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Abstract

With the goal of directly generalizing trained model to unseen target domains,

domain generalization (DG), a newly proposed learning paradigm, has attracted

considerable attention. Previous DG models usually require a sufficient quan-

tity of annotated samples from observed source domains during training. In

this paper, we relax this requirement about full annotation and investigate semi-

supervised domain generalization (SSDG) where only one source domain is fully

annotated along with the other domains totally unlabeled in the training pro-

cess. With the challenges of tackling the domain gap between observed source

domains and predicting unseen target domains, we propose a novel deep frame-

work via joint domain-aware labels and dual-classifier to produce high-quality

pseudo-labels. Concretely, to predict accurate pseudo-labels under domain shift,

a domain-aware pseudo-labeling module is developed. Also, considering incon-

sistent goals between generalization and pseudo-labeling: former prevents over-

fitting on all source domains while latter might overfit the unlabeled source

domains for high accuracy, we employ a dual-classifier to independently per-

form pseudo-labeling and domain generalization in the training process. When
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accurate pseudo-labels are generated for unlabeled source domains, the domain

mixup operation is applied to augment new domains between labeled and un-

labeled domains, which is beneficial for boosting the generalization capability

of the model. Extensive results on publicly available DG benchmark datasets

show the efficacy of our proposed SSDG method.

Keywords: Semi-supervised learning, Domain generalization, Image

recognition, Feature representation

1. Introduction

Nowadays, with the development of data acquisition, current data are fre-

quently captured from multiple sources (e.g., video, image, text), generated from

various contributors (e.g., different artists), or collected from multiple sites (e.g.,

different data centers), making the distribution shift between different modal-

ities or sites usually occurs [1, 2]. Therefore, due to the distribution shift, the

model trained on training data or source domains could perform poorly on test

data or target domains. To address this limitation, a new setting namely do-

main generalization (DG), aiming to train model on observed source domains

for directly generalizing to arbitrary unseen target domains, is becoming a hot

topic with increasing interests.

According to our investigation, unfortunately, most current DG models be-

long to supervised setting where multiple fully labeled source domains are the

prerequisite before training DG models. As we known, high-quality labels are

often expensive and laborious to obtain, which drives us to alleviate the label

requirement in the observed source domains.

Formally, we here name our setting—first training the model with both la-

beled source domains and unlabeled source domains and then performing pre-

diction on unseen target domains—as semi-supervised domain generalization

(SSDG in short). This setting owns its practical meaning. For example, in

real-world applications, there are a large number of totally unlabeled datasets

(i.e., web-crawled datasets, massive data in data center). The advantage of our
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Figure 1: Unlike typical conventional domain generalization, semi-supervised domain gener-

alization takes both the labeled and unlabeled source domains as input, aiming to train an

adaptive model for the unseen target domain.

setting is that arbitrary unlabeled domains can be utilized to cooperate with the

labeled domains for benefiting domain generalization in a free lunch way. We

show this setting in Figure 1. Particularly, in this paper we merely consider the

case that only one source domain is fully labeled (along with several unlabeled

source domains) in the training stage. The ‘one labeled source domain’ case

is more practical because annotating samples is difficult, expensive and time-

consuming. And a huge amount of unlabeled data can be easily obtained in

real-world applications. However, the ‘one labeled source domain’ case is more

challenging because we need to generate pseudo-labels for extensive samples

from multiple unlabeled domains with different data distributions.

Since unlabeled samples in source domains are abundant and each unlabeled

sample actually belongs to a specific yet unknown class, we consider assigning

pseudo-labels to unlabeled samples. Intuitively, the accuracy of pseudo-labels

largely affects the final results. The pseudo-labeling technique [3] has shown

its effectiveness in conventional semi-supervised learning (SSL) problems by

iteratively using higher confident samples to aid subsequent learning on lower

confident samples. However, compared with conventional SSL, producing high-

quality pseudo-labels in SSDG is much more challenging due to the following

two reasons:
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1. The domain shift between observed labeled and unlabeled source domains

is definitely a negative factor for accurate pseudo-labels, which may lead

to a drastic performance degeneration.

2. Since there is the unpredictable domain discrepancy between unlabeled

source domains and the unseen target domain, a generalizable model which

well fits the target domain may suffer a drop of accuracy on unlabeled

source domains.

Considering these two issues, we develop two improvements for accurate pseudo-

label prediction.

Firstly, we propose domain-aware pseudo-labeling method to improve the

quality of pseudo-labels under domain shift. As aforementioned, the domain

shift between labeled and unlabeled source domains deteriorates the accuracy

of pseudo-labels. In Figure 2, we visualize the feature distribution of the DANN

[4] model trained via fully supervised learning on PACS. As observed, the ex-

perimental result shows that samples have been well mapped to their categories,

whereas inside a typical class, features from different domains intra a class are

separated. Therefore, to obtain more accurate pseudo-labels, we iteratively

maintain the average feature of the most confident unlabeled samples for each

class of each domain in the memory, which is used as domain-aware class repre-

sentation. Afterwards, when assigning pseudo-labels to unlabeled samples, we

combine the output probability of the classifier with the similarity to its class

representation to decide which class it belongs to.

Secondly, in SSDG, our goal is to improve the generalization ability of the

network to adapt to an arbitrary target domain. However, intuitively, a gener-

alizable model could underfit the unlabeled training domains, thus the accuracy

of pseudo-labels could decrease. Considering inconsistent goals between gener-

alization and pseudo-labeling—former prevents to overfit source domains while

latter might overfit specific domain for high accuracy, we propose to use a dual-

classifier to avoid the possible accuracy degradation of pseudo-labels, which

leverages the independent classifiers for joint pseudo-label assignment and do-
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(a) Feature Embedding (b) Original Image

Figure 2: (a): Visualization of feature embeddings from a fully supervised DG model using a

domain discriminator to reduce the domain gap on PACS. Note that different colors denote

different classes. (b): The original images from PACS, which correspond to features in (a)

from the position view. We focus on giraffe and house, Sketch domain, and Art painting

domain. As seen, after feature alignment, features are still not strictly domain-invariant, e.g.,

several giraffe samples from the Art are closer to some house samples from the same domain

than a giraffe from the Sketch.

main generalization. In our dual-classifier network, the two branches are trained

with different objective functions but a shared feature extractor.

