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a b s t r a c t 

Adversarial patches are optimized contiguous pixel blocks in an input image that cause a machine- 

learning model to misclassify it. However, their optimization is computationally demanding, and requires 

careful hyperparameter tuning, potentially leading to suboptimal robustness evaluations. To overcome 

these issues, we propose ImageNet-Patch, a dataset to benchmark machine-learning models against ad- 

versarial patches. The dataset is built by first optimizing a set of adversarial patches against an ensemble 

of models, using a state-of-the-art attack that creates transferable patches. The corresponding patches are 

then randomly rotated and translated, and finally applied to the ImageNet data. We use ImageNet-Patch 

to benchmark the robustness of 127 models against patch attacks, and also validate the effectiveness 

of the given patches in the physical domain (i.e., by printing and applying them to real-world objects). 

We conclude by discussing how our dataset could be used as a benchmark for robustness, and how our 

methodology can be generalized to other domains. We open source our dataset and evaluation code at 

https://github.com/pralab/ImageNet-Patch . 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Understanding the security of machine-learning models is of 

aramount importance nowadays, as these algorithms are used in 

 large variety of settings, including security-related and mission- 

ritical applications, to extract actionable knowledge from vast 

mounts of data. Nevertheless, such data-driven algorithms are 

ot robust against adversarial perturbations of the input data [1–

] In particular, attackers can hinder the performance of classifi- 

ation algorithms by means of adversarial patches [5] , i.e., contigu- 

us chunks of pixels which can be applied to any input image to 

ause the target model to output an attacker-chosen class. When 

mbedded into input images, adversarial patches produce out-of- 

istribution samples. The reason is that the injected patch induces 

 spurious correlation with the target label, which is likely to shift 

he input sample off the manifold of natural images. Adversarial 

atches can be printed as stickers and physically placed on real ob- 

ects, like stop signs that are then recognized as speed limits [6] , 

nd accessories that camouflage the identity of a person, hiding 
∗ Corresponding author. 
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heir real identity [7,8] . Therefore, the evaluation of the robust- 

ess against these attacks is of the uttermost importance, as they 

an critically impact real-world applications with physical conse- 

uences. 

The only way to assess the robustness of a machine-learning 

ystem against adversarial patches is to generate and test them 

gainst the target model of choice. Adversarial patches are created 

y solving an optimization problem via gradient descent. However, 

his process is costly as it requires both querying the target model 

any times and computing the back-propagation algorithm until 

onvergence is reached. Hence, it is not possible to obtain a fast 

obustness evaluation against adversarial patches without avoiding 

ll the computational costs required by their optimization process. 

o further exacerbate the problem, adversarial patches should also 

e effective under different transformations, including translation, 

otation and scale changes. This is required for patches to work 

lso in the physical world, where it is impossible to place them 

n a controlled manner, i.e., to control the acquisition and envi- 

onmental conditions. Moreover, adversarial patches should also be 

ransferable to different models, given that, in practice, the target 

odel may not be exactly known to the attacker. 

To overcome these issues, in this work we propose ImageNet- 

atch, a dataset of pre-optimized adversarial patches that can be 

https://doi.org/10.1016/j.patcog.2022.109064
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.109064&domain=pdf
https://github.com/pralab/ImageNet-Patch
mailto:ambra.demontis@unica.it
https://doi.org/10.1016/j.patcog.2022.109064
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Fig. 1. The three-step methodology followed to build our ImageNet-Patch benchmark. 
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sed to benchmark machine-learning models with small computa- 

ional overhead. This dataset is constructed on top of a subset of 

he validation set of the ImageNet dataset, coherently with other 

tate-of-the-art benchmarks for robust models [10] . It consists of 

0 patches that target 10 different classes, applied on 5,0 0 0 im- 

ges each, for a total of 50,0 0 0 samples. We create these patches

sing the adversarial patch attack proposed in [5] , which targets an 

nsemble of models to ensure that the resulting patches transfer 

ell across different models ( Section 2 ). The patches are also opti- 

ized to work under different rotation and translation. This makes 

hem suited to stage physical attacks where the acquisition and en- 

ironmental conditions cannot be controlled. 

To build our benchmark, we follow a three-step methodology, 

s depicted in Fig. 1 : (i) patch creation , which amounts to opti-

izing adversarial (transferable) patches on the ImageNet dataset; 

ii) dataset generation , which consists of applying the aforemen- 

ioned patches via random affine transformations; and (iii) robust- 

ess evaluation , which amounts to assessing the robustness of the 

iven models, and provides an appropriate ranking. Even though 

he resulting robustness evaluation will be approximate, this pro- 

ess is extremely simple and fast, as newly-proposed defensive or 

obust learning mechanisms can be directly tested on the provided 

ataset, i.e., avoiding to repeat the patch-creation and dataset- 

eneration steps ( Section 3 ). 

