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Abstract

This work aims to estimate 6Dof (6D) object pose in background clutter. Con-

sidering the strong occlusion and background noise, we propose to utilize the

spatial structure for better tackling this challenging task. Observing that the

3D mesh can be naturally abstracted by a graph, we build the graph using 3D

points as vertices and mesh connections as edges. We construct the correspond-

ing mapping from 2D image features to 3D points for filling the graph and fusion

of the 2D and 3D features. Afterward, a Graph Convolutional Network (GCN)

is applied to help the feature exchange among objects’ points in 3D space. To

address the problem of rotation symmetry ambiguity for objects, a spherical

convolution is utilized and the spherical features are combined with the convo-

lutional features that are mapped to the graph. Predefined 3D keypoints are

voted and the 6DoF pose is obtained via the fitting optimization. Two scenarios

of inference, one with the depth information and the other without it are dis-

cussed. Tested on the datasets of YCB-Video and LINEMOD, the experiments

demonstrate the effectiveness of our proposed method.
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1. Introduction

In this work, we address the challenging task of estimating object 6D pose

from the image. It aims at recovering the 6D pose of each object instance in

an image. More specifically, we focus on the rigid object 6D pose that contains

3 rotation parameters (yaw, pitch, roll) and 3 translation parameters (x, y, d)

along 3 axes in the 3D coordinate system.

Object 6D pose estimation is a fundamental computer vision task in many

applications, e.g let@tokeneonedotrobot manipulation and autonomous driving.

Like many other computer vision tasks, pose estimation faces typical challenges,

such as occlusion among object instances, background clutter, dynamic changes

in the environment. In recent years, the success of deep neural networks [1,

2, 3, 4, 5] in computer vision tasks has greatly promoted the development of

pose estimation and has achieved many impressive achievements [6, 7, 8, 9, 10].

Regrettably, most methods either directly regress 6D parameters based on image

features, or estimate poses from the corresponding keypoints for every single

object. Therefore, the problem of rotation symmetry and the 3D positional

relationship of objects’ points still cannot be well addressed.

0° 45° 90°

Figure 1: The main idea of our spherical correlation method is to learn a latent spherical

feature representation for each object that is consistent with the object appearances under

different views so that the rotation on the object leads to the same rotation on its spherical

feature. Here the views of an object (in the first row) are indexed by the rotations (in the

second row) on SO(3).
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The challenge of the rotation symmetry comes from similar object image

appearances under different object rotations, e.g let@tokeneonedota symmetric

object labeled as different poses may have very similar or even the same image

appearance. In the learning stage, such data and labels bring out the problem

of one versus multiple mappings, which makes the direct regression of the pose

parameter an ill-posed problem. This results in poses with similar appearances

ambiguous. As illustrated in Fig. 1, the handle of the cup indicates the rotation

of the cup. However, during changing the views, with the disappearance of the

handle, the cup with different rotations will have the same appearance. This

symmetry problem can be considered as a subset of the occlusion cases called

self-occlusion, where the object occludes part of itself. Such pose ambiguity of

symmetric objects may frequently occur in estimation, which is ill-posed prob-

lem as one versus multiple mappings is unsolvable by optimization. Efforts have

been made on this symmetry problem. In [11], the causes of pose ambiguities

are grouped into object self-symmetry and occlusion-induced symmetry. Moti-

vated by the recent advance on spherical convolutional neural networks [12, 13],

we propose to learn a latent spherical feature representation to object as an

auxiliary for the pose estimation. The rotation parameter is on the Special

Orthogonal (SO(3)) group which is consistent with the spherical correlation

result so that the estimation of the rotation parameter can be proposed to be

done by analyzing the spherical correlation defined in [12] between the object

appearance feature and the learned sphere feature representation. The object

appearance feature is mapped to a hemisphere representing its one-side view.

In Fig. 1, the latent spherical representation is required to be with the same

rotation property of the object. By finding the maximum correlation between

the object appearance spherical feature and the latent spherical representation,

we do not confuse the network learning to predict different rotation parameters

from similar appearances. During the inference, we pick the rotation parameter

that has the largest spherical correction, which does not have to be the ground-

truth rotation parameters as long as the corresponding projection of the 3D

model well aligns with the ground-truth projection.
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Furthermore, in the camera coordinate system, traditional methods for esti-

mating the object pose typically utilize hand-crafted features to find the corre-

spondence between the camera image and a predefined 3D model. The pose pa-

rameters are then calculated according to the correspondence. Due to the com-

mon shortcomings of hand-crafted features (i.elet@tokeneonedot. SIFT [14]),

such methods are very sensitive to the texture transition and lighting changes.

Accordingly, the popularity of data-driven methods has brought new oppor-

tunities and challenges to pose estimation based on learning. More specifi-

cally, Deep Neural Networks (DNNs) have achieved remarkable success in many

fields [15, 16, 17, 18, 19, 20, 21]. For example, [7, 22, 23, 24] propose that the

pose parameters are directly regressed from the convolutional features of each

object. In this case, such methods are going to achieve significant improvements

if there are sufficient training samples. However, one of the main challenges of

pose estimation is background clutter, where objects may be surrounded by

complex backgrounds or occluded by other objects. Noise will be mixed into

the object’s convolutional features, which makes it difficult for the regressor to

fit the data according to the feature representation. To overcome this problem,

a method of obtaining translation from convolutional feature maps by voting is

first proposed in PoseCNN [7].

