
AEDNet: Adaptive Edge-Deleting Network For Subgraph Matching

Zixun Lan

a, Ye Ma b, Limin Yu

c, Linglong Yuan

d, Fei Ma a, ∗
a Department of Applied Mathematics, School of Mathematics and Physics, Xi’an Jiaotong-Liverpool University, Suzhou, China
b Department of Financial Mathematics, School of Mathematics and Physics, Xi’an Jiaotong-Liverpool University, Suzhou, China
c Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, China
d Department of Mathematical Sciences, The University of Liverpool, United Kingdom

zixun.lan19@student.xjtlu.edu.cn, {ye.ma, limin.yu, fei.ma}@xjtlu.edu.cn, linglong.yuan@liverpool.ac.uk

Abstract

Subgraph matching is to find all subgraphs in a data graph that are isomorphic to an existing query

graph. Subgraph matching is an NP-hard problem, yet has found its applications in many areas. Many

learning-based methods have been proposed for graph matching, whereas few have been designed for

subgraph matching. The subgraph matching problem is generally more challenging, mainly due to the

different sizes between the two graphs, resulting in considerable large space of solutions. Also the extra

edges existing in the data graph connecting to the matched nodes may lead to two matched nodes of

two graphs having different adjacency structures and often being identified as distinct objects. Due to

the extra edges, the existing learning based methods often fail to generate sufficiently similar node-level

embeddings for matched nodes. This study proposes a novel Adaptive Edge-Deleting Network (AEDNet)

for subgraph matching. The proposed method is trained in an end-to-end fashion. In AEDNet, a novel

sample-wise adaptive edge-deleting mechanism removes extra edges to ensure consistency of adjacency

structure of matched nodes, while a unidirectional cross-propagation mechanism ensures consistency of

features of matched nodes. We applied the proposed method on six datasets with graph sizes varying

from 20 to 2300. Our evaluations on six open datasets demonstrate that the proposed AEDNet outper-

forms six state-of-the-arts and is much faster than the exact methods on large graphs.

1. Introduction

Subgraph matching, which is to find all subgraphs in a data

graph G that are isomorphic to a query graph Q , has found its ap-

plications in various fields. In information retrieval, a query pro-

cess of searching for research papers is a subgraph matching task

[1] . In computer vision, images and objects can be converted into

graphs through preset rules, which enables object recognition to

be treated as a subgraph matching problem [2–4] . In natural lan-

guage processing, words in the corpus can be treated as nodes and

relationships between words as edges, so paraphrases are equiv-

alent to subgraph matching [5] . In chemoinformatics, template-

based methods take the template’s reaction centre and product

molecules as the query and data graph respectively. The first step

of applying the template on the product molecule becomes the

process of subgraph matching [6] . In bioinformatics, a considerable

∗ Corresponding author.

E-mail addresses: zixun.lan19@xjtlu.edu.cn (Z. Lan), ye.ma@xjtlu.edu.cn

(Y.Ma), limin.yu@xjtlu.edu.cn (L. Yu), Linglong.Yuan@liverpool.ac.uk (L. Yuan),
fei.ma@xjtlu.edu.cn (F. Ma).

amount of biological data can be naturally represented by graphs,

thus a query operation is also a subgraph matching task [7,8] .

Subgraph isomorphism is a generalization of the graph isomor-

phism problem. Compared with the graph matching problem, the

subgraph matching problem is generally more challenging, mainly

due to the different sizes between the two graphs, resulting in

the considerable large space of solutions [9,10] . Subgraph isomor-

phism can be divided into induced and non-induced subgraph iso-

morphism problems [11] . In this study, we focus on the induced

subgraph isomorphism problem, as the experimental data used in

this study contains only induced subgraph matches. However, the-

oretically, our method can also be used for non-induced subgraph

isomorphism problem.

There are exact methods for subgraph matching, such as Ull-

man’s [12] , VF2 [10] , Ceci [13] , FilM [14] , VF3 [15] , etc, but they

are difficult to meet real-world situations. Exact methods incur a

significant computational burden when the number of nodes is

large, which is often the case in many real applications. In addi-

tion, the graphs in reality often have noises, causing difficulties to

find subgraphs isomorphic to query graph and further resulting in

no matching after a long time searching. To solve the subgraph

matching problem within a reasonable time and with a noisy back-

Fig. 1. Subgraph Matching: the subgraph of the data graph in the ellipse is isomorphic to the query graph. The red edge is an extra edge. AED represents the Adaptive

Edge-Deleting mechanism. Node u in the query graph and node v in the data graph is a pair of matched nodes. The h , i.e. grey and black rectangular blocks, represent

node-level embeddings respectively. Due to the extra edge, h (t+1)
G, v does not match h (t+1)

G,u
. Removing the extra edge by AED can make the embeddings of node u and node v

similar enough. This figure shows part of the whole model. Our model is end-to-end. The Input of the model is two graphs and the output of the model is the predicted

matching matrix. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

ground, one has to look for fast inexact methods that can tolerate

the existence of noise.

Various approximate algorithms have been proposed to solve

subgraph matching, including G-Finder [16] , Saga [17] , PG-N

[18] and so on. These methods often work in a fast but heuristic

way in which they select appropriate seed nodes and then expand

to their neighbours continually with preset rules. In contrast, rarely

have learning-based methods been proposed, especially for sub-

graph matching. Compared with more time-consuming and power-

intensive traditional methods which are mostly performed on CPU

and have more logic operations [19] , learning-based approaches

learn matching relationships from data and are normally very effi-

cient during the inferencing due to highly parallel computation and

full usage of GPUs. During the training, the parameters are learned

by minimizing the difference between the ground-truth and the

predicted matching; during the testing, unseen pairs (data graph

and query graph) can be fed into the models for fast approxima-

tion of matching relationships.

Many learning-based methods have been proposed for a simi-

lar problem, graph matching, such as Zanfir and Sminchisescu [20] ,

Wang et al. [21] , Ma et al. [22] , Wu et al. [23] , Xu et al. [24] , Guo

et al. [25] , Vento [26] . However, very few learning-based methods

have been designed for subgraph matching, except for Sub-GMN

[27] and NeuralMatch [28] to our best knowledge.

The extra edges lead to the subgraph matching problem be-

ing more challenging than graph matching from the perspective of

deep learning and graph representation learning [29] . In more de-

tail, a matched node v in the data graph may be connected with

extra edges (the red line in Fig. 1), but no corresponding edges are

connecting to the matched node u in the query graph, where u and

v are a pair of matched nodes. It means that a pair of matched

nodes from the data graph and the query graph respectively are

distinct objects from the node-level perspective because the ad-

jacency structures of the matched nodes are inconsistent, even if

their node features are identical.

The existing learning-based subgraph matching approaches

usually follow the learning-based graph matching methods. One

shared spatial graph convolution network computes the node-level

embedding of each node in two graphs, and then the embeddings

of two matched nodes are expected to be close to each other by

minimizing the distance or maximizing the similarity. However, as

mentioned before, the adjacency structures of the matched nodes

in the data graph and the query graph are inconsistent due to the

extra edges (Fig. 1), so two matched nodes in subgraph matching

can be easily identified as different objects. This direct approach in

the subgraph matching is difficult to make the embeddings of two

matched nodes to be similar enough. It is valid for graph matching

since two matched nodes are identical objects, but this approach

fails to force two different objects to output the same representa-

tion for subgraph matching.