Our contributions can be summarized as follows:

• We propose an effective framework that can be trained in an end-to-end

manner to obtain more accurate pseudo-labels of unlabeled data for the

semi-supervised domain generalization task.

• We develop the domain-aware pseudo-labeling module to handle the do-

main shift during generating pseudo-labels. Also, the dual-classifier is

proposed to mitigate the conflict between the DG task and the pseudo-

label generation.

• Extensive experiments on benchmark datasets, i.e., PACS, OfficeHome,

miniDomainNet and VLCS, show the effectiveness of our method com-

pared with several baselines and the state-of-the-art methods.
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2. Related Works

We review the recent work about unsupervised domain adaptation, domain

generalization, semi-supervised learning, and semi-supervised domain general-

ization.

2.1. Unsupervised Domain Adaptation

Unsupervised domain adaptation can effectively transfer knowledge from

an annotated source domain to an unlabeled target domain. Mainstream ap-

proaches include discrepancy-based [5, 6, 7, 8, 9, 10], adversarial-based [11, 12,

13, 14, 15] and pseudo-labeling-based [16, 17] methods. Lee et al. [7] design

sliced Wasserstein discrepancy (SWD) to capture the discrepancy between the

outputs of task-specific classifiers. Li et al. [9] propose maximum density di-

vergence (MDD) to measure the distribution divergence and apply MDD to

minimize the inter-domain discrepancy and maximize the intra-class density.

Zhang et al. [14] introduce a novel Hybrid Adversarial Network (HAN), which

achieves a joint adversarial learning with class information and domain align-

ment. Zhang et al. [17] propose to increase the robustness of the model by

incorporating high-confidence samples from the target domain. Li et al. [15]

propose a more practical UDA setting where either the source data or the tar-

get data are unknown, and handle the UDA setting by the adversarial attack.

In addition, some recent methods aim to address the issue of limited computing

power in UDA problems. Li et al. [18] propose the Faster Domain Adaptation

(FDA) protocol to accelerate unsupervised domain adaptation. Despite UDA

being related to DG, UDA has access to the target domain while DG cannot

observe the target domain during training.

2.2. Domain Generalization

Domain generalization methods can be substantially categorized into data-

based methods, feature-based methods, and learning strategy-based methods

[19]. The data-based methods aim to generate virtual training data for a more

generalizable model, e.g., the methods in [20, 21, 22, 23, 24] enlarge the training
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set by image generation and data augmentation techniques which are applied

to solve data insufficiency[25]. Feature-based solutions [26, 27, 28, 29] extract

domain-agnostic representations on multi-source domains. Another promising

technique for domain generalization is meta-learning, such as [30, 31, 32]. Be-

sides, some methods based on other learning strategies (e.g., self-supervision,

Ensemble learning) are proposed to obtain the generalizable model, including

[33, 34].

2.3. Semi-supervised Learning

Current semi-supervised learning methods can be roughly classified into

three categories, i.e., entropy regularization based methods, pseudo-label based

methods, and consistency regularization based methods. The essence of all these

three categories is to force a low-density distribution between different classes

[35]. A straightforward way is to add a loss term to directly and explicitly

reduce the entropy of the predictions on unlabeled data. Entropy regulariza-

tion [36] encourages a confident prediction on unlabeled data by minimizing

the entropy of the predictions of unlabeled data. Pseudo-label based methods

[3, 37, 38] assign approximate classes to unlabeled samples by the inference of

the model trained on labeled samples. Consistency regularization shows great

success more recently, which includes π-Model [39], Temporal Ensembling [39]

and Mean Teacher [40], etc. Besides, a series of holistic approaches to semi-

supervised learning have obtained state-of-the-art performance on commonly-

studied SSL benchmarks recently. Unsupervised Data Augmentation (UDA)

[41] improves consistency loss by substituting simple noising operations with

advanced data augmentation, such as RandAugment [42]. MixMatch [43] uni-

fies the existing data augmentation, pseudo-labeling, and mixup to achieve both

consistency regularization and entropy regularization. ReMixMatch [44] further

improves MixMatch [43]. FeatMatch [45] applies learned feature-based aug-

mentation to consistency loss. FixMatch [46] inherits UDA and ReMixMatch,

combines pseudo-labeling and consistency regularization, and finally obtains

good performance on SSL benchmarks. Differently, in our SSDG, there is a
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data-distribution discrepancy between labeled and unlabeled training data, thus

these typical SSL methods could not effectively handle the issue.

2.4. Semi-supervised Domain Generalization

To the best of our knowledge, only very a few works have been proposed for

semi-supervised domain generalization problem. DGSML [47] and StyleMatch

[48] tackle a new setting in domain generalization problem, where the labeled

samples in each domain are not fully labeled. Although we both assign pseudo-

labels to unlabeled data, we solve two different scenarios and the challenges we

face are totally different. DSDGN [49] solves a semi-supervised domain gener-

alization problem which is similar to us. It applies a Wasserstein generative ad-

versarial network with gradient penalty based adversarial training framework to

align feature embedding, and simply adopts the original pseudo-labeling method

for unlabeled data. However, this method does not consider the domain shift

during pseudo-labeling.

3. Method

Unlike the supervised domain generalization (DG) setting, as aforemen-

tioned, semi-supervised DG further alleviates the fully-labeled requirement and

allows several source domains to be totally unlabeled during training. Formally,

we now provide the notations used in our setting. In SSDG, assume we have

one labeled source domain in the labeled domain set Sl = {Dl}, and n un-

labeled source domains in the unlabeled domain set Su = {Du
1 , ..., D

u
n}, and

one target domain Dt. Note that, Dt is not used in the training process. A

training sample in the labeled source domain can be represented as a raw input

x, a semantic label y, and a domain label z. Assuming that the number of

the training samples in the labeled source domain is nl, it can be denoted as

Dl = {(xli, yli, zli = 0)}nl
i=1. And an unlabeled domain Dj can be represented as

Dj = {(xui , zui = j)}nj

i=1, when the number of the training samples in Dj is nj .

C stands for the number of categories in the classification dataset. The shared

8



feature extractor, the predictive classifier, the generalizable classifier, and the

domain classifier are denoted by Fg, Fc, Fm, and Fd, respectively. The overview

of our method is illustrated in Figure 3.