Recently, inspired by the traditional methods of inferring pose parameters

using the correspondence, [6, 25, 26] define and calculate the keypoints of the

objects, and then find the pose based on the corresponding keypoints through

the ”Perspective-n-Point” (PnP) algorithm. Usually, the keypoints of these

methods are obtained through a coordinate map according to the surface of the

object in the image, and the keypoints are determined by voting of all pixels

from the coordinate map. The advantage of this is not only that the keypoints

prediction is pixel-by-pixel, which can handle occlusion and background noise

in features, but also that voting effectively suppresses outliers. Following the

above-mentioned pose estimation idea based on keypoints, [6, 25, 26, 27] predict

the coordinate map directly from the 2D convolutional features where 3D infor-

mation is insufficiently used. Moreover, [9, 28] merge the 2D features with 3D
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points [29], and the PointNet [30] is applied for further calculation. However,

in most of the keypoint-based methods, the 3D relation information is not suf-

ficiently considered. Although PointNet [30] is good at dealing with disordered

points, the Multilayer Perceptron (MLP) may destroy the essential structure of

the data. 6D object pose estimation is closely related to 3D geometry measure-

ment. Among different coordinate spaces, the 6D pose parameter is one of the

essential descriptions for objects in 3D space. There are a few ways to build

the essential representation for a 3D object, e.g let@tokeneonedot, point cloud,

voxel, mesh and 3D surface. While voxel, mesh and the 3D surface can easily

store the 3D relationship between elements, the relation information is hard to

be processed by neural networks. PointNet [30] and O-CNN [31] provide solu-

tions for neural networks to deal with point cloud and voxel data respectively

while Graph Convolutional Networks (GCNs) [32] make it possible for graph

data inference by a neural network. While point cloud is leaking the 3D connec-

tion and voxel is redundant, mesh is considered a more elegant representation

for a neural network with spatial relation information. Moreover, mesh is one

kind of special graph that uses its nodes as vertices and connections as edges.

Hence, instead of using point cloud or voxel, we connect discrete points into

mesh to build a graph model of a 3D object. Next, GCN is used to help the

feature exchange and merge. Finally, the predefined key points are regressed

and voted from the vertices of the graph, and the pose parameters are calculated

through optimization. Using the mesh representation for data inference provides

the system with a nature graph scheme. Compared with MLP in PointNet [30],

GCN considers more on the connection relationship and data spatial topology.

Using GCN combined with the mesh representation sheds light on building a

union 3D data representation for neural network inference.

Our contributions are summarized as follows:

• We explore to solve the rotation ambiguous and occlusion problems in 6D

pose estimation by using the spherical correlation and graph convolution.

A robust 6D object pose estimation system is proposed.
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• We propose to map the 2D convolutional feature to both a sphere and the

3D mesh representation. And the corresponding network components are

integrated which forms the end-to-end deep neural network training and

inference scheme. The proposed method digs more essential information

from the data representation and processing. To our knowledge, this is

new and meaningful for 6D object pose estimation.

• Target on the rotation ambiguous and occlusion challenges, we propose to

solve from the parameter space and data structure. The state-of-the-art

performance demonstrates the efficiency of the proposed system.

2. Related Work

2.1. 6D Object Pose Estimation

Early methods focus on recovering poses by matching keypoints features

between 3D models and images [33, 14, 34, 35, 36]. Correspondences are found

through the matching and the parameters are recovered by further optimization.

However, these methods are limited by hand-crafted features and suffer from

the problems of the keypoints extraction and description, which are not robust

to e.g let@tokeneonedotillumination changing, non-significant texture and affine

transform. Thus, with additional depth information, [37, 38, 39, 40, 41, 42]

significantly improve the accuracy performance.

Recently, Deep Neural Networks (DNNs) have achieved remarkable success

in many computer vision fields [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55].

The state-of-the-art 6D object pose estimation methods from monocular images

are mostly based on DNNs. For example, convolutional features bring significant

performance improvements [22, 56, 26]. More specifically, PoseCNN [7] proposes

a representation that infers the actual 3D coordinates of the image coordinates

then determines the object position center through Hough voting and designs

ShapeMatch-Loss to solve the problem of rotationally symmetric object pose

estimation. DeepIM [57] proposes a method to predict the relative translation

and relative rotation of objects in two images so that the network can learn

6



how to fine-tune the posture. In addition, it also proposes an untangled relative

pose representation for accurate pose prediction. Unlike the pose estimation

methods based on object detection, this representation can handle previously

unseen objects. Besides, considering the 3D spatial properties of the object pose,

more additional supervision information is used to enhance the performance of

deep neural networks. [6, 25] learn the keypoints of 2D to 3D matching through

the instance segmentation framework to enhance the description of the object

pose, which brings the system performance to a new level. However, these

methods all focus on utilizing the 2D features for better regression, where the

3D information may be insufficiently used. Thereupon, [9, 28] propose to do

the fusion of 2D and 3D features. 2D points are sampled from the convolutional

feature map. With the depth map, 3D coordinates are recovered from the

sampled 2D points. The feature fusion is typically the concatenation of the

2D convolutional features and the 3D coordinates. Network inference in 3D

space achieves better interpretation for the pose parameters and reaches more

accuracy.

Note that [11, 58] specifically aim to address the symmetry ambiguous prob-

lem. Both of them try to learn a feature representation from multiple object

views, and the final rotation is obtained by searching the feature space. Dif-

ferent from their methods, we propose to learn the object representation on a

sphere which is an essential representation for object rotation and we do not

require multi-view images.

2.2. Symmetric and Spherical Correlation

It is not difficult to understand that symmetric objects cause ambiguity

in mapping appearance to pose. As aforementioned, the symmetric ambigu-

ity makes the learning-based method into a one versus multiple mapping task,

which is an ill-posed problem without a unique solution. By learning from such

an ill-posed problem, the results fall into the unpredictable. Using such estima-

tion for higher-level tasks may cause the system out of control. Recently, efforts

have been made to tackle this problem. One intuitive solution is to do symmetry
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detection or analysis for each specific object. Efforts have been made on both

extrinsic symmetry [59, 60, 61] and intrinsic symmetry [62, 63, 64, 65, 66] detec-

tion in 3D space [67]. However, such methods mainly focus on the symmetry of

3D models and often ignore the object image appearances under specific views,

which are important for the pose parameter regression task.

In [22], a render and compare loss is introduced to compare the rotated and

rendered 3D model with its segmentation and depth masks. Penalized by the

Intersection over Union (IoU) between the rendered and the label masks, the

ambiguous object poses are represented as hidden parameters in the network

that can have the same appearance. However, solving the hidden parameters

is still ill-posedd. Moreover, such render and compare loss only focuses on the

rendering shape but ignores the object’s texture. In [11], an encoder is learned

that encodes the object poses in a feature codebook and the testing pose is

obtained by retrieving from the codebook. However, learning the encoder needs

training samples from all object rotation views. The rotation of an object on

the SO(3) group is difficult to be uniformly sampled. In addition, the code

distance for describing different rotation views is hard to define.