This paper is inspired by the disharmony between inputting

distinct objects and outputting similar embeddings. Two matched

nodes with different adjacency structures are represented as dis-

tinct embeddings through one shared spatial graph convolution.

However, in subgraph matching we always expect the embeddings

of two matched nodes to be close to each other. This study pro-

poses a novel sample-wise adaptive edge-deleting mechanism to

ensure that two matched nodes have close adjacent structures to

predict the node-to-node matching relationships in a more rea-

sonable way. A unidirectional cross-propagation mechanism is also

used to ensure that the node features of the corresponding nodes

are similar enough. We propose an Adaptive Edge-Deleting Net-

work (AEDNet) for the approximate subgraph matching problem in

this study which combines the above two mechanisms. The model

Fig. 2. Here v ∈ G and u ∈ Q are corresponding nodes, dotted lines represent ex-

tra edges, αi j is the normalized attention coefficient. In this example, A G
nd(v) =

{ αvv 1 , αvv 2 } , A G d(v) = { αv 3 , αvv 4 } , A Q (u) = { αuu 1 , αuu 2 } , where ‘d’ is the abbreviation of

‘delete’ and ‘nd’ is the abbreviation of ‘no-delete’. The sample-wise adaptive edge-

deleting mechanism in the model makes the sum of all elements in A G
d(v) tend to 0,

which leads to A G
nd(v) = A Q

(u)
.

is trained in an end-to-end fashion (see Fig. 2). Since the extra

edges are known during the training, the model can be trained

to adaptively ‘delete’ edges by reducing the weight of the ex-

tra edges in the data graph according to the corresponding input

query graphs. Through AEDNet, two matched nodes with differ-

ent adjacent structures could eventually be mapped together with

close representations. Our contributions are summarized as below:

• We identify the difficulty with the most current learning-based

subgraph matching methods that is to force two different ob-

jects to output the same representation vectors through one

vanilla shared graph network.
• We propose a novel sample-wise adaptive edge-deleting mech-

anism to ensure that two matched nodes are consistent

in terms of structures. We showed both mathematically

(Theorem 1) and experimentally the effectiveness of the pro-

posed sample-wise adaptive edge-deleting mechanism.
• Our evaluations on six open datasets demonstrate that the

proposed AEDNet outperforms the comparison state-of-the-arts

and is faster than exact methods.

2. Related work

2.1. Learning graph matching

Many learning-based graph matching methods are developed

for specific scenarios. DLGM [20] and PCA-GM [21] match images

by predicting corresponding nodes after images are converted into

graphs. In the field of knowledge graph, RDGCN [23] and GMNN

[24] are used for entity alignment, where RDGCN uses a dual rela-

tion counterpart to improve its expressive ability. In action recog-

nition, NGMN [25] combines few-shot learning with GCN [29] to

match graphs representing actions. The above methods use GNNs

to represent nodes and then directly force node-level embeddings

of corresponding nodes close to each other. It is reasonable since

corresponding nodes are objects with the same adjacency struc-

tures and identical node features in the graph matching task. How-

ever, these methods are not suitable for generic graph matching or

subgraph matching because the sizes of graphs are kept below 20

under these specific scenarios. In subgraph matching there is of-

ten an extreme imbalance of sizes between data graphs and query

graphs.

Graph similarity calculation is an important graph-level task.

Methods such as GMN [30] and INFMCS [31] target at this task.

Their internal mechanisms relate to and contribute to the graph

matching task, especially the cross-attention in GMN and cross-

interaction in Simgnn, namely the cross-propagation mechanism.

2.2. Learning subgraph matching

Following the assumption of learning-based graph matching

methods, Sub-GMN [27] directly forces node-level embeddings of

two matched nodes to be close to each other. It is inappropri-

ate, as the corresponding nodes of the data graph may have extra

edges, making the corresponding nodes be different objects. Sub-

GMN aims to make the corresponding node-level embeddings sim-

ilar by combining GCN [29] and NTN [32] , which inevitably leads

to poor performance since it maps two different objects to close

points in representation space forcibly.

NeuralMatch [28] first decomposes the graph pairs into a large

number of k-order Breadth First Search (BFS) small graphs an-

chored at each node in data graphs and query graphs. Subse-

quently, it assumes that the decomposed k-order BFS subgraph

anchored at a node of the query graph is a subgraph of the k-

order BFS subgraph anchored at the corresponding node of the

data graph. After that, it trains GNNs to generate graph-level em-

bedding of one graph at the bottom left of that of another graph

in the embedding space according to the order embedding [33] if

this graph is a subgraph of another graph. Even if this assumption

is valid on ground-truth corresponding nodes, it may still result

in mismatches, since the k -order BFS subgraph anchored at one

unmatched node in the data graph may contain a subgraph iso-

morphic to the k-order BFS subgraph anchored at one node in the

query graph.

2.3. Learning-free methods on subgraph matching

There are two main categories of subgraph matching ap-

proaches. There are a large number of subgraph matching models

which can be classified as backtracking search based algorithms,

such as Kim et al. [34] , Jüttner and Madarasi [35] . These models

obtain matches on the query graph by the filtering, ordering and

enumeration operation. Another category is the join-based meth-

ods, such as Yang et al. [36] , Dahm et al. [37] . The join-based ap-

proaches decompose the query graph into nodes and edges. Then,

they repeatedly perform join operations to integrate matched ones

into query. In addition, there are some subgraph matching meth-

ods [18,38] which are based on constrained programming. There

are also some algorithms [16,39] based the indexing-enumeration.

They build an index on the data graph and answer all queries with

the help of the index.

3. Problem definition and preliminary

3.1. Subgraph matching and matching matrix

A graph is denoted as a tuple { V , E, F n , F e }, where V is the

node set, E is the edge set. F n and F e are feature functions which

map each node and each edge to feature vectors respectively. In

this paper, Q = { V Q , E Q , F n Q
, F e

Q
} represents a query graph, and G =

{ V G , E G , F n G
, F e

G
} stands for a data graph.

Definition 1. The subgraph matching [9] is an injection function

m : V Q → V G , which satisfies: (1) ∀ u ∈ V Q , m (u) ∈ V G and F
n (u) =

F n (m (u)) ; (2) ∀ (u a , u b) ∈ E Q , (m (u a) , m (u b)) ∈ E G and F
e (u a , u b) =

F e (m (u a) , m (u b)) . There may be multiple mappings from V Q to V G .

We use SM(Q, G) = { m 1 , m 2 , . . . , m k } for the set of all mappings.

The subgraph matching problem is to find the set of all mappings

SM(Q, G) for a given pair of graphs.