Feature
Extractor

Fg Discriminator

Classifierpred

Classifiergen

feature

Class Representation

Labeled Domains Sl

Unlabeled Domains

Sim

Similarity
Metric

Confident

Ambiguous
Domain Mixup

Domain-aware Pseudo-labeling

ℒcls

ℒadv
ℒadv_mix

Dual-Classifierℒcls_mix

Pseudo-labeled 
Set Sp

Su

Fg(Su)
Fg(Sl)
Fg(Sp)

ℒent

Sp
add

update

𝑥#

Fg(𝑥#)

…

……

……
Dd-1 Dd

zu = d

… …

…

Figure 3: Illustration of our framework, which mainly consists of the feature extractor, domain-

aware pseudo-labeling, dual-classifier and domain discriminator. During training, model op-

timization and pseudo-label prediction are alternate and iterative.

3.1. Domain-aware Pseudo-labeling

In the cross-domain scenario, a mixture of samples from all domains are fed

into a shared classifier together. However, the data distributions of different

domains are significantly different. Accordingly, for different domains, the dis-

criminative characteristics that are critical to classification could be different.

For instance, on the PACS dataset, images in photo domain are color-specified,

while images in cartoon domain are not. In sketch domain, the color information

is totally erased, which makes samples in this domain even harder to distinguish.

Thus, even we have applied a discriminator to align features from different do-

mains, the features haven’t been perfectly aligned yet. Due to the large and

unpredictable domain gap between different domains, the classifier that well fits

the labeled domain will generate the poor pseudo-label for unlabeled domains.

In order to alleviate the bias caused by the aforementioned domain gap, we

propose domain-aware pseudo-labeling module in our framework. In particular,

we first yield the domain-aware class representation for each class of each un-

labeled domain, which indicates the mean feature of the most highly confident
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samples for each class in each domain. Then, when generating the pseudo-label

for each unlabeled sample by integrating 1) its predicted probability from the

shared predictive classifier and 2) its largest similarity to the class represen-

tation from its domain, we can obtain the modified probability for the more

reliable pseudo-label.

For an unlabeled sample (xu, zu), if the domain label zu is equal to d, it

means that this sample is from the dth domain. Using Md ∈ RD×C to denote

the matrix by gathering the D-dimensional class representation from total C

classes in the dth domain. sim(·, ·) is a similarity measurement function. The

similarity is conducted by calculating the cosine similarity between Fg(xu) and

the class representation of each class, where Fg(xu) ∈ R1×D is the D-dimensional

feature embedding. ψ(xu) ∈ R1×C is the C-dimension similarity vector obtained

after a softmax function. Then we modify the predicted probability q(xu) by a

correction term to form s(xu). This above process can be formulated as follows:

s(xu) = γq(xu) + (1− γ)ψ(xu), (1)

where q(xu) = Fc(Fg(xu)), ψ(xu) = sim(Fg(xu),Md).

Now the pseudo-label ŷu is assigned by s(xu) as same as the conventional

pseudo-labeling way:

ŷui =

 1 if i = argmaxi′si′(x
u) and si′(x

u) > δ

0 otherwise,
(2)

where δ is a threshold. If the final confidence of one sample is larger than the

threshold, the pseudo-label is reliable, otherwise it is ambiguous.

The group of representation is updated at each epoch and used at the next

epoch. We propose two policies for the domain-aware class representation pro-

duction. The simplest way is to select the sample with the highest confidence

predicted by the classifier as class representation at each epoch. However, the

mislabeled sample could arise an accumulation of prediction error at the next

epoch [50]. Furthermore, we propose to calculate an ensemble representation

with some reliable samples of each class in each unlabeled domain. Specifically,
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Figure 4: Validation and test accuracy with mixup samples or with pure samples on PACS.

Left: Train on Photo, Cartoon and Sketch and test on Art painting. Right: Train on Photo,

Art painting and Sketch and test on Cartoon.

we maintain a list of the highest confident samples for each class. We append

one sample to the list only if its confidence is higher than the existing highest

confidence in the list. And the capacity of each list is k, we stop appending

samples if the size of the list reaches the limit. At the start of each epoch, we

calculate the average of the samples (feature embeddings) in the list as class

representation. In our experiments k is set as 100. The comparison of the two

schemes will be shown in our experiment.

3.2. Dual-classifier

As known, overfitting empirically occurs when a model begins to fit the

domain-specific characteristic in the training data rather than learning to gen-

eralize from a trend [51]. Consequently, the overfitting issue finally causes per-

formance degradation on unseen test data. This empirical knowledge inspires

us that a generalizable model which works well in domain generalization could

be non-overfitting for the source training domains.

We train a model with domain mixup [52] and without domain mixup in a

supervised way and draw the comparison of both test and validation accuracy.

As shown in Figure 4, by domain mixup, the model performs more accurately

in the test domain, indicating that the model is more generalizable. However,
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the accuracy in the training domains drops, which is displayed by the validation

accuracy.

In our approach, we apply cross-domain mixup towards a more generalizable

classifier. However, we observe that the generalizable DG classifier is not good

at pseudo-labeling. Thus, we apply an auxiliary classifier to achieve the pseudo-

labeling, and the classifier for giving the pseudo-labels is trained only by pure

samples from source domains. Therefore, we utilize dual-classifier architecture

to reduce the conflict between the DG task and the pseudo-label production.

3.3. Mining the Knowledge of Unlabeled Domains

When accurate pseudo-labels on unlabeled samples are generated, domain

mixup is applied to confident samples with their pseudo-labels and the raw

labeled data. For ambiguous samples, since pseudo-labels are not be assigned,

the entropy loss is applied to make full use of these samples.

Confident unlabeled samples. As inspired by [52], we innovatively in-

terpolate between a labeled domain and an unlabeled domain to achieve inter-

domain data augmentation. Our intuition is that the inter-domain samples

generated by domain mixup can boost the generalization of networks by intro-

ducing additional training domains, which has been verified as an important

technique in domain generalization [23, 21, 22]. Assuming that we have already

assigned a pseudo-label for an unlabeled sample (xu, zu), forming (xu, ŷu, zu).

And we have a sample from a labeled domain (xl, yl, zl). ŷu, zu, yl, and zl are

all one-hot vectors. Then the operation is formulated as below:

x̃ = λxl + (1− λ)xu, (3)

ỹ = λyl + (1− λ)ŷu, (4)

where λ ∼ Beta(α, α), for α > 0, and λ ∈ [0, 1]. The hyper-parameter α controls

the strength of interpolation.