Spherical signals are a set of particular data with special properties on the

sphere. It is known that the flat 2D convolution is a translation equivariance

operation. Similarly, it is proved that the convolution on the sphere and SO(3)

is equivariance on the rotation group R∈SO(3) [12]. Particularly, in [12, 13],

the spherical convolution on a sphere and SO(3) is defined and discussed. With

that, we propose to learn a rotation equivariance spherical feature representation

for 6D object pose estimation.

2.3. Graph Convolutional Network

GCN has demonstrated its strength in many fields. In 3D representation,

the graph has been widely used. [68, 69] explore the application of GCN on the

human body and hand joints, while [32] reconstruct the complete 3D mesh for

the human hand using GCN. Considering that mesh and surface are popular

3D representations, they are all consisted of points and connections, which can
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be naturally abstracted as graphs. In [70, 71], the graph is built based on the

3D points and mesh connections, and GCN is used for the graph inference. The

3D shape generation is changed to the task of deformation from an initialized

shape to the target shape. However, the inference of the graph is also a process

of regression that predicts the target point coordinate on each node. From this

view, [72] GCN is used to jointly learn the hand-object pose, where the object

pose is described by its keypoints.

3. Methodology

As shown in Fig. 2, a monocular RGB image with its depth map is taken as

the input of our overall pipeline, where the depth map is optional. The object

masks and their Convolutional Neural Network (CNN) features are obtained

in a semantic segmentation branch [73, 74]. A coarse rotation is learned by

spherical learning. Inspired by [70], a graph is abstracted according to the ob-

ject mesh formed by all the seen object surfaces. Afterward, the corresponding

convolutional features combining the spherical feature are mapped to 3D coor-

dinates and further refined through a graph matching algorithm. The Graph

Convolutional Network (GCN) is used to process the graph model and a set

of predefined 3D object keypoints are predicted. The graph unpooling layer is

introduced so that the graph scale can be well controlled and the graph output

can be dense enough to support the keypoint voting. The final pose parameters

are obtained by optimization according to the keypoints.

3.1. Spherical Representation Learning

For the self-contained purpose, here we introduce some important concepts

for spherical signals and operations on a sphere as well as on the SO(3) group

introduced in [12, 13].

Without losing generality, we only introduce the continuous version of the

spherical operations, which can be easily converted to the discrete case. Mainly

following the notations in [12], similar to a 2D image, a sphere signal is defined
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Convolutional Feature Maps

Objects with 6D Pose

Segmentation Mask

RGB Image and
Depth Map (Optional)

Object KeypointsGraph Initialization

GCN

Mapping

Graph Unpooling GCN Graph Unpooling GCN

Parameter Recovery

Segmentation Branch

GCN Branch

Pose Estimation

Mapping Mapping

Spherical
Feature

Rotation

Spherical Learning

Figure 2: The overall pipeline of the proposed method. Our system is divided into four parts,

which are a segmentation branch for feature extraction and sampling, a spherical learning

branch for coarse rotation prediction, a GCN branch for capturing the 3D object structure

and inferring the graph with 2D features, and a pose estimation utilizing the voted keypoints

for parameter regression. The system takes an RGB image and a depth map as input, where

the depth map is not compulsory. Our core data structure is a graph abstracted according

to the 3D mesh connection. The graph is filled by 2D to 3D correspondence and filled with

2D convolutional features and spherical features. During the graph inference, unpooling will

be applied so that the model can be better learned and there are enough output points to

support the keypoint voting. In the GCN branch, two graph unpooling layers connect 3 groups

of GCN layers. The posture parameters are calculated by optimizing the fitting function.

as a continuous function on the spherical coordinates f : S2→RK , where S2

indicates the spherical coordinates and K is the dimensionality of the continuous

function. Rotating a spherical signal with a rotation operator OR indexed by

R∈SO(3) has the property:

[ORf ](x) = f(R−1x), (1)

where the R−1 is the inverse of R. (1) essentially states rotating a sphere signal

by R is equivalent to rotating the sphere coordinate system by R−1.

Considering that the normal 2D convolution can be defined as the function
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of the inner product over the 2D plane, the inner product of two spherical signals

is defined as:

[φ ∗ f ] =

∫
S2

K∑
k=1

φk(x)fk(x)dx, (2)

where φ is another spherical signal with the same dimensionality of f . Dif-

ferent from the inner product on the 2D plane, the inner product on sphere

calculates the integration along sphere S2 which is indexed by the spherical co-

ordinates α and β. Its integration measure dx is a standard rotation invariant

one, dαsin(β/4π), which ensures
∫
S2 f(Rx)dx =

∫
S2 f(x)dx for any rotation

R∈SO(3). Further, the spherical correlation is defined as [12]:

[φ ∗ f ](R) =

∫
S2

K∑
k=1

φk(R−1x)fk(x)dx, (3)

where R∈SO(3) is the index of the spherical correlation.

The spherical correlation can also be defined on SO(3) [12]:

[φ ∗ f ](R) =

∫
SO(3)

K∑
k=1

φk(R−1Q)fk(Q)dQ, (4)

where φ and f now denote functions defined on SO(3), and dQ denotes the

invariant integration measure on SO(3). Under ZYZ-Euler angles, (α, β, γ), dQ

becomes dαsin(β)dβdγ/(8π2) [12]. Both spherical correlations in (3) and (4)

are rotation equivariance, i.elet@tokeneonedot.

[φ ∗OQf ](R) = [φ ∗ f ](Q−1R) = [OQ[φ ∗ f ]](R). (5)

This property states that the result from a sphere correlation preserves the

original signal property on SO(3).