Definition 2. A Ground-Truth Matching Matrix [40] gives the true

node-to-node matching relationship. The Matching Matrix M ∈

R | Q|×| G | is defined as:

M i j =

{
1 m n (i) = j

0 m n (i) � = j, n = 1 , 2 , . . . , k

M = [M i j] | Q|×| G | ,
(1)

where i , j are the i th row and the jth column of M, corresponding

to the i th and the jth nodes of Q and G respectively. M i j is the

element of i th row and jth column of M. m n (i) = j means the i th

node of Q maps to the jth node of G . | Q| and | G | are the sizes
of the query graph Q and the data graph G respectively. Matching

Matrix M contains all the node-to-node matching relationships, so

at least one element in each row of the Matching Matrix is 1.

Notably, in this paper, we focus on top-1 subgraph matching.

We found that although multiple subgraphs of G could be isomor-

phic to Q , most of the nodes in these subgraphs are repeated, and

only a few nodes are changing. It shows that finding the top-1

subgraph is equivalent to finding the most critical nodes of other

isomorphic subgraphs. On the other hand, neural-based methods

are generally divided into two steps to solve combinatorial opti-

mization problems [19] . They firstly predict a probability transition

matrix and then select the solution from the probability transi-

tion matrix through specific heuristic rules. This paper focuses on

a predicted probability transition matrix (Matching Matrix) rather

than following heuristic rules. Intuitively, a better-predicted proba-

bility transition matrix often leads to a better solution (top-1 sub-

graph).

3.2. Graph attention network

Graph Attention Network (GAT) [41] integrates attention mech-

anism [42] with spatial graph convolution to obtain expressive

power.

Given H

(t) = [h

(t)
1

;h

(t)
2

; · · · ;h

(t)
n] ∈ R n ×d is the node embedding

matrix at the tth layer, where h

(t)
i

∈ R 1 ×d is the node-level embed-

ding for node i of the graph and is also the i th row of H

(t) , d is

the dimension of node-level embedding and n is the number of

nodes. GAT injects the graph structure into the attention mecha-

nism by performing masked attention, namely it only computes αi j

for nodes j ∈ N i , where N i is the first-order neighbors of node i in

the graph:

e i j = a ·
[
h

(t)
i
W ‖ h

(t)
j
W

]T
,

αi j =

exp
(
θ
(
e i j

))
∑

k ∈N i exp (θ (e ik))
,

(2)

where e i j ∈ R and αi j ∈ R are a non-normalized attention coef-

ficient and a normalized attention coefficient representing the

weight of message aggregated from node j to node i respectively,

and ‖ is the concatenation operation. Besides, a ∈ R 1 ×2 d ′ and W ∈

R d ×d ′ are learnable parameters (d ′ is a hyperparameter), θ is a

LeakyReLU nonlinearity with negative input slope α = 0 . 2 .

GAT employs multi-head attention to stabilize the learning pro-

cess of self-attention, similar to Transformer [43] . If there are K

heads, K independent attention mechanisms execute the Eq. (2) ,

and then their features are concatenated:

h

(t+1)
i

= ‖

K
k =1

σ
(∑

j∈N i α
k
i j
h

(t)
j
W

k
)

= Aggr({ αk
i j
, h

(t)
j

| j ∈ N i })
(3)

where ‖ represents concatenation, αk
i j

are normalized attention

coefficients computed by the k th learnable a k ∈ R 1 ×2 d ′ and W

k ∈

R d ×d ′ following Eq. (2) , Aggr() is the final aggregation function.

4. Model: adaptive edge-deleting network

We propose an Adaptive Edge-Deleting Network inspired

by the disharmony mentioned above. The unidirectional cross-

propagation mechanism and the sample-wise adaptive edge-

deleting mechanism ensure that the node features and node adja-

cency structures of matched nodes are similar. Fig. 2 is an example

of AEDNet.

4.1. Unidirectional cross-propagation

Unlike the previous graph matching task [21,30] , we use unidi-

rectional cross-propagation instead of bidirectional mode:

P
| G |→| Q| , (t)
i j

= M

(t)
i j

=

exp
(
s h

(
h

Q, (t)
i

, h

G, (t)
j

)
× τ−1

∗
)

∑

j ′ exp
(
s h

(
h

Q, (t)
i

, h

G, (t)
j ′

)
× τ−1 ∗

) ,

νQ, (t)
i

=

∑

j P
| G |→| Q| , (t)
i j

h

(t)
j

,

∀ i ∈ V Q , j ∈ V G ,

(4)

here h

Q, (t)
i

∈ R 1 ×d , h

G, (t)
j

∈ R 1 ×d are node-level embeddings at tth

layer for query graph Q and data graph G respectively, s h is a

vector space similarity metric, like Euclidean or cosine similarity.

P | G |→| Q| , (t) ∈ R | Q|×| G | is the propagation matrix from data graph G

to query graph Q at the tth layer, and M

(t) ∈ R | Q|×| G | is the pre-
dicted matching matrix at the tth layer. Notably, their calculation

processes are identical. We use N

(t)
Q

= [νQ, (t)
1

;νQ, (t)
2

; · · · ;νQ, (t)
| Q|] ∈

R | Q|×d as the cross-information matrix of the query graph Q ag-

gregated from the data graph G at the tth layer and νQ, (t)
i

∈ R 1 ×d is

the cross-information of one node of query graph aggregated from

data graph. In order to discretize propagation matrix P | G |→| Q| , (t) for
specific situations, we add a learnable parameter τ∗ ∈ (0 , 1] .

The purpose of cross-propagation is to make the cross-

information of the corresponding node features similar enough

when propagation matrix P | G |→| Q| is close enough to the Ground-
Truth Matching Matrix M. The hidden representations of the cor-

responding nodes at the first layer are nonidentical in subgraph

matching due to extra edges. So, using bidirectional-propagation

inevitably leads to different representations of the corresponding

nodes.

We design a loss function L (t) M

to meet the above purpose and

to make the predicted matching matrix M

(t) to be closer to the

Ground-Truth:

� i =

∑

j ′ ∈J i M

(t)
i j ′ , J i = { j ′ | M i j′ = 1 }

ρi =

∑

j ′ ∈ J i M

(t)
i j ′ , J i = { j ′ | M i j′ = 0 }

∀ i ∈ V Q , j
′ ∈ V G

L (t) M

=

1

| Q|
∑

i ∈ V Q ‖V i − 1 ‖ 2 , V i = � i − ρi

(5)

where M ∈ R | Q|×| G | is the ground-truth matching matrix, � i ∈ R

(ρi ∈ R) is the sum of normalized similarity between node i and

nodes j ′ (un)matched by node i according to the ground-truth, and

V i represents the difference between � i and ρi . We expect V i to be
equal to one due to normalization, which leads the embeddings of

corresponding nodes to be more similar than embeddings of these

unmatched nodes.