We test the efficacy of ImageNet-Patch by evaluating 15 mod- 

ls that were not part of the initial ensemble as a test set, divided

nto 3 standard-trained models and 3 robustly-trained models, and 

e highlight the successful generalization of the patches to unseen 

odels ( Section 4 ). We also evaluate the effectiveness of the given 

atches in a real-world scenario by printing and applying them to 

hree distinct physical objects, and acquiring 90 distinct images. 

ur results demonstrate that this dataset can provide a quick yet 

pproximate evaluation of the adversarial robustness of machine- 

earning models, avoiding the cumbersome task of re-optimizing 

he patches against each model. To foster reproducibility, we open- 

ource the optimized patches along with the code used for evalu- 

tion. 1 

We conclude by discussing related work ( Section 5 ), as well as 

he limitations and future directions of our work ( Section 6 ), envi- 

ioning a leaderboard of machine-learning models based on their 

obustness to ImageNet-Patch. 

. Crafting transferable adversarial patches 

Attackers can compute adversarial patches by solving an op- 

imization problem with gradient-descent algorithms [5] . Since 
1 https://github.com/pralab/ImageNet-Patch 

i

t

2 
hese patches are meant to be printed and attached to real-world 

bjects, their effectiveness should not be undermined by the appli- 

ation of affine transformations, like rotation, translation and scale, 

hat are unavoidable when dealing with this scenario. For example, 

n adversarial patch placed on a traffic sign should be invariant 

o scale changes to remain effective while an autonomous driving 

ar approaches the traffic sign, or to camera rotation when tak- 

ng pictures. Hence, the optimization process must include these 

erturbations as well, to force such invariance inside the result- 

ng patches. Also, adversarial patches can either generate a general 

isclassification, namely an untargeted attack, or force the model 

o predict a specific class, namely a targeted attack. In this paper, 

e focus on the latter, and we consider a patch effective if it is 

ble to correctly pilot the decision-making of a model toward an 

ntended class. 

More formally, targeted adversarial patches are computed by 

olving the following optimization problem: 

in 

δ
E A ∼T 

[ 

J ∑ 

j=1 

L ( x j � A δ, y t ; θ) 

] 

, (1) 

here δ is the adversarial patch to be computed, x j is one of J

amples of the training data, y t is the target label, 2 θ is the tar- 

eted model, A is an affine transformation randomly sampled from 

 set of affine transformations T , L is a loss function of choice, that

uantifies the classification error between the target label and the 

redicted one and � is a function that applies the patch on the 

nput images. The latter is defined as: x � δ = ( 1 − μ) � x + μ � δ, 

here we introduce a mask μ that is a tensor with the same size 

f the input data x , and whose components are ones where the 

atch should be applied and zeros elsewhere [9] . This operator is 

till differentiable, as it is constructed by summing differentiable 

unctions themselves; thus, it is straightforward to obtain the gra- 

ient of the loss function with respect to the patch. 

To produce a dataset that can be used as a benchmark for an 

nitial robustness assessment, with adversarial patches effective re- 

ardless of the target model, we leverage the technique proposed 

y Brown et al. [5] , that considers an ensemble of differentiable 

odels inside the optimization process. This addition forces the 

ptimization algorithm to find effective solutions against all the 

nsemble models, boosting the transferability of the produced ad- 

ersarial patches. Namely, the ability of the adversarial patch op- 

imized against a model (or a set of them) to be effective against 

ifferent models. Hence, the loss function to be minimized can be 
2 The same formulation holds for crafting untargeted attacks, by simply substitut- 

ng the target label y t with the ground truth label of the samples y , and inverting 

he sign of the loss function. 

https://github.com/pralab/ImageNet-Patch
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ritten as: 

in 

δ
E A ∼T 

[ 

M ∑ 

m =1 

J ∑ 

j=1 

L ( x j � A δ, y t ; θm 

) 

] 

, (2) 

here we modified the original formulation in Eq. (1) to minimize 

he loss L over a set of M models, respectively parameterized via 

1 , . . . , θM 

. 

The objective function defined in Eq. (2) can be optimized 

hrough gradient-descent techniques, and thus we use Algorithm 1 

Algorithm 1: Optimization of adversarial patches on an en- 

semble of models. 

Input : x , the training dataset containing J images; y t , the 

target class; θ1 , .., θM 

, the ensemble of models; γ , 

the learning rate; N, the number of epochs. 

Output : δ, the adversarial patch 

1 δ ∼ U(0 , 1) � Initialize patch with uniform 
distribution 

2 for i ∈ [1 , N] do 

3 g ← 0 � Initialize gradient update for epoch i 

4 for j ∈ [1 , J] do 

5 A ← random-affine () � Initialize transformation 
6 for m ∈ [1 , M] do 

7 g ← g + 

1 
MJ ∇ δL ( x j � A δ, y t ; θm 

) � Accumulate 

gradients 

8 δ ← δ − γ g � Optimize patch 

9 return δ � Return optimized patch 

or minimizing it. After having randomly initialized the patch (line 

), we loop through the number of intended epochs (line 2), and 

he samples of the training data (line 4). In each epoch, we sample 

 random affine transformation that will be applied to the patch 

line 5). We differ from the original formulation of Brown et al. [5] ,

s we solely consider rotations and translations. We iterate over all 

odels of the ensemble (line 6) to calculate the loss by accumulat- 

ng its gradient w.r.t. the patch (line 7), and using it to update the 

atch at the end of each epoch (line 8). After all the epochs have

een consumed, the final adversarial patch is returned (line 9). If 

he number of training samples is large, this algorithm can be eas- 

ly generalized to a more efficient version using the gradient com- 

uted on a mini-batch to perform the updates, i.e.repeating the 

teps 3–8 for each batch of the training data. We present a graph- 

cal representation of our procedure in Fig. 2 . 

