

Water 27 243 270 Hippo grass 10 91 101

SReeds 27 252 269 Firescar 26 233 259

Acacia woodlands 30 284 314 Acacia grasslands 30 275 305

Mixed mopane 27 241 268 FloodPlain grasses 1 25 226 251

FloodPlain grasses 2 22 193 215 Riparian 27 252 269

Island interior 20 183 203 Acacia shrublands 25 223 248

Short mopane 18 163 181 Expose soils 10 85 95

Total 4281 38495 42776

4.2. Experimental Settings

To verify the efficacy of the proposed HCBH, three popular HSI classification

methods, including the K-nearest neighbour (KNN) [31], the support vector

machine (SVM) [32], and the edge preserving filter (EPF) [4] are utilized to

evaluate the classification performance of chosen band subsets on the above

three HSI datasets. Based on a 10-fold cross-validation, parameters of all the

three classifiers are optimized. For each dataset, we have randomly chosen

10% of data samples as the training set for all classifiers and the rest are used

for testing similar to other UBS literatures [18, 20, 19, 16], and the split of

training and testing samples are shown in Table 2-4. Three commonly used

metrics, the overall accuracy (OA), the average accuracy (AA), and the Kappa

coefficient, are derived from the confusion matrix for quantitative evaluation of

the experimental results.

For comparison, five SOTA clustering-based UBS approaches are compared
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with the HCBH, including WaLuDi [17], OCF [18], ASPS [19], FNGBS [20], and

ADBH [21]. Besides, two SOTA searching-based UBS methods and one SOTA

ranking-based method, the dominant-set extraction UBS (DSEBS), the optimal

neighborhood reconstruction (ONR), and E-FDPC [11], are compared to verify

the effectiveness of the proposed HCBH:

1) WaLuDi [17]: A frequently cited clustering-based UBS method [18, 21, 20],

which performs hierarchical clustering based on the construction of K-L

divergence matrix. After that, the band in each cluster with the highest

averaged similarity to others is chosen.

2) OCF [18]: With a dynamic programming-based strategy, the HSI data is

divided into different clusters, followed by a ranking strategy to select the

most representative band from the clustering results.

3) ASPS [19]: A novel clustering-based UBS approach, which groups the

ordered HSI bands into different sub-cubes and focus more on the noisy

effect to select a desired band subset.

4) FNGBS [20]: By fully mining the contextual information, a novel clustering-

based method, namely FNGBS, divides the whole band set into different

groups, and the product of the local density and the information entropy

is utilized as the metric for ranking.

5) ADBH [21]: A tree-based band hierarchy is built to obtain consistent

band selection results, and the noisy effect is suppressed by proposing an

adaptive Euclidean-based distance. The ADBH is a SOTA method with

a robust performance.

6) DSEBS [15]: As a searching-based method, the DSEBS has achieved a

robust performance on several remote sensing datasets. It can output the

band selection results by solving a greedy-searching problem, where both

the band informativeness and independence have been considered.

7) ONR [16]: The ONR is a novel searching-based method with leading per-

formance. It considers the UBS as a combinatorial optimization problem,

and the chosen band subset are determined by evaluating their reconstruc-

tion ability of the original data.
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8) E-FDPC [11]: the E-FDPC method takes both advantages of ranking-

based and clustering-based UBS. By ranking each band based on jointly

weighing two Euclidean-based metrics, it has a leading performance among

ranking-based methods.

For the above methods, all the experiments are conducted on the original

code provided by authors with default parameters. For our HCBH, it is a

parameter-free method and only the desired number of bands k is required. For

compared methods and HCBH, the classification experiments are repeated 10

times to reduce the randomness of chosen training samples for all classifiers,

and the average results are reported, including the OA curves and quantitative

results. We have compared the classification performance by using the original

data for better indicating the effectiveness of the UBS methods, denoted as ‘raw

data’ in this paper. All the methods are implemented on the MATLAB 2020b

with their original codes using a 16-GB RAM Intel i7-10700K CPU.

4.3. Comparison Results

To demonstrate the effectiveness of our proposed HCBH, the experimental

results are shown in two ways. First, the OA curves of three datasets are

generated from 3 to 30 selected bands and shown in Figs. 5-7. Second, the

quantitative results averaged on 3-30 selected bands are compared in Tables 5-

7.