4.2. Sample-wise adaptive edge-deleting

Given v ∈ G , u ∈ Q are corresponding nodes and h G, (t)
v = νQ, (t)

u

(P | G |→| Q| = M) , we use N

(t)
Q

instead of H

(t)
Q

to compute the non-

normalized attention coefficient e i j and the normalized attention

coefficient αi j at the tth layer defined in Eq. (2) , and then obtain

Fig. 3. Left: shows an example for set of N, A and E in Eq. (6) . Right: shows L (t+1)
M

and L (t)
DE

briefly.

weight sets:

N

G
nd(v) = { j v = m (j u) | (u, j u) ∈ E Q , (v , m (j u)) ∈ E G) } ,
N

G
d(v) = N v / N

G
nd(v) ,

E G, (t)
nd(v) = { e (t) v j | j ∈ N

G
nd(v) } , A

G, (t)
nd(v) = { α(t)

v j | j ∈ N

G
nd(v) } ,

E G, (t)
d(v) = { e (t) v j | j ∈ N

G
d(v) } , A

G, (t)
d(v) = { α(t)

v j | j ∈ N

G
d(v) } ,

E Q, (t)
(u)

= { e (t)
u j

| j ∈ N (u) } , A

Q, (t)
(u)

= { α(t)
u j

| j ∈ N (u) } ,

(6)

where superscript G and Q denote the data and query graph re-

spectively. v ∈ G and u ∈ Q are a pair of corresponding nodes. ‘d’

and ‘nd’ in the subscript are the abbreviation of ‘delete’ and ‘no-

delete’. d(v) denotes the nodes or edges linking to or equal to the
extra edges to be ‘deleted’, and nd(v) denotes the nodes or edges

linking to or equal to the edges not to be ‘deleted’. N

G
nd(v) and N

G
d(v)

are the sets of first-order neighbors not associated and associated

with the extra edges of nodes v respectively, E and A are the cor-

responding weight sets of e i j and αi j , N () represents the first-order

neighbors, and E G , E Q are edge sets for the data graph and the

query graph respectively. An example is shown in Fig. 3 .

When P | G |→| Q| = M (h G, (t)
v = νQ, (t)

u) , E Q, (t)
(u)

= E G, (t)
nd(v) can be calcu-

lated by using N

(t)
Q

instead of H

(t)
Q

in Eq. (2) . Obtaining the same

embedding by Eq. (3) for node u and v needs not only their node
features to be the same, but also their adjacency structures to be

consistent, namely A Q, (t)
(u)

= A G, (t)
nd(v) . However,

A

Q, (t)
(u)

= sof tmax (E Q, (t)
(u)

)

= sof tmax (E G, (t)
nd(v))

� = sof tmax (E G, (t)
nd(v) ∪ E G, (t)

d(v)) / A

G, (t)
d(v)

= A

G, (t)
nd(v)

(7)

due to the extra edges. Actually, A Q, (t)
(u)

= A G, (t)
nd(v) only when∑

α∈ A G, (t)
d(v)

α = 0 . During the training we know which edge’s weight

should be 0 in the training set and we use these information as

the supervision information.

Randomly initialized learnable query vector a in Eq. (2) is chal-

lenging to satisfy the above conditions because all samples share a

at each layer. Thus, we need a new query vector q (t) that can con-

tain the query graph information sample-wisely. In other words,

each sample has a specific q (t) at one layer:

q (t) = MLP (Pooling (H

(t)
Q

)) , (8)

here q (t) ∈ R 1 ×2 d ′ is a sample-wise query vector in the attention

mechanism, and the shape of q (t) is the same as a . H

(t)
Q

is the node

embedding matrix for query graph Q at the tth layer, Pooling is the

pooling operation (e.g., sum, mean, max, min, attention), MLP is a

multilayer perceptron that transforms the dimension of the graph-

level embedding of the query graph Q to the dimension of a .

We replace a in Eq. (2) with q (t) in order to sample-wise adap-

tively delete extra edges:

αG, (t)
i j

=

exp θ q (t) · h G, (t)
i

W ‖ h G, (t)
j

W

 T
))

∑
k ∈Ni

exp θ q (t) · h G, (t)
i

W ‖ h G, (t)
k

W

] T)) ,

αQ, (t)
i j

=

exp θ q (t) · νQ, (t)
i

W ‖ νQ, (t)
j

W

 T
))

∑
k ∈Ni

exp θ q (t) · νQ, (t)
i

W ‖ νQ, (t)
k

W

 T
))

(9)

where αG, (t)
i j

and αQ, (t)
i j

are normalized attention coefficients for

the data graph G and the query graph Q respectively. Notably,

we replace h

Q, (t)
i

with νQ, (t)
i

based on the unidirectional cross-

propagation mechanism. In order to obtain the same adjacent

structures between the corresponding nodes, namely all elements

in A G, (t)
d(v) are expected to be 0, we design a loss function L (t)

DE
for

adaptively deleting edges at the tth layer:

V

(t)
(v) =

∑

α∈ A G, (t)
nd(v)

α − ∑

α∈ A G, (t)
d(v)

α,

L (t)
DE

=

1
| Q|

∑

v ∈ � ‖ V

(t)
(v) − 1 ‖ 2 ,

�= { j| m (i) = j, i ∈ V Q } ,
(10)

where A

G, (t)
nd(v) and A

G, (t)
d(v) can be found according to the ground-truth

label during the training. We expect V

(t)
(v) to be equal to one, which

leads the sum of weights of the extra edges of the corresponding

nodes in the data graph to be close to zero. The following theorem

proves its effectiveness mathematically.

[]((
[((

[]((
[]((

Theorem 1. Given �, H

(t)
G

and q t as defined above, there exists H

(t)
G

and q t such that F (H

(t)
G

, q t) =

∑

v ∈ �
∑

α∈ A G, (t)
d(v)

α = 0 .

Proof.

F (H

(t)
G

, q (t)) =

∑

v ∈ �
∑

α∈ A G, (t)
d(v)

α

=

∑

v ∈ �
∑

j∈ N G
d(v)

e
e
(t)
v j

∑
i ∈ N (v) e

e
(t)
vi

=

∑

v ∈ �

∑
j∈ N G

d(v)
e
e
(t)
v j

∑
i ∈ N (v) e

e
(t)
vi

(11)

where e v i is the non-normalized attention coefficient.

F (H

(t)
G

, q t) = 0 if and only if
∑

v ∈ �
∑

j∈ N G
d(v)

e
e
(t)
v j = 0 . To show

that the above equation can be met, we will show for ∀ ε > 0 , ∑

v ∈ �
∑

j∈ N G
d(v)

e
e
(t)
v j < ε can be reached.

Let e (t)
′

v i = max { e (t) v i | v ∈ �, i ∈ N

G
d(v) } , we want to show that:

∑

v ∈ �
∑

j∈ N G
d(v)

e e
(t)
v j ≤ | �| · | N

G
d(v) | · e (t)

′
v i < ε (12)

For simplicity, let V =

h

(t)
v W ‖ h

(t)
i

W

 T

. To show

q (t) · V = e (t)
′

v i <

ε

| �| · | N

G
d(v) |

,

let h v = h

(t)
i

= { 1
d
} 1 ×d , W = { 1 } d ×d ′ and q (t) = [q (t)

1
, q (t)

2
, . . . , q (t)

2 d′]

(q (t)
i

= d, i = 1 , . . . , 2 d ′), so V =

h

(t)
v W ‖ h

(t)
i

W

 T

= { 1 } 2 d ′ ×1 .