This step aims to estimate coarse rotation parameters on SO(3). Our basic

idea is to map the segmentation feature of an object onto a hemisphere. If there

is a spherical representation of the object, we can use the spherical correlation to

generate the correlation output on SO(3). Since we have the ground-truth 3D

model for each object, a straightforward way is to follow [12] to use ray casting

to map a 3D model to a sphere. Specifically, towards an origin, a ray shots from
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each point on the sphere surface and ends where it hits the model surface. The

ray length and surface angle of each point are recorded and form the spherical

signal. Using the ray casting sphere f as the reference spherical representation

of the object, the object rotation can be found by learning the object feature

under each specific view that has the maximum correlation with f . For a specific

symmetric 3D model, when the ray origin coincides with its symmetry center,

the ray casting spherical signal has the same symmetry attribute. However, the

ambiguous poses come from both the object self symmetry and the occlusion

induced symmetry. It is hard to find the symmetry origin for occlusion induced

symmetry by only using the 3D model.

Penalize

Segmentation MaskMask FeatureSemi-sphere

Spherical
Correlation

Ground-truth
Rotation

Figure 3: The segmentation feature is mainly learned from the ground-truth mask, and the

spherical representation is mainly learned according to the ground-truth rotation.

Thus, instead of using the ray casting sphere f , we propose to learn an

auxiliary spherical representation f that has the same symmetry property as the

object, to handle the pose ambiguity. Specifically, the spherical representation

f is represented by a branch of learned object-specific parameters of a multi-

layer SphereCNN [12], where its input is the segmentation feature of an object

projected to a hemisphere and its output is the spherical correlation on the

angle grid sampled on the rotation angles on SO(3), as illustrated in Fig. 2.

In particular, we use the ”Driscoll-Healy” grid following [75, 76] to project

the segmentation feature of an object to a hemisphere denoted as φ. The spher-

ical representation f or a branch of the SphereCNN consists of 5-layer param-
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eters, where the first layer performs the spherical correlations on S2 defined in

Eq. 3 and the rest four layers perform the spherical correlations on SO(3) de-

fined in Eq. 4. The rotation equivariance property specified in Eq. 5 ensures the

spherical correlation result to have the same rotation property as the object.

To learn the unknown spherical representation f , the segmentation features φ

consistent with the object view appearance are required. As shown in Fig. 3, the

hemisphere segmentation feature φ is mainly learned from the ground-truth seg-

mentation mask and the unknown spherical representation f is mainly learned

from the target rotations. We formulate learning the auxiliary spherical repre-

sentation as minimizing the following target:

f∗ = min
f

∥∥∥∥∥Rg − argmax
Rp

([φ ∗ f ](Rp))

∥∥∥∥∥, (6)

where Rp and Rg are the predicted and ground-truth rotations, respectively.

Eq. 6 aims at learning the spherical representation f∗ by minimizing the dif-

ference between Rp and Rg, where Rp is obtained by finding the rotation that

maximizes the spherical correlation.

During training, the spherical representation is updated at each iteration

mainly supervised by the ground-truth rotation Rg with a cross-entropy loss:

Ls = −log([φ ∗ f ](Rg)). (7)

Note that the spherical correlation result needs to be normalized first before

computing the loss. Finally, we take a coarse rotation estimation by maximizing

the spherical correlation result. In detail, we do max-pooling on the features

from the spherical correlation, which is different from [12] that uses the SO(3)

integration to obtain the full rotation invariance. The max-pooling on SO(3)

space makes the inference sparse. The network goes to non-convergence when

the rotation supervision is unavailable.

3.2. Feature Sampling

Observing the depth map containing noise, considering the scenario where

the depth map is unavailable, the mapping from the image to the 3D graph

13



is based on 2D sampling. Inside the object’s segmentation mask, Poisson disc

sampling [77] is applied and a fixed number of coordinates are collected.

During training, the segmentation branch is supervised by semantic labels.

The feature maps before the last output are used for feature extraction. The

coordinates collected through Poisson disk sampling [77] are rescaled into feature

maps from different layers according to their times of pooling and unpooling.

Since the collected coordinates are continuous, linear interpolation is applied

along the feature channel. After the sampling of the 2D convolutional feature

maps, the spherical features are sampled according to their 2D correspondences.

The 2D convolutional features are combined with the spherical features which

will be fed to the next stage.

3.3. Graph Building and Filling

Assume that a 3D mesh is a collection of vertices and edges that defines a

3D structure, it can be represented as a graph model G = (V,E). V is the set of

nodes, and E is the set of edges. The graph convolutional layer can be written

as a nonlinear function H l+1 = f(H l), where H0 = X is the input of the first

layer, X ∈ RN×D, N is the number of nodes in the graph, D is the dimension of

the feature vector of each node. According to this definition, our method relies

on [78] to handle 3D geometry. On an irregular graph, a graph convolutional

layer is defined as:

H l+1
u = σ(w0H

l
u +

∑
v∈A(u)

w1H
l
v), (8)

where u and v are the vertices of the graph model, σ(·) denotes a nonlinear

activation function, A(u) indicates the neighboring vertices of u, w0 and w1 are

learnable parameter matrices, and w1 is shared for all edges.

In [9, 28], the 3D points are corresponding to depth map pixels which are

aligned with the image. In our system, GCN is more flexible where graph

pooling and unpooling can be applied. Because the graph is required to cover

all objects in the image, the number of vertices of the graph may not be the

same as the 2D sampling features. We thus consider two cases of constructing
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the graph with and without depth maps. Thereupon, a feature merging method

based on graph matching is proposed.

Points Plane

Or

Graph Mapping

Convolutional Feature
Spherical Feature

Graph Initialization

Possion Samping

Figure 4: Our graph can be initialized by either object 3D points or a plane with average

depth if the depth map is unavailable.

For each instance point sampling and mapping, as shown in Fig. 4, we recover

the 3D point of the object through each pixel and the known intrinsic matrix if

the depth map is available. We define a square region with a set of uniformly

distributed nodes as a regular grid. By connecting the nodes, the graph is

initialized and is re-scaled as the inscribed polygon of the sampled 2D features.

The static graph is used for the inference in which the graph structure is fixed

but the features are filled to it. For the mapping from the 2D features to the

graph, each vertex is first connected to the top N closest 2D points on the

image. Then, consisting of a bipartite graph by the 3D points connected to the

2D points, we apply graph matching to make the features better distributed on

the sphere. Finally, each 3D point retains only one assigned connection, and

the corresponding 2D features are filled to the vertices.

