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HAMIL: Hierarchical Aggregation-Based
Multi-Instance Learning
for Microscopy Image Classification

Yanlun Tu, Houchao Lei, Wei Long, and Yang Yang

Abstract—Multi-instance learning is common for computer vision tasks, especially in biomedical image processing. Traditional
methods for multi-instance learning focus on designing feature aggregation methods and multi-instance classifiers, where the
aggregation operation is performed either in feature extraction or learning phase. As deep neural networks (DNNs) achieve great
success in image processing via automatic feature learning, certain feature aggregation mechanisms need to be incorporated into
common DNN architecture for multi-instance learning. Moreover, flexibility and reliability are crucial considerations to deal with varying

quality and number of instances.

In this study, we propose a hierarchical aggregation network for multi-instance learning, called HAMIL. The hierarchical aggregation
protocol enables feature fusion in a defined order, and the simple convolutional aggregation units lead to an efficient and flexible
architecture. We assess the model performance on two microscopy image classification tasks, namely protein subcellular localization
using immunofluorescence images and gene annotation using spatial gene expression images. The experimental results show that
HAMIL outperforms the state-of-the-art feature aggregation methods and the existing models for addressing these two tasks. The
visualization analyses also demonstrate the ability of HAMIL to focus on high-quality instances.

Index Terms—Multi-instance learing, biomedical image processing, hierarchical aggregation.

1 INTRODUCTION

A Lot of computer vision tasks exhibit multi-instance property,
i.e. each input data sample is represented by a bag of
instances and learning is performed at the bag level instead of
the instance level [1], [2]. For example, video-based identity
recognition can be treated as a multi-instance learning (MIL)
task, as each video input is a time-series of frames and each
frame can be regarded as an instance [3]. Another example is the
automatic diagnosis system based on magnetic resonance imaging
(MRI) data, which consists of multiple slices presenting the area
of interest being scanned [4]. In these two cases, there is either
temporal or spatial dependency between images; whereas in a lot
more MIL scenarios, instances within each bag are unordered or
exhibit no dependency among each other. Such unordered MIL
tasks are especially common in biomedical image processing [5],
(61, [71, [8].

The imaging of biological samples, plays a key role in current
life science research, enabling scientists to analyze from tissue
level down to the cell level. Unlike natural images, biological
microscopy images are often much harder to obtain due to the
difficulty in preparing the specimen or stringent experimental
conditions. Therefore, during the imaging procedure, it is common
to capture multiple images for a specimen in a single trial of
experiments and perform multiple trials for repeatability. To infer
the functions of genes or characteristics of molecules, all the
captured images should be considered comprehensively to give
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Fig. 1. Two typical aggregation mechanisms in deep learning models.
CNNs are commonly used to extract features from input images, and
then the extracted features are fed into the feature aggregation module
to obtain the final aggregation output.

a more accurate judgement on the final output, as single images
may only contain partial information.

Compared with video or 3D data, dealing with unordered input
requires the model to have the permutation-invariant property [7],
i.e., the model should be insensitive to the presenting order of input
instances. Moreover, the models also need to address the issues
coming from variable-sized inputs and different image qualities.
Thus, developing MIL models is a very challenging job.

Traditional MIL methods fall into two categories, focusing on
feature extraction and classification, respectively.

The first category of methods aggregates multiple instances
into a fixed-length input before feeding the classifiers. The ag-
gregation operation can be performed before or after feature
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extraction. FlyIT [9] is an example of the former type, which
first stitches images belonging to the same bag into large images
and then extracts features from the large images. The latter type
first extracts features for raw instances and then performs the
aggregation operation (as illustrated in Fig. 1). For instance,
MIMT-CNN [10] employs 10 VGG models to learn feature repre-
sentation from 10 images, respectively, and concatenates them into
a bag representation for the following classification. The feature
aggregation can be regarded as a part of feature engineering, and
the subsequent learning procedure remains unchanged. Alterna-
tively, common classifiers can be modified to handle inputs of
multiple instances. Till now, a lot of MIL methods have been
developed, like multi-instance KNN [ 1], multi-instance neural
networks [12], [13], multi-instance decision tree [14], and multi-
instance support vector machines (SVMs) [15]. The core idea is
to compute pair-wise similarity or loss function at the bag level
instead of instance level and define the loss function according to
the prediction accuracy on bags.