We have,

q (t) · V = q (t)
1

+

∑ 2 d ′
i =2 q

(t)
i

× 1

= q (t)
1

+ (2 d ′ − 1) × d
(13)

If q (t)
1

<

ε
| �|·| N G

d(v)|
− (2 d ′ − 1) × d, we will have

q (t) · V <

ε

| �| · | N

G
d(v) |

,

and hence
∑

v ∈ �
∑

j∈ N G
d(v)

e
e
(t)
v j = 0 .

Therefore, if we take q (t)
1

=

ε
| �|·| N G

d(v)|
− (2 d ′ − 1) × d − 1 ,

F (H

(t)
G

, q (t)) =

v ∈ �

α∈ A G, (t)
d(v)

α = 0 .

�

Subsequently, we add the residual connection to Eq. (3) after

aggregating multi-headed attention:

h

(t+1)
Gi

= MLP (Aggr({ αG, (t) ,k
i j

, h

(t)
G j

| j ∈ N i })) + h

(t)
Gi

,

h

(t+1)
Qi

= MLP (Aggr({ αQ, (t) ,k
i j

, ν(t)
Qi

| j ∈ N i })) + h

(t)
Qi

,
(14)

where MLP transforms the dimension of the output to the dimen-

sion of final output h

(t+1)
i

of the last layer.

4.3. Training and loss

The overall structure of the model consists of multiple layers

of AEDNet. The unidirectional Cross-Propagation mechanism is not

included in the first layer since H

(0) does not contain structural

information, and there is no L PM

in the first layer. On the other

hand, after the T th layer, the model derives H

(T +1)
G

and H

(T +1)
Q

is

used to calculate M

(T +1) , which means that L (t)
DE

and L (t+1)
M

can be

paired. We design a total loss L total in order to take into account

two mechanisms:

L t = λ1 L
(t)
DE

+ (1 − λ1) L
(t+1)
M

,

L total = λ2

∑ T −1
1 L t + (1 − λ2) L

T
(15)

where L t is the loss at the tth layer, T is the number of AEDNet

layers, λ1 ∈ [0 , 1] and λ2 ∈ [0 , 1] are hyperparameters that regu-

lates the trade-off between the two components. Fig. 3 shows two

losses briefly.

4.4. Pseudo-code

The Algorithm 1 describes the forward and backward process

of our proposed model. From step 4 to step 5, the AEDNet layer

Algorithm 1 FORWARD and BACKWARD of AEDNet.

Input : H

(t)
Q

and H

(t)
G

, the tth layer features. K, the number of

attention heads, T , the number of layers

Parameter : w = { θ k,t , θ t , W

k,t }, trained parameters of the AEDNet

layer

Output : H

(t+1)
Q

and H

(t+1)
G

, the (t + 1) th layer fea-

tures. M

(t) , the predicted matching matrix at tth

layer.

1: FORWARD(G, Q;w)

2: t ← 0

3: while t < = T do

4: // unidirectional cross-propagation Eq. (4).

5: bulid M

(t) and νQ, (t)
i

from H

(t)
Q

, H

(t)
G

by Eq. (4).

6: // adaptive edge-deleting mechanism Eq. (8, 9, 14).

7: k ← 1 .

8: while k < = K do

9: q (t) ,k ← MLP θk , t (Pooling (H

(t)
Q

))

10: compute αG, (t) ,k
i j

, αQ, (t) ,k
i j

from N

(t)
Q

, H

(t)
G

, q (t) ,k by Eq. 9

11: k ← k + 1

12: end while

13: h

(t+1)
Gi

← MLP θ

(
‖ K
k =1

σ
(∑

j∈N i α
G, (t) ,k
i j

h

(t)
Gi

W

k,t
))

+ h

(t)
Gi

14: h

(t+1)
Qi

← MLP θ ‖ K
k =1

σ
∑

j∈N i α
Q, (t) ,k
i j

ν(t)
Qi

W

k,t
))

+ h

(t)
Qi

15: end while

16: return { H

(t+1)
Q

, H

(t+1)
G

, M

(t) , N

G,t
d

(v) | i = 1 , 2 , · · · , T }

17: END_FORWARD

18:

19: BACKWARD({ M

(t) , N

G,t
d

(v) | i = 1 , 2 , · · · , T })

20: bulid L (t+1)
M

and L (t)
DE

from M

(t) , N

G,t
d

(v) by Eq. (5, 10).
21: L t ← λ1 L

(t)
DE

+ (1 − λ1) L
(t+1)
M

22: bulid L total by Eq. (15).

23: return

∂L total
∂w

24: END_FORWARD

first conducts the unidirectional cross-propagation mechanism in

order to derive the predicted matching matrix M

(t) at tth layer

and the cross-information matrix N

(t)
Q

. Step 6 to step 14 is the

adaptive edge-deleting mechanism. q (t) ,k is generated by the H

(t)
Q

,

which includes the information about the query graph Q and can

guide how to ‘delete’ extra edges. After computing αG, (t) ,k
i j

, αQ, (t) ,k
i j

from N

(t)
Q

, H

(t)
G

, q (t) ,k by Eq. (9) , we can perform the multi-head

GAT combining with the residual connection (Eq. (14)) to obtain

the H

(t+1)
Q

and H

(t+1)
G

. The Algorithm 2 shows our model’s training

process.

Algorithm 2 Training process of AEDNet.

1: initialize w ;

2: repeat

3: { M

(t) , N

G,t
d

(v) | i = 1 , 2 , · · · , T } = FORWARD(G, Q;w);

4:
∂L total
∂w

= BACKWARD({ M

(t) , N

G,t
d

(v) | i = 1 , 2 , · · · , T });

5: w = w − λ · ∂L total
∂w

;

6: until (a stopping criterion)

7: return w

5. Experiments

We evaluate our model AEDNet against both SOTA learning-

based approaches and exact methods on subgraph matching task

in order to address the following questions: Q1 : How accurate (ef-

fective) and fast (efficient) is AEDNet compared with both SOTA

learning-based approaches and exact methods? Q2 : How effec-

tive is the unidirectional cross-propagation mechanism and the

sample-wise adaptive edge-deleting mechanism used in the AED-

Net? Q3 : How well does the proposed AEDNet adapt to the situa-

tions with noise and imbalanced graph sizes? Q4 : Is the proposed

AEDNet robust for different hyper-parameters?

5.1. Datasets

To assess the performance of AEDNet in identifying matching

relationships between graph pairs in different domains ranging

from synthetic, bioinformatics, small molecules to social networks,

we use six open graph datasets, SYNTHETIC [44] , COX2 [45] , DD

[46] , PROTEINS_full [47] , PPI [48] and IMDB-BINARY [49] . We take

each original graph in the dataset and a connected subgraph ran-

domly extracted from the former as a sample pair for each dataset.

We then use VF2 [10] to compute the ground-truth matching ma-

trix.

Each sample in the original dataset is one single graph. For this

study, we need graph pairs with each pair including a data graph

and a query graph. To construct graph pairs using the original sin-

gle graph from the datasets, first we randomly select a graph from

one original dataset as the data graph G , then randomly select a

connected subgraph from this data graph G as the query graph Q .