Additionally, to further enhance the generalization ability, we also apply

mixup to domain labels of labeled and unlabeled samples for training domain
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discriminator as follows:

z̃ = λzl + (1− λ)zu, (5)

where λ is same with that used in Eqn. (3) and Eqn. (4). According to these

steps, we could finally generate a virtual sample (x̃, ỹ, z̃).

Ambiguous unlabeled samples. For the unlabeled samples with low-

confidence prediction, since we are unclear about their real labels, it is hard to

generate mixed samples by them. In order to further improve the generalization

ability of our method by fully leveraging these unlabeled samples, we employ

entropy loss to encourage unlabeled samples to be classified into a specific cat-

egory:

Lent =
1

Nu

Nu∑
i=1

H(Fc(Fg(xui ))), (6)

where H(·) is the entropy function. By introducing Lent, the networks are forced

to make more confident predictions on ambiguous unlabeled samples.

3.4. Training Procedure

Formally, as aforementioned, we denote Sl as the set of all labeled samples,

Su as the set of all unlabeled samples. During training, once we select the

reliable unlabeled samples with high confident pseudo-labels, forming Su′ , we

move them to the set of samples with pseudo-labels which is denoted as Sp.

At each training epoch, we assume, |Sl| = Nl, |Su| = Nu and |Sp| = Np. The

total number of all training samples is denoted as N = Nl +Nu +Np (refer to

Algorithm 1).

For training our network, we apply 1) a classification loss Lcls to Sl and Sp
since they are with labels or predicted pseudo-labels, and 2) an adversarial loss

Ladv to all sets of samples, i.e., Sl, Sp, and Su.

Lcls =
1

Nl

Nl∑
i=1

`(Fc(Fg(xli)), y
l
i) +

1

Np

Np∑
i=1

`(Fc(Fg(xpi )), ŷpi ), (7)

Ladv =
1

N
(

Nl∑
i=1

`(Fd(Fg(xli)), z
l
i) +

Nu∑
i=1

`(Fd(Fg(xui )), zui )
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Algorithm 1: Training Process

Input: Labeled source Sl, unlabeled source Su
Output: Generalizable model Fg and Fm

1 Initialize Networks, Pseudo-label Set Sp = ∅, Class representation list

L = [none]× C for each domain;

2 while not end of epoch do

3 Sm ← Perform domain mixup on Sl and Sp;

4 Training the model using Eqns. (11) and (12);

5 Inference the model on Su, and obtain q(xu);

6 if no none in L then

7 s(xu) ← Calculated by Eqn. (1);

8 end

9 Update class representation by q(xu);

10 Assign pseudo-labels by s(xu);

11 Recognize confident and ambiguous samples by Eqn. (2), and the

confident set is denoted as Su′ ;

12 Update Su ← Su − Su′ , Sp ← Sp ∪ Su′ ;

13 end

+

Np∑
i=1

`(Fd(Fg(xpi )), zpi )), (8)

where `(·, ·) is the cross-entropy loss. The loss on samples mixed up by Sp and

Sl is defined as:

Lcls mix =
1

Nl

Nl∑
i=1

Np∑
j=1

`(Fm(Fg(x̃)), ỹ), (9)

Ladv mix =
1

Nl

Nl∑
i=1

Np∑
j=1

`(Fd(Fg(x̃)), z̃). (10)

The training objective of our semi-supervised DG model can be described as
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follows:

min
Fg,Fc,Fm

Lcls + Lcls mix + wt(−Ladv − Ladv mix + Lent), (11)

min
Fd

Ladv + Ladv mix, (12)

where the weight function wt ramps up from zero to one during the training

procedure. The whole training procedure is described in Algorithm 1.

4. Experiments

4.1. Experimental Setting

Datasets. To evaluate the effectiveness of our method for the semi-supervised

domain generalization, we conduct several experiments on four benchmark datasets.

PACS [53] contains 7 categories of images from 4 domains (Photo, Art paint-

ing, Cartoon and Sketch). OfficeHome [54] consists of images from 4 different

domains (Artistic, Clip art, Product and Real-World). For each domain, this

dataset involves 65 object categories found typically in office and home. To

verify that our method also has promotion when data is abundant, we validate

our method on miniDomainNet. It is a subset of DomainNet aggregated by

[55], which contains 140,006 images from 4 domains (Clipart, Painting, Real,

and Sketch), covering 126 classes in the raw dataset. VLCS [56] includes five

categories of images from four domains (i.e., Caltech 101, PASCAL VOC, La-

belMe and SUN09). For each dataset, we select two domains as the unlabeled

source domains, one domain as the labeled source domain, and leave the remain-

ing one for test. We test all 12 combinations of domains on each dataset and

report the average accuracy. To ensure a fair comparison with other methods,

all experiments utilize the same scheme of data division.

Implementation Details. In all experiments, we use ResNet [57] as the

backbone, and we start with a pre-trained model and fine-tune on source do-

mains with the batch size of 128. Since the test domain is unavailable during

training. For PACS and OfficeHome, we train 120 epochs and select the model
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obtained in the final epoch for test. For miniDomainNet, the network converges

at an earlier epoch due to the huge amount of data. So we just train 60 epochs

and save the final model. We apply a SGD optimizer with momentum 0.9, and

we set the initial learning rate to 1e-3 in the case of PACS, OfficeHome and

miniDomainNet, and 1e-4 in the case of VLCS. The learning rate is divided

by 10 at the 30-th and the 50-th epochs. All experiments are implemented in

Pytorch with 4× 11 GB RTX 2080Ti GPUs.

4.2. Comparison with Other Methods

On PACS, we compare our method with the following baselines and the state-

of-the-art semi-supervised learning approaches (i.e., FixMatch [46], FeatMatch

[45] and AdaMatch [58]), domain adaptation (DA) approaches (i.e., SymNets

[59], SRDC [60], CGDM [61], ATDOC [62] and FixBi [63]), domain general-

ization (DG) methods (i.e., L2D [64], JiGen [65] and RSC [66]) and ‘DA+DG’

methods on the classification accuracy of the target domain using ResNet-18

and ResNet-50. And we also compare ours with the baselines and the state-of-

the-art methods on OfficeHome and miniDomainNet using ResNet-18. Finally,

we report our performance, the baseline results on VLCS using ResNet-18.

• Baseline

– SupOne: Train a plain model on one labeled source domain in a

supervised way and the other unlabeled source domains are not used.