If there is no depth map, it is impossible to directly recover the 3D points

of the object. Similarly, we will construct the graph by sampling uniformly

on the segmentation regions. Afterward, fill the vertices by finding the top N

closest points of the vertices. To initialize 3D positions of the graph vertices,

an average depth of the training dataset is used and the graph is initialized as
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a plane. Finally, the graph is also refined through graph matching.

For building the inference graph, a bipartite graph matching mechanism is

used. Considering that the graph network is much harder going to convergence,

the static graph is built. Meanwhile, for better training the network, the 2D

features are sampled by Poisson disk sampling that introduces randomness to

the features. During building the graph, the extracted feature points are as-

signed to their top N closest 3D mesh. To reduce the inconsistency between

the static graph and randomly sampling, the bipartite graph matching mech-

anism is utilized for the feature merging. After the bipartite graph matching,

the repeat assignments are cleared and the unique mapping is preserved.

Finally, according to the assignment, the 2D features from the convolutional

network are extracted and filled into the graph vertices. Depending on the

availability of the depth information, the vertex coordinates are initialized by

either the plane with average depth or the points with depth. The final feature

in each vertex is the concatenation of the convolutional feature and the vertex

coordinate. After connecting the edges by the triangle mesh, the graph is built.

3.4. Graph Unpooling

A 3D mesh with rich details requires a large number of points to represent.

As its abstracted representation, the graph complexity grows exponentially with

the increasing number of mesh points. For better inference and reducing the

data redundancy, graph unpooling is introduced into our network.

Figure 5: New vertices are first inserted in the middle of every edge. And then the new

vertices (nodes) are connected by the Delaunay tesselation method.

The graph is initialized with fewer vertices. After several unpooling layers, a
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sufficient number of vertices can be obtained. As indicated in Fig. 5, new vertices

are inserted in the middle of every edge. Then new features are interpolated by

two headers on each edge. Different from [70] where new connections are inside

each triangle, after the interpolation, we rebuild the mesh by the Delaunay

tesselation method for all the vertices. During the network inference, multiple

stages of unpooling will be performed. After each graph unpooling, features

from the convolutional layers will be mapped and concatenated to the new

graph, which exploits the information from low-level layers. Finally, the high-

level graphs mix the feature from 2D convolution maps and the GCN inference.

In this way, the graph scale can be well controlled, while the graph network

will easily go to convergence. Moreover, in the proposed system, the 3D shape is

utilized for supervision. The dense output points are able to better fit the shape

label, which helps the optimization of the network. Following the interpolation

rule of unpooling, the number of points grows quickly. In our system, two graph

unpooling layers are enough for obtaining a sufficient number of the final output

points that provide further keypoint voting.

3.5. Losses

To better capture the spatial information of the 3D objects, in addition to

predicting keypoints, the graph deforms the surface points of the object at the

same time. During training, the graph is mainly supervised by the ground-truth

object model points and the keypoints.

Graphic deformation helps to find the surface of the object more precisely.

There is no point in calculating the absolute distance between two point sets.

To measure the similarity of two distributions, Chamfer distance is more appro-

priate than the absolute distance [79, 80, 81]. Letting A and B denote as the

two point sets, the Chamfer distance is defined as follows:

dCD(A,B) =
1

|A|
∑
a∈A

min
b∈B

d(a, b) +
1

|B|
∑
b∈B

min
a∈A

d(a, b), (9)

where d(a, b) denotes the distance between the two points (a, b), which is L2

distance in our work, and |A| and |B| denote the numbers of points in sets A
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and B, respectively. Thus, the Chamfer loss is computed using the distance.

LCD = dCD(Pinit, Pinit + toffset) (10)

where Pinit are the points initialized in the graph vertices, and toffset is the

predicted deformation offset.

For keypoint learning, each vertex on the graph predicts the offset from the

vertex position to each keypoint. We mainly refer to the L1 loss in [28] and

configure it as follows:

LK =
1

|Pc|
∑
p∈Pc

∑
k∈K

‖off(p, k)− offgt(p, k)‖L1 , (11)

where Pc is a set containing all the points belonging to category c. K is the

keypoint set. off() and offgt(p, k) denotes the function computing the offset

between the two points.

4. Experiment

4.1. Implementation Details

Our system extracts features from the segmentation branch. The segmenta-

tion network is of the encoder-decoder structure. It outputs a semantic segmen-

tation map with N +1 channels for N object categories and 1 negative channel.

We directly use the trained segmentation network in [9, 82] but fine-tune the

convolutional feature for the graph inference.

The spherical learning branch is built by the filters in the spherical corre-

lation that contains one layer of S2 correlation and four layers of SO(3) corre-

lation. For the spherical learning, we use the angle grid size of 20 by default,

although later we also test different grid sizes of the spherical correlation.

The graph convolutional network (GCN) is implemented fitting from [83].

The structure and parameter are shown in Table 1. The input graph has the

feature dimension of 515 filled in 400 vertices. Expect for the first and the last

one, the GCN layers are all of 192 dimension output. The last layer output

provides the 3 dimensions of coordinates. First, a regular grid of 20× 20 = 400
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Layer Name Output Dim. Graph Nodes

GCN 1 512+3 400

GCN 2 192 400

GCN 3 192 400

Graph unpooling 1 192 3652

GCN 4 192 3652

GCN 5 192 3652

Graph unpooling 2 192 16147

GCN 6 3 16147

Table 1: GCN structure

points is initialized. Then we build the undirected graph using the 3D points as

vertices and their mesh connections as edges, where the mesh is formed by the

Delaunay tessellation method. As mentioned by [83], the graph is represented

by its adjacency matrix. Chebyshev polynomial coefficients are fitted based on

the Laplace matrix. In the inference process, GCN mainly predicts Chebyshev

polynomial coefficients, and the final output is obtained through an inverse

transformation. After 2 stages of graph unpooling, the final output graph scale

contains 16147 nodes.

Our GCN branch also predicts the 3D object shape though the graph is

initialized by the depth map or the plane. The supervision is built by the

transformed 3D object models. Only the surface facing the camera is extracted,

and a fixed number of points are sampled for the Chamfer distance loss function.