Note that before using these traditional learning models, image
features should be extracted separately, while deep neural net-
works perform feature learning automatically. For the past decade,
MIL tasks have also benefitted a lot from deep learning [16].
However, the performance of the existing multi-instance DNN
models has been limited due to the high complexity of input
data. For one thing, some methods set a fix-length of input [9],
[10], which lacks flexibility of handing varying-sized input. For
the other thing, since the number of instances per sample is often
large while high-quality instances are few, the methods that are
unable to identify informative instances may not work well.

To address these challenges, we propose a model,
called HAMIL (Hierarchically Aggregation for Multi-Instance
Learning). The model is featured by a hierarchical aggregation
protocol with simple but effective aggregation units. It can not
only learn input bags with varying size but also give preference
to informative instances. We assess the performance of HAMIL
on two microscopy image classification tasks. On both tasks,
HAMIL achieves significant improvement in prediction accuracy
compared with other feature aggregation methods and state-of-the-
art predictors for these two tasks.

2 RELATED WORK

2.1 Traditional feature aggregation

In traditional image processing, feature aggregation aims to fuse
features extracted from multiple images into a comprehensive
feature representation before feeding into a learning model. There
are three typical feature fusion methods, the bag of visual words
(BOV) [17], Fisher vector [18], and vector of locally aggregated
descriptors (VLAD) [19]. BOV regards image features as words,
builds a vocabulary of local image features and generates a vector
of their occurrence counts. The Fisher vector method stores the
mixing coefficients of the Gaussian mixture model (GMM) as well
as the mean and covariance deviation vectors of the individual
components. The VLAD method computes the distance of each
feature point to the cluster center closest to it. All of these three
methods produce a fixed-length feature vector for the input image
set, which can work with traditional machine learning models, like
SVMs.

Feature extraction !
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Fig. 2. Model architecture of HAMIL. The raw images are first fed to con-
volutional layers to get feature embeddings and then aggregated based
on the hierarchical tree to get a unified encoding for final classification.

2.2 Aggregation of deep convolutional features

For the past decade, feature encoding via deep neural networks
has almost replaced traditional feature engineering in image
processing [20] [21] [22]. Various feature aggregation methods
working with deep neural networks have also emerged. There are
two typical aggregation schemes, i.e. pooling-based and attention-
based.

As a straightforward aggregation method, the pooling function
is permutation-invariant and requires no (or very few) parameters,
thus has been widely used in MIL tasks. Babenko et al. showed
that a simple sum-pooling method working on deep convolutional
features is superior to traditional aggregation methods working
on shallow features [23]; Su et al. proposed the multi-view
CNN (MVCNN) model, which adopts max pooling to combine
information of photos captured from multiple orientations for 3D
recognition [16]; Wang et al. introduced three popular pooling
functions in their proposed mi-net, i.e. max pooling, mean pooling,
and log-sum-exp (LSE) pooling (a smooth version and convex
approximation of the max pooling) [24]; and Kraus et al. proposed
the Noisy-AND pooling function to handle outliers [&] .

A major flaw of pooling is its incapability to focus on impor-
tant instances, while the attention mechanism is a good choice,
as it can assign scores/weights to instances. Till now, various
attention-based feature aggregation methods have been developed.
Yang et al. proposed a neural aggregation network for video
face recognition, NAN [3], which aggregates multiple features
by an attention module. Ilse et al. proposed a general attention-
based deep MIL framework, which introduced both attention and
gated-attention functions [7]. Due to their good interpretability,
attention-based methods have gained more popularity in biomedi-
cal image processing, e.g. Yao et al. used the attention-based MIL
pooling for whole slide image analysis. In addition, the attention-
based MIL can be implemented in various types of neural net-
works. For instance, Annofly uses long short-term memory model
as the backbone network [25], while Set Transformer [26] and
ImPLoc [27] are based on Transformer models. Besides these two
mechanisms, there are some other deep MIL models with special
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designs, like DeepMIML [28] utilizing a pluggable sub-concept
layer to learn the latent relationship between input patterns and
output semantic labels. And Tu et al. proposed a graph neural
network-based model, which regards each instance as a node in the
graph. Learning the graph embedding is essentially an information
aggregation process [29].