– DSDGN: Implement the semi-supervised DG method proposed in

[49] using the same network structure as our framework.

• DA: The labeled source domain is used as the source domain in the DA

methods, and the mixture of the two unlabeled source domains is used as

the target domain. Finally, the unseen target domain is used for testing.

• DG: For single-DG methods, i.e. L2D, the unlabeled domains are not

used. For DG methods, i.e. JiGen and RSC, unlabeled samples are used

during training.
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Table 1: Experimental results of accuracy (%) on PACS based on ResNet-18 and ResNet-50.

The title in the first row indicates the name of the target domain and the title in the second

row is the name of the labeled domain among training source domains. P, A, C, S are Photo,

Art painting, Cartoon, Sketch, respectively. Note that the best performance is in bold.

Method
Photo Art Painting Cartoon Sketch

Avg.
A C S P C S P A S P A C

ResNet-18

Baseline
SupOne 95.69 86.17 40.66 64.60 68.75 25.93 25.90 58.53 38.10 32.55 49.05 61.29 53.94

DSDGN [67] 96.29 88.38 36.94 66.46 70.36 26.12 47.27 67.96 50.64 46.35 59.35 61.77 59.82

SSL

FixMatch [46] 95.39 85.63 59.40 65.38 68.41 51.37 45.22 62.20 55.55 53.32 61.52 76.94 65.03

FeatMatch [45] 95.33 82.57 56.89 66.06 72.02 58.69 47.10 65.57 57.30 64.39 72.59 74.40 67.74

AdaMatch [58] 94.61 49.64 41.20 69.43 81.01 42.48 64.12 65.53 60.28 54.38 68.30 76.27 63.94

DG

L2D [64] 95.51 86.65 47.25 64.75 73.78 49.95 38.35 68.77 63.31 41.23 67.24 70.20 63.92

JiGen [65] 95.39 83.53 47.43 66.26 69.53 33.54 34.68 66.98 54.18 40.83 57.78 62.61 59.40

RSC [66] 86.23 84.79 46.05 63.38 68.75 33.15 66.42 47.06 57.34 66.15 70.83 60.09 62.52

DA

SymNets [59] 88.42 76.44 28.36 61.80 48.27 31.86 30.21 74.24 45.69 16.36 53.41 58.70 51.15

SRDC [60] 91.50 80.36 38.32 55.37 71.68 31.40 50.43 69.28 54.73 21.41 54.75 60.15 56.62

CGDM [61] 95.15 75.69 47.01 62.26 64.86 31.69 39.38 59.56 50.73 12.57 41.84 59.86 53.38

ATDOC [62] 90.06 78.86 79.52 56.20 53.52 46.78 57.68 60.54 55.16 46.63 51.01 42.30 59.86

FixBi [63] 87.90 85.75 48.02 45.41 68.51 47.95 39.38 62.07 50.51 27.46 40.85 52.97 54.73

DA+DG

SymNets+RSC 92.28 92.46 40.90 69.46 72.87 46.70 60.96 30.59 51.28 63.78 73.05 18.91 59.44

SRDC+RSC 92.46 91.74 50.36 66.36 70.61 65.87 58.23 57.21 65.49 64.98 66.38 62.26 67.66

CGDM+JiGen 93.87 91.66 58.54 65.75 75.17 58.86 46.01 72.54 54.54 61.40 68.57 61.98 67.41

ATDOC+RSC 92.81 73.41 77.01 70.46 61.28 59.81 60.20 65.61 64.29 49.55 65.64 72.18 67.69

FixBi+RSC 92.99 87.31 50.48 66.46 73.24 57.67 40.19 62.63 53.67 26.22 60.96 70.25 61.84

Ours 94.37 91.02 66.53 69.92 75.68 55.37 54.22 71.46 57.94 65.69 71.27 71.06 70.38

ResNet-50

Baseline
SupOne 98.14 86.71 36.89 73.39 72.46 30.37 34.47 65.87 45.86 34.03 56.76 68.39 58.61

DSDGN [67] 97.90 93.65 38.62 71.88 79.15 39.60 45.95 70.78 53.11 41.46 68.36 70.12 64.22

SSL

FixMatch [46] 95.59 94.07 58.04 68.16 85.28 55.90 54.47 76.58 66.55 46.09 73.40 77.70 70.99

FeatMatch [45] 97.84 93.71 52.22 74.37 86.87 58.74 66.13 71.08 65.78 71.54 73.84 81.04 74.43

AdaMatch[58] 96.95 93.29 50.84 71.29 88.13 48.39 67.02 66.17 59.98 62.65 67.54 77.32 70.80

DG

L2D [64] 97.13 92.28 52.04 73.63 78.08 52.10 43.30 74.40 69.75 44.08 66.48 76.18 68.29

JiGen [65] 97.31 89.76 53.23 72.27 76.27 42.04 42.28 70.01 64.59 45.71 59.05 69.00 65.13

RSC [66] 91.56 88.80 59.10 64.31 68.70 34.42 68.56 47.78 65.49 65.46 74.12 62.13 65.87

DA

SymNets [59] 91.52 75.13 52.99 64.77 60.84 38.97 38.67 67.41 51.49 29.55 56.71 62.41 57.54

SRDC [60] 92.52 93.89 31.74 65.14 77.98 42.63 44.45 72.40 57.85 24.33 53.09 60.22 59.69

CGDM [61] 97.37 76.35 69.46 72.27 64.01 54.10 51.02 62.03 57.51 28.94 43.15 63.60 61.65

ATDOC[62] 92.87 82.81 88.38 39.70 76.07 55.86 55.50 68.00 57.68 38.69 52.00 53.53 63.42

FixBi [63] 90.24 92.10 55.27 64.21 74.51 52.05 37.59 70.99 65.10 45.48 54.57 60.88 63.58

DA+DG

SymNets+RSC 94.79 94.56 40.27 77.87 74.52 50.18 61.12 44.06 54.93 62.24 76.99 30.25 63.48

SRDC+RSC 95.93 95.03 64.25 75.39 78.93 60.40 59.60 74.27 67.41 58.18 72.10 74.40 72.99

CGDM+JiGen 97.60 94.91 73.03 78.02 83.89 73.44 49.87 64.97 63.35 57.04 64.72 73.63 72.87

ATDOC+RSC 95.57 80.30 90.06 62.30 81.15 76.81 58.32 72.99 74.87 51.06 71.06 78.37 74.41

FixBi+RSC 95.99 93.35 54.79 69.97 77.88 55.57 35.07 70.99 67.41 67.29 71.37 75.06 69.56

Ours 97.61 93.53 66.35 78.03 86.98 62.45 59.17 76.88 69.37 65.61 74.09 78.52 75.72

• DA+DG: We consider the labeled domain as the source domain and

other unlabeled domains as the unlabeled target domain. Then we use a

UDA method to generate pseudo-labels for unlabeled domains. Finally,

both the fully-labeled domain and pseudo-labeled unlabeled domains are

fed into a supervised DG method to train the final model.