Finally, we use the exact algorithm VF2 to calculate the ground-

truth matching matrix. This operation is repeated many times to

form the processed dataset. Thus, the graph pairs in the test set

are unseen to the model in the training stage. Algorithm 3 de-

Algorithm 3 generate dataset.

Input : d, original dataset. S, scope of size of query graph. N, the

number of generated samples.

Output : N samples (graph pairs).

1: n ← 0 .

2: while n < N do

3: randomly select a graph from d as G .

4: randomly select s from scope S as the size of Q .

5: randomly extract a subgraph of size s from G as Q .

6: compute matching matix M by VF2.

7: save one sample (G , Q , M).

8: end while

9: return N samples (graph pairs)

scribes this process. The statistics for each dataset can be found

in Table 1 .

Table 1

Summary of datasets. avg. | G | and avg. | Q| are average size of data graphs and query
graphs. CU,NU and none represent categorical feature, numerical feature and none-

feature respectively. The categorical feature represents the class information and the

numerical feature includes many attributes.

SYNTHETIC COX2 DD PROTEINS PPI IMDB

avg. | G | 100 41.22 284.32 39.06 2372 19.77

avg. | Q| 22.5 15 35 10 75 7.5

feature CU CU CU NU NU none

Table 2

Final hyper-parameter selection. d, K, L are the dimension of hidden vector, the

number of attention head and the number of layers respectively.

SYNTHETIC COX2 DD

(L , K, d) (4, 8, 128) (7, 8, 64) (5, 6, 64)

PROTEINS PPI IMDB

(L , K, d) (3, 8, 64) (3, 8, 128) (3, 8, 32)

5.2. Baseline methods

We first consider two learning-based subgraph matching meth-

ods, namely Sub-GMN [27] and NeuralMatch [28] . For graph

matching method, we use four SOTA learning-based graph match-

ing methods, including NGMN [25] , GMNN [24] , RDGCN [23] , PCA-

GM [21] . Exact methods VF2 [10] and VF3 (first solution) are used

as baselines for the perspective of runtime.

5.3. Parameters setting

All details of the hyper-parameter search can be found in the

Table 2 . We conduct all the experiments on a single machine with

an Intel Xeon 4114 CPU and one Nvidia Titan GPU. As for training,

we use the Adam algorithm for optimization [50] and fix the initial

learning rate to 0.001. The proposed model is trained on the train-

ing set for about 100 epochs, and checkpoints are saved for each

epoch to select the best checkpoints on the evaluation set.

In our experiments, we set the dimension of hidden vector d

and the number of attention head K of each layer to be identical

for convenience. For the balance of two losses defined in Eq. (15) ,

we set λ1 = 0 . 5 , λ2 = 0 . 2 . Also, we set identical pooling operation

in Eq. (8) . we perform hyper-parameter search for the dimension of

hidden vector d, the number of attention head K and the number

of AEDNet layers L , where the searching scopes of d, K and L are in

{64, 128, 256}, {1, 2, 4, 6, 8, 10} and {3, 4, 5, 6, 7, 8} respectively.

The Table 2 contains the final hyper-parameter selection.

5.4. Evaluation metrics

We use the F1-score of the top-1 predicted subgraph to evalu-

ate the methods due to the imbalance of sizes between the data

graph and the query graph (detailed in Section 2). We further use

the running time to evaluate the efficiency. Here, we select the

top-1 predicted subgraph by taking the subgraph corresponding to

the maximum value of each row of the predicted matching matrix

M

(T) . Other learning-based methods extract the top-1 predicted

subgraph in the same way.

• F1-score

F 1 =

2 · P · R
P + R

(16)

where P is the precision representing the ratio of the number

of correctly discovered node matches over the number of all

discovered node matches, R is the recall representing the ratio

of the correctly discovered node matches over all correct node

matches.

Table 3
The F1-score of six baselines and the proposed model on six datasets. SYN repre-

sents SYNTHETIC dataset.

SYN COX2 DD PROTEINS PPI IMDB

NGMN 0.866 0.834 0.869 0.843 0.843 0.933

GMNN 0.855 0.868 0.876 0.898 0.874 0.941

RDGCN 0.876 0.846 0.879 0.883 0.843 0.930

PCA-GM 0.921 0.911 0.899 0.877 0.892 0.951

NeuralMatch 0.933 0.919 0.896 0.888 0.765 0.949

Sub-GMN 0.920 0.925 0.912 0.870 0.902 0.954

AEDNet w/o C 0.974 0.960 0.949 0.914 0.965 0.980

AEDNet w/o D 0.959 0.962 0.930 0.933 0.949 0.973

AEDNet 0.986 0.979 0.958 0.949 0.971 0.980

Table 4

Average running time (seconds).

SYNTHETIC DD PPI

VF2 0.58 64 226

VF3(first solution) 0.0005 0.002 5.82

AEDNet 0.004 0.005 0.027

Table 5

The F1-score under different hyper-parameter.

(L, K, L) \ F 1 COX2 DD PPI

(3, 8, 128) 0.976 0.949 0.971

(3, 6, 64) 0.971 0.944 0.962

(5, 8, 128) 0.973 0.949 0.970

(5, 6, 64) 0.971 0.958 0.965

(7, 8, 128) 0.971 0.951 0.965

(7, 6, 64) 0.979 0.950 0.966

• Running Time we use the running time to evaluate the effi-

ciency of models.

5.5. Effectiveness and efficiency

From Table 3 , we can find that our proposed model achieves

SOTA results on all six data sets. It is worth noting that our pro-

posed method still achieves an F1-score of 0.98 on the IMDB-

BINARY whose graphs do not have node features, showing that our

model can predict matching relationships based on structural in-

formation only. From Table 4 , We found that the running time of

AEDNet is faster than the exact algorithm VF3 [9] on larger graphs

and VF3 is efficient on small graphs. The results show that despite

being executed by python, our proposed end-to-end learning-based

method is much more efficient on larger graphs. The exact meth-

ods provide 100 % accuracy, yet they require more time on larger

graphs.

From Table 5 , different settings of hyper-parameters were tested

on three datasets. We find that the proposed model performs well

under different settings, the F1 scores wave within 0.014, indicat-

ing that our model is robust.

5.6. Ablation study

To address Q2 , we conduct two ablation experiments. Un-

der the AEDNet w/o C case, we exclude the unidirectional cross-

propagation mechanism, meaning we do not use cross information

from the data graph to replace node-level embeddings of the query

graph in the previous layer. Under the AEDNet w/o D case, we re-

move the sample-wise adaptive edge-deleting mechanism by set-

ting λ1 = 0 . From Table 3 , we can see that the F1-score of AEDNet

w/o C is 0.013 lower than AEDNet on average, and the F1-score

of AEDNet w/o D is 0.019 lower than AEDNet on average, which

shows that the unidirectional cross-propagation mechanism and

the adaptive edge-deleting mechanism are both effective. It may

Table 6

The F1-score on different standard deviation. std is the standard deviation.

std 0.0625 0.125 0.25

PROTEINS_full 0.942 0.935 0.927

PPI 0.933 0.904 0.889

Fig. 4. The effect of graph size imbalance. The x -axis is the ratio of | Q| over | G | ,
and the y -axis is F1-score.

be due to more similar node-level embeddings that make the at-

tention weights more similar.