The proposed HAMIL model has a different aggregation
mechanism compared with the existing methods. It has trainable
and non-linear convolution aggregation units, and designs a hier-
archical clustering protocol for permutation-invariance. Different
from the hierarchical graph clustering in GNN-based model [29],
both the numbers of clusters and aggregation times are auto-
matically determined by the size of input bag rather than fixed
hyperparameters.

3 METHODS
3.1

In this study, we discuss a more complex MIL problem, namely
multi-instance multi-label learning. Formally, let X denote the
sample set, i.e. ¥ = {X;}, where i € {1,2,...,n}, n is the num-
ber of samples, and X; is a sample; X; = {z; 1,22, -, Tim
where m is the number of instances of the ¢th sample, x; ;
(G € {1,2,...,m}) denotes an instance of X;. Let ¥ = {Y;} be
the output space, and Y; = {y1, 92, . . ., yx } corresponds to the la-
bel set of X;. The goal is to learn a mapping function f : X — ).
Especially, as we focus on the image processing tasks, here each
instance is an image and each sample is represented by a bag of
images.

Problem description

3.2 Model architecture

To process input bags of any size and varying sizes, HAMIL sets
no limit on the number of instances for a bag and implements
a hierarchical aggregation protocol. The model architecture is
shown in Figure 2. There are three main components, namely
feature extraction, feature aggregation, and classification. The first
component consists of several convolutional layers serving as the
feature extractor. The CNN layers are followed by a hierarchical
aggregation procedure to produce a unified representation for the
input set of instances, which is further fed to the fully connected
layer for classification.

Specifically, by regarding the input bag as a set of images,
HAMIL constructs a hierarchy of images/instances within each
bag, thus determines an aggregation order according to the tree
structure, i.e. from the leaf node to the root node of the hierar-
chical tree. The construction of instance hierarchy is described
in Algorithm 1. In Line 11, the distance between two clusters is
defined as the minimum distance of all cross-cluster instance pairs,
i.e. the single-link method. And the distance between instances is
Euclidean distance computed based on features yielded by the
convolutional layers in the first component of HAMIL.

The hierarchy of instances is a binary tree in nature. During
the construction of the hierarchy, we record the merging history of
clusters. Assume that there are a total of K merging steps (note
that K is not a hyperparameter but the height of the binary tree
determined by the number of instances), then we will keep a queue
T of length K. Each element in the array is a triplet denoted by
tk, i.e.,

tk =< 101,102710 >ak€{177K} (1)

Algorithm 1 Construction of the hierarchy of instances

Input: A bag of images, X.
X ={x1,x2,...,%m}, where m is the number of instances
of X.
Output: A queue recording the aggregation history.
1: Let S be a set of clusters.
28 = {an} {we} - {om})
3 1 (2} = 1 maxl = m, where I denotes the index of clusters
and max[ is the maximum index of clusters in S.
4: Let T be a queue of triplets as defined in Eq. (1). Initialize T
to an empty queue.
s: while |S| > 1 do
o on=]19|.
Let minL be the minimal pairwise distance between clus-
ters. minL = +4o0.
8:  Let C'1,C2 be the two clusters to be merged.
9: fori=1ton—1do

10: for j =i+ 1ton do

11: L;; = dis(S;, Sj),where dis is a distance function
and S; is the ¢ th element in S by the ascending order
of indexes.

12: if L; ; < minL then

13: minlL = Li’j.

14: Cl=5;,C2= Sj.