Depending on if the depth information is available or not, the graph can be

initialized by either the points from the depth map or the plane with average

depth. The average depth is obtained by calculating the mean object depth in

the dataset. Results from two different initialization are compared.

For keypoint selection, we follow the settings in [25, 28]. Points on each

object model are selected instead of predefined geometry points outside the

model for more precise estimation. The output of the GCN represents the

keypoints by the offsets from the transformed keypoints to the current model

points. Then, the parameters are fitted according to the keypoints in a Hough

Voting manner. The points are first transformed to their parameter space and

inliers are used for the least-square fitting.
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4.2. Evaluation Metrics

Most of the metrics for object 6D pose estimation can be divided into two

categories. One focuses on the absolute precision of the pose parameters and the

other focuses on measuring the intersection between the transformed or rendered

object 3D models under the ground-truth and the predicted pose parameters,

where the latter can consider the symmetry property of objects. [37, 7] introduce

two metrics: Average Distance of Distinguishable (ADD) and its symmetry ver-

sion, Average Distance of Distinguishable Symmetry (ADD-S). ADD computes

the absolute distance between two transformed 3D model point sets:

ADD =
1

|V |
∑
v∈V
|(Rgv + tg)− (Rpv + tp)|, (12)

where V denotes the 3D model point set and |V | is the number of points in the

set. Rg,p and tg,p are the ground-truth and predicted rotation and translation.

And ADD-S considers the symmetry case by replacing the absolute distance by

an average minimum distance which is defined as:

ADD − S =
1

|V |
∑
v1∈V

min
v2∈V

|(Rgv1 + tg)− (Rpv2 + tp)|. (13)

Following [7, 9, 28], we calculate the Area Under Curve (AUC), the area

under the threshold curve, for the two average distance, ADD and ADD-S. For

YCB-Video, both the ADD and ADD-S AUC are compared. And only the ADD

is computed for LINEMOD.

PoseCNN

(ICP)

DF

(iterative)

PVN3D

(ICP)

Ours

(depth)

002 master chef can 95.8 96.4 95.2 93.2

003 cracker box 92.7 95.8 94.4 95.6

004 sugar box 98.2 97.6 97.9 98.3

005 tomato soup can 94.5 94.5 95.9 97.5

006 mustard bottle 98.6 97.3 98.3 97.9

007 tuna fish can 97.1 97.1 96.7 96.5

008 pudding box 97.9 96.0 98.2 98.3

009 gelatin box 98.8 98.0 98.8 97.8

010 potted meat can 92.7 90.7 93.8 93.3

011 banana 97.1 96.2 98.2 97.9
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019 pitcher base 97.8 97.5 97.6 97.9

021 bleach cleanser 96.9 95.9 97.2 96.7

024 bowl* 81.0 89.5 92.8 94.3

025 mug 94.9 96.7 97.7 97.6

035 power drill 98.2 96.0 97.1 95.9

036 wood block* 87.6 92.8 91.1 94.1

037 scissors 91.7 92.0 95.0 95.5

040 large marker 97.2 97.6 98.1 98.1

051 large clamp* 75.2 72.5 95.6 95.6

052 extra large clamp* 64.4 69.9 90.5 91.1

061 foam brick* 97.2 92.0 98.2 98.3

Average 93.0 93.2 96.1 96.3

PoseCNN

(ICP)

DF

(iterative)

PVN3D

(ICP)

Ours

(depth)

002 master chef can 68.1 73.2 79.3 70.9

003 cracker box 83.4 94.1 91.5 93.5

004 sugar box 97.1 96.5 96.9 97.9

005 tomato soup can 81.8 85.5 89.0 90.1

006 mustard bottle 98.0 94.7 97.9 91.1

007 tuna fish can 83.9 81.9 90.7 90.2

008 pudding box 96.6 93.3 97.1 97.9

009 gelatin box 98.1 96.7 98.3 98.3

010 potted meat can 83.5 83.6 87.9 85.1

011 banana 91.9 83.3 96.0 96.9

019 pitcher base 96.9 96.9 96.9 97.5

021 bleach cleanser 92.5 89.9 95.9 93.9

024 bowl* 81.0 89.5 92.8 94.3

025 mug 81.1 88.9 96.0 95.3

035 power drill 97.7 92.7 95.7 93.7

036 wood block* 87.6 92.8 91.1 94.1

037 scissors 78.4 77.9 87.2 90.2

040 large marker 85.3 93.0 91.6 93.6

051 large clamp* 75.2 72.5 95.6 95.6

052 extra large clamp* 64.4 69.9 90.5 89.1

061 foam brick* 97.2 92.0 98.2 98.3

Average 85.4 86.1 92.3 92.7

Table 2: The quantitative evaluations on YCB-Video. Methods (DF(iterative)

[9], PoseCNN+ICP [7], PVN3D+ICP [28]) using depth information are com-

pared. AUCs in ADD and ADD-S are computed. “*”: symmetric objects.
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4.3. Results on YCB-Video

The YCB-Video dataset is introduced in [7] which contains 21 objects with

overall of 133,827 images. Following the dataset split in [7], the 80 videos with

80,000 synthetic images are for training and 2,949 keyframes are for testing. For

convenience, both ADD and ADD-S AUC [7] are used for testing.

As shown in Table 2, AUC under ADD and ADD-S distance is evaluated for

all the 21 objects in the dataset, YCB-Video. ADD-S is specifically designed

for symmetric objects. Following settings in [7, 28], five symmetric objects

are evaluated using ADD-S. For comparing with most of the best results on the

YCB-Video dataset, we mainly refer to the RGBD methods or the RGB methods

with ICP refinement which both consider the depth as the available information.

The graph in our system is initialized by the points transformed from the depth

map. We don’t design any iterative refinement for our system. However, the

proposed method reaches comparable performance with PVN3D+ICP [28]. And

it outperforms the DenseFusion [9] method with iterative refinement. Since our

method predicts the object surface at the same time while doing the keypoint

estimation, more information is learned by our approach. We consider that the

combination of the surface deformation and the keypoint prediction in multiple

unpooling stages is like an increment refinement that is implicitly learned during

the training stage. So we don’t use an ICP for comparison here.