5.7. Analysis of effect of both noise and imbalance

Since the node feature of graphs in PROTEINS_full and PPI are

numerical, we add Gaussian noise with a mean of 0 and stan-

dard deviation of 0.0625, 0.125 and 0.25 to the features to anal-

yse the effect of noise to the proposed model. From Table 6 , we

can find that our proposed model still has high F1-scores under

different standard deviations. The performance of our model on

PROTEINS_full is better than that on PPI, mainly because the size

of data graphs in PPI is larger than PROTEINS_full. Another reason

could be that the magnitude of the original features of graphs in

PPI is small, and a small disturbance to the features could cause

heavy influence.

We measure the relationship between the size imbalance in

each sample (a pair of graphs) and the F1-score on PPI dataset.

The size of the graph in PPI is the largest. In Fig. 4 , the x -axis is

the ratio of | Q| over | G | indicating the degree of imbalance, and

the y-axis is F1-score. We find that the more unbalanced the sizes

of data graphs and query graphs, the lower the F1-score. On the

other hand, we also find that the F1-scores on most samples are

above 0.96, and the smallest F1-score is 0.92 obtained on the PPI

test set, indicating that the proposed model handles node imbal-

ance between the data graph and the query graph well.

6. Our limitation

In this paper, the sizes of graphs in the data set are 20 times

the sizes used in the existing learning-based subgraph match-

ing method. However, compared with some learning-free ex-

act/approximation algorithms, such as Carletti et al. [15] , Liu et al.

[16] , Tian et al. [17] , Tian and Patel [51] , the sizes of the graphs

used in this study are still relatively small. For example, the size

of the evaluated graphs can reach 10,0 0 0 in SOTA exact method

VF3 [15] . Compared to this, the data graph used in this study is

smaller and sparser. This limitation mainly comes from an essen-

tial defect of the graph neural network, called over-smoothing [29].

Graph neural networks stack multiple layers, resulting in node-

level embeddings that tend to be consistent and indistinguishable

from each other. However, shallow Graph neural networks have

smaller receptive fields and thus can not learn global information

well, especially for huge graphs.

In this study, the algorithm used to generate all experimental

graph pairs creates random query graphs from the data graphs

to form graph pairs. The data graphs in our experiment always

contain the query graphs. This enables us to verify the effective-

ness of our proposed model on induced subgraph isomorphism.

For the situation when the query graph is not contained in the

data graph, the problem becomes the maximum common subgraph

(MCS) isomorphism problem. Due to the limitation of our experi-

mental dataset, we cannot verify if our method can also be applied

to MCS problems. Theoretically, our method can be applied to MCS

problem as well, as our method is not an exact method and it re-

turns a set of nodes and their correspondence to the related nodes

of the query graph.

7. Conclusion

In this paper, we proposed an AEDNet for the subgraph match-

ing problem. It incorporates two novel mechanisms to ensure

that the matched nodes’ features and adjacency structures are

similar. Extensive experiments on six datasets show that AED-

Net outperforms six learning-based SOTA methods and is robust.

Compared with other learning-based subgraph matching methods,

our proposed method works effectively and efficiently on large

graphs with sizes 20 times bigger. Our experiment shows that the

proposed method is efficient compared with the exact method.

In terms of generalization, our proposed model can accept new

graphs during the inferencing that are not in the training set. Solv-

ing the subgraph matching with huge graphs is a future direction

of learning-based methods.

Data availability

AEDNet: Adaptive Edge-Deleting Network For Subgraph Match-

ing.

Acknowledgment

This study was supported in part by the XJTLU laboratory for

intelligent computation and financial technology through XJTLU

Key Programme Special Fund (KSF-21) and Research Enhance-
ment Fund of XJTLU (REF-19-01-04).

References

[1] L. Hong, L. Zou, X. Lian, S.Y. Philip, Subgraph matching with set similarity in a
large graph database, IEEE Trans. Knowl. Data Eng. 27 (9) (2015) 2507–2521 .

[2] J. Llados, E. Marti, J.J. Villanueva, Symbol recognition by error-tolerant sub-
graph matching between region adjacency graphs, IEEE Trans. Pattern Anal.

Mach. Intell. 23 (10) (2001) 1137–1143 .
[3] D. Conte, P. Foggia, C. Sansone, M. Vento, Thirty years of graph matching

in pattern recognition, Int. J. Pattern Recognit. Artif Intell. 18 (03) (2004)

265–298 .
[4] M. Vento, P. Foggia, Graph matching techniques for computer vision, in: Image

Processing: Concepts, Methodologies, Tools, and Applications, IGI Global, 2013,
pp. 381–421 .

[5] V. Nastase, R. Mihalcea, D.R. Radev, A survey of graphs in natural language
processing, Nat. Lang. Eng. 21 (5) (2015) 665–698 .

[6] C.W. Coley, L. Rogers, W.H. Green, K.F. Jensen, Computer-assisted retrosynthesis
based on molecular similarity, ACS Cent. Sci. 3 (12) (2017) 1237–1245 .

[7] S. Zhang, S. Li, J. Yang, Gaddi: distance index based subgraph matching in
biological networks, in: Proceedings of the 12th International Conference

on Extending Database Technology: Advances in Database Technology, 2009,
pp. 192–203 .

[8] V. Carletti, P. Foggia, M. Vento, Performance comparison of five exact graph

matching algorithms on biological databases, in: International Conference on
Image Analysis and Processing, Springer, 2013, pp. 409–417 .

[9] V. Carletti, P. Foggia, A. Greco, M. Vento, V. Vigilante, VF3-light: a lightweight
subgraph isomorphism algorithm and its experimental evaluation, Pattern

Recognit. Lett. 125 (2019) 591–596 .
[10] L.P. Cordella, P. Foggia, C. Sansone, M. Vento, A (sub) graph isomorphism algo-

rithm for matching large graphs, IEEE Trans. Pattern Anal. Mach. Intell. 26 (10)

(2004) 1367–1372 .
[11] R. Hoffmann, C. McCreesh, C. Reilly, Between subgraph isomorphism and max-

imum common subgraph, in: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 31, 2017 .

[12] R.J. Ullmann, An algorithm for subgraph isomorphism, J. ACM 23 (1) (1976)
31–42 .

[13] B. Bhattarai, H. Liu, H.H. Huang, CECI: Compact embedding cluster index for

scalable subgraph matching, in: Proceedings of the 2019 International Confer-
ence on Management of Data, 2019 .

[14] J.D. Moorman, Q. Chen, T.K. Tu, Z.M. Boyd, A.L. Bertozzi, Filtering methods for
subgraph matching on multiplex networks, in: 2018 IEEE International Confer-

ence on Big Data (Big Data), 2018 .
[15] V. Carletti, P. Foggia, A. Saggese, M. Vento, Challenging the time complexity of

exact subgraph isomorphism for huge and dense graphs with VF3, IEEE Trans.