15: end if

16: end for

17:  end for

18: C=C1UC2

19: S=(SuC)\C1\C2.

20:  maxl =maxl + 1, Ic = maxl.
21:  Define a triplet t =< I, Ioo, Io >.
22:  Push ¢ into 7.

23: end while

24: Return 7.
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Fig. 3. lllustration of feature aggregation in HAMIL.

t; consists of three indexes of clusters in S. The first two are the
indexes of the two clusters being merged in the k-th step, and
the last one is the index of the newly generated cluster. Then,
the aggregation order is determined by the records in 7, and the
specific aggregation operations are defined by kernel functions as
described in the next Section.

3.3 Feature aggregation unit

As the convolution operation can be regarded as a weighted
average of inputs, we design the aggregation units via convolution.
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In detail, given two input feature maps of size H x W x C,
which can be considered as C' pairs of H x W matrices along
the channels, i.e. for each channel there is a pair of matrices. We
first input each pair into the feature aggregation unit to obtain
the aggregated output of size H x W. Then, the C' outputs are
concatenated into the final output of size H x W x C' Figure 3
shows an illustration of the aggregation units.

Formally, let 21 and x5 be the feature maps to be aggregated.
The aggregation is defined in Eq. (2),

X = [xlaxﬂv

2
O=W=xX+b, @

where X is a tensor composed by the feature maps, * is the con-
volution operator, W is the convolutional filter, b is the bias, and
O is the aggregated feature map. This is a one-layer aggregation
unit, We call it L1Agg. To meet the needs of more complex tasks,
the aggregation units can be extended to deeper versions with
multiple layers. Egs. (3) and (4) formulate the two-layer and three-
layer aggregation units which nest the basic aggregation operation
twice and three times, respectively.

O =W * f(g(W*X+1b) +V, 3)

where g(-) is a normalization function, f(-) denotes the ReLU
function.

O=W'xf(g(Wx* f(gWxX+b)+0b))+0b", @

No matter how many layers are there, the aggregation units are
shared by all aggregation operations. Thus, the aggregation mod-
ule introduces only a slight increase in the number of parameters
compared to the backbone CNN model.

4 EXPERIMENTS

We assess the model performance on two large-scale image
classification tasks, involving two typical kinds of bio-images, i.e.
microscopic cell images and gene expression images. The two
tasks are described below.

Task I: Prediction of protein subcellular location using im-
munofluorescence (IF) images. Each protein corresponds to a
bag of microscopy images captured from multiple tissues. The
labels, i.e. cellular locations, are predicted based on all localization
patterns implied in these images. A protein may exist in multiple
locations.

Task II: Gene function annotation using gene expression
images. The in situ hybridization (ISH) imaging technology vi-
sualizes spatial distribution patterns of gene expression in tissues
and help to reveal gene functions. Each gene corresponds to a bag
of expression images captured in different angles or experimental
trials. The labels are functional annotation terms. A gene may have
more than one annotation terms.

Apparently, both of these two tasks are multi-instance multi-
label classification. We compare HAMIL with both single-instance
learning models and the existing feature aggregation models as
listed in the following. To assess the performance of HAMIL, we
compare it with 7 baseline models, including:

e A single-instance learning model (SI)';

1. It has the same backbone network as HAMIL but its inputs are single
images, which have the same labels as the bags they belong to. The prediction
results of single images are combined per bag to yield the bag labels.

. s . ..

Fig. 4. Extracted patches from HPA raw images. The top left figure is a
raw image, the top right figure shows the results of selective search, and
the bottom figures are the cropped and scaled patches.

e Three pooling-based methods, MI with mean pooling,
MVCNN [16] with max pooling, and SPoC [23] with sum
pooling;

e Two attention-based methods, NAN [3] and Attention [7];

e A specially designed deep MIL model, DeepMIML [28].

All the baseline models have the same backbone network
(ResNet18) for extracting features from raw images. The predic-
tion performance is evaluated by three metrics, AUC (the Area
Under ROC Curve)z, macro Fq, and micro F;.