. The ImageNet-Patch dataset 

We now illustrate how we apply our methodology to generate 

he ImageNet-Patch dataset that will be used to evaluate the ro- 

ustness of classification models against patch attacks. 

The Baseline Dataset. We start from the validation set of the 

riginal ImageNet database, 3 containing 1,281,167 training images, 

0,0 0 0 validation images and 10 0,0 0 0 test images, divided into

,0 0 0 object classes. From the validation set, we select a test set 

f 5,0 0 0 images that matches exactly the ones used in Robust- 

ench [10] for testing model robustness against adversarial attacks. 

his allows us not only to provide a direct comparison with the 

obustBench framework, but also to easily add our benchmark to 

t. We create the corpus of images used to optimize adversarial 

atches from the remaining part of the ImageNet validation set, 

xcluding the images used for the test set, and randomly sampling 
3 https://www.image-net.org/challenges/LSVRC/index.php 

3

0 images from different classes. Each patch is then optimized on 

hese samples except the images of the target class of the attack. 

o clarify, if the attack is targeting the class “cup”, we select one 

mage for each of 20 different classes selected from the remaining 

99 classes of the ImageNet dataset. 

The ImageNet-Patch Dataset. We now discuss how we gener- 

te the ImageNet-Patch dataset. We apply the methodology pro- 

osed by Brown et al. [5] that optimizes adversarial patches on 

n ensemble of chosen models, and we select three deep neu- 

al network architectures trained on the ImageNet dataset, namely 

lexNet [11] , ResNet18 [12] and SqueezeNet [13] We leverage the 

retrained models available inside the PyTorch TorchVision zoo, 4 

hat are trained to take in input RGB images of size 224 × 224 . 

We run Algorithm 1 to create squared patches with a size of 

0 × 50 pixels, with a learning rate of 1, 20 training samples se- 

ected as previously described, 50 0 0 training epochs, and using 

he cross-entropy as the loss function of choice. We consider ro- 

ation and translation as the applied affine transformations during 

he optimization of the patch, constraining rotations up to ±π
8 to 

imic the setup applied by Brown et al. [5] , and translations to a 

hift of ±68 pixels on both axes from the center of the image. The 

atter is a heuristic constraint, as we want to avoid corner cases 

here the adversarial patch is too close to the boundaries of the 

mage. We also keep the size of the adversarial patch fix to 50 × 50

ixels during the optimization process. 

We optimize 10 different patches with these settings, target- 

ng 10 different classes of the ImageNet dataset (“soap dispenser”, 

cornet”, “plate”, “banana”, “cup”, “typewriter keyboard”, “elec- 

ric guitar”, “hair spray”, “sock”, “cellular phone”). The resulting 

atches are shown in Fig. 3 . We apply such patches to each of 

he 5,0 0 0 images in the test set along with random affine trans- 

ormations, generating a dataset of 50,0 0 0 perturbed images with 

dversarial patches. We depict some examples in Fig. 4 . 

. Experimental analysis 

We now showcase experimental results related to the robust- 

ess evaluation through the usage of our ImageNet-Patch dataset. 

e first explain the metrics ( Section 4.1 ), and which models we 

onsider for evaluating our dataset ( Section 4.2 ). We then proceed 

n detailing the results of our experiments ( Section 4.3 ), by con- 

idering the previously introduced metrics, and lastly we show the 

ame measurements but extended to a large-scale model selection 

 Section 4.4 ). 

.1. Evaluation metrics 

We evaluate the evasion performance of the ImageNet-Patch 

ataset by considering three metrics: (i) the clean accuracy , which 

s the accuracy of the target model in absence of attacks; (ii) the 

obust accuracy , which is the accuracy of the target model in pres- 

nce of adversarial patches; and (iii) the success rate of a patch, 

hat measures the percentage of samples for which the patch suc- 

essfully altered the prediction of the target model toward the in- 

ended class. 

Clean Accuracy. We denote with the operator A k ( x , y ; θ) the 

op- k accuracy, i.e.by inspecting if the desired class y appears in 

he set of k highest outputs of the classification model θ when re- 

eiving the sample x as input. We then use this operator for defin- 

ng the clean accuracy C k , as C k = E 

( x ,y ) ∼D test 

[
A k ( x , y ; θ) 

]
, and the 

ther metrics that we use for our experimental evaluation. 

Robust Accuracy. We define the value R k as the top- k ac- 

uracy on the images after the application of the patch with 
4 https://pytorch.org/vision/master/models.html 

https://www.image-net.org/challenges/LSVRC/index.php
https://pytorch.org/vision/master/models.html
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Fig. 2. The optimization process, graphically described. At each step, we apply the patch to be optimized with random affine transformations on sample images, and we 

compute the scores of the ensemble. Hence, the algorithm computes the update step through gradient descent on the loss function w.r.t. the patch. 