In the YCB-Video dataset, five objects are treated as symmetric objects,

which are ”024 bowl”, ”036 wood block”, ”051 large clamp”, ”052 extra large cl-

amp” and ”061 foam brick”. ”025 mug” is an object that is of the non-symmetric

3D model but may appear symmetry when some of its parts are occluded. With

better rotation prediction, the proposed method obtains consistent performance

improvement on these objects.

Another challenge of the YCB-Video dataset is the confusion of the object

detector for the classification between ”051 large clamp” and ”052 extra large cl-

amp” in the YCB-Video dataset. We give some visualization results in Fig. 6.

For Fig. 6 (a), two clamps are classified as “051 large clamp”, in which one of

them is wrongly classified. However, our result without ICP refinement shows
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(a) (b) (c) (d) (e) (f) (g)

Figure 6: Results visualization on the YCB-Video dataset. Images from top to bottom in

each column are an original image, the instance segmentation result, the object pose visual-

ization and the object pose visualization with ICP refinement, respectively, where the pose

visualizations are generated by projecting 3D models to their 2D shapes.

proper pose prediction for the wrongly predicted class, which suggests that our

method has learned the proper visual feature from the image appearance.

4.4. Results on LINEMOD

We evaluate the proposed system on the LIEMOD [37] dataset with and

without the depth information. The LINEMOD dataset contains 13 objects

in 13 videos in extreme background clutter. We create the training set follow-

ing [25] that crops object masks under ground-truth poses in each image and

render them to different background images from PASCAL VOC [84]. And the

training and testing split are following [7].

RGB

DeepIM PVNet CDPN Ours(plane) -

ape 77.0 43.6 64.4 75.6 -

benchvise 97.5 99.9 97.8 93.2 -

camera 93.5 86.9 91.7 93.5 -

can 96.5 95.5 95.9 91.3 -

cat 82.1 79.3 83.8 81.2 -

driller 95.0 96.4 96.2 96.2 -

duck 77.7 52.6 66.8 73.1 -

eggbox 97.1 99.2 99.7 99.9 -
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glue 99.4 95.7 99.6 100.0 -

holepuncher 52.8 82.0 85.8 83.3 -

iron 98.3 98.9 97.9 97.1 -

lamp 97.5 99.3 97.9 98.1 -

phone 87.7 92.4 90.8 91.1 -

Average 88.6 86.3 89.9 90.3 -

RGBD

Point-Fusion
DF

(perpixel)

DF

(iterative)
PVN3D

Ours

(depth)

ape 70.4 79.5 92.3 97.3 96.3

benchvise 80.7 84.2 93.2 99.7 99.7

camera 60.8 76.5 94.4 99.6 99.6

can 61.1 86.6 93.1 99.5 99.3

cat 79.1 88.8 96.5 99.8 99.6

driller 47.3 77.7 87.0 99.3 99.3

duck 63.0 76.3 92.3 98.2 98.9

eggbox 99.9 99.9 99.8 99.8 99.9

glue 99.3 99.4 100.0 100.0 100.0

holepuncher 71.8 79.0 92.1 99.9 99.9

iron 83.2 92.1 97.0 99.7 99.7

lamp 62.3 92.3 95.3 99.8 99.9

phone 78.8 88.0 92.8 99.5 99.7

Average 73.7 86.2 94.3 99.4 99.4

Table 3: The quantitative evaluations on the LINEMOD dataset. Methods

only based on RGB image (DeepIM [57], PVNet [25], CDPN [27]) and meth-

ods using the depth information (Point-Fusion [9], DF (perpixel) [9], DF (iter-

ative) [9], PVN3D [28]) are compared.

As shown in Table 3, for the LINEMOD dataset, we evaluate the proposed

method with and without the depth information. Initialized by a plane of

average object depth in the dataset, the evaluation inference of the system does

not need the depth map. Only the transformed object points are required for

training supervision. Observing the performance decreasing when not using the

depth map, we may consider that the system degenerates to the 2D coordinate

map method. Without the depth information, the graph network predicts the

translation parameter as well as the depth map. However, the graph is doing

deformation in 3D space where the vertices relationship is captured. So, the
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proposed method still achieves comparable results with the state-of-the-art three

methods [57, 25, 27]. Since there is a gap between synthetic training samples,

the system performance can be further improved by filling the gap.

In Table 3, we reach the state-of-the-art result comparing with other meth-

ods using the depth map. Most of our basic modules are from DF [9]. After

the graph matching and feature merging, the proposed method outperforms

DF(per-pixel) and DF(iterative) [9] over 10 and 4 percentage points respec-

tively where we don’t apply any iterative process. We also reach comparable

performance with PVN3D [28] which performs almost full correct rate under

the ADD metric. However, we only do the segmentation from the 2D feature

map while PVN3D [28] does it in 3D space.

4.5. Ablation Study

In this section, we conduct experiments to test different modules and settings

in the proposed system, i.elet@tokeneonedotthe spherical learning part and the

graph regression. We compare different variants of our method by removing and

modifying the modules in different ways.

Before the ablation study on pose estimation, we first conduct an experiment

on the rotated MNIST dataset to evaluate the effectiveness of spherical learning.

Following [12], we rotate MNIST images on their spherical projection. Different

combinations of non-rotated (NR) and rotated (R) sets for training and testing

are considered. Similar to [12], we use a simple SphereCNN with two convolution

layers. For learning the image rotation from the non-rotated training set, we

do max-pooling on the features from the spherical correlation, which is different

from [12] that uses the SO(3) integration to obtain the full rotation invariance.

The pooled feature is considered to be rotation equivariance.

training/testing NR/NR R/R NR/R

flat convolution 0.98 0.17 0.10

spherical learning 0.97 0.93 0.90

Table 4: Classification accuracy results on the synthetic MNIST dataset. NR/R refers to that

the models are trained on the non-rotated set and tested on the rotated set.
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Table 4 reports similar results as those in [12]. The pooled spherical fea-

tures help obtain rotation-invariant results for different rotated inputs, which

indicates the feasibility of our proposed approach to learn the rotation param-

eter from the spherical representation.