4.3.1. Indian Pines

As illustrated in the Fig. 5, our proposed method has a robust performance

on the both KNN and EPF, and the best performance on the SVM. Although our

OA curve on KNN is slightly lower than the ADBH when more than 20 bands are

selected, the OA curve of HCBH is superior to all others. On the SVM classifier,

our proposed HCBH has the best OA curve than all other methods. For the

compared methods, most OA curves on the KNN become more stable with

the increasing number of selected bands. In Table 5, the proposed HCBH has

the best average quantitative results on all the three classifiers, which has fully
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(b)

(c)

Figure 5: Overall accuracy curves for the Indian Pines dataset. (a) Results by KNN, (b)

Results by SVM, (c) Results by EPF.
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Table 5: Quantitative results on the Indian Pines dataset using different UBS methods.

(Best results are labelled as bold except those from raw data).

Classifier WaLuDi[17] OCF[18] ASPS[19] FNGBS[20] ADBH[21] DSEBS[15] ONR[16] E-FDPC[11] HCBH Raw data

OA by KNN(%) 63.35±2.89 64.52±3.45 64.27±5.24 67.9±2.95 67.94±2.74 68.74±3.39 68.51±3.52 61.21±1.7 69.19±3.33 67.65±0.72

AA by KNN(%) 51.48±3.01 55.03±3.96 52.77±5.66 56.87±4.02 57.55±2.3 54.99±2.68 55.34±4.48 47.01±2.87 57.76±2.63 54.22±1.31

Kappa by KNN 0.58±0.04 0.59±0.04 0.59±0.06 0.63±0.03 0.63±0.04 0.64±0.04 0.62±0.06 0.55±0.03 0.67±0.04 0.62±0.01

OA by SVM(%) 73.99±4.03 75.39±6.21 73.29±7.75 76.34±5.76 76.43±5.48 74.34±5.6 74.42±4.58 69.52±5 78.09±5.45 79.33±0.51

AA by SVM(%) 72.33±5.72 73.36±9.02 70.66±12.03 75.40±8.11 74.13±9.02 71.89±8.83 72.13±6.54 65.76±10.57 76.67±6.02 71.47±0.61

Kappa by SVM 0.70±0.05 0.72±0.07 0.70±0.1 0.72±0.08 0.73±0.08 0.70±0.07 0.71±0.05 0.65±0.06 0.75±0.06 0.75±0.01

OA by EPF(%) 82.45±6.86 85.60±6.99 84.85±7.42 86.70±6.07 86.07±5.07 84.33±6.15 86.69±6.31 83.45±6.36 87.07±6.13 88.76±0.92

AA by EPF(%) 80.18±5.91 83.17±6.26 83.02±7.12 84.89±6.11 84.32±6.07 83.32±5.83 85.32±7.82 81.79±5.33 85.29±5.69 86.92±5.03

Kappa by EPF(%) 0.81±0.08 0.84±0.06 0.84±0.08 0.86±0.07 0.86±0.06 0.85±0.09 0.87±0.06 0.83±0.05 0.87±0.05 0.88±0.04

demonstrated the effectiveness of HCBH. Although both ADBH and FNGBS

have achieved a good performance, their OAs are about 2% lower than our

HCBH method on both KNN and SVM. Both the DSEBS and ONR methods

have achieved a good performance on the KNN but their OAs on the SVM400

are not robust enough. For the EPF classifier, all the compared methods have

achieved a better performance and our proposed method has obtained the best

OA. To sum up, HCBH has a significant superiority on the Indian Pines dataset.

4.3.2. PaviaU

For the PaviaU dataset, Fig. 6 and Table 6 present the OA curves from all

the three classifiers. As seen in Fig. 6 (a), the ASPS has the best performance
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(c)

Figure 6: Overall accuracy curves for the PaviaU dataset. (a) Results by KNN, (b) Results

by SVM, (c) Results by EPF.
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Table 6: Quantitative results on the PaviaU dataset using different UBS methods (Best

results are labelled as bold except those from raw data).

Classifier WaLuDi[17] OCF[18] ASPS[19] FNGBS[20] ADBH[21] DSEBS[15] ONR[16] E-FDPC[11] HCBH Raw data

OA by KNN(%) 83.96±1.94 83.19±1.72 85.69±1.68 84.15±1.69 83.18±1.86 81.92±2.3 85.26±1.61 84.24±0.92 85.56±0.02 85.73±1.15

AA by KNN(%) 79.86±2.27 79.12±2.03 82.45±1.92 80.62±1.83 78.76±2.86 76.38±3.2 82.18±4.01 80.68±1.56 82.63±2.03 82.02±0.98

Kappa by KNN 0.78±0.03 0.77±0.02 0.81±0.02 0.78±0.02 0.77±0.03 0.75±0.03 0.82±0.01 0.79±0.01 0.83±0.02 0.81±0.01