Fig. 3. The 10 optimized adversarial patches, along with their target labels. 
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5 https://github.com/modestyachts/imagenet-testbed 
he random rototranslation transformations, formalized as R k = 

E 

 x , y ) ∼ D test 

A ∼ T 

[
A k ( x � A δ, y ; θ) 

]
. 

Success Rate. We define the value S k as the success 

ate of the attack, i.e.the top- k accuracy on the target la- 

el y t instead of the ground truth label y , formalized as S k =
E 

 x , y ) ∼ D test 

A ∼ T 

[
A k ( x � A δ, y t ; θ) 

]
We evaluate these three metrics for 

 = 1 , 5 , 10 . 

.2. Evaluation protocol 

To evaluate the effectiveness of the patches, we test our 

mageNet-Patch dataset against 127 deep neural networks trained 

n the ImageNet dataset. To facilitate the discussion, we group 

he models in 5 groups, namely the ENSEMBLE , STANDARD , 
DV-ROBUST , AUGMENTATION , MORE-DATA groups. In a first 
4

nalysis, we consider 15 models to discuss results in detail, 

nd further extend the analysis with a large-scale analysis, pre- 

ented in Section 4.4 . In particular, we consider the three mod- 

ls used for the ensemble, AlexNet [11] , ResNet18 [12] and 

queezeNet [13] , as the first group, ENSEMBLE . We consider for 

he second group, STANDARD , 3 standard-trained models, that are 

oogLeNet [14] , MobileNet [15] and Inception v3 [16] , available in 

yTorch Torchvision. We then consider 3 robust-trained models as 

he ADV-ROBUST available on RobustBench, specifically a ResNet- 

0 proposed by Salman et al. [17] , a ResNet-50 proposed by En- 

strom et al. [18] and a ResNet-50 proposed by Wong et al. [19] We

lso additionally consider a set of 6 models from the ImageNet 

estbed repository 5 proposed by Taori et al. [20] , to analyze the 

ffects of non-adversarial augmentation techniques and of train- 

ng on bigger datasets. We select 3 models specifically trained 

or being robust to common image perturbations and corruptions, 

https://github.com/modestyachts/imagenet-testbed
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Fig. 4. A batch of clean images initially predicted correctly by a SqueezeNet [13] model, and its perturbation with 2 different adversarial patches. Each row contains the 

original image with a different patch, whose target is displayed in the left. The predictions are shown on top of each of the samples, in green for correct prediction, blue for 

misclassification, and in red for a prediction that ends up in the target class of the attack. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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amely the models proposed by Zhang [21] , Hendrycks et al. [22] , 

nd Engstrom et al. [23] , that we group as AUGMENTATION group. 

e further select other 3 models, namely two of the ones pro- 

osed by Yalniz et al. [24] and one proposed by Mahajan et al. [25] ,

hat have been trained on datasets that utilize substantially more 

raining data than the standard ImageNet training set. We group 

hese last models as the MORE-DATA group. Lastly, the STANDARD , 
DV-ROBUST , AUGMENTATION , and MORE-DATA groups will be 

eferred as the Unknown models, since they are not used while op- 

imizing the adversarial patches. 

.3. Experimental results 

We now detail the effectiveness of our dataset against the 

roups we have isolated, according to the chosen metrics. The re- 

ults are reported in Table 1 and Fig. 5 , where we confront the re-

ation between clean and robust accuracy, and also between robust 

ccuracy and success rate. 

Evaluation of Known Models. The ENSEMBLE group of models 

s characterized by low robust accuracy and the highest success 

ate of the adversarial patch, as expected, given that we optimize 

ur adversarial patches to specifically mislead these models (they 

re part of the training ensemble). 

Evaluation of Unknown Models. These models are not part of 

he ensemble used to optimize the adversarial patches. First of all, 

ll of them highlight a good clean accuracy on our clean test set of 

mages. 

The STANDARD group is characterized by a modest decrement 

f the robust accuracy, highlighting errors caused by the patches. 

he success rate is lower compared to those exhibited by the 

NSEMBLE group, since patches are not optimized on these mod- 

ls, but it raises considerably when considering different top-k re- 

ults. This means that, even if the target class is not the predicted 

ne, its confidence is still significantly increased. 
5 
The ADV-ROBUST group is characterized by a drop of robust 

ccuracy similar to the STANDARD group, but with an almost-zero 

uccess rate for the adversarial patches. This means that the pre- 

ictions of robust models are still wrong, but they do not coincide 

ith the target class. 

The AUGMENTATION group contains mixed results, shifting 

rom a modest to a severe drop in terms of robust accuracy, as- 

ociated with an increment of the success rate, which is slightly 

ess than that achieved by the STANDARD group. This might imply 

hat data augmentation helps the model to improve clean accuracy, 

ut performance drops when dealing with adversarial noise. 