Table 1 displays the results on PACS. Compared with the baselines, our

method achieves outstanding performance by significant margins with both

smaller and larger network architectures. Specifically, our method improves the

performance of SupOne by +16.44% and +17.11% with ResNet-18 and ResNet-

50, respectively. This shows that ours significantly improves the performance
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by leveraging unlabeled data. Compared with DSDGN, ours gains +10.56%

with ResNet-18 and gains +11.50% with ResNet-50. The results indicate that

our method makes more efficient use of unlabeled samples, thus our proposed

domain-aware pseudo-labeling and other modules outperform the naive pseudo-

labeling method in DSDGN.

Compared with the recent SOTA semi-supervised methods, ours also shows

priority in the SSDG task. Specifically, ours outperforms the best SSL methods

by +2.64% using ResNet-18 and +1.29% using ResNet-50. This shows that con-

ventional semi-supervised methods are not superior in solving SSDG problems.

By considering the domain shift between the labeled source domain and unla-

beled source domains, our proposed method can achieve better performance in

a clear margin compared with semi-supervised approaches.

From Table 1 we also observe that using ResNet-18 as a backbone archi-

tecture, ours outperforms all DA methods (i.e., SymNets, SRDC, CGDM, AT-

DOC and FixBi) by large margins: +19.23%, +13.76%, +17.00%, +10.52% and

+15.65%. Ours is also clearly better than DA methods when ResNet-50 is em-

ployed as a backbone architecture. This main reason is that these DA methods

do not address the domain gap between source domains and the unseen target

domain because the unseen target domain cannot be employed during training

in the SSDG task.

Additionally, as seen in Table 1, our method achieves better performance

than both single-DG and DG methods. For example, our method improves L2D

by +6.46% using ResNet-18 and +7.43% using ResNet-50. These results show

that our method improves the performance of single-DG with free unlabeled

data. Ours also outperforms the best DG methods by +7.86% using ResNet-

18 and +9.85% using ResNet-50. These results imply that our method makes

more efficient use of unlabeled samples, i.e., the proposed domain-aware pseudo-

labeling module and the proposed dual-classifier surpass “self-challenging” mech-

anism (RSC) and “solving a jigsaw puzzle” task (JiGen) in utilizing unlabeled

samples.

Moreover, we can observe in Table 1 that compared with the SOTA ‘DA+DG’

18



Table 2: Experimental results of accuracy (%) on OfficeHome. The title in the first row

indicates the name of the target domain and the title in the second row is the name of

the labeled domain in training source. A, C, P, R stand for Art, Clipart, Product, Real,

respectively. The best performance is bold.

Method
Art Clipart Product Real

Avg.
C P R A P R A C R A C P

Baseline
SupOne 43.63 38.20 54.84 38.95 37.34 44.10 54.88 54.02 70.94 64.08 57.54 62.98 51.79

DSDGN [67] 45.49 41.37 56.49 38.40 37.46 43.98 55.37 54.99 72.11 64.56 55.93 63.44 52.47

SSL
FixMatch [46] 44.53 42.14 58.11 43.42 42.09 45.67 56.24 56.39 70.80 65.38 56.43 65.71 53.91

FeatMatch [45] 49.98 47.34 55.67 41.95 42.96 47.33 54.11 53.71 68.19 61.12 54.99 64.33 53.47

DG

L2D [64] 42.14 38.25 56.72 40.75 41.42 51.33 47.04 51.78 69.90 56.90 54.57 63.58 51.20

JiGen [65] 32.06 30.49 42.85 35.51 34.71 41.70 42.60 47.38 62.78 52.51 49.28 54.26 43.84

RSC [66] 40.08 37.19 53.99 39.56 38.37 45.43 48.13 57.12 69.45 63.46 52.05 60.80 50.47

DA

SymNets [59] 39.64 45.20 53.65 33.29 32.30 37.96 50.96 48.52 68.17 58.73 51.11 60.12 48.30

SRDC [60] 50.31 52.37 58.96 37.18 37.27 38.24 58.68 57.87 68.35 61.26 59.08 64.61 53.68

CGDM [61] 46.14 44.91 51.92 38.01 37.69 42.97 57.22 58.43 69.43 64.86 59.63 63.69 52.91

DA+DG

SymNets+RSC 30.74 37.54 51.76 33.24 39.25 43.76 42.69 46.18 65.71 49.02 41.27 60.16 45.11

SRDC+RSC 43.51 45.74 49.40 39.43 43.30 39.40 54.04 55.64 69.09 56.92 55.73 63.35 51.30

CGDM+JiGen 49.36 48.66 53.59 41.28 39.52 43.43 60.35 61.63 71.09 63.21 61.35 64.03 54.79

Ours 47.55 46.07 58.01 44.33 42.34 47.90 57.56 57.83 72.43 65.48 59.74 65.09 55.36

methods using ResNet-18 as backbone, ours shows advantages. Specifically,

compared with ‘SymNets+RSC’, our method improves the average accuracy by

+10.94%. Compared with ‘SRDC+RSC’, ours gains +2.72%, and compared

with ‘CGDM+JiGen’, there is an improvement of +2.97%. Compared with

‘ATDOC+RSC’, ours improves +2.69%, and compared with ‘FixBi+RSC’, ours

gains +8.54%. Moreover, using ResNet-50 as backbone, compared with ‘Sym-

Nets+RSC’, ‘SRDC+RSC’, ‘CGDM+JiGen’, ‘ATDOC+RSC’ and ‘FixBi+RSC’,

ours improves the accuracy by +12.24%, +2.73%, +2.85%, +1.31% and +6.16%,

respectively. The reason why ‘DA+DG’ methods are not superior to ours is that

‘DA+DG’ methods are not an end-to-end deep framework, thus the labeling pro-

cess of UDA methods cannot be improved by the process of DG, which means

that the performance of DG is largely influenced by that of UDA. Particularly,

when the UDA model is unreliable, the performance of the whole model would

become inferior.