OA by SVM(%) 89±3.33 88.4±3.42 83.49±3.73 88.43±3.86 88.69±3.57 87.52±4.07 88.48±2.93 87.06±2.02 89.97±3.72 91.64±1.58

AA by SVM(%) 86±5.75 86.11±4.95 77.29±3.65 84.29±6.02 85.61±6.34 84.55±5.68 85.52±3.33 83.97±3.68 87.14±4.99 88.12±1.22

Kappa by SVM 0.85±0.05 0.85±0.05 0.78±0.03 0.84±0.05 0.86±0.06 0.83±0.05 0.84±0.03 0.83±0.03 0.86±0.05 0.89±0.00

OA by EPF(%) 92.57±4.97 92.41±5.43 90.67±5.79 92.95±4.96 92.69±5.17 92.42±5.34 92.90±5.00 92.18±4.76 93.35±5.01 96.43±1.52

AA by EPF(%) 89.13±3.55 88.91±3.19 87.11±4.22 89.32±2.95 89.11±3.44 88.71±3.18 88.92±3.13 88.56±4.23 89.69±3.71 93.79±1.98

Kappa by EPF(%) 0.88±0.02 0.88±0.03 0.87±0.01 0.89±0.03 0.88±0.02 0.88±0.03 0.88±0.02 0.87±0.03 0.88±0.03 0.94±0.01

when less than 20 bands are chosen, and our HCBH method has the leading

performance when more than 20 bands are selected. Our method has achieved

the most robust performance than the rest methods with respect to the SVM

classifier, and the ASPS has the worst performance. For other compared meth-

ods, most approaches do not obtain a good result on both KNN and SVM when

more than 20 bands are chosen. As shown in Fig. 6 (c), most methods have

achieved a better performance, and our method has a more stable OA curve. In

Table 6, our method has the best average quantitative results on both the SVM

and EPF, and the second best on the KNN with a small gap behind the ASPS.

ASPS has the best performance on the KNN but the worst on the SVM and
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EPF, which indicates its poor robustness towards different classifiers. For the

ONR, it has a good performance on the KNN and EPF but its classification re-

sults on the SVM are relatively poor. Therefore, our HCBH has the most robust

performance for the PaviaU dataset, which indicates again its effectiveness.

4.3.3. Botswana

As shown in Fig. 7, our HCBH method has the most stable OA curve against

different numbers of bands on all the three classifiers. For all the compared

methods, the WaLuDi has a relatively good performance with fewer chosen

bands, and differences between other methods are not obvious except the ASPS.

For the EPF classifier, most methods have achieved a better performance except

the ASPS and the E-FDPC. As shown in Table 7, our HCBH has a consistent

result of OA curves in Fig. 7, which has demonstrated its superiority with the

best performance on all the three classifiers. Specifically, our proposed HCBH

method has obtained a better average OA result on the KNN classifier than the

raw data, which further validates the merit of HCBH.

According to comparison results, our proposed HCBH has achieved the best

result on three public datasets. As shown in Figs. 5-7, HCBH has generated

more stable OA curves than other compared methods, which illustrates the

consistency of our band selection results. Furthermore, the great performance

on all the three classifiers have validated the robustness of our proposed HCBH

to different classifiers.

4.4. HCBH vs. ADBH

With similar tree-based band hierarchies, HCBH can be assumed as an en-

hanced version of ADBH. However, there are several differences between these

two methods as compared below.

In principle, HCBH and ADBH fit the HSI data into a tree-based hierarchy

in two spaces, i.e. the Hyperbolic and Euclidean space. For ADBH, two bands

are grouped together based on their Euclidean distance, and it is not straight-

forward to understand the relationship between these two bands without other
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Figure 7: Overall accuracy curves for the Botswana dataset. (a) Results by KNN, (b) Results

by SVM, (c) Results by EPF.
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Table 7: Quantitative results on the Botswana dataset using different UBS methods (Best

results are labelled as bold except those from raw data).