Lastly, the MORE-DATA group scores the best in terms of both 

lean and robust accuracy while the success rate of the adversarial 

atches is similar to the AUGMENTATION group results. 

.4. Large-scale analysis 

We now discuss the effectiveness of our dataset on a large- 

cale setting, where we extend the analysis to a pool of 127 

odels, including also the ones already tested in Section 4.3 . 

hese are all the models available in RobustBench [10] and 

n ImageNet Testbed [20] , again divided into the same groups 

 STANDARD , ADV-ROBUST , AUGMENTATION and MORE-DATA ). 
e plot our benchmark in Fig. 6 , confirming the results presented 

n Section 4.3 . To better highlight the efficacy of our adversarial 

atches, we also depict the difference in terms of accuracy of these 

arget models scored by applying our pre-optimized patches and 

andomly-generated ones in Fig. 7 . The top row shows the results 

or the pre-optimized patches, while the bottom row focuses on 

he random ones, and each plot also shows a robust regression 

ine, along with its 95% confidence interval. 

The regression we compute on our metrics highlights meaning- 

ul observations we can extract from the benchmark. First, the ro- 

ust accuracy of each model evaluated with random patches can 

e still computed as a linear function of clean accuracy, as shown 
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Table 1 

Evaluation of the ImageNet-Patch dataset using the chosen metrics, as described in Section 4.2 . On the rows, we list the 15 models 

used for testing, divided into the isolated groups. On the columns, we detail the clean accuracy, the robust accuracy and the success 

rate of the adversarial patch, repeated for top-1,5, and 10 accuracy. 

top-1 top-5 top-10 

Model C 1 R 1 S 1 C 5 R 5 S 5 C 10 R 10 S 10 

ENSEMBLE AlexNet [11] 0.562 0.113 0.256 0.789 0.250 0.504 0.849 0.327 0.613 

ResNet18 [12] 0.697 0.289 0.431 0.883 0.535 0.739 0.923 0.641 0.839 

SqueezeNet [13] 0.580 0.094 0.610 0.804 0.259 0.865 0.865 0.355 0.926 

STANDARD GoogLeNet [14] 0.697 0.469 0.090 0.895 0.702 0.326 0.932 0.778 0.482 

MobileNet [15] 0.737 0.541 0.017 0.910 0.764 0.083 0.945 0.826 0.141 

Inception v3 [16] 0.696 0.412 0.106 0.883 0.628 0.317 0.921 0.703 0.426 

ADV-ROBUST Engstrom et al. [18] 0.625 0.495 0.005 0.838 0.720 0.026 0.887 0.789 0.051 

Salman et al. [17] 0.641 0.486 0.003 0.845 0.711 0.017 0.894 0.780 0.034 

Wong et al. [19] 0.535 0.385 0.003 0.765 0.612 0.020 0.833 0.695 0.039 

AUGM. Zhang [21] 0.566 0.191 0.093 0.790 0.370 0.241 0.848 0.459 0.330 

Hendrycks et al. [22] 0.769 0.632 0.020 0.929 0.842 0.104 0.956 0.890 0.181 

Engstrom et al. [23] 0.684 0.495 0.036 0.886 0.729 0.148 0.928 0.800 0.232 

MORE-DATA Yalniz et al. [24] -a 0.813 0.726 0.029 0.958 0.911 0.217 0.976 0.943 0.328 

Yalniz et al. [24] -b 0.838 0.774 0.008 0.970 0.936 0.073 0.984 0.962 0.125 

Mahajan et al. [25] 0.735 0.507 0.104 0.914 0.748 0.357 0.949 0.826 0.491 

Fig. 5. Analysis for results shown in Table 3 . Top row : top-1 (left), top-5 (center), and top-10 (right) clean accuracy vs robust accuracy. Bottom row : top-1 (left), top-5 (center), 

and top-10 (right) robust accuracy vs attack success rate. The Pearson correlation coefficient ρ and the p-value are also reported for each plot. 
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y the plot of the second row of Fig. 7 . Hence, the clean accu-

acy can be seen as an accurate estimator of the robust accuracy 

hen using random patches, similarly to what has been found by 

aori et al. [20] . However, when we evaluate the robustness with 

ur pre-optimized patches, the relation between robust and clean 

ccuracy slightly diverges from a linear regression model, as the 

istance of the points from the interpolating line increases. Such 

ffect is also enforced by the Pearson correlation computed and re- 

orted on top of each plot, since it is lower when using adversarial 

atches. 
6 
Among the many reasons behind this effect, we focus on the 

DV-ROBUST group, as it lays outside the confidence level, and 

owards the bisector of the plot, lowering for sure the computed 

orrelation. Intuitively, models that are located above the regres- 

ion line can be considered more robust when compared with the 

thers, since their robust accuracy is closer to their clean accuracy, 

.e.closer to the bisector line. However, even if their robust train- 

ng is aiding their performances against patch attacks, their robust- 

ess is not as evident as the one obtained when considering their 

riginal threat model. Evaluating adversarial robustness on limited 
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Table 2 