Experimental results on OfficeHome are shown in Table 2. It is worth noting

that OfficeHome has a relatively smaller domain shift than PACS. As seen in

this table, our method gains +3.57% compared with SupOne and improves the

average accuracy by +2.89% compared with DSDGN, which thanks to the effi-

cacy of the proposed domain-aware pseudo-labeling scheme and dual-classifier.

Furthermore, compared with the SOTA SSL, DG, DA and ‘DA+DG’ methods,
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Table 3: Experimental results of accuracy (%) on miniDomainNet. The title in the first row

indicates the name of the target domain, and the title in the second row is the name of the

labeled domain in source domains. C, P, R and S stand for Clipart, Painting, Real and

Sketch, respectively. The best performance is bold.

Method
Clipart Painting Real Sketch

Avg.
P R S C R S C P S C P R

Baseline
SupOne 47.45 47.83 53.54 37.91 48.43 42.69 48.53 64.90 47.35 43.21 42.12 42.33 47.19

DSDGN [67] 47.29 48.16 53.25 39.27 50.88 46.34 44.78 64.46 50.21 42.18 44.50 42.61 47.83

SSL
FixMatch [46] 50.79 56.89 57.46 48.75 60.38 57.18 52.47 63.08 56.54 38.09 42.22 40.20 52.00

FeatMatch [45] 52.70 52.17 52.06 48.91 53.38 37.05 37.40 66.06 41.14 45.57 49.43 47.17 48.59

DG

L2D [64] 50.23 52.75 53.90 37.47 56.49 42.40 45.69 59.16 45.81 46.31 45.59 45.37 48.43

JiGen [65] 42.38 46.87 44.27 27.81 43.22 26.23 37.39 54.01 37.44 33.45 30.18 33.06 38.03

RSC [66] 42.41 48.20 47.84 28.00 52.65 33.07 37.63 56.48 35.49 41.92 42.68 40.59 42.25

DA

SymNets [59] 39.51 50.76 47.73 35.11 52.35 46.10 43.42 58.95 48.48 37.14 33.44 32.21 43.77

SRDC [60] 46.40 46.64 52.00 42.18 52.11 50.53 55.71 65.49 56.06 41.75 39.91 38.30 48.92

CGDM [61] 50.31 49.71 56.03 42.64 53.41 48.57 52.27 64.52 54.76 43.39 40.70 42.20 49.88

DA+DG

SymNets+RSC 47.66 48.09 47.24 39.21 51.01 52.28 40.14 52.57 49.68 38.80 40.17 39.04 45.49

SRDC+RSC 48.74 45.86 55.25 41.12 55.37 52.23 48.23 59.33 52.94 39.73 43.34 43.04 48.77

CGDM+JiGen 49.79 58.34 56.75 45.20 54.73 51.91 55.76 62.19 58.77 46.96 45.83 46.27 52.71

Ours 54.29 55.98 58.16 45.36 56.22 53.08 51.51 64.55 55.05 48.70 49.38 49.91 53.52

Table 4: Experimental results of accuracy (%) on VLCS. The title in the first row indicates

the name of the target domain and the title in the second row is the name of the labeled

domain among training source domains. C, L, V, S stand for CALTECH, LABELME, VOC,

SUN, respectively. The best performance is in bold.

Method
CALTECH LABELME VOC SUN

Avg.
L V S C V S C L S C L V

SupOne 68.83 98.02 72.23 53.09 57.27 59.64 44.52 59.87 61.37 35.44 50.24 73.43 61.16

DSDGN[67] 70.18 98.30 74.35 48.01 65.85 59.22 49.01 56.40 61.08 38.73 50.24 70.35 61.81

Ours 79.01 97.39 72.93 65.85 66.08 61.11 51.08 60.38 63.12 39.64 49.30 74.40 65.02

our method increases +1.45%, +4.16%, +1.68% and +0.57%, respectively.

We compare our method with baselines and the SOTA methods on miniDo-

mainNet in Table 3. As seen, our method achieves +6.33% and +5.69% gain on

miniDomainNet compared with SupOne and DSDGN, respectively. Besides, our

method outperforms all the SOTA methods (i.e., SSL, DG, DA and ‘DA+DG’)

by large margins: +1.52%, +5.09%, +3.64% and +0.81%. The results indicate

that our method is also effective on the large-scale dataset.

In Table 4 we report the performance of ours and baselines on VLCS. We no-

tice that SupOne achieves an average accuracy of 61.16%, which is only trained

on the labeled source domain in a supervised way. DSDGN achieves slight

improvement compared with SupOne. Our method increases the average accu-

racy by +3.86% compared with SupOne on VLCS, which could be attributed
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to that we assign accurate pseudo-labels to unlabeled source domains and the

inter-domain mixup improves the generalization ability of the model.

4.3. Ablation Study

Table 5: Accuracy (%) of ablation study on PACS. P, A, C, S stand for Photo, Art painting,

Cartoon, Sketch, respectively. Baseline represents our method without both DAPL and DC.

The best performance is bold.

Method
Photo Art Painting Cartoon Sketch

Avg.
A C S P C S P A S P A C

Baseline 92.52 87.49 48.80 66.80 72.51 45.51 51.07 67.53 51.83 52.07 53.47 59.36 62.41

Ours w/o DAPL 92.64 88.38 49.40 69.24 69.14 45.02 54.10 68.94 53.41 58.77 64.01 65.20 64.85

Ours w/o DC 93.29 85.69 60.96 66.31 73.68 46.83 56.83 68.13 52.30 54.26 56.05 63.32 64.80

DBSCAN[68] 93.47 85.57 57.78 66.21 70.07 43.07 49.62 67.19 48.81 44.31 54.11 54.42 61.22

Agglomerative[69] 85.81 89.28 62.28 65.82 69.63 52.59 51.07 67.66 50.77 46.02 56.15 56.07 62.76

Ours 94.37 91.02 66.53 69.92 75.68 55.37 54.22 71.46 57.94 65.69 71.27 71.06 70.38

In order to verify the contributions of domain-aware pseudo-labeling (DAPL)

and dual-classifier (DC), we conduct an ablation study on PACS, as reported

in Table 5. “Ours w/o DAPL” replaces DAPL by naive pseudo-labeling, and

“Ours w/o DC” conducts prediction and generalization by the same classifier

in the training stage. Without DAPL or DC, the generalization ability of our

method dramatically drops. The results show that our modules are crucial to

improving the accuracy of the classification on unseen target domains. Besides,

we show the pseudo-label accuracy in Figure 5. As seen, our method can obtain

more accurate pseudo-labels for unlabeled data compared with the baseline

(i.e., our method removes both DAPL and DC). In order to further evaluate

the effectiveness of DAPL, we conduct an ablation study to replace DAPL with

other state-of-the-art cluster methods ( i.e., DBSCAN [68] and Agglomerative

Clustering [69]) for comparison. As seen, ours outperforms the best clustering-

based methods by +7.62%. The results indicate that domain-aware pseudo-

labeling is more effective compared with clustering methods.