Pattern Anal. Mach. Intell. 40 (4) (2017) 804–818 .
[16] L. Liu, B. Du, H. Tong, et al., G-finder: approximate attributed subgraph match-

ing, in: 2019 IEEE International Conference on Big Data (Big Data), 2019 .
[17] Y. Tian, R.C. Mceachin, C. Santos, D.J. States, J.M. Patel, Saga: a subgraph match-

ing tool for biological graphs, Bioinformatics 23 (2) (2007) 232–239 .
[18] A. Dutta, J. Lladós, H. Bunke, U. Pal, Product graph-based higher order con-

textual similarities for inexact subgraph matching, Pattern Recognit. 76 (2018)

596–611 .
[19] J. Yan, S. Yang, E.R. Hancock, Learning for graph matching and related com-

binatorial optimization problems, in: Proceedings of the Twenty-Ninth Inter-
national Joint Conference on Artificial Intelligence, IJCAI-20, International Joint

Conferences on Artificial Intelligence Organization, 2020, pp. 4 988–4 996 .
[20] A. Zanfir, C. Sminchisescu, Deep learning of graph matching, in: Proceedings

of the IEEE Conference on Computer vision and Pattern Recognition, 2018 .

[21] R. Wang, J. Yan, X. Yang, Learning combinatorial embedding networks for deep
graph matching, in: Proceedings of the IEEE/CVF International Conference on

Computer Vision, 2019, pp. 3056–3065 .
[22] F. Ma, L. Yu, M. Bajger, M.J. Bottema, Incorporation of fuzzy spatial relation

in temporal mammogram registration, Fuzzy Sets Syst. 279 (NOV.15) (2015)
87–100 .

[23] Y. Wu, X. Liu, Y. Feng, Z. Wang, R. Yan, D. Zhao, Relation-aware entity align-
ment for heterogeneous knowledge graphs, in: Proceedings of the Twen-

ty-Eighth International Joint Conference on Artificial Intelligence, International

Joint Conferences on Artificial Intelligence, 2019 .
[24] K. Xu, L. Wang, M. Yu, Y. Feng, Y. Song, Z. Wang, D. Yu, Cross-lingual knowl-

edge graph alignment via graph matching neural network, Annual Meeting of
the Association for Computational Linguistics, Association for Computational

Linguistics (ACL), 2019 .
[25] M. Guo, E. Chou, D.-A. Huang, S. Song, S. Yeung, L. Fei-Fei, Neural graph match-

ing networks for fewshot 3D action recognition, in: Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), 2018, pp. 653–669 .
[26] M. Vento, A long trip in the charming world of graphs for pattern recognition,

Pattern Recognit. 48 (2) (2015) 291–301 .
[27] Z. Lan, L. Yu, L. Yuan, Z. Wu, Q. Niu, F. Ma, Sub-GMN: the subgraph matching

network model, arXiv preprint arXiv:2104.00186 (2021).
[28] Z. Lou, J. You, C. Wen, A. Canedo, J. Leskovec, et al., Neural subgraph matching,

arXiv preprint arXiv:2007.03092 (2020).

[29] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional
networks, in: International Conference on Learning Representations, 2017 .

[30] Y. Li, C. Gu, T. Dullien, O. Vinyals, P. Kohli, Graph matching networks for learn-
ing the similarity of graph structured objects, in: International Conference on

Machine Learning, PMLR, 2019, pp. 3835–3845 .
[31] Z. Lan, B. Hong, Y. Ma, F. Ma, More interpretable graph similarity compu-

tation via maximum common subgraph inference, arXiv preprint arXiv:2208.

04580 (2022).
[32] R. Socher, D. Chen, C.D. Manning, A. Ng, Reasoning with neural tensor net-

works for knowledge base completion, in: Advances in Neural Information Pro-
cessing Systems, 2013 .

[33] B. McFee, G. Lanckriet, Partial order embedding with multiple kernels, in: Pro-
ceedings of the 26th Annual International Conference on Machine Learning,

2009, pp. 721–728 .

[34] H. Kim, Y. Choi, K. Park, X. Lin, S.-H. Hong, W.-S. Han, Versatile equivalences:
speeding up subgraph query processing and subgraph matching, in: Proceed-

ings of the 2021 International Conference on Management of Data, 2021,
pp. 925–937 .

[35] A. Jüttner, P. Madarasi, VF2++—an improved subgraph isomorphism algorithm,
Discrete Appl. Math. 242 (2018) 69–81 .

[36] Z. Yang, L. Lai, X. Lin, K. Hao, W. Zhang, Huge: an efficient and scalable sub-
graph enumeration system, in: Proceedings of the 2021 International Confer-

ence on Management of Data, 2021, pp. 2049–2062 .
[37] N. Dahm, H. Bunke, T. Caelli, Y. Gao, Efficient subgraph matching using topo-

logical node feature constraints, Pattern Recognit. 48 (2) (2015) 317–330 .
[38] C. McCreesh, P. Prosser, C. Solnon, J. Trimble, When subgraph isomorphism is

really hard, and why this matters for graph databases, J. Artif. Intell. Res. 61

(2018) 723–759 .
[39] C.R. Rivero, H.M. Jamil, Efficient and scalable labeled subgraph matching using

sgmatch, Knowl. Inf. Syst. 51 (1) (2017) 61–87 .
[40] M. Leordeanu, M. Hebert, A spectral technique for correspondence problems

using pairwise constraints, in: Tenth IEEE International Conference on Com-
puter Vision (ICCV’05) Volume 1, vol. 2, 2005, pp. 1482–1489 .

[41] P. Veli ̌ckovi ́c, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio, Graph at-

tention networks, in: International Conference on Learning Representations,
2018 .

[42] D. Bahdanau, K.H. Cho, Y. Bengio, Neural machine translation by jointly learn-
ing to align and translate, in: 3rd International Conference on Learning Repre-

sentations, 2015 .
[43] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser,

I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017)

5998–6008 .
[44] A. Feragen, N. Kasenburg, J. Petersen, M. de Bruijne, K.M. Borgwardt, Scalable

kernels for graphs with continuous attributes, in: NIPS, 2013 .
[45] J.J. Sutherland, L.A. O’brien, D.F. Weaver, Spline-fitting with a genetic algo-

rithm: a method for developing classification structure- activity relationships,
J. Chem. Inf. Comput. Sci. 43 (6) (2003) 1906–1915 .

[46] P.D. Dobson, A.J. Doig, Distinguishing enzyme structures from non-enzymes

without alignments, J. Mol. Biol. 330 (4) (2003) 771–783 .
[47] K.M. Borgwardt, O.C. Soon, S. Stefan, S. Vishwanathan, A.J. Smola, K. Han-

s-Peter, Protein function prediction via graph kernels, Bioinformatics 21 (1)
(2005) 47 .

[48] W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large
graphs, Adv. Neural Inf. Process. Syst. 30 (2017) 1024–1034 .

[49] P. Yanardag, S. Vishwanathan, Deep graph kernels, in: Proceedings of the 21th

ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, 2015, pp. 1365–1374 .

[50] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in: Interna-
tional Conference on Learning Representations, 2015 .

[51] Y. Tian, J.M. Patel, Tale: a tool for approximate large graph matching, in: 2008
IEEE 24th International Conference on Data Engineering, 2008 .

View publication stats

https://www.researchgate.net/publication/363414746