Evaluation results of the printed patches applied on the three selected objects (joystick, sandal and lemon). On the rows, we list 

the 15 models used for testing, divided into the isolated groups. On the columns, we detail the clean accuracy, the robust accuracy 

and the success rate of the adversarial patch, repeated for top-1,5, and 10 accuracy. 

top-1 top-5 top-10 

Model C 1 R 1 S 1 C 5 R 5 S 5 C 10 R 10 S 10 

ENSEMBLE AlexNet [11] 0.322 0.111 0.100 0.489 0.233 0.222 0.667 0.267 0.333 

ResNet18 [12] 0.578 0.289 0.233 0.933 0.478 0.556 0.967 0.544 0.733 

SqueezeNet [13] 0.456 0.222 0.344 0.744 0.322 0.589 0.944 0.422 0.722 

STANDARD GoogLeNet [14] 0.422 0.311 0.067 0.767 0.378 0.367 0.933 0.456 0.489 

MobileNet [15] 0.789 0.344 0.022 0.989 0.556 0.122 0.989 0.656 0.222 

Inception v3 [16] 0.722 0.133 0.156 0.867 0.389 0.389 0.944 0.522 0.444 

ADV-ROBUST Engstrom et al. [18] 0.333 0.222 0.044 0.722 0.411 0.156 0.922 0.522 0.178 

Salman et al. [17] 0.433 0.211 0.022 0.911 0.444 0.144 0.978 0.578 0.178 

Wong et al. [19] 0.311 0.078 0.033 0.678 0.267 0.133 0.733 0.422 0.167 

AUGM. Zhang [21] 0.344 0.067 0.122 0.444 0.200 0.222 0.667 0.233 0.344 

Hendrycks et al. [22] 0.833 0.322 0.100 0.967 0.467 0.344 1.000 0.678 0.444 

Engstrom et al. [23] 0.722 0.289 0.133 0.933 0.422 0.322 0.956 0.511 0.467 

MORE-DATA Yalniz et al. [24] -a 0.944 0.811 0.000 1.000 0.944 0.178 1.000 0.989 0.311 

Yalniz et al. [24] -b 1.000 1.000 0.000 1.000 1.000 0.011 1.000 1.000 0.067 

Mahajan et al. [25] 0.733 0.389 0.067 0.922 0.678 0.289 0.967 0.800 0.356 

Table 3 

Patch attacks, compared based on their main features. loc refers to the location of the patch in 

the image, rot refers to rotation, scl refers to scale variations, various include several image 

transformations (see [31] for more details). 

Attack Cross-model Transfer Targeted Untargeted Transformations 

Sharif et al. [7] ✗ ✗ 
√ √ rot 

Brown et al. [5] 
√ √ √ 

✗ loc , scl , rot 
LaVAN [9] ✗ ✗ 

√ 

✗ loc 
PS-GAN [26] ✗ 

√ 

✗ 
√ loc 

DT-Patch [27] ✗ ✗ 
√ 

✗ ✗ 

PatchAttack [28] - 
√ √ √ loc , scl 

IAPA [29] ✗ 
√ √ √ 

✗ 

Lennon et al. [30] ✗ 
√ √ 

✗ loc , scl , rot 
Xiao et al. [31] - 

√ √ √ various 
Ye et al. [32] 

√ √ √ 

✗ loc , scl , rot 
Liu et al. [33] ✗ 

√ 

✗ 
√ loc , scl , rot 

GDPA [34] ✗ ✗ 
√ √ loc 

Ours (based on [5] ) 
√ √ √ √ loc , rot 
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hreat models is therefore not sufficient to have a clear idea of 

hat impact attacks can have on these models. Our dataset can 

elp by providing additional analysis of robustness against patch 

ttacks to assess for a more general and complete evaluation. 

Lastly, we notice that the MORE-DATA group seems to present 

 similar effect by distantiating from the regression line, but with 

 much lower magnitude. The effect is less evident because these 

odels start from a higher clean accuracy, which then leads to a 

aturally higher robust accuracy. 

.5. Effectiveness in the physical world 

We now show how our pre-computed patches are effective to 

ssess the robustness of object classification models deployed in 

he physical world. To this end, we select 3 objects, i.e., a joystick , 

 sandal , and a lemon , and we acquire photos of them by apply-

ng our 10 patches with 3 different roto-translations, hence com- 

osing a dataset of 90 images. We show some examples of ap- 

lied patches in Fig. 8 . We then select the same models used in

able 1 (from the STANDARD , ADV-ROBUST , AUGMENTATION , and 

ORE-DATA groups), and report their robust accuracy against such 

ttacks in Table 2 . 

Even if the effectiveness of the printed patches is lower than 

heir digital counterparts, their efficacy is aligned with the results 

eported in Table 1 . Such performance drop could be caused by the 

rinting quality of the patches, or also by some slight environmen- 

al light exposition, that could have altered the colors during the 

cquisition phase [6] The ENSEMBLE group models are affected 
7 
ore by the application of our patches, as their gradients were 

sed to optimize the attacks, while they show little-to-none effi- 

acy against the ADV-ROBUST group, as expected. Moreover, both 

he top-5 and top-10 success rates for the testing groups match the 

ests conducted in the digital domain, confirming the effectiveness 

f the given patches also in the physical world. 