Classifier WaLuDi[17] OCF[18] ASPS[19] FNGBS[20] ADBH[21] DSEBS[15] ONR[16] E-FDPC[11] HCBH Raw data

OA by KNN(%) 82.36±0.66 80.53±2.95 77.52±7.83 80.65±2.27 81.15±1.66 79.99±3.71 81.85±1.49 79.6±4.13 83.19±1.29 82.44±0.63

AA by KNN(%) 79.72±0.75 77.81±3.06 74.95±7.77 78.24±2.16 78.52±1.69 77.39±3.76 78.83±2.45 76.98±4.13 80.87±1.41 80.11±0.72

Kappa by KNN 0.81±0.01 0.79±0.03 0.76±0.09 0.79±0.02 0.8±0.02 0.78±0.04 0.8±0.03 0.78±0.05 0.82±0.02 0.81±0.02

OA by SVM(%) 87.72±1.11 86.37±3.47 83.06±7.83 86.39±1.98 86.41±2.94 85.11±4.19 87.51±2.87 85.35±4.17 89.13±1.63 89.94±0.31

AA by SVM(%) 88.6±1.05 87.21±3.59 84.04±7.88 87.47±1.78 87.45±2.89 86.14±4.23 88.34±5.42 86.15±4.33 90.05±1.48 91.54±0.62

Kappa by SVM 0.87±0.01 0.85±0.04 0.82±0.08 0.85±0.02 0.85±0.03 0.84±0.05 0.86±0.02 0.84±0.04 0.88±0.02 0.89±0.01

OA by EPF(%) 91.66±1.78 92.05±2.08 89.82±4.11 92.30±2.08 92.40±2.09 92.71±1.97 92.82±2.04 90.46±3.12 93.02±2.09 94.74±0.61

AA by EPF(%) 93.23±1.96 93.78±1.79 91.36±3.93 93.95±2.35 93.97±2.02 94.31±2.09 94.15±1.89 92.01±3.64 94.89±2.15 95.92±0.47

Kappa by EPF(%) 0.92±0.02 0.92±0.01 0.88±0.01 0.93±0.02 0.92±0.01 0.92±0.01 0.93±0.01 0.90±0.02 0.92±0.02 0.93±0.01

metrics. Thus, the ADBH cannot weight bands within a cluster easily. Instead

of regarding each node equally, the HCBH attempts to understand the relation-

ship between bands in a cluster. The HSI data is firstly placed into a hyperbolic

space, which is popular for its strong capacity of fitting tree-based data. Then,

the hyperbolic distance is utilized in the clustering process to introduce more

geometrical information. With the aid of the Poincaré ball, a hierarchical dis-

tance Z can be defined in (1), which relies on the hyperbolic distance between

the ‘origin’ of Poincaré ball and each band. In this manner, the ranking between

different bands can be obtained where bands closer to the ‘origin’ are assumed to

be more critical, and the underlying structure can be better reflected. Besides,
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the robust performance of ADBH depends on an effective ranking strategy on

clustering results such as E-FDPC, which has lowered the efficiency of ADBH.

On the contrary, the HCBH can output the band selection results directly by

adopting the hierarchical distance Z to determine the cluster-centre as a se-

lected band. From the classification results on three public datasets, it can be

concluded that HCBH has shown a more effective performance than ADBH.

In the graph embedding field, an essential theory is that non-Euclidean space

can embed the original data in a lower dimension to perform certain operations

than the Euclidean space [33]. In this paper, we have designed a comparison

experiment to verify the above theory in the UBS task. As introduced in Section

III, the HSI data is firstly projected into a 2-D matrix with a size of N × L.

During our clustering process, each band is assumed to be a vector with a

dimension of N , i.e. the number of samples in HSI.

In our experiments, we have randomly chosen part of samples to perform

UBS task by HCBH and ADBH. By using less samples, the dimension of each

band can be reduced, and the performance of HCBH and ADBH can be evalu-

ated with a lower-dimensional data. After obtaining band selection results, we

have utilized the SVM with the same setting in Section IV. B. As the samples

are randomly chosen, we have repeated the band selection experiment five times

and the averaged results are reported as follows.

In Fig. 8 (a), the HCBH with all data samples has the best OA curves than

all others. With less than 15 selected bands, the ADBH with all data samples

has the second-best OA curve. It is worth mentioning that even with 1000

and 5000 randomly chosen samples, i.e, 1000 and 5000 dimensions, HCBH has

comparable results with ADBH that uses the whole dataset, which validates

that band hierarchy in the hyperbolic space can generate a more flexible result

than in the Euclidean space. As for ADBH with less samples, OA curves are

not as robust as HCBH, especially when less than 20 bands are chosen.

In Fig. 8 (b), the HCBH with all data samples has produced the most robust

OA curve than all others on the PaviaU dataset. For ADBH, its performance

is much poorer. With 5000 randomly chosen samples, the HCBH has achieved

27



(a)

(b)

(c)

Figure 8: A comparison between HCBH and ADBH with different numbers of samples. (a)

Indian Pines, (b) PaviaU, (c) Botswana.
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a better OA curve than ADBH. In the circumstance of 1000 randomly picked

pixels, the ADBH has obtained the worst result among all OA curves, where the

HCBH has acquired a much better result than all ADBH-related curves. The

robust performance of HCBH has demonstrated its effectiveness.