4.1 Task 1- Protein microscopy images
4.1.1 Data source

The data set was collected from the cell atlas of the human protein
atlas (HPA) database [30]. We download 1600 bags of IF images,
each of which corresponds to a protein. The location annotations
of proteins are hand-crafted in the database. The total number
of images is 19,777. The sizes of raw images include 800 x 800,
1728 %1728, and 2048 x 2048. Obviously, the large size of images
and small numbers of bags bring great computation difficulties.
Considering that there are usually multiple cells within an image,
the selective search algorithm [31] is adopted to pick the cellular
patches from raw images as shown in Figure 4. We scale the
selected patches into a fixed size 512 x 512. Proteins with too
many patches are split into multiple bags. The top-10 frequent
classes are selected for our experiment. The training and test sets
are partitioned at the protein level. Details about the data set can
be found in suppl. Table S1.

4.1.2 Experiment details

Adam optimizer [32] is adopted to optimize the network. The
learning rate is set to 0.0001, and the parameters 31 and (35 of the
Adam optimizer are set to 0.9 and the default value, respectively.
The batch size is 8 and the loss function is standard BCE loss. We
select the L1Agg function as our aggregation function, and the
kernel size is set to 7, in addition, we use the BN layer after the
convolution operation to normalize the feature map. The selected
feature extraction network is ResNet18 [33], and the final output
layer consists of 10 nodes (to predict 10 major cellular organelles).

2. The averaged AUC value over labels, i.e. macro AUC
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TABLE 1
Performance comparison on Task 1*

[ Method [ AUC [ MacroF; [ MicroF; ]
SI 0.938 0.572 0.734
MI 0.927 0.577 0.745
Pool | MVCNN [16] 0.938 0.675 0.763
SPoC [23] 0.941 0.714 0.770
NAN [3] 0.928 0.705 0.784
Attn | Attention [7] 0.910 0.559 0.729
Gated-Attention [7] | 0.900 0.522 0.724
DeepMIML [28] 0.915 0.662 0.746
HAMIL (ours) 0.944 0.733 0.784

*“Pool’ denotes pooling-based aggregation and ‘Attn’ denotes attention-based
aggregation. Gated-Attention used gated-attention mechanism for aggregation. The result
of DeepMIML is obtained by resizing the images to 224 x 224, which leads to much
higher accuracy than using the original size. All methods use ResNet18 as feature
extractor.

4.1.3 Results

The prediction accuracy of HAMIL and 7 baseline models on Task
I is shown in Table 1. As can be seen, HAMIL achieves the best
performance. SI treats the task as single-instance learning, which
assumes that every single instance has the same label set as the
whole bag, thus would introduce a lot of noisy samples.

The three pooling methods, MI, MVCNN and SPoC, adopt
mean, max, and sum pooling, respectively. SPoC achieves the best
performance, perhaps due to the ‘centering prior’ incorporated in
the sum pooling, which assigns larger weights to center area of
feature maps. As preprocessed by selective search (Fig. 4), the
central regions of most images contain more cell information.

As for the attention-based methods, NAN performs much bet-
ter than ‘attention’ and ‘gated-attention’. Despite different model
settings and equations for computing attention scores, the major
difference is that we apply NAN on feature maps while the latter
two methods on feature vectors. Following the implementation in
[7], the feature maps yielded by CNN layers are turned into lower-
dimensional feature vectors via fully connected layers, thus the
attention and gated-attention mechanisms work on feature vectors.
This FC transformation may result in information loss.

DeepMIML does not obtain a comparable result to HAMIL,
perhaps because it was designed to identify multiple concepts
in single-image input, which is another kind of MIL problem
different from ours.