.6. Discussion 

We briefly summarize here the results of our analysis, based on 

ur ImageNet-Patch dataset to benchmark machine-learning mod- 

ls. We observe that data augmentation techniques do not gener- 

lly improve robustness to adversarial patches. Moreover, we argue 

hat real progress in robustness should be observed as a general 

roperty against different adversarial attacks, and not only against 

ne specific perturbation model with a given budget (e.g., � ∞ 

-norm 

erturbations with maximum size of 8 / 255 ). Considering defenses 

hat work against one specific perturbation model may be too my- 

pic and hinder sufficient progress in this area. We are not claim- 

ng that work done on defenses for adversarial attacks so far is 

seless. Conversely, there has been great work and progress in this 

rea, but it seems now that defenses are becoming too specific to 

urrent benchmarks and fail to generalize against slightly-different 

erturbation models. To overcome this issue, we suggest to test the 

roposed defenses on a wider set of robustness benchmarks, rather 

han over-specializing them on a specific scenario, and we do be- 

ieve that our ImageNet-Patch benchmark dataset provides a useful 

ontribution in this direction. 
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Fig. 6. Results of our large-scale analysis on 127 publicly-released models. Top row : top-1 (left), top-5 (center), and top-10 (right) clean accuracy vs robust accuracy. Bottom 

row : top-1 (left), top-5 (center), and top-10 (right) robust accuracy vs attack success rate. The Pearson correlation coefficient ρ and the p-value are also reported for each 

plot. 
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. Related work 

We now discuss relevant work related to the optimization of 

dversarial patches, and to the proposal of similar benchmark 

atasets. 

.1. Patch attacks 

The first physical attack against deep neural networks was pro- 

osed by Sharif et al. [7] , by developing an algorithm for printing 

dversarial eyeglass frames able to evade a face recognition sys- 

em. Brown et al. [5] introduced the first universal patch attack 

hat focuses on creating a physical perturbation. Such is obtained 

y optimizing patches on an ensemble of models to achieve tar- 

eted misclassification when applied to different input images with 

ifferent transformations. The LaVAN attack, proposed by Karmon 

t al. [9] , attempts to achieve the same goal of Brown et al.by also

educing the patch size by placing it in regions of the target im- 

ge where there are no other objects. The PS-GAN attack, proposed 

y Liu et al. [26] , addresses the problem of minimizing the per- 

eptual sensitivity of the patches by enforcing visual fidelity while 

chieving the same misclassification objective. The DT-Patch attack, 

roposed by Benz et al. [27] , focuses on finding universal patches 

hat only redirect the output of some given classes to different tar- 

et labels, while retaining normal functioning of the model on the 

ther classes. PatchAttack, proposed by Yang et al. [28] , leverages 

einforcement learning for selecting the optimal patch position and 

exture to use for perturbing the input image for targeted or un- 

argeted misclassification, in a black-box setting. The Inconspicuous 
8 
dversarial Patch Attack (IAPA), proposed by Bai et al. [29] , gener- 

tes difficult-to-detect adversarial patches with one single image 

y using generators and discriminators. Lennon et al. [30] analyze 

he robustness of adversarial patches and their invariance to 3D 

oses. Xiao et al. [31] craft transferable patches using a genera- 

ive model to fool black-box face recognition systems. They use the 

ame transformations as [35] , but unlike other attacks, they apply 

hem to the input image with the patch attached, and not just on 

he patch. Ye et al. [32] study the specific application of patch at- 

acks on traffic sign recognition and use an ensemble of models 

o improve the attack success rate. Liu et al. [33] propose a uni- 

ersal adversarial patch attack that produces patches with strong 

eneralization ability leveraging the texture and semantic bias of 

he target models to speed up the optimization of the adversarial 

erturbation. The Generative Dynamic Patch Attack (GDPA), pro- 

osed by Li and Ji [34] , generates the patch pattern and location 

or each input image simultaneously, reducing the runtime of the 

ttack and making it hence a good candidate to use for adversarial 

raining. 

We summarize in Table 3 these attacks, highlighting the main 

roperties and comparing them with the attack we used to cre- 

te the adversarial patches. In particular, in the Cross-model col- 

mn we report the capability of an attack to be performed against 

ultiple models (for black-box attacks we omit this information); 

n the Transfer column the proved transferability of patches, if re- 

orted in each work (thus it is still possible that an attack could 

roduce transferable patches even if not tested on this setting); in 

argeted and Untargeted columns the type of misclassification that 

atches can produce; in Transformations column the transforma- 
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Fig. 7. Clean vs robust accuracy for adversarial ( top row ) and random ( bottom row ) patches. The Pearson correlation coefficient ρ and the p-value are also reported for each 

plot. The dashed grey line and shaded area show a robust regression model fitted on the data along with the 95% confidence intervals. The results highlight the effectiveness 

of our pre-optimized strategy against choosing patches at random. 

Fig. 8. Examples of adversarial patches from our dataset applied to objects in the physical world. In each photo we show the original and predicted label. 
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ions applied to the patch during the optimization process (if any), 

hich can increase the robustness of the patches with respect to 

hem at test time. 