MLP G10 G20 G60 G120 PVN3D

024 bowl* 90.5 85.4 94.3 93.5 92.1 92.8

036 wood block* 89.0 83.5 94.1 93.9 90.5 91.1

051 large clamp* 92.7 89.1 95.6 95.9 94.6 95.6

052 extra large clamp* 86.5 90.3 91.1 90.5 89.1 90.5

061 foam brick* 95.1 93.7 98.3 97.7 97.5 98.2

Table 5: Spherical learning ablation study.

First, we mainly test and compare the algorithm efficiency on symmetric ob-

jects in the YCB-Video that are ”024 bowl”, ”036 wood block”, ”051 large cl-

amp”, ”052 extra large clamp” and ”061 foam brick”. Their AUCs under ADD-

S are evaluated and the results are showing in Table 5.

In this experiment, we compare the spherical learning with direct regression

by the Multi-Layer Perceptron (MLP). And the outputs with different grids are

tested. The five symmetric objects in YCB-Video are used for testing. With all

the other modules of the system remaining, only the spherical learning branch

is changed. In Table 5, the ADD-S AUC results are shown. For all of the

symmetric objects, using the spherical learning branch significantly improves

the rotation regression.

We compare the results of our method under different output angle grid

resolutions for the spherical learning branch. Particularly, we consider the grid

sizes of 10, 20, 60 and 120 denote the corresponding variants of our method

as G10, G20, G60 and G120, respectively. It can be seen that 20 − 60 is a no-

sensitive range of the output grid. Inside this grid range, the performance of

the spherical learning branch is not sensitive to its grid size. Thus, for all other

experiments, we use G20 for efficiency. Meanwhile, the results from PVN3D [28]

for the 5 symmetric objects are also compared which shows the efficiency of our

proposed method on symmetric objects.
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Then, for better evaluating the performance of the proposed spherical learn-

ing module, we conduct the experiment combining the spherical learning stan-

dalone with the GCN branch. However, we use a keypoint-based regression

instead of the GCN branch. The regression has the same output of the prede-

fined keypoints.

direct regression w/o sl* w/ sl*

YCB-Video 81.9 87.1 93.9

LINEMOD 70.2 77.6 85.1

Table 6: Ablation study for our method with/without the spherical learning combining the

pose refinement modules. We report the ADD-S AUC on YCB-Video with depth input and

LINEMOD without depth input over all the dataset objects. ”sl*” represents the spherical

learning module.

Table 6 shows the results of the ADD-S AUC on YCB-Video with depth

input and LINEMOD without depth input over all the dataset objects. It can

be seen that compared with the direct regression which directly regresses the

pose parameter, both the spherical learning and the keypoint-based regression

lead to better performance.

Coarse Refine

YCB-Video (ADD-S) 91.1 96.3

YCB-Video (ADD) 79.5 92.7

Table 7: Ablation study for coarse rotation learning.

In Table 7, we extract the rotation results from the coarse rotation estimation

directly. From the results on YCB-Video, the performance deteriorates both

under the ADD-S and ADD metrics. Due to the inaccurate of the coarse rotation

estimation, the performance under ADD metric decreases a lot while the ADD-S

result can maintain by satisfying translation estimation.

Then, we test different regression components of the proposed system. If

both of the spherical learning and graph modules are removed, our method

degrades to the baseline method, which directly regresses the pose parameters.

For our method without the refinement module, the coarse rotation from the

spherical learning is used as an incremental estimation that is added to the
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output of the baseline (direct parameter regression). For our method without

the spherical learning part, we treat the output of the baseline as the coarse

rotation estimation.

CNN

(parameter)

CNN

(keypoints)

graph

(parameter)

graph

(keypoints)

YCB-Video 85.9 93.6 88.3 96.3

LINEMOD 71.1 85.9 83.2 90.3

Table 8: Ablation study for the keypoint regression.

In Table 8, the comparison using different regression components is illus-

trated. Following the dataset settings of previous experiments, we test the

ADD-S AUC on YCB-Video with depth input and LINEMOD without depth

input. Besides the keypoint prediction, direct pose parameter regression is com-

pared. For the direct pose regression, we predict the 6D pose parameter on the

output feature maps. After an average pooling, the final pose is obtained. From

Table 8, the keypoint prediction improves the overall accuracy both on CNN and

the graph module. Meanwhile, with the spatial projection, the graph module

can further improve the performance.

Closest matching bipartite graph matching

YCB-Video 93.0 96.6

LINEMOD 89.5 90.3

Table 9: Ablation study for bipartite graph matching.

The last experiment in Table 9 demonstrates the function of the bipartite

graph matching. Without the bipartite graph matching, the nearest assignment

from the convolution feature to the graph introduces repeat and missing points

which makes the feature assignment become aliasing in the spatial space. With

a bipartite graph matching to make an average of the assignment provides better

feature alignment which obtains better results as shown in Table 9.
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5. Conclusion

Considering the strength of Graph Convolutional Network (GCN) in finding

the relationships among vertices, we abstract the 3D mesh as the graph and

use a deep neural network to predict keypoints during the inference. For better

convergence of the GCN, the static graph is built and the Poisson disc sampling

is used to extract 2D points. The Poisson disc sampling introduces randomness

into the network training so that the final output is more robust. Furthermore,

to reduce the inconsistency of the static graph and the random point sampling, a

bipartite graph matching mechanism is introduced into our system. Meanwhile,

the 3D shape is used as supervision in the proposed training scheme. The graph

unpooling is utilized for better fitting the 3D shape label, which also helps the

low-level feature forward and the feature voting.

We have explored the feasibility of using spherical learning to alleviate the

rotation symmetry problem in the object 6D pose estimation task. A spherical

representation of an object is a natural representation inheriting the symmetry

property of the object. Our proposed approach estimates the object rotation

based on the spherical correlation in deep neural networks with spherical learn-

ing. On two very challenging datasets, we have compared our method with the

state-of-the-art methods. Our system achieves stable performance improvement

for most of the objects, which demonstrates the feasibility and effectiveness of

the proposed approach.
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