4.2 Task 2 - Gene expression images
4.2.1 Data source

The data set consists of standard gene expression images of
Drosophila embryos from the FlyExpress database [34]. All the
images were extracted from the Berkeley Drosophila Genome
Project (BDGP) (www.fruitfly.org) [35], [36] and preprocessed to
a uniform size 180 x 320. The data set is in bag-level. Each bag
of images presents the expression distribution on the Drosophila
embryo for a single gene, in which the images were captured from
different orientations, i.e. dorsal, lateral and ventral. We use the
same dataset as FlyIT [9], where the dataset is divided (at bag-
level) into training, validation, and test sets according to the ratio
of 4:1:5 (suppl. Table S1 shows data statistics). The total number
of labels is 10, each of which is an ontology term describing
anatomical and developmental properties. This task is also a multi-
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Fig. 5. Examples of the gene annotation data of Drosophila embryos.
The first row shows gene names, the second row shows gene expres-
sion images for each gene, and the last row shows the corresponding
CV terms of the gene, i.e. labels.

label classification problem, as each gene may have multiple
developmental terms. Figure 5 shows some example images.

4.2.2 Experiment details

The experimental settings in Task 2 are almost the same as in
Task 1, except that the batch size is set to 32, because the gene
expression images are smaller than protein microscopy images,
so we can add more train samples during one train process.
Here we compare HAMIL with additional four state-of-the-art
MIL methods proposed for the Drosophila embryo image analysis
[5], [9], [25]. E-MIMLSVM is an MIML algorithm that adapts
the kernel function of support vector machines to the MIML
scenario [5]. FlyIT [9] adopts image stitching to combine raw
images. AnnoFly [25] first extracts features via ResNet, then
employs RNN to deal with the multi-instance input.

4.2.3 Results

The experimental results are shown in Table 2. In this task, the
image quality is much higher than that of Task I and the number of
instances per bag is fewer. That could explain why pooling-based
methods achieve better results on this Task. By contrast, Task I has
much more instances per bag and highly varying image quality
(see examples in Fig. 7), the attention mechanism which identifies
high-quality instances can help make better decision based on the
important instances.

Interestingly, the pooling and attention-based methods have
comparable and even better performance than the previously
proposed MIL methods for this task. E-MIMLSVM is a shallow
learning model. Annofly uses the pre-trained (on Imagenet) CNN
to extract feature embeddings and then feeds them into an LSTM
model. Flylt conducts aggregation at the raw-image level. Neither
of them fully exploit the feature learning ability of deep CNNs
during the aggregation process.

In summary, the advantages of HAMIL over these state-of-
the-art methods can be attributed to the end-to-end training of
ResNet18 for feature extraction and the hierarchical aggregation
operations on the feature maps.

4.2.4 Visualization analysis

We visualize the features representations with and without aggre-
gation by projecting them onto a 2D space via tSNE algorithm
[37]. Figure 6 (a) shows the 2D distribution of features learned
by ResNet without aggregation, and Figure 6 (b) shows the
2D distribution of aggregated features. Different colors denote
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TABLE 2
Performance comparison on Task 2*

[ Method [ AUC [ MacroF; [ MicroF; |
SI 0.936 0.691 0.685
MI 0.938 0.688 0.706
Pool | MVCNN [16] 0.942 0.741 0.743
SPoC [23] 0.944 0.729 0.737
NAN [3] 0.927 0.726 0.734
Attn | Attention [7] 0.935 0.692 0.707
Gated-Attention [7] | 0.935 0.701 0.701
DeepMIML [28] 0.922 0.681 0.700
E-MIMLSVM [5] 0.846 0.598 0.640
AnnoFly [25] 0.937 0.702 0.713
FlyIT [9] 0.936 0.718 0.711
HAMIL (ours) 0.944 0.755 0.746

*The results of EEMIMLSVM ™, AnnoFly, and FlyIT are from [9].

different classes. The features of different categories before aggre-
gation have a small margin and large overlap, which brings great
difficulties to subsequent classifiers. After aggregation, samples of
different categories are much more separated, with small overlap,
which is beneficial for subsequent classification.

(a) Raw image features (b) Aggregated features

Fig. 6. Visualization of feature representations before and after aggre-
gation.