In this work, we leverage the model-ensemble attack proposed 

y Brown et al. [5] to create adversarial patches that are robust to 

ffine transformations and that can be applied to different source 

mages to cause misclassification on different tar get models. From 

hat, we publish a dataset that favors fast robustness evaluation to 

atch attacks without requiring costly steps for the optimization of 

he patches, both for the digital and physical world. 

.2. Benchmarks for robustness evaluations 

Previous work proposed datasets for benchmarking adver- 

arial robustness. The APRICOT dataset, proposed by Braunegg 

t al. [36] , contains 1,0 0 0 annotated photographs of printed ad- 
9 
ersarial patches targeting object detection systems, i.e.producing 

argeted detections. The images are collected in public locations 

nd present different variations in position, distance, lighting con- 

itions, and viewing angle. However, even if ImageNet-Patch and 

PRICOT are similar in spirit, our dataset is designed to test the 

obustness of image classifiers and not object detectors. These two 

roblems are very different, and also the techniques used to op- 

imize patches drastically change from one domain to the other. 

mageNet-C and ImageNet-P, proposed by Hendrycks and Diet- 

erich et al. [37] , are two datasets proposed to benchmark neu- 

al network robustness to image corruptions and perturbations, re- 

pectively. ImageNet-C perturbs images from the ImageNet dataset 

ith a set of 75 algorithmically-generated visual corruptions, in- 

luding noise, blur, weather, and digital categories, with different 

trengths. ImageNet-P perturbs images again from the ImageNet 

ataset and contains a sequence of subtle perturbations that slowly 
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erturb the image to assess the stability of the networks’ predic- 

ion on increasing amounts of perturbations. 

Differently from these works, we propose a dataset that can be 

sed to benchmark the robustness of image classifiers to adver- 

arial patch attacks, whose aim is not restricted to being a source 

sed at training time to improve robustness, or a collection of en- 

ironmental corruptions. 

The research community has recently created benchmarks for 

obustness evaluation of machine-learning models against differ- 

nt attacks. RobustBench, proposed by Croce et al. [10] , provides a 

tandard evaluation protocol for adversarial perturbations and im- 

ge corruptions. The models are then ranked in a leaderboard and 

ownloadable via a dedicated model zoo. RobustART, on the other 

and, proposed by Tang et al. [38] , analyzes the relationship be- 

ween robustness and different settings including model architec- 

ures and training techniques. Our work is the first one to provide 

 dataset to evaluate the robustness of models against adversarial 

atch attacks, which can be a nice complement to RobustBench. 

. Conclusions, limitations, and future work 

We propose the ImageNet-Patch dataset, a collection of pre- 

ptimized adversarial patches that can be used to compute an 

pproximate-yet-fast robustness evaluation of machine-learning 

odels against patch attacks. This dataset is constructed by op- 

imizing squared blocks of contiguous pixels perturbed with affine 

ransformations to mislead an ensemble of differentiable models, 

orcing the optimization algorithm to produce patches that can 

ransfer across models, gaining cross-model effectiveness. Finally, 

hese adversarial patches are attached to images sampled from 

he ImageNet dataset, composing a benchmark dataset of 50,0 0 0 

mages. The latter is used to make an initial robustness evalua- 

ion of a selected pool of both standard-trained and robust-trained 

odels, disjointed from the ensemble used to optimize the patch, 

howing that our methodology is already able to decrease their 

erformances with very few computations needed. We also test 

he effectiveness of our adversarial patches when printed and ap- 

lied to real-world objects, successfully exhibiting comparable re- 

ults of their digital counterparts. Both results highlight the need 

f considering a wider scope when evaluating adversarial robust- 

ess, since the latter should be a general property and not cus- 

omized on single strategies. Hence, our dataset can be used to 

ridge this gap, and to rapidly benchmark the adversarial robust- 

ess of machine-learning models for image classification against 

atch attacks. 

Limitations. While our methodology is efficient, it only pro- 

ides an approximated evaluation of adversarial robustness, which 

an be computed more accurately by performing adversarial at- 

acks against the target model, instead of using transfer attacks. 

ence, our analysis serves as a first preliminary robustness evalu- 

tion, to highlight the most promising defensive strategies. More- 

ver, we only release patches that target 10 different classes, and 

his number could be extended to target all the 10 0 0 classes of the

mageNet dataset. Lastly, while our methodology only considered 

he attack proposed by Brown et al. [5] to optimize the adversarial 

atches, it is straightforward to extend our approach and bench- 

ark dataset to also encompass novel and more powerful attacks. 

Future work. We envision the use of our ImageNet-Patch 

ataset as a benchmark for machine-learning models, which may 

e added or used in conjunction with RobustBench. We also ar- 

ue that the proposed methodology is general enough to encom- 

ass novel, different patch attacks (e.g., with improved transferabil- 

ty properties [39,40] ) and image datasets (e.g., MNIST, CIFAR10), 

hereby easing the creation of novel benchmarks to evaluate ro- 

ustness against adversarial patches. 
10 
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