In addition, as mentioned above, we propose to utilize a dual-classifier (a

predictive classifier for producing pseudo-labels and a generalizable classifier)

to avoid the possible accuracy degradation of pseudo-labels, which leverages the
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Figure 5: Pseudo-label accuracy (%) on PACS.

independent classifier for joint pseudo-label assignment and domain generaliza-

tion. The predictive classifier is trained by original samples and the generalizable

classifier is trained by mixed samples. We also compare the pseudo-label accu-

racy of the two classifiers on PACS in Figure 5. As seen, the predictive classifier

gains 4.8% in average accuracy compared with the generalizable classifier. This

shows that the generalizable model causes a drop in the accuracy of pseudo-

labels. And the dual-classifier module is effective for mitigating this problem.

It is worth mentioning that our method picks up pseudo labels with an accuracy

of over 70% in a 7-class classification task using ResNet-18.

As described in Sec. 3.3, domain mixup is applied to promote the general-

ization ability of our model on the unseen target domain. And we only choose

confident unlabeled samples to mix up with the labeled ones. We study the

influence of different designs and show the results in Table 6. As seen, our

method shows better performance compared with “w/o mixup” and the model

that mixes up all unlabeled samples. We also perform ablation study on the

losses in the training objective, i.e., Lcls mix, Ladv, Ladv mix and Lent. The

results show that ours outperforms the scheme without Lcls mix, Ladv, Ladv mix

and Lent by 7.24%, 5.29% , 1.36% and 2.45%, respectively, demonstrating the

effectiveness of each loss function. In summary, in these experiments, we confirm
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Table 6: Experimental results of accuracy(%) with different designs of Domain Mixup and

different loss functions on PACS. The titles indicate the target domains, and each column is

the average accuracy of three combinations of source domains (e.g., A, C, S under Photo).

Target Photo Art Cartoon Sketch Avg.

w/o Mixup 80.48 63.48 62.88 60.03 66.72

MixupAll 79.50 63.51 59.24 63.16 66.35

w/o Lcls mix 77.61 61.63 57.95 55.38 63.14

w/o Ladv 79.44 65.90 59.88 55.15 65.09

w/o Ladv mix 81.66 67.58 61.96 64.87 69.02

w/o Lent 82.69 62.44 59.43 67.15 67.93

Ours 83.97 66.99 61.21 69.34 70.38

that the main modules in our framework are useful.

4.4. Further Analysis

Sensitivity of Hyper-parameters. Here we discuss the sensitivity to

hyper-parameters of our method on PACS, including α in mixup and (γ, δ) in

domain-aware pseudo-labeling. To simplify the analysis, We select 4 combina-

tions. To be specific, “Photo (Sketch)”, “Art (Photo)”, “Cartoon (Art)” and

“Sketch (Cartoon)” are chosen, where “Photo(Sketch)” represents the case that

Sketch is labeled for training and Photo is the target. We train our model with

α in [0.1, 0.2, 0.4, 0.8, 1.0]. With the increase of α, mixup is more likely to gen-

erate more confusing samples. The results are reported in Figure 6. The effect

of hyperparameter α on testing accuracy does not show similar trends in each

experiment. Photo (Sketch) and Sketch (Cartoon) show large variance. And an

optimal value for all experiments is between 0.2 and 0.8. As for γ, we set four

appropriate value pairs for the weight γ and the threshold δ in domain-aware

pseudo-labeling, specifically, (0.05, 0.2), (0.1, 0.24), (0.2, 0.3) and (0.3, 0.36).

It can be observed that the performance is not sensitive to γ and smaller value

is slightly better. We set α and γ as 0.2 and 0.1 for all combinations in our

experiments.
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Figure 6: The sensitivity analysis of α in mixup (left) and γ in domain-aware pseudo-labeling

(right) on PACS.

Table 7: Compare different policies of selecting class representation in domain-aware pseudo-

labeling.

Target Photo Art Cartoon Sketch Avg.

One 83.06 66.57 61.11 67.95 69.67

Ensemble 83.97 66.99 61.21 69.34 70.38

Different Schemes for Class Representation. We propose two poli-

cies of selecting class representation for domain-aware pseudo-labeling in our

framework. The results is shown in Table 7, “One” stands for picking up the

most confident one unlabeled sample from each class as class representation

at every epoch, and “Ensemble” means calculating the average of several sam-

ples as domain-aware class representation. When applying “Ensemble” policy,

we choose one sample only if its confidence is higher than the existing highest

confidence in the same class. We hold all chosen samples and calculate the av-

erage at every epoch. This experiment shows that “Ensemble” policy is more

fault-tolerant and its performance is better.

Visualization of Feature Distributions. Figure 7 visualizes the feature

distributions of three source domains on PACS, including one labeled domain

and two unlabeled domains. As seen, the selected domain-aware class repre-

sentation samples are accurate according to the corresponding original images.
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Meanwhile, it can be observed that there are still some misclassified unlabeled

samples, especially in Sketch, due to the large domain gap.

5. Conclusion

In this paper, we address the problem of semi-supervised domain generaliza-

tion via producing better pseudo-labels for unlabeled data. Firstly, we propose

domain-aware pseudo-labeling for picking up more accurate pseudo labels for

unlabeled data by domain-based modification. Then, a dual-classifier network

structure is employed to promote the generalization of the model and the accu-

racy of pseudo-labels. Finally, utilizing the accurate pseudo-labels in unlabeled

domains, we apply domain mixup to them and enforce entropy regularization

on ambiguous samples. Extensive experiments on benchmark datasets validate

the efficacy of our framework.
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