For the Botswana dataset, classification results with various numbers of cho-

sen samples from both HCBH and ADBH are shown in Fig. 8 (c). Obviously, the

HCBH with only 1000 samples has obtained a more robust OA curve than the

ADBH methods with higher dimensions. With less samples, the ADBH cannot

produce satisfactory results when less than 15 bands are selected. The supe-

rior performance with less samples have verified again the capacity of HCBH in

handling the UBS task.

As verified in the results on all three datasets, HCBH can obtain more flexible

results than ADBH even with less data samples. This phenomenon has validated

the theory in [33], which shows a great potential of Hyperbolic space-based

methods in UBS, or even other tasks in HSI.

4.5. The effectiveness of the proposed ranking strategy

Table 8: OA (%) by SVM with different ranking strategies (Best results are labelled as bold)

HCBH+E-FDPC HCBH+IE The proposed one

Indian Pines 76.89 76.63 78.09

PaviaU 89.13 88.74 89.97

Botswana 87.89 88.62 89.13

To better investigate the effect of our proposed ranking strategy, we have

compared two other popular strategies, i.e. the E-FDPC [11] and the informa-

tion entropy (IE) [18]. By replacing the proposed strategy with E-FDPC and

IE, we have compared the performance of all these three ranking metrics, and

the experiment settings are the same as before and the OAs are generated by

averaging the OAs from 3 to 30 bands with the SVM classifier. As shown in Ta-

ble 8, the E-FDPC has achieved a better performance than the IE on the Indian

Pines and the PaviaU datasets, and the IE has achieved a better performance
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on the botswana dataset. For all the three datasets, our proposed method has

achieved the best OA with the HCBH framework, which fully demonstrates the

effectiveness of our proposed ranking strategy.

4.6. Computational Time Comparison

Table 9: The computational complexity between different UBS methods, including their

running time (s) when 30 bands are selected and input parameters

(Best results are labelled as bold).

No.Param. Indian Pines PaviaU Botswana

WaLuDi 4 30.27 78.72 112.45

OCF 0 0.17 0.23 0.57

ASPS 0 0.17 0.36 1.13

FNGBS 0 0.05 0.08 0.22

ADBH 0 0.24 0.92 0.82

DSEBS 4 0.21 0.89 2.55

ONR 1 0.08 0.33 0.57

E-FDPC 1 0.95 1.9 1.5

HCBH 0 0.06 0.04 0.03

As a significant issue in the UBS task, the computational complexity of

our proposed HCBH is analysed. For a fair comparison, we have compared

the computational time of each method with the same hardware and software

platform. In Table 9, the number of key parameters and the processing time of

each method with 30 chosen bands are depicted.

As seen in Table 9, most clustering-UBS methods, especially the recently

proposed OCF, ASPS, FNGBS, and ADBH methods [18, 19, 20, 21], have no

input parameters in their framework. Similar to these methods, our proposed

HCBH method is also a parameter-free method. For the computational time,

our HCBH is the most efficient one for both PaviaU and Botswana dataset and

the second efficient one, slight below FNGBS method for the Indian Pines. For

WaLuDi method, its computational burden is rather heavy on all three datasets.

For DSEBS, ONR, and E-FDPC, all of them have one or more key parameters,
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which may lower the robustness of these methods. Accordingly, HCBH is more

efficient and flexible for robust and efficient clustering-based UBS of HSI.

5. Conclusion

In this paper, we have proposed a hyperbolic clustering-based band hier-

archy for effective band selection in HSI. It is the first time the UBS task is

performed in the hyperbolic space, which can construct a more flexible tree-

based hierarchy to reflect the data structure within the HSI. By introducing the

proposed adaptive hyperbolic distance, HCBH can effectively improve band se-

lection results and reveal the geometrical information between different bands.

The effectiveness of the proposed method has been further improved by gener-

ating band selection with a proposed cluster-centre ranking strategy during the

clustering process. The experimental results on three public datasets have fully

validated the effectiveness and robustness of our proposed HCBH framework.

Although the effectiveness of our HCBH method has been demonstrated by

classification performance of selected bands in the experimental part, the HCBH

has not been performed with other unsupervised tasks, such as anomaly detec-

tion [34, 35, 36] and object tracking [37]. For these applications, an effective

UBS method can select more discriminative bands whilst reducing the compu-

tation cost. Hence, the utilization of HCBH in some other applications of HSI

will be further explored in the future work.
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