4.3 Ablation Study and Analysis
4.3.1 Ablation of the hierarchical aggregation

In order to verify the contribution of hierarchical design to the
performance of HAMIL, we remove the hierarchical clustering
in HAMIL and aggregate the instances in random order using
the same convolutional aggregation functions, which is denoted
by RAMIL. As RAMIL is not permutation-invariant, during its
training process, we randomly shuffle the order of instances within
bags in each epoch. The comparison results of HAMIL and
RAMIL are shown in Table 3. HAMIL outperforms RAMIL on
all the three metrics, suggesting that the hierarchical aggregation
scheme is able to improve the performance of the model.

In addition, to get more insight on the aggregation operation,
we compute the cosine similarity between aggregated features
and the features of input images, and take the similarity value
as the score of the input images, which can be regarded as a
kind of preference that model assigns to the instances. Figure
7 visualizes the images with different scores. Each row shows
images from the same bag, the two numbers below each image
represent the weights assigned to the image by HAMIL and
RAMIL, respectively. As can be seen, the images with high

6
TABLE 3
Performance comparison on Task 2*
[ Task [ Method | AUC [ MacroF; [ MicroF; |
RAMIL 0.935 0.720 0.778
Task T HAMIL-A | 0.939 0.695 0.773
HAMIL 0.944 0.733 0.784
RAMIL 0.935 0.735 0.730
Task T | HAMIL-A | 0.932 0.736 0.732
HAMIL 0.944 0.755 0.746

*RAMIL and HAMIL are two variants of HAMIL. RAMIL performs aggregation on
random-ordered instances but with the same aggregation units as HAMIL; HAMIL-A
adopts the same hierarchical aggregation protocol but replaces the convolutional
aggregation units with mean pooling.

scores contain relatively obvious local patterns corresponding to
the target labels, suggesting that the feature aggregation retains
more information from the high-quality images, i.e. the features
aggregated by HAMIL will automatically focus on important
features. By contrast, it can be found that RAMIL pays nearly
equal attention to different quality images, as the scores differ
slightly. This is because RAMIL aggregates each input in a
random order, i.e., each time it randomly selects two feature
embeddings to aggregate, thus there is no mechanism for attention
allocation. As a result, when the quality of images varies a lot, the
performance of RAMIL cannot be guaranteed.

4.3.2 Ablation of the convolutional aggregation units

To verify the effectiveness of convolutional aggregation units in
our design, we use a simple average operation to replace the non-
linear convolutional aggregation unit. HAMIL-A is used to denote
this alteration of aggregation unit. In Table 3 we compare it with
HAMIL in Task I and II. Because convolutional aggregation unit is
a trainable module, its performance is better than simple average
operation. Suppl. Table S4 also shows the results on localized
content-based image retrieval.

5 COMPARISON ON AGGREGATION MECHANISMS

HAMIL is a new aggregation framework designed for addressing
MIL in image processing. It allows variable sizes of input bags
without a restriction on the bag size, and it has a light-weight
architecture with simple aggregation operations. The hierarchical
aggregation protocol makes the model invariant to the order of
instances in bags. Actually, many aggregation methods also have
these advantages, like pooling and attention-based [7], [24]. A
comparative analysis of these three mechanisms is listed below.

i) Traditional pooling-based methods (max, sum or mean)
are non-trainable, thus have limited learning ability; while both
attention-based aggregation function and HAMIL are trainable.

ii) The existing attention-based aggregation methods assign
weight scores to instances, i.e. they treat an image/instance as a
whole, no matter how the pairwise instance similarity is computed
(based on feature maps or feature embedding vectors). By contrast,
both pooling-based and HAMIL can operate on local regions
of multiple instances. Although attention methods have good
interpretability (the weights directly reflect the importance of
instances), the weighted-sum aggregation function is incompetent
to express complex aggregation mechanisms.

iii) According to the experimental results, the pooling-based
methods are very efficient and effective on data sets with high
quality, and attention-based methods have more advantages in
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Fig. 7. Visualization of scores for image instances. The three rows denote three bags of images, and the numeric values are the scores assigned

by HAMIL and RAMIL to the corresponding images.

handling data with much noise or varying quality; while HAMIL
is applicable to both cases, due to the powerful learning ability of
its aggregation units.

Although HAMIL is designed for handling raw image data, we
perform an additional experiment to investigate its performance
on traditional MIL data sets (as shown in suppl. Table S2). As the
input features are provided (preprocessed via feature engineering),
we remove the first component of HAMIL, i.e. the CNN layers for
learning image features. Following the practice in [7], We run the
experiments using 10-fold cross-validations for 5 times (each time
the data set is randomly partitioned into 10 folds). Experimental
details can be found in suppl. Section B.

Suppl. Table S4 shows the results on three localized content-
based image retrieval tasks, and suppl. Table S5 shows the results
for two drug activity data sets. Considering that the input consists
of statistical features of images, we not only replace the original
2D conv to 1D conv but also add HAMIL-A (as mentioned
in Section 4.3.2) into comparison. As can be seen, HAMIL
achieves a little advantage on Fox and Elephant data sets while
no advantage on others. Besides, HAMIL-A and HAMIL have
very close performance.

From these experimental results, it can be seen that as the
aggregation units of HAMIL are convolution-based and they
directly function on feature maps, HAMIL is more suitable for
processing raw image data. Nevertheless, the proposed HAMIL
model could be an alternative feature aggregation protocol applied
to the data sets with traditional features, which obtains comparable
results with the existing aggregation methods. The contributions
of HAMIL can be summarized as follows.

i) The convolution-based aggregation function of HAMIL is
able to capture local neighborhood information in images during
the aggregation process and learn complex non-linear aggregation
patterns.

ii) The hierarchical design makes the model insensitive to the
order of instances and improves model accuracy.

iii) The end-to-end architecture further improves the feature
learning, as the hierarchical clustering can be dynamically ad-
justed to yield better clustering of instances based on the updated
feature representations.

6 CONCLUSION

We propose a hierarchical aggregation network for multi-instance
learning in image classification. Different from the mainstream
pooling and attention-based methods, the proposed HAMIL uti-
lizes convolution operations for aggregation on feature maps
and a hierarchical architecture to ensure permutation-invariance.
HAMIL achieves better performance than the existing aggregation
methods on two microscopy image classification tasks. Moreover,
as a general feature aggregation network, HAMIL can be easily
applied to other MIL image processing tasks.

APPENDIX A
DETAILS FOR TASKS | AND Il

TABLE S1
Data Overview of Tasks | and Il

Dataset Protein microscopy image Gene expression image

” Train [ Val | Test | Train | Val | Test
Bag # 5496 1320 6901 2714 678 3393
Instance # | 69943 | 16687 | 86964 | 10237 | 2426 | 12872

The datasets can be accessed at https://bioimagestore.blob.core.
windows.net/dataset?restype=container&comp=list

APPENDIX B
DETAILS FOR CLASSICAL MIL DATA SETS

TABLE S2
Overview of five classical MIL data sets

[ Dataset [ #ofbags | #of instances [ # of featrues |
Musk1 92 476 166
Musk2 102 6598 166
Tiger 200 1220 230
Fox 200 1302 230
Elephant 200 1391 230
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TABLE S3
Model architecture of HAMIL and HAMIL-A working on the five
traditional data sets*

[ Layer | Type |
1 fc-256+ReLU
2 dropout
3 fc-128+ReLU
4 dropout
5 fc-64+ReLU
6 dropout
7 hierarchical clustering
8 conv/average aggregation
9 fc-1+sigm

*To compare with previous studies, Layers 1-6 and 9 have exactly the same settings as
Ilse et al’s attention-based method [7].

TABLE S4
Performance comparison of classification accuracy (mean+std) on
localized content-based image retrieval®

8

weight decay is 0.005. We set the learning rate to 0.0001. Our
models are trained for 100 epochs on Fox, MUSK1, and MUSK2.
As for Elephant and Tiger, the number of training epochs is 50,
due to their faster convergence.
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